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CHAPTER II 

 
 

The Psychology of the Monty Hall Problem: 
Discovering Psychological Mechanisms 

for Solving a Tenacious Brain Teaser 
 

 
 
 
 
SUMMARY 

The Monty Hall problem (or three door problem) is one of the most famous examples 

of a “cognitive illusion”, often used by psychologists, economists, and even law 

scientists to demonstrate people’s resistant deficiency in dealing with uncertainty. By 

analyzing this problem’s cognitive aspects we discovered synergistic relationships 

among four elements from the cognitive psychologists’ toolbox. These elements are 

natural frequencies, mental models, perspective change, and the less-is-more effect. Our 

first step in this chapter is to show that these four elements can serve as building blocks 

of a comprehensible solution to the problem; yet certain features of the problem’s 

standard version block the intuitive pathway to their use. Secondly, we review ongoing 

debates on the problem, in particular the one on “missing information”. We argue that 

participants’ difficulties in solving the problem are not due to their wrong assumptions 

that arise from a lack of task information but rather due to a lack of appropriate 

information representation. Finally, we experimentally manipulate the problem’s 

formulation along the lines of each of the four cognitive elements. These manipulations 

combined indeed lead to an increase in the proportion of novice participants who 

respond correctly from the typical range of 5–15% to over 50% (Studies 3, 4). In a 

training study (Study 5) we showed that with advance tutoring people’s widely cited 

resistance can be broken and their performance can even be increased up to 82% correct 

responses. 
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INTRODUCTION 

For 28 years, Monty Hall hosted a game show on American television called “Let’s 

Make a Deal”. Contestants on this show were often confronted with a dilemma in which 

they had to decide whether to stick with an initial choice or switch to an alternative. 

What contestants should do in this situation sparked a heated public debate in 1991, 

after a reader of Parade magazine asked the following question (see vos Savant, 1997), 

today known as the Monty Hall problem or the three-door problem: 

______________________________________________________________________ 

 
“Suppose you’re on a game show and you’re given the choice of three doors. 

Behind one door is a car, behind the others, goats. You pick a door, say number 

1, and the host, who knows what’s behind the doors, opens another door, say 

number 3, which has a goat. He then says to you, ‘Do you want to switch to 

door number 2?’ Is it to your advantage to switch your choice?” 6 

______________________________________________________________________ 

 
In three of her weekly columns, vos Savant7 attempted to convince readers that 

switching is to the contestant’s advantage. First, she declared: “Yes, you should switch. 

The first door has a 1/3 chance of winning, but the second door has a 2/3 chance.” Then 

she explained her statement by asking readers to visualize one million doors: “Suppose 

there are a million doors, and you pick number 1. Then the host, who knows what’s 

behind the doors and will always avoid the one with the prize, opens them all except 

door number 777,777. You’d switch to that door pretty fast, wouldn’t you?” 

Responses to these columns were numerous, passionate, and, in some cases, 

vitriolic.8 Many of vos Savant’s disbelievers had Ph.D.s and worked in the field of 

                                                 
6 In the following we will refer to this as the standard version of the problem. In the real game show 
Monty Hall played several variations of this setting. But it is important to note that the discussion about 
the problem started only after vos Savant’s columns appeared in Parade. Readers there were explicitly 
referred to the version posed by the inquisitive reader, and no mention was made of the real game show.   
7 Marilyn vos Savant’s column in Parade magazine is called “Ask Marilyn”. According to the Guiness 
book of world records of 1991 she was, at the time of the controversy, said to be the person with the 
highest IQ in the world (IQ: 228) and readers could ask her whatever they wanted. In 1997 she summa-
rized the exploding discussion about the Monty Hall problem in her book The power of logical thinking. 
8 In total, she received 10,000 letters replying to her three columns. For a collection of the most interest-
ing (and the most amusing) ones, see vos Savant (1997). 
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statistics. A Ph.D. from the University of Florida wrote: “Your answer to the question is 

in error. But if it is any consolation, many of our academic colleagues have also been 

stumped by this problem.” A member of the U.S. Army Research Institute responded 

thus to her second attempt to convince readers of the correct solution: “You made a 

mistake, but look at the positive side. If all those Ph.D.s were wrong, the country would 

be in some very serious trouble.” Some people even offered to wager large sums of 

money (e.g., $20,000) on their belief that switching has no advantage. In addressing 

these replies, vos Savant wrote: “Gasp! If this controversy continues, even the postman 

won’t be able to fit into the mailroom. I’m receiving thousands of letters, nearly all 

insisting that I’m wrong, including the Deputy Director of the Center for Defense 

Information and a Research Mathematical Statistician from the National Institutes of 

Health! Of the letters from the general public, 92% are against our answer, and of the 

letters from universities, 65% are against our answer [...]. But math answers aren’t 

determined by votes” (vos Savant, 1997, p. 10). From reading vos Savant’s (1997) 

recollection, it becomes clear that it is not only difficult to find the correct solution to 

the problem, but it is even more difficult to make people accept its solution. 
 

PREVIOUS RESEARCH  

This seemingly simple problem has since drawn the attention of several authors, for 

instance, in American Statistician and Skeptical Inquirer (e.g., Frazier, 1992; Posner, 

1991). The New York Times also reported on the debate in a front-page story (Tierney, 

1991). These discussions have verified vos Savant’s conclusion that the mathematically 

correct solution for the benefit of the contestant is to switch, if the rules of the game 

show are so: Monty Hall has in any case to reveal a goat after the contestant’s first 

choice and he cannot open the door chosen by the contestant.9 

In von Randow’s book about the Monty Hall problem (1993), the German 

science journalist described how he shifted his interest from mathematical to 

psychological issues after he realized that switching is indeed better. He raised the 

following three questions (p. 9): Why were so many people, even those who were 

                                                 
9 For a detailed discussion on ambiguity of the wording of the Monty Hall problem see section “Are 
There Possible Effects of Incomplete Information?” in this chapter. 
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highly educated, deceived? Why are so many of them still convinced of the wrong 

answer? Why are they so enraged? 

Similarly, Piattelli-Palmarini remarked (see vos Savant, 1997, p. 15): “No other 

statistical puzzle comes so close to fooling all the people all the time. [...] The 

phenomenon is particularly interesting precisely because of its specificity, its 

reproducibility, and its immunity to higher education.” He went on to say “even Nobel 

physicists systematically give the wrong answer, and [...] insist on it, and are ready to 

berate in print those who propose the right answer.” In his book Inevitable illusions: 

How mistakes of reason rule our minds (1994), Piattelli-Palmarini singled out the 

Monty Hall problem as the most expressive example of the “cognitive illusions” or 

“mental tunnels” in which “even the finest and best-trained minds get trapped” (p. 161). 

Experimental psychologists have used the Monty Hall problem to study various 

psychological aspects of human probabilistic reasoning and decision making.10 In fact, 

before the Monty Hall problem became famous, Shimojo and Ichikawa (1989) 

investigated a problem that is mathematically very similar, namely, the problem of three 

prisoners.11 Shimojo and Ichikawa examined the beliefs of participants experimentally, 

whereas Falk (1992), for instance, looked at the same issue theoretically. The main aim 

of both lines of work was to provide explanations for people’s reasoning errors with this 

kind of problem. Granberg and Brown (1995) later conducted the first comprehensive 

experimental study of the Monty Hall problem. They presented participants with the 

                                                 
10 Generally there are two kinds of possible experiments related to the Monty Hall problem. First, one can 
ask participants for a (justified) decision, when they are provided with a written version. Second, one can 
let people play the game repeatedly with feedback (e.g., against a computer) and can investigate how they 
change their behavior by observing the outcome. In this chapter we will only focus on experiments of the 
first kind. For experiments of the second kind see, for instance, Friedman (1998) or Granberg and Dorr 
(1998). 
11 The problem of three prisoners is the following: Tom, Dick, and Harry are awaiting execution while 
imprisoned in separate cells in some remote country. The monarch of that country arbitrarily decides to 
pardon one of the three, but the name of the lucky one is not immediately announced, and the warden is 
forbidden to inform any of the prisoners of his fate. Dick argues that he already knows that at least one of 
Tom and Harry must be executed, thus convincing the compassionate warden that by naming one of them 
he will not be violating his instructions. The Warden names Harry. Did this change the chances of Dick 
and Tom of being freed? (Paraphrasing of Falk’s 1992 problem formulation). Corresponding to the 
Monty Hall problem, the chances of Dick being freed remain one third, while the chances of Tom in-
crease to two thirds. 
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standard version of the Monty Hall problem with slight changes in wording and found 

that only 13% of them correctly chose to switch doors. 

Until now, all experimental studies have had similar results: The vast majority 

of participants thinks that switching and staying are equally good alternatives and then 

decide to stay. Falk (1992) calls the belief in the equiprobability of the two remaining 

alternatives “uniformity belief” (p. 202). But if for most participants there is no reason 

to favor one option over the other, why do a vast majority decide to stick to the original 

choice? To answer this question, Granberg and Brown (1995) gave a new group of 

participants hypothetical histories of choices made by previous contestants (for example 

“contestant switched and lost” or “contestant stayed and lost”) and asked how they 

would feel in the described situations. Participants reported that they would feel worse 

if they switched from a door with the car behind it than if they stuck to a door with a 

goat behind it because in the first case they would have already won the prize. 

To date, efforts to encourage people to solve the Monty Hall problem with 

mathematical insight have not been very successful. Expressed in terms of the 

percentage of participants who switch, even the most encouraging findings (e.g., 

Aaron & Spivey, 1998) have not exceeded 30%. 

 

PRESENT APPROACH AND OBJECTIVES  

Most of the research on the Monty Hall problem has focused on beliefs that might lead 

to the mathematically incorrect choice. We are instead interested in the mental 

processes that lead to correct reasoning. Knowledge of these cognitive mechanisms 

should allow us to formulate a version of the Monty Hall problem better adapted to 

human cognition than the standard version. 

Despite the difficulties people have with the Monty Hall problem, there are 

people who do find the correct solution intuitively. The natural questions are: Which 

reasoning processes are employed by these few successful problem solvers? And: Given 

we find these mechanisms, how can we develop appropriate ways to represent and to 

explain the brain-teaser to eliminate the typical resistance? In the brain-storming phase 

preceding the experiments we confronted colleagues and students with the problem and 

later discussed their intuitions with them.  This led us to the insight that the reasoning 
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processes of successful problem solvers have a common denominator whose essence is 

expressed in Figure 2.1. 

 

Figure 2.1: Explanation of the solution to the Monty Hall problem that has a good chance of being 
accepted: In two out of three possible car-goat arrangements the contestant would win by switching and 
therefore she should switch 
 

Note that Monty Hall’s behavior in arrangement 3 of Figure 2.1 is not 

specified (“... no matter what Monty Hall does”). In the literature one finds mostly 

arrays consisting of more than three single arrangements in which Monty Hall’s 

behavior is executed in each arrangement (see, for instance, Table 2.1 below). We 

will later demonstrate why ignoring Monty Hall’s behavior in arrangement 3 turns out 

to be a crucial building block of an intuitive solution. 

By performing a “mental simulation” of the three possible arrangements (i.e., 

considering the whole sequence of actions specified by each arrangement in Figure 

2.1), one can see that in two out of three possible arrangements the contestant would 

win the car by switching (namely in arrangements 1 and 2). Let us identify some 

arrangement 1:

door 1 door 2 door 3

arrangement 2:

arrangement 3:

Here the contestant wins 
by switching.  

Here the contestant wins 
by switching.

Here the contestant wins 
by staying, no matter 
what Monty Hall does.

first choice

first choice

first choice

 goat  goat   car

 goat   car  goat

car  goat  goat

then Monty 
Hall opens

then Monty 
Hall opens
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inter-related features in Figure 2.1 and express them in terms of psychological 

elements: 

1. Rather than reasoning with probabilities one has to count and compare 

frequencies. 

2. These frequencies correspond to possible arrangements of goats and cars 

behind the doors. One has to compare the number of arrangements in which the 

contestant would win the car by switching to the number in which she would 

win by staying. 

3. One has to consider the possible arrangements as they would appear from 

behind the doors. 

4. One has to ignore the last piece of information provided in the standard 

version (Monty Hall opens door 3). Taking this information for granted would 

eliminate arrangement 1 in Figure 2.1, because the host will not open a door 

concealing a car.  

Item 4 demands some clarifications: Although semantically door 3 in the 

standard version is just labeled by example (“Monty Hall opens another door, say 

number 3”), most participants take the opening of door 3 for granted and base their 

reasoning on this fact.12 In a pre-test we gave participants (N = 40) the standard version, 

asking them to illustrate their view of the situation described by drawing a sketch. After 

excluding 4 uninterpretable drawings, 34 out of the remaining 35 participants (97%) 

indeed drew an open door 3 and only 1 of them (3%) indicated that also other 

constellations remain possible according to the wording of the standard version. Note 

that the assumption of a definitely opened door 3 is further confirmed by the specific 

closing question: “Do you want to switch to door number 2?” Problem solvers seem to 

have a strong tendency to clutch to concrete numbers present in the problem’s wording 

– regardless of whether these numbers are fixed or just labeled by example. Note that 

whenever someone takes the information on the opening of door 3 for granted she no 

longer has access to the intuitive solution pathway suggested by Figure 2.1. 

                                                 
12 This claim is also supported by the fact, that participants’ beliefs and justifications in the Monty Hall 
problem do not differ from the corresponding ones in the “problem of three prisoners” (see footnote 6), 
where Harry (not: “say Harry”) is named explicitely. 
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Each of the four features specified above has theoretical underpinnings eliciting 

correct responses from naive participants. In the following sections we discuss these 

four features in terms of four psychological elements, namely, natural frequencies, 

mental models, perspective change, and the less-is-more effect. 

 

NATURAL FREQUENCIES 

According to Figure 2.1 one needs to consider the three single arrangements and to 

reason in terms of frequencies, like “in one – or two – out of three arrangements ...”. 

In Chapter 1 we saw that representing probabilistic information in natural 

frequencies facilitates participants’ performance in solving complex Bayesian reasoning 

problems. Information format may also be an important factor affecting the search for a 

mathematically correct solution to the Monty Hall problem. Gigerenzer and Hoffrage’s 

(1995) proposal for improving probabilistic reasoning by translating single-event 

probabilities (i.e., consider the story of a single woman) into natural frequencies (i.e., 

consider a whole sample of women) is readily applicable to the Monty Hall problem. 

Aaron and Spivey (1998) indeed presented the Monty Hall problem in both probability 

and frequency versions, to different groups of participants.13 In one of their 

experiments, 12% of participants given the probability version gave the correct answer, 

whereas 29% of participants given the frequency version did. This improvement was 

achieved after participants given the frequency version saw a pictorial presentation of 

the problem and answered a series of 11 frequency questions (e.g., “Imagine 30,000 

game shows like this [...]. Of the 30,000 rounds in which the player chooses door 1, in 

how many of them is the car actually behind door 1?”, etc.). The disadvantage of Aaron 

and Spivey’s frequency version is that the wording no longer has much in common with 

the standard version. Their formulation of all 11 questions required adding a large 

number of lines and their manipulation thus looks heavy handed. 

In contrast to the frequency procedure used by Aaron and Spivey (1998), the 

diagram shown in Figure 2.1 does not involve imagining multiple rounds such as 

                                                 
13 Although in the standard version of the Monty Hall problem the format is not obviously determined, it 
clearly does not ask for frequencies. The question “Is it to your advantage to switch?” refers rather to a 
single-event probability, that is, to the possible outcome of one specific game show. 
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“30,000 game shows.” Instead, it uses the concept of frequencies in the actual context 

of a single-shot game. 

 

MENTAL MODELS  

Following the diagram in Figure 2.1, one has to count and compare conditional 

outcomes of possible arrangements (e.g., if the car is actually behind door 2, I would 

win by switching) of one single game show. This sort of case-based mental simulation 

relates to Johnson-Laird’s (1983) work on the dynamics of logical reasoning. According 

to his theory, people reason about logical problems, for example, syllogisms, by 

constructing mental models. Recently, Johnson-Laird, Legrenzi, Girotto, Legrenzi, and 

Caverni (1999) extended this theory to probabilistic reasoning – including reasoning 

about the Monty Hall problem. In a section of their paper entitled Pedagogy of Bayesian 

reasoning they suggested six mental models, which are illustrated in Table 2.1, that 

people might use to represent the Monty Hall problem in an intuitive way. In Table 2.1 

the word “open” indicates the door that Monty Hall opens after the contestant chooses 

door 1, and the word “car” indicates the door behind which the car actually is: 

 

Mental Model Door 1 (Chosen Door)            Door 2    Door 3 
           

1   car   open     
           

2   car      open  
           

3      car   open  
           

4      car   open  
           

5      open   car  
           

6      open   car  

 
 
Table 2.1: Mental models to represent the Monty Hall problem (by Johnson-Laird et al., 1999) 
 

The rows correspond to the mental models, each of which represents a 

possible situation of the Monty Hall problem, given the contestant first chooses door 

1. If the car actually is behind door 1, Monty Hall can open either door 2 (mental 
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model 1) or door 3 (mental model 2). Taking Monty Hall’s behavior into account, 

Johnson-Laird et al. (1999) had to replicate our arrangement 3 in Figure 2.1. Because 

all arrangements in Figure 2.1 are equally probable, Johnson-Laird et al. consequently 

also had to replicate our arrangement 1 (which now corresponds to mental models 5 

and 6) and our arrangement 2 (which now corresponds to mental models 3 and 4), in 

which Monty Hall does not have to make a decision, as to what door he opens. 

Johnson-Laird et al. (1999) did not run an empirical study on whether people actually 

use these mental models to solve the Monty Hall problem. Although they admitted 

that the artificial replicating of models (model 3 corresponds with model 4 and model 

5 corresponds with model 6) might be difficult to grasp, they proposed that these six 

mental models can serve as a means of explaining the problem to people. 

Interestingly, Marilyn vos Savant also used six “mental models” in her second 

attempt to explain the Monty Hall problem (vos Savant, 1997, p. 8). Her models had a 

3×2 structure, in which the dimensions were the three possible locations of the car 

and the two possible choice strategies (i.e., stay vs. switch). Yet, as we have learned, 

this approach did not convince her readers. 

Both vos Savant (1997) and Johnson-Laird et al. (1999) suggested six models to 

explain the Monty Hall problem. We argue that the three-model presentation of Figure 

2.1 is a more effective way to represent the problem. 

 

PERSPECTIVE CHANGE 

The three mental models from Figure 2.1 are constructed as if one were standing behind 

the doors and could see each possible arrangement of goats and car. This perspective, 

which is the one of the game show host, makes it possible to imagine what the host 

would have to do contingent upon which door the car is behind. Taking the contestant’s 

perspective, in contrast, may block or even blind participants’ “view” of the three 

possible arrangements behind the doors. The idea of investigating the impact of 

changing perspective on human reasoning has been applied with different aims and in 

different reasoning tasks (e.g., Gigerenzer & Hug, 1992; Wang, 1996; Fiedler, 

Brinkmann, Betsch, & Wild, 2000). 

With respect to the Monty Hall problem we suggest the following theoretical 

connection between a perspective change and the structure of Bayes’ rule: Assuming 
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that the contestant first chooses door 1 and that Monty then opens door 3 (the standard 

version), the probability that the car is behind door 2 can be expressed in terms of 

Bayes’ rule in the following way: 

 

p(C2 | M3) = 
p(M3 | C2 ) ⋅ p(C2)

p(M3 | C1) ⋅ p(C1 ) + p(M3 | C2 ) ⋅ p(C2 ) + p(M3 | C3 ) ⋅ p(C3 )
          (2.1) 

with Ci = car behind door i; i = 1, 2, 3; and M3 = Monty reveals door 3. 

 
The theoretical connection between the perspective change and the structure of 

Bayes’ rule is apparent: When calculating a conditional probability of an arbitrary event 

A given a condition B, that is, p(A | B), Bayes’ rule stipulates that one has to consider 

the inverse conditional probabilities p(B | A) and p(B | A ). For the Monty Hall problem 

this means that to judge p(C2  | M3) one has to insert the three conditional probabilities 

p(M3 | C3), p(M3 | C2), and p(M3 | C1) into Bayes’ rule. The cognitive process for 

assessing these three probabilities is independent of the behavior of the contestant but 

relies on imagining Monty Hall’s behavior in all three arrangements. Thus, a Bayesian 

solution of the problem — whether a formal one based on Bayes’ rule or an intuitive 

one based on Figure 2.1 — focuses on the behavior of the host rather than on that of the 

contestant. Consequently, the change from the contestant’s perspective to Monty Hall’s 

perspective corresponds to a change from non-Bayesian to Bayesian thinking. In the 

sum-up section we will see that the idea of perspective change in Bayesian reasoning is 

not restricted to agents’ perspectives. 

 

LESS-IS-MORE EFFECT  

A common question encountered by both a user and a provider of information is what is 

the best amount of information that should be used or provided? Goldstein and 

Gigerenzer (1999) reported empirical evidence that sometimes “knowing less is more”. 

A clear example provided by the authors is the use of the recognition heuristic, which 

exploits the potential of recognition to help people make inferences. When a situation 

requires inferring which of two objects has a higher value on some criterion (e.g., which 

is faster, higher, stronger), the recognition heuristic is simply stated: If one of the two 

objects is recognized and the other is not, then infer that the recognized object has a 
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higher value. One of the surprising findings of the authors was that Germans were better 

than Americans at judging which of two cities in the United States (e.g., San Diego and 

San Antonio) had the larger population. Why? The German participants, many of whom 

did not know of San Antonio, could use the recognition heuristic (e.g., infer that San 

Diego has a larger population than San Antonio because they recognized the former but 

not the latter). The recognition heuristic is not only frugal in its use of information: It 

actually requires a lack of knowledge to work. This research finding shows that under 

certain conditions, a counterintuitive less-is-more effect appears, in which a lack of 

knowledge is actually beneficial for inference. 

 Regarding the door opened by Monty Hall, someone solving the three-door 

problem can have two possible states of knowledge: First, she just knows that after her 

first choice Monty Hall will open another door revealing a goat, or, second, she already 

has learned the number of this door. Note that participants are only able to provide the 

intuitive solution (see Figure 2.1) if the specific number of the door which Monty Hall 

actually opened is not taken into account. 

The easiest way to make sure that participants’ reasoning processes are not 

interfered with by knowing the door Monty Hall opened, is simply not to give them this 

information. The corresponding formulation would be: “Monty Hall now opens another 

door and reveals a goat”. Although the cognitive situation here differs from the one 

treated in the recognition heuristic, the underlying principle is the same: Having less 

information can be beneficial for inference. 

The issue of “door information” is of great relevance for the cognitive processes 

to solve the Monty Hall problem. Before inserting the four psychological elements into 

the problem’s wording, let us have a closer look at the different possible scenarios of 

the problem based on different “door information”. Since we learned from the pre-test 

that the formulation “say number 3” psychologically is interpreted as “door 3 is open”, 

we will call expressions such as in the standard version (“you pick a door, say number 

1, and the host [...] opens another door, say number 3”) specifications of doors. 

 

NO-DOOR SCENARIO  

If no door were specified in the formulation of the Monty Hall problem (no-door 

scenario), that is, neither that chosen by the contestant nor that chosen by Monty Hall, 
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then the participant has no restriction for mentally simulating the game show. The 

contestant’s three possible choices and the three possible locations of the car would 

then yield a total of nine possible arrangements, as illustrated in Figure 2.2: 
 

first choice

 goat   car  goat  goat   car  goat

first choice

 goat   car  goat

first choice

2

first choice

car  goat  goat car  goat  goat

first choice

car  goat  goat

first choice

1

door 1 door 2 door 3 door 1 door 2 door 3 door 1 door 2 door 3

first choice

 goat  goat   car  goat  goat   car

first choice

 goat  goat   car

first choice

3

A B C

 
 

Figure 2.2: The nine possible arrangements in a no-door scenario 
 

In Figure 2.2 we label the rows that denote actual car location by numbers and 

the columns that denote first choice by letters. For instance, the arrangement in which 

the car stands behind door 3 and the contestant first chooses door 1, is named A3. 

Figure 2.2 illustrates that a contestant would win the prize in six of the nine possible 

arrangements by switching doors, but in only three of the nine arrangements (A1, B2, 

and C3) by sticking with the door initially chosen. Hence, switching affords a better 

chance of winning. Not specifying a door in the wording would thus allow one to use an 

intuitive representation that is likely to lead to the correct response. However, this may 

be suboptimal because it would be difficult to simulate all nine scenarios mentally. 

 

ONE-DOOR SCENARIOS  

If the contestant’s first choice is specified (one-door scenario), then only three 

arrangements remain possible. If, for instance, the wording is such that the contestant 
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chooses door 1, then only arrangements A1, A2, and A3 remain (see left column in 

Figure 2.2). By switching, the contestant would win in two of the three arrangements 

(A2 and A3) and lose in only one arrangement (A1). 

A second type of one-door scenario that may lead to a similar path of intuitive 

thinking would entail specifying the location of the car. The arrangements then can be 

illustrated using any row in Figure 2.2. For example, the first row would represent the 

three possible first choices by a contestant when the car is specified to be behind door 3. 

One can see that the contestant would win in two of three arrangements by switching 

(A3 and B3), and in only one arrangement by staying (C3). Thus, whether the door 

specified is the contestant’s first choice or the car position, one-door scenarios allow 

one to use just one column or one row in Figure 2.2 to gain insight into the correct 

solution. 

In a nutshell, both no-door and one-door scenarios allow unrestricted mental 

simulations, thereby making the counting and comparison of the frequency of wins 

possible, given that the contestant switches or stays. Another crucial advantage of all 

no-door and one-door scenarios is that one does not have to think about the behavior of 

Monty Hall in the cases in which he can choose which door to open. In a one-door 

scenario where, for instance, the contestant has chosen door 1 first, a correct and 

sufficient chain of reasoning might go in the following way: 

If the car is actually behind door 3, then Monty Hall must open door 2, and I 

win by switching (A3). 

If the car is actually behind door 2, then Monty Hall must open door 3, and I 

win by switching (A2). 

If the car is actually behind door 1, then I win by sticking to my first choice, 

no matter what Monty Hall does (A1). 

In a one-door scenario, Monty Hall’s behavior either is determined (A3, 

A2) or irrelevant for the decision (A1). The problem becomes cumbersome, 

however, when the door opened by Monty Hall now is specified in addition to 

the contestant’s first choice, as it is the case in two-door scenarios. 



 55

 

TWO-DOOR SCENARIOS  

The additional specification of the door opened by Monty Hall in the standard version 

of the problem leaves only two of the three arrangements in the left column in Figure 

2.2 (A1 and A2). A3 is impossible because Monty Hall cannot open the door concealing 

the car. As a result, one cannot simply count and compare the frequencies of winning, 

given that the contestant switches or stays, but rather one has to reason in probability 

terms to reach the Bayesian solution. That is, Monty Hall’s opening door 3 has a lower 

probability in A1 than in A2, because in A1 he could have opened either door 2 or door 

3, whereas in A2 he had to open door 3. Thus, one has to make assumptions about what 

Monty Hall would do in A1 and estimate the probability that Monty Hall would open 

door 3 rather than door 2. Some authors have argued that participants’ assumptions 

about Monty Hall’s strategy in A1 may affect their probability judgments, and that the 

lack of information about this strategy in the standard version may therefore help to 

explain participants’ poor performance on the problem (c.f., von Randow, 1993). 

To illustrate this “strategy” argument we use the standard version, in which the 

contestant chooses door 1. In the left column of Figure 2.2 let us consider one 

arrangement  after  the  other.  This  means  considering  the  three  conditional  

probabilities 

p(M3 | C3), p(M3 | C2), and p(M3 | C1) according to Equation 2.1: 
 

Arrangement A3: According to the wording “the host ... opens another door 

... which has a goat”, A3 is no longer possible, which means that the 

probability p(M3 | C3) = 0. 
 

Arrangement A2: It also follows from the wording that the probability that 

Monty Hall opens door 3 given that the contestant first chose door 1 is 

unity, that is, p(M3 | C2) = 1. 
 

Arrangement A1: Investigating arrangement A1 reveals that p(M3 | C1) 

reflects Monty Hall’s strategy.  
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We now consider three different strategies that he might use concerning 

arrangement A1: 

First, if one assumes that Monty Hall’s strategy is to choose randomly when he 

has a choice, then the probability of his opening door 3, p(M3 | C1), equals 1/2. The 

probability of the contestant’s winning by switching (to door 2) can now be expressed 

in terms of Bayes’ rule: 

 

p(C2 | M3) = 
p(M3 | C2 ) ⋅ p(C2)

p(M3 | C1) ⋅ p(C1 ) + p(M3 | C2 ) ⋅ p(C2 ) + p(M3 | C3 ) ⋅ p(C3 )
  

= 
1 ⋅ 13

1
2 ⋅

1
3 +1 ⋅ 13 + 0 ⋅ 13

 = 
2
3

   (2.2) 

 

Thus, assuming Monty Hall uses this random strategy, the probability of the 

contestant winning by switching is indeed equal to what it is in the no-door and one-

door scenarios, namely, 2/3. 

Second, if one assumes that Monty Hall’s strategy is “to open door 3 whenever 

possible”, then p(M3 | C1) equals 1, and the probability of the contestant winning by 

switching changes to 1/2: 

 

p(C2 | M3) = 
p(M3 | C2 ) ⋅ p(C2)

p(M3 | C1) ⋅ p(C1 ) + p(M3 | C2 ) ⋅ p(C2 ) + p(M3 | C3 ) ⋅ p(C3 )
 

= 
1 ⋅ 13

1 ⋅ 13 +1 ⋅ 13 + 0 ⋅ 13
 = 

1
2

   (2.3) 

 

Third, if one assumes that Monty Hall’s strategy is to open door 2 whenever 

possible, then p(M3 | C1) is 0, and the probability of the contestant winning by switching 

would become 1: 

 

p(C2 | M3) = 
p(M3 | C2 ) ⋅ p(C2)

p(M3 | C1) ⋅ p(C1 ) + p(M3 | C2 ) ⋅ p(C2 ) + p(M3 | C3 ) ⋅ p(C3 )
 

= 
1 ⋅ 13

0 ⋅ 13 +1 ⋅ 13 + 0 ⋅ 13
 = 1   (2.4) 
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As demonstrated above, different assumptions about Monty Hall’s strategy 

indeed lead to different Bayesian solutions. Note that these different solutions are 

possible only in two-door scenarios, such as the standard version. Taking Monty Hall’s 

strategy into account not only can lead to different solutions but also forces one to 

reason in terms of probabilities. Furthermore, there is no intuitive diagram that can 

reflect Monty Hall’s strategy appropriately. The advantage of the no-door and one-door 

scenarios, in which Monty Hall’s behavior is not specified, is that participants do not 

need to consider possible strategies that Monty Hall might use. 

 

ARE THERE POSSIBLE EFFECTS OF INCOMPLETE INFORMATION?  

After the Monty Hall problem became famous, many questions on possible effects of 

incomplete information in the standard version arose. Besides not mentioning Monty 

Hall’s strategy (1), the standard version refers to neither the exact rules of the game 

show (2) nor to the a priori probability distribution of car and goats (3) (c.f., 

Nickerson, 1996; von Randow, 1993; Mueser & Granberg, 1999). 

(1) The standard version provides no information about Monty Hall’s strategy. 

Is the problem therefore mathematically underspecified and insoluble? The answer is 

no, because the standard version does not ask for a probability, but only for a decision. 

The general Bayes’ rule for the standard version of the Monty Hall problem in the 

absence of information about Monty Hall’s strategy is: 

 

p(C2 | M3) = 
p(M3 | C2 ) ⋅ p(C2)

p(M3 | C1) ⋅ p(C1 ) + p(M3 | C2 ) ⋅ p(C2 ) + p(M3 | C3 ) ⋅ p(C3 )
 

= 
1 ⋅ 13

p(M3 | C1) ⋅ 13 +1 ⋅ 13 + 0 ⋅ 13
 = 

1
p(M3 | C1) +1

  (2.5) 

where p(M3 | C1) is a “strategy” parameter that can vary between 0 and 1. 
 

Since the strategy-dependent probability p(M3 | C1) varies between 0 and 1, the 

conditional probability p(C2 | M3) can vary only between 1/2 and 1 (see Equation 2.5). 

Therefore, whatever strategy one assumes Monty Hall uses, the conclusion is that the 

contestant should switch. Only if Monty Hall always opens door 3, that is, p(M3 | C1) = 
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1 (an assumption for which the wording of the problem does not provide the slightest 

hint of support) do staying and switching afford the contestant equal chances of 

winning. Given all other assumptions about Monty Hall’s strategy (an infinite set of 

possible strategies), switching is better than staying. Thus, Equation 2.5 implies that 

switching is better even in two-door scenarios, regardless of Monty Hall’s strategy. 

Even after clarifying this mathematical question a psychological question remains: 

Does the lack of information on Monty Hall’s strategy hinder participants in choosing 

the right alternative? It can be read in Ichikawa (1989, p. 271) that letting participants 

know Monty Hall’s strategy does not help them find the solution either. 

(2) The conditional probabilities p(M3 | C1), p(M3 | C2), and p(M3 | C3) describe 

Monty Hall’s behavior in different arrangements. This behavior can be influenced either 

by his personal strategy or by the official rules of the game show (in the standard 

version the intended rule is “after the contestant chooses a door, Monty Hall has to open 

another door and reveal a goat”). If the rule were, instead, that the host has to reveal a 

goat if the contestant first chooses the car-door and should otherwise do nothing, then 

p(M3 | C2) = 0, which makes the probability of winning by switching 0 (see Equation 

2.1).14 Nickerson (1996) writes: “... without information or an assumption about the 

host’s behavior, the situation is ambiguous, and the question of whether one should 

switch is indeterminate.” (p. 420). Most experimental psychologists consequently insert 

the intended rule “Monty has to open another door and reveal a goat” into the standard 

version to avoid criticism about ambiguity in the wording.15 But this does not seem to 

help participants: Although Granberg and Brown (1995) stressed this rule, they 

observed only 13% switch decisions. 

(3) As we have seen, we cannot be sure of the values of the conditional 

probabilities p(M3 | C1), p(M3 | C2), and p(M3 | C3) in the standard version, because we 

know neither the complete rules of the show nor Monty Hall’s personal strategies. What 

about the remaining terms in Equation 2.2, namely, p(C1), p(C2), and p(C3)? One may 

                                                 
14 Actually, Monty Hall did not use the same rule in every show (see also footnote 1). For a description of 
the real game show, see, for instance, Friedman (1998).  
15 Interestingly with regard to this aspect the Monty Hall problem differs from the problem of three pris-
oners. In the problem of three prisoners the rule automatically is specified by Dick asking for the name of 
another prisoner who will be executed. In the Monty Hall problem the corresponding specification would 
be that the contestant explicitly asks Monty Hall to open a door with a goat after his first choice. 
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wonder whether the car was randomly placed behind one of the three doors. In other 

words, is the assumption of an equal a priori distribution p(C1) = p(C2) = p(C3) = 1 3  

justified? Perhaps the car is more likely to be placed behind door 1 because it is closest 

to the entrance of the stage. 

A formulation of the Monty Hall problem providing all of this missing 

information and avoiding possible ambiguities of the expression “say number 3” would 

look like this (mathematically explicit version): 

Suppose you’re on a game show and you’re given the choice of three doors. 

Behind one door is a car, behind the others, goats. The car and the goats were 

placed randomly behind the doors before the show. The rules of the game show 

are: After you have chosen a door, the door remains closed for the time being. 

The game show host, Monty Hall, who knows what is behind the doors, now has 

to open one of the two remaining doors, and the door he opens must have a goat 

behind it. If both remaining doors have goats behind them, he chooses one 

randomly. After Monty Hall opens a door with a goat, he will ask you to decide 

whether you want to stay with your first choice or to switch to the last remaining 

door. Imagine that you chose door 1, and the host opens door 3, which has a 

goat. He then asks you “Do you want to switch to door number 2?” Is it to your 

advantage to change your choice? 

Even though the Bayesian solution (Equation 2.2) is now wholly justified, 

fleshing out the problem in this manner would fail to foster insight into its mathematical 

structure. The problem is that people still do not have access to an intuitive solution 

(such as Figure 2.1). We argue that most of the criticisms of the standard version 

regarding its unstated assumptions are mathematically relevant, but not psychologically 

relevant, since the intended assumptions will hold anyway. 

Evidence supporting this claim comes from the observation that a vast majority 

of people wrongly regards the stay and switch choices as equally likely to result in 

winning. Let us give examples of how assumptions, different from the intended ones, 

would make this “uniformity belief” in the standard version impossible: 

1. If participants assumed that Monty Hall’s strategy is “always open middle 

door when possible” they would know that it was not possible for Monty Hall to open 
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the middle door because it had the car.” Thus they would not conclude equiprobability 

of the remaining alternatives but rather switch to door 2. 

2. If participants assumed the game show rule is that Monty Hall only reveals a 

goat when the first choice was a car, they also would not follow the uniformity belief 

but rather have an obvious reason to stay. 

3. If participants did not assume the a priori distribution p(C1) = p(C2) = p(C3) = 

1/3 they also would not have any reason to come up with an equiprobable a posteriori 

distribution. 

In sum, when solving the standard version, in which the required assumptions 

are not made explicit, people seem to assume the intended scenario anyway. Along the 

same lines, vos Savant observed (1997): “Virtually all of my critics understood the 

intended scenario. I personally read nearly three thousand letters (out of the many 

additional thousands that arrived) and found nearly every one insisting simply that 

because two options remained (or an equivalent error), the chances were even. Very few 

raised questions about ambiguity, and the letters actually published in the column were 

not among those few” (p. 15). 

In short, people seem to struggle not with the ambiguity of the standard 

version’s assumptions but with the mathematical structure of the scenario.16 As we will 

see in the next section, what blocks correct intuitive reasoning is not lack of 

information, but 

lack of the right information representation. 

 

INTUITIVE VERSIONS OF THE MONTY HALL PROBLEM  

To formulate wordings of the Monty Hall problem that should elicit the correct solution 

we take into consideration the four psychological elements discussed earlier as well as 

the discussion on missing information. The four psychological elements were:17 (1) 

perspective change, (2) the less-is-more effect, (3) mental models, and (4) natural 

frequencies. We incorporated these elements via the following manipulations: 

                                                 
16 Ichikawa and Takeychi (1990) found that the same is true for the related problem of three prisoners. 
17 The new order 1-4 now follows the order of appearance in the manipulated wording. 
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1. We manipulated perspective by asking participants to “imagine you are 

the host of this game show” instead of assigning them the role of the 

contestant. 

2. We used a one-door scenario (this means not specifying the number of 

the door opened by Monty Hall). Relative to the two-door scenario in 

the standard version, this can be considered an incorporation of a less-is-

more effect. The beneficial lack of information about the door opened 

by Monty Hall would allow participants to reason in terms of 

frequencies (e.g., Figure 2.1) instead of probabilities. 

3. We explicitly mentioned the three possible arrangements of goats and 

car behind the doors to participants to prime the relevant mental models 

(i.e., A1, A2, and A3; see Figure 2.2). 

4. We asked participants to tell us the frequencies with which the 

contestant would win by switching and by staying:18 “In how many of 

the three possible arrangements would the contestant win the car after 

the opening of a “goat-door”, 

- if she stays with her first choice (door 1)?   

  in ___ out of 3 cases 

- if she switches to the last remaining door?   

  in ___ out of 3 cases 

Various versions of the Monty Hall problem can be constructed by incorporating 

combinations of these manipulations. Note that not all of the possible resulting versions 

are meaningful. For example, without the less-is-more manipulation none of the other 

manipulations can work. In a two-door scenario, only two arrangements are possible 

and – as we have seen – considering just two arrangements can never lead to an 

intuitive correct solution, regardless of whether the right perspective or an intuitive 

frequency question is provided. Therefore, we consider the less-is-more manipulation a 

“basic” manipulation that is required before implementing the others. This and other 

dependencies among the manipulations will be analyzed in detail in the sum-up section. 

                                                 
18 Thus the incorporation of frequency formats in the Monty Hall problem is done by formulating the 
question in terms of frequencies. 
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In two studies (Studies 3, 4) we tested seven meaningful and theoretically 

relevant versions. All versions had similar layouts (see Figures 2.3, 2.4). Our prediction 

was that the more manipulations are incorporated in the wording of the Monty Hall 

problem, the better the performance of participants becomes. Furthermore, we expected 

that when all manipulations are incorporated (we call such a version a full intuitive 

version), the mathematical structure will become accessible to humans’ reasoning and 

participants’ performance will no longer support the claim that the Monty Hall problem 

is an insurmountable cognitive illusion. 

As the control version (Figure 2.3), we used a variant of the standard version, 

which was clear without ambiguity. 
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Rules of the game 
show: 
 
 
 

 
 
 
 
 
Perspective of the 
contestant: 
 
Specifying the first 
choice: 
 
 
 
 
 
 
 
Diagram of three 
doors: 
 
 
 
 
 
 
 
Specifying the 
door opened by 
Monty Hall:  
 
Asking just 
for a decision: 
 
 
 
Asking for 
justification: 
 
 

LET´S MAKE A DEAL 
 
There is a game show called “Let’s Make a Deal”, where a contestant is allowed to choose one of 
three closed doors. Behind one door is the first prize, a new car; behind each of the other doors is 
a goat. After the contestant has chosen a door, the door remains closed for the time being. 
According to the rules of the game, the game show host, Monty Hall, who knows what is behind 
the doors, now has to open one of the two unchosen doors and reveal a goat. After Monty Hall 
shows a goat to the contestant, he asks the contestant to decide whether s/he wants to stay with 
the first choice or to switch to the last remaining door. 
 
Task: 
 
 
Imagine you are the contestant and you do not know which door the car is behind. 
 
 
You now randomly choose a door, say number 1. 
 
 

    door 1     door 2     door 3

         HOS T

CONTES TANT (You)       
 
Afterwards Monty Hall opens door 3 according to the rules of the game, and shows you a goat. 
Now he asks you whether you want to stay with your first choice (door 1) or to switch to door 2. 
 
After Monty Hall’s opening of a goat-door, what should you therefore do? 
 
  ___ stay   ___ switch 
 
Important: 
Please tell us in writing what went on in your head when you thought of your answer. In 
explaining your answer, you may make use of things like sketches, etc. 
Please also tell us if you learned this game before ___ (Yes)   ____ (No) and knew what the 
correct answer should be ____ (Yes) ____ (No). 

 
Figure 2.3: Control version of the Monty Hall problem (left column was not provided to participants) 
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Note that in addition to the standard version our control version contained the 

following features: We added the rule of the game show to give total clarification of 

the intended scenario and to guarantee comparability with other studies. Furthermore, 

to reduce variance in participants’ assumptions, we eliminated the word “say” when 

specifying the door opened by Monty Hall.19 To describe the scenario more vividly 

we added a diagram of the three doors. Finally, because we were not only interested 

in participants’ actual decisions but also in how many “switchers” have genuine 

mathematical insight into the problem, we asked participants for justifications of their 

decisions. The impact of these additional changes, which are not the four intended 

manipulations, can be assessed as a byproduct by comparing participants’ 

performance in our control version (Figure 2.3) with that usually obtained with 

standard versions. 

Figure 2.4 now illustrates a full intuitive version, which incorporates all four 

psychological elements into our control version. 

                                                 
19 Note that there is no need to delete the “say” belonging to the contestants’ first choice because the 
following diagram delivers total clarification. Since the opening of a goat-door by Monty Hall is not 
displayed in the diagram, the specification of this door by deleting “say” is at least semantically appropri-
ate (even if not psychologically required – as our pre-test suggests). 
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The rules of the 
game show: 
 
 
 
 
Perspective 
change to the 
perspective of 
Monty Hall: 
 
Specifying the 
first choice: 
 
 
 
 
 
 
Diagram of 
three doors: 
 
 
 
 
 
 
Not specifying 
the door opened 
by Monty Hall 
(less-is-more 
manipulation): 
 
Motivate 
building mental 
models: 
 
Frequency 
question: 
 
 
 
 
 
Asking for 
justification: 
 
 

LET´S MAKE A DEAL 
 
There is a game show called “Let’s Make a Deal”, where a contestant is allowed to choose 
one of three closed doors. Behind one door is the first prize, a new car; behind each of the 
other doors is a goat. After the contestant has chosen a door, the door remains closed for the 
time being. According to the rules of the game, the game show host, Monty Hall, who knows 
what is behind the doors, now has to open one of the two unchosen doors and reveal a goat. 
After Monty Hall shows a goat to the contestant, he asks the contestant to decide whether 
s/he wants to stay with the first choice or to switch to the last remaining door. 
 
Task: 
Imagine you are Monty Hall, the host of this game show, and you know behind which door 
the car is. 
 
The contestant chooses a door, say number 1. 
 

    door 1     door 2     door 3

 host (you)

contestant  
 
Afterwards you open another door according to the rules and show the contestant a goat. 
Now you ask her whether s/he wants to stay with the first choice (door 1) or to switch to the 
last remaining door. 
 
There are three doors behind which the car can be. 
 
In how many of these three possible arrangements would the contestant win the car 
after your opening of a “goat door”, 
- if s/he stays with the first choice (door 1)? in___out of 3 cases 
- if s/he switches to the last remaining door? in___out of 3 cases 
 
What should the contestant therefore do? 
 
  ___ stay   ___ switch 
Important: 
Please tell us in writing what went on in your head when you thought of your answers. In 
explaining your answers, you may make use of things like sketches, etc. 
Please also tell us if you learned this game before ___ (Yes)   ____ (No) and knew what the 
correct answer should be ____ (Yes) ____ (No). 

 
Figure 2.4: “Full intuitive version” of the Monty Hall problem (left column was not provided to participants) 
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To examine the impact of incorporating certain combinations of the four 

manipulations on participants’ performance, we conducted two studies, one in Germany 

(Study 3) and one in the United States (Study 4). 

 

STUDY 3 

 

Method 

In this study, we had three groups of participants (Groups 1-3). We compared 

the control version (Group 1; see Figure 2.3 for English translation) with the full 

intuitive version of the Monty Hall problem (Group 3; see Figure 2.4 for English 

translation). We also tested a version in which only the less-is-more manipulation was 

incorporated20 (Group 2). After excluding participants who had already heard of the 

Monty Hall problem we had 135 students (47 men and 88 women) whose average age 

was 24.7 years. Participants were students of different disciplines and were recruited 

from various universities in Berlin. They were tested at the Max Planck Institute for 

Human Development in small groups of up to five people. Each participant received 

only one version of the Monty Hall problem: In Group 1 (control group) we had 67 

participants; in Groups 2 and 3 we had 34 participants each. After the experiment, every 

participant received a payment of 10 DM (approximately U.S. $5). 

                                                 
20 Why this manipulation is a basic manipulation, which is required before implementing the other ma-
nipulations, we will elucidate in the sum-up section. For the wording of the version of Group 2 see Ap-
pendix II.1. 
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Results of Study 3 

The results of Study 3 are summarized in Table 2.2: 

 

 Group 1 
Control version 

Group 2 
Basic 

manipulation 

Group 3 
Full intuitive 

version, all four 
manipulations 

Participants (N) 67 34 34 
Less-is-more effect 
 
Specified door(s) 

No 
 

first choice and door 
opened by Monty 

Hall specified 

Yes 
 

only first choice 
specified 

Yes 
 

only first choice 
specified 

Perspective Contestant Contestant Monty Hall 
Frequency question for 
mental models 
(“Frequency 
simulation”) 

 
No 

 
No 

 
Yes 

Switch choice total 21% 38 % 59 % 
Mathematically correct 
justification of switch 
choice 

 
3% 

 
12 % 

 
38 % 

 
 
Table 2.2: Percentages of switch choice total and mathematically correct justification as a function of 
experimental manipulations in Study 3; the version of Group 2 is shown in Appendix II.1 
 
 

Before we present a detailed analysis of Table 2.2, let us summarize the main 

results: Incorporating the combination of all four psychological elements into the Monty 

Hall problem evidently had a strong effect. The full intuitive version (Group 3) greatly 

facilitated switch choices. The percentage of switch choices (59%) in this group sets a 

new standard in the literature on the Monty Hall problem.21 The performance of 

participants who received the less-is-more manipulation only (Group 2) lies, as 

expected, between those of the other two groups. However, the focus of our study is on 

fostering mathematical insight. It can be seen in Table 2.2 that 38% of participants in 

                                                 
21 Mueser and Granberg (1999) obtained more than 70% switch decisions by offering participants an 
additional monetary incentive if they switched. Yet, this certainly does not qualify as an attempt to foster 
insight into the mathematical structure of the problem. 
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Group 3 demonstrated total understanding of the underlying problem structure. How 

should we rank this percentage? 

Unfortunately, most studies on the Monty Hall problem just report the 

percentage of switch decisions, which usually is a number around 10-15%. We expect 

that given a standard or a similar version of the Monty Hall problem, the percentage of 

participants who have the correct mathematical insight would be much lower. This 

assumption is reinforced by participants of our control group (Group 1) of whom only 

3% solved the problem by mathematically correct reasoning. The difference in terms of 

real insight from Group 1 (3%) to Group 3 (38%) must be considered with respect to 

how notorious the Monty Hall problem is for its counter-intuitiveness.  

Let us look at the performance of paradigms differing from ours. Hell and 

Heinrichs (2000) obtained 65% switch decisions by investigating a variant of the 

problem with 30 doors, where 28 doors were opened after the first choice. Yet, 

increasing the number of doors changes the problem’s structure substantially: Opening 

all doors except the first chosen and door number 21 clearly suggests a reason for not 

opening door 21. Indeed, the probability of winning by switching in this scenario is 

97%. 

Also in studies using simulation of multiple trials remarkable performance after 

several rounds of feedback was reached (Granberg & Brown, 1995; Friedman, 1998). 

However, in these repeated game settings, participants’ insight into the mathematical 

structure of the Monty Hall problem is not a given: From the first rounds participants 

can realize through feedback that switching pays – yet, they do not necessarily know 

why. Our approach – in contrast – is to increase performance and insight in the 

notorious original problem – neither by changing the number of doors nor by changing 

the number of rounds. 

In Table 2.2, as in the following tables displaying empirical results, the mental 

model and the frequency manipulations are combined. The reason for this is that both 

elements are theoretically and practically connected to each other: On the one hand, the 

frequency question alone automatically evokes building mental models, because these 

are the instances to be counted and compared. On the other hand, building mental 

models can be only half of the process that leads to a problem’s solution. The correct 

answer can only be reached if the mental models are then counted and compared with 
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respect to their outcomes. In the following we will refer to this combined manipulation 

as “frequency simulation”. We choose the word “simulation” instead of “model” 

because in Figure 2.1 just building the three “models” is not enough. Each model first 

has to be “simulated” (i.e., considering the whole sequence of actions specified by the 

model) until the outcome becomes apparent. As we know, such a cognitive procedure 

within a model is not intended in Johnson-Laird’s notion of mental models. 

The significant improvement when applying all elements together motivates the 

analysis of these underlying elements and their individual impact on participants’ 

performance. For example, at first glance the frequency question alone seems like a 

heavy-handed hint for how to solve the problem. Yet, as Study 4 will reveal, this 

seemingly powerful hint does not work effectively if a certain perspective is not 

provided at the same time. 

 
STUDY 4 

A key question concerning the findings of the German study (Study 3) is whether we 

need all four conceptual manipulations to foster people’s insight into the structure of the 

Monty Hall problem. Is any one of the manipulations more crucial than the others? Are 

there synergistic effects of the manipulations? In a second study conducted in the 

United States (Study 4), we examined four different versions that were designed to 

partition the effects of the four crucial manipulations. 

 

Method 

Participants of Study 4 were students recruited from the University of South 

Dakota. After excluding participants who had already heard of the Monty Hall problem, 

we had a total of 137 participants (96 women and 41 men) with an average age of 22.7 

years. Participants were randomly assigned to four different groups (Group 4-7) and 

were tested in a classroom with 10-30 students in each session. The experimental 

groups 5-7 included 34 participants and Group 4 had 35. Each participant received only 

one version of the Monty Hall problem. As in Study 3, participants in Study 4 were 

asked to report in writing a justification for their choices. Participants were rewarded 

with extra course credit. The four groups received the following versions of the 

problem: 
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Group 4: US-Control version (the same as Group 1 of Study 3; see Figure 2.3) 

Group 5: A one-door scenario in which the first choice is specified (“less-is-more” 

manipulation). The participants were asked to take the contestant’s 

perspective and make the stay-switch choice after answering the 

frequency question (“frequency simulation”). 

Group 6: A one-door scenario (“less-is-more” manipulation) in which the car 

position is specified. The participants were asked to take Monty Hall’s 

perspective (“perspective change”) and make the stay-switch choice 

without first having answered the frequency question. 

Group 7: A one-door scenario (“less-is-more manipulation”) in which the car 

position is specified. The participants were asked to take Monty Hall’s 

perspective (“perspective change”) and make the stay-switch choice after 

answering the frequency question (“frequency simulation”). Since all 

four manipulations are incorporated this is – besides the version of 

Group 3 – another full intuitive version. 
 

The versions of groups 5 – 7 are shown in Appendix II.1. Note that in the 

versions for groups 6 and 7, the one-door scenario is incorporated by specifying the car 

position instead of the contestant’s first choice (as in the versions of groups 2, 3 and 5). 

In reference to Figure 2.2, specifying the car position requires reasoning “row-wise” 

and the frequency question now demands imagining the three possible first choices of 

the contestant instead of the three different car-goat arrangements. Interestingly, in 

conditions where the car position is specified (groups 6 and 7) no meaningful version 

from the perspective of the contestant can be formulated – regardless of whether the 

frequency simulation is implemented or not: Revealing participants in such a one-door 

scenario the car position (e.g., “the car is behind door 1”) would provoke the following 

answer: As a contestant, I would choose door 1, and then I would stay with this choice. 
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Results of Study 4 

 
The results of Study 4 are presented in Table 2.3: 

 

All versions are 
shown in Appendix 
II.1 

Group 4 
Control version 

Group 5 
 

Group 6 
 

Group 7 
Full intuitive 

version, all four 
manipulations 

Participants (N) 35 34 34 34 
Less-is-more effect 
 
Specified door(s) 

No 
 

first choice and door 
opened by Monty 

Hall specified  

Yes 
 

only first 
choice 

specified 

Yes 
  

only car 
position 
specified 

Yes 
 

only car position 
specified 

Perspective Contestant Contestant Monty Hall Monty Hall 
Frequency question 
for mental models 
(“Frequency 
simulation”) 

 
No 

 
Yes 

 
No 

 
Yes 

Switch choice total 23 % 26 % 29 % 50 % 
Mathematically 
correct justification 
of switch choice 

 
0 % 

 
9 % 

 
9 % 

 
32 % 

 
 
Table 2.3: Percentages of switch choice total and mathematically correct justification as a function of 
experimental manipulations in Study 4 
 
 

The full intuitive version (Group 7) elicited the best performance in Study 4, 

comparable to that on the full intuitive version in Study 3 (Group 3): Half of 

participants in Group 7 chose to switch, and 32% of them provided a mathematically 

correct justification for their choice. The performances of participants in groups 5 and 

6 lie, as expected, between that of the control group (Group 4) and that of the full 

intuitive version (Group 7). For a detailed analysis of the results of Study 4 let us 

consider the results of studies 3 and 4 together. 
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COMPARISON OF STUDIES 3 AND 4  

The similar performance of the two identical control versions (Groups 1 and 4) 

suggests that it would be reasonable to look at the results collapsed between studies. Let 

us consider participants’ performance in all seven groups simultaneously (Table 2.4). 

 
 

 Group 1 
Control 
version  

Group 4 
Control 
version 

Group 5 Group 6 Group 2 Group 7 
Full 

intuitive 
version 

Group 3 
Full 

intuitive 
version 

Participants (N) 67 35 34 34 34 34 34 
Less-is-more 
effect 
 
Specified 
door(s) 

No 
 

First 
choice + 

door 
opened 

No 
 

First 
choice + 

door 
opened 

Yes 
 

First 
choice 

specified 

Yes 
 

Car 
position 
specified 

Yes 
 

First 
choice 

specified 

Yes 
 

Car 
position 
specified 

Yes 
 

First 
choice 

specified 

Perspective Contestant Contestant Contestant Monty 
Hall 

Contestant Monty 
Hall 

Monty 
Hall 

Frequency 
simulation  

 
No 

 
No 

 
Yes 

 
No 

 
No 

 
Yes 

 
Yes 

Switch choice 
total 

 
21% 

 
23 % 

 
26 % 

 
29 % 

 
38 % 

 
50 % 

 
59 % 

Mathematically 
correct 
justification 

 
3% 

 
0 % 

 
9 % 

 
9 % 

 
12 % 

 
32 % 

 
38 % 

 
 
Table 2.4: Complete results of Study 3 and Study 4, ordered according to the percentages of switch 
choice in each group; visual display of same results is provided in Figure 2.5 
 
 

For a more detailed analysis of participants’ performance we furthermore 

classified the “switch choices” of all seven groups into the following categories: 

- Participants who gave correct solutions and exhibited full insight into the 

mathematical structure 

- Participants who had the right intuition but could not provide a 

mathematically correct proof 

- Participants who switched randomly, meaning that switching and staying are 

equally good 

To summarize: The category “switched with mathematical insight” remained 

the same, whereas the other switchers were classified according to their “degree of 
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insight”. All participants’ protocols could easily be classified within this scheme. 

Interestingly the “stay choices” did not require a similar categorization: None of these 

participants had the feeling that staying might be better from a mathematical point of 

view. 

Figure 2.5 illustrates the results for all seven versions, according to our new 

categorization and ordered by observed percentage of switch decisions: 

 

: Switched randomly, meaning that switching and staying are equally good 
 

: 
 

Had the right intuition, but could not provide a mathematically correct proof 
 

: 
 

Gave the correct solution and exhibited full insight into the mathematical 

structure 
 
Figure 2.5: Complete results of Study 3 and Study 4, ordered according to the percentages of switch 
choice in each group 
 
 

The difference between the performance on the two control versions (on the left 

in Figure 2.5) and that on the two full intuitive versions (on the right in Figure 2.5) 

demonstrates the strong impact of the simultaneous incorporation of all four 
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manipulations. In groups 3 and 7 the better performance in terms of really grasping the 

mathematical structure of the task clearly can be attributed to the four psychological 

manipulations. The similar performance of groups 3 and 7 – as well as analyzing 

participants’ protocols – suggest that the kind of one-door scenario (specifying first 

choice vs. specifying car position) makes no remarkable difference. The synergistic 

effect of the combination of the perspective change and the frequency simulation is 

particularly intriguing. The perspective change alone (Group 5) and the frequency 

simulation alone (Group 6) both failed to facilitate understanding: The percentage of 

mathematically correct justifications in Group 5 and Group 6 were not significantly 

different from that in Group 2, where just the one-door scenario was given. Thus the 

good performance of participants in the full intuitive versions cannot be attributed to the 

seemingly powerful frequency question alone. In fact there seems to be a synergistic 

effect between the frequency simulation and the perspective change since both 

manipulations have to be applied simultaneously. From the trichotomous categorization 

(Figure 2.5) it can also be seen that the counter-intuitively better performance in Group 

2 compared to groups 5 and 6 is in fact due to a relatively high proportion of 

participants who had no insight but switched by following the uniformity belief (empty 

bars). 

Let us finally consider the impact of our “additional changes”. Our control 

version was a modification of the standard version: We specified the rule of the game, 

we used a diagram of the three doors, we deleted the ambiguous word “say” when 

specifying the door Monty Hall opens, and we asked for justification of the choice. 

These changes alone indeed did increase the proportion of switch decisions somewhat, 

compared to the standard version, namely from the usual 10-15% up to about 22%. 

However, the percentage of participants who gained insight into the problem’s structure 

only because of these non-experimental changes in both control versions was 

neglegable. 
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STUDY 5  

From Piattelli-Palmarini we learned that even Nobel physicists insist on the wrong 

answer to the Monty Hall problem and are ready to berate in print those who propose 

the right answer (quoted in vos Savant, 1997, p. 15). People’s resistance to the correct 

solution has been widely cited; even Marilyn vos Savant repeatedly failed in explaining 

the teaser to her readers (vos Savant, 1997). Thus, the questions of Study 5 are 

pedagogical ones: Is it possible to get insight into the mathematical structure of the 

problem across to the problem solvers? What kind of complete demonstration of the 

entire solution might help here? In Study 5 we investigated this question by checking 

whether people were able to apply different explanations to other, similar problems. 

 

Method 

We divided participants of Study 3 (German study) – independent of the 

previous divisions into groups 1-3 – randomly into three new groups. After they had 

finished solving the Monty Hall problem – successfully or not – they were asked to 

continue the session for an extra payment. The interested participants got one of three 

different explanations on how to solve the Monty Hall problem (all three explanations 

are shown in Appendix II.2). All explanations were based on demonstrations of the 

correct solution explicated above: The first explanation was based on Figure 2.1, the 

second on Table 2.1, and the third on Equation 2.1. 

 

1. Figure  2.1     Frequency simulation of the three arrangements, shortened to “FS” 

2. Table  2.1      Six mental models by Johnson-Laird et al. (1999), shortened to “6MM” 

3. Equation  2.1 Bayes’ rule, shortened to “BR” 

 
Table 2.5: Different explanations of the Monty Hall problem given to participants after Study 3 
 

According to Table 2.5, we provided participants with written two-page 

explanations that we call “FS” (Frequency Simulation Explanation), “6MM” (Six 

Mental Models Explanation), and “BR” (Bayes’ Rule Explanation). To investigate the 

benefit that participants can take out of each of these explanations we provided them 

with four new problems. These problems were closely related to the original Monty 
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Hall problem but required additional transformations or generalizations. To the best of 

our knowledge, empirically testing explanations of the Monty Hall problem is virgin 

soil in this type of research. 

After completing their work on the original problem participants received the 

two-page explanation and had plenty of time to read it.22 Once they said that they had 

understood it they were provided with problem A (for the wording see Appendix II.3). 

Problem A was the so-called “Russian roulette dilemma” which is identical to the 

Monty Hall problem except that now there are two cars and one goat behind the doors.23 

After 10 weeks participants were recruited again and had then to solve problems B, C, 

and D (for the wordings see Appendix II.3). Problems B and C were extended Monty 

Hall problems, both with four doors, and problem D, finally, was the “problem of three 

prisoners”. In Study 5, problems A, B, C, and D were provided in their “standard 

version”, that is, without any manipulations. 

 We offered all participants of Study 3 the opportunity to participate in Study 5. 

Yet, to extract the pure impact of the different explanations we had to exclude all 

participants who had already solved the original problem with full mathematical insight, 

because these presumably would profit from their insight into the original problem. In 

Study 3 we had 145 participants with wrong  – or at least not correctly justified – 

solutions. Of these 145 participants 95 volunteered to continue the session for an extra-

payment and worked on problem A. When 10 weeks later the same participants were 

asked to come again for the second measurement date, 68 participants, who were not 

told that they would be tested again with tasks related to the Monty Hall problem, 

appeared and worked on problems B, C, and D. Luckily, the distribution of students 

across explanations still roughly was an equal distribution: Ten weeks after Study 3, 22 

participants of the “FS” condition, 25 of the “BR” condition, and  21 of the “6MM” 

condition showed up again. 

                                                 
22 Because mathematical formulas are difficult to remember we gave Bayes’ rule an advantage: Whereas 
participants with explanation “BR” could make use of their written two-page explanation when solving 
problems A, B, C, and D, participants receiving explanations “FS” and “6MM” had to give their explana-
tion sheet back after studying it. When solving problems A, B, C, and D they had no access to the expla-
nation sheet but had to rely on their memory exclusively. 
23 Here instead of a goat, the host has to reveal a car after the contestant’s first choice. Because the con-
testant is not allowed to choose the opened door, in the Russian roulette dilemma she should stay. Since 
most participants in this problem would do this intuitively anyhow, the problem here is not to find the 
right decision but exclusively the mathematical justification. 
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Results 

The results of Study 5 are displayed in Figure 2.6. 
           

 
Figure 2.6: Percentage of correct solutions of problems A, B, C, and D contingent on the received 
explanation 
 

First note that percentages of correct solutions in Figure 2.6 stand for full 

mathematical insight according to the didactical aim of Study 5. Thus, the 0% marks on 

the left side indicate that none of the participants solved the original problem in Study 3 

with full mathematical insight. Further note that on the right side of Figure 2.6 (10 

weeks later) the average performance across all three tasks for all participants is 

displayed: Since 10 weeks later they had to solve three tasks, each participant could 

contribute to the total performance with 0%, 33%, 67% or 100%. 

Which explanation could best break people’s widely cited resistance? It can be 

seen from Figure 2.6 that “FS” participants exhibited the best performance, both 

immediately after the explanation and 10 weeks later. 82% of participants in the “FS” 

condition could apply their gained knowledge afterwards to problem A and even 10 

weeks later 64% of them solved problems B, C, and D, which indicates that they still 
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had the “FS” explanation in mind. Due to the mathematical similarity of problems B, C 

and D to the original Monty Hall problem, we hypothesize that under normal 

circumstances these problems will be solved insightfully by at most 5-10% of unaided 

people.  

Table 2.6 displays participants’ performance on each of the problems 

individually. 
 

 FS 
(N = 22) 

BR 
(N = 25) 

6MM 
(N = 21) 

Correct solutions 
across explanations 

Problem B 73% 60% 29% 54% 

Problem C 73% 28% 43% 48% 

Problem D 46% 44% 14% 35% 

Correct solutions 
across problems 64% 44% 29%  

 
Table 2.6: Participants’ performance (correct solutions) on problems B, C and D – 10 weeks after Study 3 
 
 

Interestingly, it seems to be more difficult for participants, when the 

mathematical structure is identical to the explained problem but the content is changed 

(Problem D: problem of three prisoners; 35% correct solutions across all explanations) 

than when the content stays identical but the mathematical structure is extended 

(Problems B and C: extended Monty Hall problems; 54% and 48% correct solutions 

across all explanations). 

Remarkably, in the “BR” condition almost half of participants could make use of 

Bayes’ rule – even 10 weeks later (note that in problems B and C they had to extend the 

denominator of Equation 2.1 from three to four summands). Yet, it has to be taken into 

account that, in the session 10 weeks later, the “BR” explanation sheet had again been 

distributed (see footnote 14). We speculate that the need to construct Bayes’ rule from 

memory after 10 weeks would drop the performance down to close to 0%. The reason 

why “FS” participants – and even “BR” participants – outperformed “6MM” 

participants can be found by looking at protocols: Specifying Monty Hall’s behavior 

entails the need to artificially double the mental models (see Table 2.1). Trying to 

perform this doubling – already considered problematic by Johnson-Laird et al. (1999) 
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– seemed to be the stumbling block for participants’ reasoning in problems A, B, C, and 

D. Furthermore, we assume that the manner of displaying the 6 mental models – which 

we accurately adopted from Johnson-Laird et al. (1999) – is not the most advantageous 

one. Possibly, their 6 mental models would work better if presented like our 3 

arrangements (using arrows etc.). 

To conclude, inducing in participants a mental simulation according to Figure 

2.1 – either through the problem’s formulation (full intuitive versions of studies 3 and 

4) or through an explanation (“FS” explanation of Study 5) – seems to be a powerful 

means of fostering insight into the structure of the notorious Monty Hall problem – as 

well as into related problems. 

 

SUM UP 

We now recapitulate and consider the relevance of the crucial findings in this chapter. 

 

Frequency question and mental models 

In our tables presenting the results of studies 3 and 4 (Tables 2.2, 2.3, and 2.4) the two 

theoretical elements, mental model and natural frequencies were collapsed into the 

frequency question for mental models, or shortened, the “frequency simulation”. 

Johnson-Laird et al. (1999) claimed that the mental model concept provides another 

theory of probabilistic reasoning that is different from the natural frequency approach 

(see Gigerenzer & Hoffrage, 1995).  It is true that both elements stress different aspects 

of knowledge representation: On the one hand, the term natural frequencies emphasizes 

external information representation. In nature we observe frequencies of outcomes 

instead of probabilities and our minds are adapted to this kind of information. Thus the 

natural frequency approach provides an ecological explanation for why humans are 

good at dealing with frequencies. On the other hand, the term mental models stresses 

internal information representation. Yet, when considering the actual reasoning process 

natural frequencies and mental models are deeply intertwined: The frequency question 

(“in how many of these three possible arrangements ...”) is answered by counting 

arrangements, which actually are mental models. This intertwinement is not restricted to 

the Monty Hall problem. Both the natural frequency approach proposed by Gigerenzer 

and Hoffrage (1995) and Johnson-Laird et al.’s (1999) numerical mental model 
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approach make use of mental models as frequency assessments. Therefore – with 

respect to probabilistic thinking – mental models are not an alternative to the natural 

frequency approach, but rather a redescription of the same underlying cognitive process. 

However, in the Monty Hall problem just considering and counting mental models is 

not sufficient: Only the mental simulation of these models (i.e., considering the whole 

sequence of actions specified by the model) leads to their outcomes, which then can be 

counted and transferred into a frequency answer. 

 

Perspective change and Bayes’ rule 

Taking the game-show host’s perspective helped participants imagine which door they 

would open as the host after the contestant has chosen door 1. Monty Hall’s perspective 

opens a pathway to the insight that the game show host in two out of three arrangements 

has no choice: Whenever the contestant first chooses a goat, Monty Hall has to reveal 

the other goat and the contestant wins by switching. Taking the game-show host’s 

perspective is to take a Bayesian view: The question in the standard version (“Is it to 

your advantage to switch your choice?”) corresponds to the left side of Equation 2.1, 

that is, p(C2 | M3). To calculate this conditional probability with Bayes’ rule one has to 

assess the ingredients of the right side of Equation 2.1. Although clear on the equal 

distribution for the car position, that is p(C1) = p(C2) = p(C3)= 1 3 , the conditional 

probabilities p(M3 | C1), p(M3 | C2), and p(M3 | C3) remain to be assessed. In our view 

this is the step that requires looking at the possible arrangements through Monty Hall‘s 

eyes: What is the probability that Monty Hall will open door 3, if the car actually is 

behind door 1, behind door 2, or behind door 3? Arriving at the correct solution requires 

detecting the constraints posed on Monty Hall. Focusing on his behavior leads to a 

straightforward Bayesian solution, be it the formal one (Bayes’ rule) or an intuitive one 

(according to Figure 2.1). 

Interestingly, the idea of perspective change in Bayesian reasoning is not 

restricted to agents’ perspectives. Consider, for instance, another well-known 

probabilistic puzzle, the  “Three cards problem”: 

“Three cards are in a hat. One is black on both sides (the black-black card). One is 

white on both sides (the white-white card). One is black on one side and white on the 

other side (the black-white card). A card is randomly drawn such that one can only 
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see one side. The side is black. What is the probability that it is the black-black 

card?” 

Bar-Hillel and Falk (1982) reported that only 7% of their participants found the 

correct solution. In terms of Bayes’ rule the correct solution is: 
 

p(BC | BS) =
p(BS | BC) ⋅ p(BC)

p(BS | BC) ⋅ p(BC) + p(BS | ¬BC) ⋅ p(¬BC)
=

1 ⋅ 13
1 ⋅ 13 +

1
4 ⋅

2
3
=

2
3

      (6) 

where BC: Card is the black-black card, BS: A black side can be seen 
 

How can a perspective change be realized? The original version asks what the 

probability of a card is, namely p(BC | BS). Bayes’ rule solves the problem by 

switching BC’s and BS’s position and thus by concentrating on the sides of the cards. 

Thus, instead of asking “What is the probability that it is the black-black card?”, the 

perspective change could be implemented by asking: “What is the probability that the 

other side is also black?” Of course, this probability question now in addition can be 

turned into a frequentistic one: “How many of the possible black sides are black also on 

the other side?” 

Implementing the perspective change and the frequency question along these 

lines into the “Three card problem” and testing the resulting version informally with 

psychology students of a seminar (N = 30) led to 43% correct responses. 

 

The less-is-more manipulation 

Deleting useless information can facilitate reasoning performance for various reasons. 

Consider, for instance, the famous Linda problem: 

Linda is 31 years old, single, outspoken and very bright. She majored in 

philosophy. As a student, she was deeply concerned with issues of 

discrimination and social justice, and also participated in anti-nuclear 

demonstrations. 

Which probability has a higher value? 

(a) Linda is a bank teller 

(b) Linda is a bank teller and is active in the feminist movement 
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The “conjunction fallacy” – which is assigning (b) a higher probability than (a) 

– disappears if we simply ask the question without the prefixed description. Whether 

the grasp of the conjunction rule in principle is a genuine human skill or not, this ability 

can be misguided by distracting information.  

In the Monty Hall problem assuming – for whatever reason – that Monty Hall 

actually opened door 3 prevents the construction of a mental model in which the car is 

behind door 3. Only if this “door information” does not interfere with the problem 

solving process, participants can adopt the intuitive path of reasoning according to 

Figure 2.1. 

 The cognitive variability in the three examples – the recognition heuristic 

(inferring that San Diego is larger than San Antonio merely from never having heard of 

San Antonio), the Linda problem, and the Monty Hall problem – shows the widespread 

validity of “less-is-more” effects. 

 

Synergistic effects of manipulations 

Among the manipulations we introduced there exist various dependencies, either 

mathematical or psychological. Why is the less-is-more manipulation a “basic” 

manipulation? The frequency simulation (frequency question for mental models) 

requires the less-is-more manipulation, because only in a one-door scenario can the 

frequency counting be applied to the relevant mental models: Not implementing the 

less-is-more manipulation would lead to the uniformity belief, since participants would 

be limited to two possible arrangements. The perspective change requires the previous 

incorporation of the less-is-more manipulation for the following reason: Simulating 

Monty Hall’s behavior concerning the relevant arrangements becomes impossible when 

this behavior is already specified. In a two-door scenario the door opened by Monty 

Hall is given to the problem solver. Thus she can no longer exploit the perspective 

change by simulating the opening of different doors in the different arrangements. 

Consequently, we consider the less-is-more incorporation as a prerequisite manipulation 

for incorporating the remaining three psychological elements natural frequencies, 

mental models, and perspective change into the wording of the Monty Hall problem. 

In addition to the less-is-more manipulation either the frequency simulation (see 

Group 5) or the perspective change (see Group 6) can be incorporated. Yet, neither of 
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these single implementations leads to a remarkable improvement in terms of 

understanding compared to the version of Group 2, where only the less-is-more 

manipulation was incorporated. Only when the frequency simulation and the 

perspective change are incorporated simultaneously will a large improvement in 

understanding occur (see groups 3 and 7). Indeed, analyzing participants’ protocols 

reveals that each manipulation needs the other, now for psychological reasons. Not 

asking for a frequency simulation makes it difficult for the problem solver to grasp the 

relevant arrangements – even if she perceives the problem from Monty Hall’s 

perspective. On the other hand, when only the frequency simulation is provided, the 

problem solver cannot “feel” the constraints introduced by the contestant’s first choice: 

This would require perceiving the arrangements from Monty Hall’s perspective. Thus, 

the seemingly powerful frequency simulation alone is not sufficient to gain insight into 

the problem’s structure. Let us summarize the three important inter-relationships among 

the four manipulations: 

(a) The frequency question asks for mental models. Both elements were combined into 

one manipulation, namely the frequency simulation. 

(b) The frequency simulation and the perspective change need each other to improve 

participants’ performance (psychological dependency).  

(c) Both the frequency simulation and the perspective change require the less-is-more 

manipulation as a pre-condition to express meaningful versions (mathematical 

dependency). 

 

Does the lack of information on Monty Hall’s strategy matter? 

Although in the present studies we included the rule in every version of the 

Monty Hall problem (“Monty Hall has to open one of the unchosen doors, which has a 

goat”), we did not specify Monty Hall’s strategy. As we saw, in one-door scenarios, 

Monty Hall’s strategy does not influence the solution given by Figure 2.1, whereas in 

two-door scenarios (our control versions) it might make a difference (see Equations 2.2-

2.4). But the protocols revealed that even in our control versions no participant in either 

study struggled with this problem. All participants either found the correct solution or 

failed without even reaching the point where Monty Hall’s strategy would come into 

play. No participant justified her decision to stay in terms of Monty Hall’s strategy, nor 
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did any state that she could not solve the problem because she did not know what 

Monty Hall would do if the car were behind door 1. 

 

Uniformity belief 

Almost all participants who decided to stay held the uniformity belief. But if 

they had no reason to favor one option over the other, why then were their choices not 

evenly distributed between switching and staying? Our analysis of the protocols yielded 

substantial support for Granberg and Brown’s explanation (“participants feel worse if 

they switch away from a prize than if they stick to an initial choice and miss the prize”). 

But we also found some instances of another reasoning line. Some participants argued 

like this: “Why should I change anything if this would not increase my chances of 

winning?” Although the uniformity belief is mathematically unjustified, from this point 

of view it seems to be economically rational: Think of a foraging animal that expects 

the same amount of return from two alternative foraging patches and picks one for the 

day. It would be perfectly rational to stay in that patch for the whole day rather than to 

expend extra time and energy to travel to the other patch. The adaptive strategy would 

be to stick to an initial choice unless a better alternative is available.   

We want to indicate that the laws of consistency also tell us not to reverse 

preferences when options (dis)appear (see, e.g., Gigerenzer, 2001). For example, if one 

prefers option A over option B, she should not reverse this preference just because a 

third option C appears (or disappears). What does this mean for the Monty Hall 

problem? A contestant who first chooses door 1 prefers – for some reasons – door 1 

over doors 2 and 3. In the Monty Hall problem deleting one choice option, for instance 

by opening door 3, brings new information about the unselected door 2, and taking this 

into account, one should switch. Yet, if this new information is not realized – as with 

the uniformity belief – deleting door 3 simply means that this option has vanished and 

now changing the previous preference (i.e., choosing now door 2 instead of door 1) 

would be a violation of the laws of consistency. 

Granberg and Brown’s (1995) “regret explanation”, our “economical 

rationality” approach, and even the laws of consistency can be seen as rational 

justifications for staying: The uniformity belief in the Monty Hall problem does not and 

should not lead to a random choice. 
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CONCLUSION  

A remarkable proportion of naive people can gain full insight into the Monty Hall 

problem’s structure when elements from the cognitive psychologists’ toolbox are 

applied. During the last 10 years the claim has persisted that there is no way to break 

the resistance of a majority of naive people to grasping its mathematical structure. In 

fact, all previously tested explanations of the problem (e.g., vos Savant, 1997; Aaron & 

Spivey, 1998; Johnson-Laird et al., 1999, tested in the present chapter) displayed no 

great power of persuasion. It is our claim that our manipulations could have prevented 

Marilyn vos Savant from receiving thousands of protest letters. Note that our 

manipulations do not “destroy a fascinating cognitive illusion”, but – as we learned 

from our participants – the Monty Hall problem displays its whole fascination only 

when one realizes that switching is indeed better. 


