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SUMMARY 

Representing statistical information in terms of natural frequencies rather than 

probabilities dramatically increases performance in Bayesian inference tasks 

(Gigerenzer & Hoffrage, 1995; Cosmides & Tooby, 1996). This beneficial effect of 

natural frequencies has already been demonstrated in a variety of applied domains such 

as medicine, law, and education. All the research on natural frequencies conducted so 

far has referred only to Bayesian situations where one binary (or: dichotomous) cue can 

be used to predict one binary criterion. Yet, real-life decisions often require dealing 

with situations where more than one cue is available or where cues have more than one 

value. This chapter provides empirical evidence that communicating the statistical 

information in terms of natural frequencies is both possible and beneficial even in such 

complex situations. The generalization of the natural frequency approach also turns out 

to be helpful when addressing some current critiques. 
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INTRODUCTION 

The question of how hypotheses should be evaluated in view of empirical evidence is 

an ancient one. The normative view of classical rationality is that hypotheses are to be 

evaluated in probabilistic terms. In other words, when evaluating an uncertain claim, 

one does so by calculating the probability of the claim in the light of given information. 

The rigorous method for doing this was established during the enlightenment by 

Thomas Bayes and Pierre Simon de Laplace. One important school of statisticians, 

known as Bayesians, often defends this method as the only valid one.  

One of the classical debates of cognitive psychology during the last decades 

focused on the question: Do unaided humans reason the Bayesian way when updating 

their belief in a hypothesis in view of new evidence? The mathematical expression for 

updating of hypotheses in the probabilistic framework is given by Bayes’ rule, which 

expresses the probability of the hypothesis H given the data D as 

 
p(H | D) =  

p(D | H)p(H)
p(D | H)p(H) + p(D | H )p(H )

  (1.1) 

 
Most cognitive psychologists have sought for empirical evidence on the way 

humans reason by giving their participants the task of finding the probability that a 

hypothesis is true in light of provided data. Their participants thus had to find the 

probability of a hypothesis H, given the data D, that is, p(H | D), provided with all the 

information on the terms appearing on the right side of Equation 1.1, that is, p(H), the a 

priori probability of the hypothesis H, p(D | H), the probability of the data given that the 

hypothesis is true, and finally p(D | H ), the probability of the data given that the 

hypothesis is not true. Edwards (1968) found that if people have to update their opinions, 

they change their view in the direction proposed by Bayes’ rule. However, he also 

reported that people are “conservative Bayesians” in the sense that they do not update 

their prior beliefs as strongly as required by the Bayesian norm.  

Fourteen years later Eddy (1982) treated the same question focusing on experts. He 

found that physicians do not make judgments that follow Bayes’ rule when solving the 

following task (which represents a prototypical Bayesian situation): 
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The probability of breast cancer is 1% for a woman at age 40 who participates 

in routine screening. If a woman has breast cancer, the probability is 80% that 

she will get a positive mammography. If a woman does not have breast cancer, 

the probability is 9.6% that she will also get a positive mammography. A woman 

in this age group had a positive mammography in a routine screening. What is 

the probability that she actually has breast cancer? 
 

In this case “breast cancer (B)” is the hypothesis H and the positive mammogram 

outcome (M+) is the datum D. The full information for the task in probabilistic symbols 

is: 

p(B) = 1%, the a priori probability or, in medical terms, the prevalence of 

breast cancer is 1%. 

p(M+ | B) = 80%, the hit rate or, in medical terms, the sensitivity of mammography, 

is 80%. 

p(M+ | B ) = 9.6%, the false alarm rate of mammography or, in medical terms, the 

complement of the specificity of mammography, is 9.6%. 
 

The relevant question now can be expressed as “p(B | M+) = ?”, and Equation 1.1 

becomes 
 

p(B | M+) =
p(M+ | B) p(B)

p(M+ | B)p(B) + p(M+ | B )p(B )
=

(.8)(.01)
(.8)(.01) + (.096)(.99)

= .078       (1.2) 

 

Bayes’ rule yields a probability of breast cancer of 7.8%. However, Eddy (1982) 

reported that 95 out of 100 physicians estimated this probability to be between 70% and 

80%. While Eddy argued that this is due to the confusion of p(M+ | B) and p(B | M+), 

Kahneman and Tversky (1972, p. 450) attributed this phenomenon to people’s ignoring 

the base-rate (which stands synonymously for the a priori probability) and concluded: “In 

his evaluation of evidence man is apparently not a conservative Bayesian: he is not 

Bayesian at all.” This “base-rate neglect” became one of the famous fallacies investigated 

in the “heuristics and biases” program (Kahneman, Slovic & Tversky, 1982). After a few 

years of research on the base-rate neglect, Bar-Hillel (1980, p. 215) stated that “the base-

rate fallacy is a matter of established fact”. 
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Later in the 1990s this view changed. Gigerenzer and Hoffrage (1995) focused on 

the aspect of the representation of uncertainty. They established that what makes the 

task difficult is not Bayesian reasoning per se, but the format of information provided to 

the participants. In Eddy’s (1982) task, quantitative information was provided in pro-

babilities. Gigerenzer and Hoffrage (1995) argued that probabilities make the 

computation of the Bayesian posterior probability more complex than “natural 

frequencies”, which have been historically the “natural” format of information for the 

human mind (Figure 1.1). They illustrated this argument by referring to a physician who 

does not know the sensitivity and the false alarm rate of the test. After testing a large 

number of patients, she would “naturally” obtain numbers as those depicted in the tree 

on the right side of Figure 1.1. 
Natural FrequenciesProbabilities
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Figure 1.1: Bayesian algorithm in terms of probabilities (on the left) and in terms of natural 

frequencies (on the right). 

 

Gigerenzer and Hoffrage (1995) use this tree to describe the natural sampling 

process (p. 687) and call the frequencies that result from natural sampling, natural 

frequencies (Gigerenzer & Hoffrage, 1999, pp. 425-426). Providing the statistical 

information for Eddy’s task in terms of natural frequencies yields the following version 

of the task: 
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10 out of every 1,000 women at age forty who participate in routine 

screening have breast cancer. 8 out of every 10 women with breast cancer 

will get a positive mammography. 95 out of every 990 women without breast 

cancer will also get a positive mammography. Here is a new representative 

sample of women at age forty who got a positive mammography in a routine 

screening. How many of these women do you expect to actually have breast 

cancer? 
 

With this formulation almost half of their participants gave the Bayesian answer, 

namely, 8 out of 103 women (= 7.8%). This empirical observation is consistent with the 

fact that the Bayesian computation is simpler (requires fewer operations) for natural 

frequencies than for probabilities.  

At present, there is a lively debate on the facilitating effect of such frequency 

representations. However, often in this debate either the concept of natural frequencies 

is misunderstood or the participants’ success in solving Bayesian tasks with natural 

frequencies is attributed to some other, seemingly more general factor. These issues will 

be discussed in the section “Addressing current critiques of the natural frequency 

approach”. 

It is remarkable that so far, almost all research on this topic has only been 

concerned with a very small part of the world of Bayesian reasoning, namely, with 

situations having the structure of the mammography problem reported above. The 

features of such a “basic” situation are the following: The cue that is used to infer the 

criterion value is binary (e.g., a positive or a negative test result). The criterion is also 

binary (e.g., a woman either has breast cancer or not). Furthermore, only one cue (e.g., 

one test result) is used to infer the criterion value (see Table 1.1). 
 

 “Basic” Bayesian situation 

Number of cue values 2 

Number of criterion values 2 

Number of cues 1 
 

Table 1.1: Number of cue values, criterion values, and cues in a “basic” Bayesian situation 



 13

 
Yet, inferences in the real world are not always so simple. Often, more than one 

cue is available and sometimes cues as well as criteria can have more than two values 

(i.e., a polychotomous structure). If one or more of the three numbers in a Bayesian 

situation is larger than in Table 1.1 we call it a “complex Bayesian situation”.  

Our purpose with the present chapter is threefold. First, we theoretically enhance 

and generalize the natural frequency approach by extending the basic situation to cases 

where more than one cue is available, and to cases with non-binary cue or criterion 

values. Second, we designed two studies to test whether natural frequencies facilitate 

reasoning in these “complex” situations. Third, we address the most common critiques 

of the natural frequency approach. In doing so, we take advantage of our extensions to 

complex Bayesian situations as they shed new light on the current debate on the basic 

situation. 

 

EXTENSIONS OF THE BASIC SITUATION 

Gigerenzer and Hoffrage (1995) had left open whether the beneficial effect of natural 

frequencies can be generalized to complex situations. Massaro (1998) recently has 

questioned this possibility. With respect to Bayesian reasoning, and referring to the 

findings of Gigerenzer and Hoffrage, he claimed that in the case of two cues “a 

frequency algorithm will not work” (p. 178). However, he did not provide any empirical 

evidence for this claim. We will now provide a theoretical generalization by 

manipulating each number in Table 1.1 separately. Each one of these situations is 

described in the following with the help of a corresponding tree diagram.3  

                                                 
3Regarding the basic situation there are two ways of organizing the information – both available for fre-
quencies as well as for probabilities: Gigerenzer and Hoffrage (1995) use frequency trees (Figure 1.4 on 
the right), while, for instance, Fiedler et al. (2000) prefer 2 x 2 frequency tables to visualize basic Bayes-
ian situations. We use tree diagrams because they are more flexible. Note that although tables can be 
extended to situations with non-binary information, they cannot display multiple cue situations (such as 
represented by Figure 1.4). 
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Number of Cue Values: 3 

Cues are often not binary. The outcome of a medical test, for instance, could be 

positive, negative, or unclear. Natural frequencies describing such a situation with three 

possible test outcomes (“trichotomous cue”) can be depicted in a tree structured as in 

Figure 1.2. 

 

 

 

 

 

 

 

 

 

 
Figure 1.2: Tree structure describing a Bayesian situation containing a trichotomous cue 

 
Clearly cues with any number of values (“polychotomous cue”) can be modelled 

by adding the corresponding nodes at the lowest level. In our studies we only tested 

tasks with 3 cue values. 

 

Number of Criterion Values: 3 

Bayesian inferences are not restricted to situations in which the sample is divided into 

two complementary groups (e.g., ill and healthy people). Medical tests, for instance, 

could be sensitive to more than one disease. Let us consider a medical test that is 

sensitive to two diseases, namely disease 1 and disease 2. If these diseases do not occur 

simultaneously, the sample has to be divided into three groups corresponding to three 

different medical hypotheses (healthy, disease 1, disease 2), as depicted in Figure 1.3. 
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Figure 1.3: Tree structure describing a Bayesian situation containing a trichotomous criterion 
 
The extension to even more than three hypotheses (“polychotomous base-rate”) 

is straightforward. Another hypothesis might be, for instance, that the patient suffers 

both from disease 1 and 2. In our studies we only tested tasks with 3 criterion values. 

 
Number of Cues: 2 and 3 

Even Bayesian decision situations where more than one cue is available can be 

modelled with the help of natural frequency trees. Consider the case in which a disease 

is diagnosed based on two medical tests. For binary criterion and cue, the frequency tree 

looks like the one depicted in Figure 1.4. 

 
Figure 1.4: Tree structure describing a Bayesian situation containing two cues 
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If more tests are available we simply have to add branches downward, a new 

level for each new test. For n binary cues we will have 2n+1  nodes at the lowest level. In 

our studies we tested Bayesian tasks with two (Figure 1.4) and with three cues (Figure 

1.4 with one extra level). 

All the above trees are skeletons that correspond to general Bayesian situations. 

Specifying concrete complex Bayesian situations requires filling these trees with natural 

frequencies (such as in Figure 1.1). To investigate the impact of different information 

formats in such complex situations we conducted two studies. In both studies we 

compared participants’ performance when the information was presented in terms of 

probabilities with that of participants who received the information in terms of natural 

frequencies. Whereas in Study 1 untrained participants were tested, Study 2 was 

devoted to the effect of previous training. 
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STUDY 1 

 
Method 

In Study 1 we presented advanced medical students (N = 64) of the Free 

University of Berlin with four medical diagnostic tasks (summarized in Table 1.2). Each 

participant worked on all four tasks. Task 1 was a Bayesian task corresponding to 

Figure 1.2, where we extended Eddy’s mammography task by adding unclear test 

results. Task 2 was a Bayesian task corresponding to Figure 1.3, where a test could 

detect two diseases, namely Hepatitis A and Hepatitis B. Tasks 3 and 4 were Bayesian 

tasks with two and three cues, respectively. In Task 3, which corresponds to Figure 1.4, 

breast cancer had to be diagnosed based on a mammogram and an ultrasound test. In 

Task 4 an unnamed disease had to be diagnosed on the basis of three medical tests, 

simply named Test 1, Test 2, and Test 3. The four tasks are summarized in Table 1.2. 

 
Task Summary 

(The complete wordings of the tasks are shown in Appendix I.1) 

1 The outcome of one medical test can be positive, negative, or unclear 

(three cue values: positive, negative, and unclear mammogram 

result) 

2 One medical test can detect two diseases 

(three criterion values: Hepatitis A, Hepatitis B, and healthy) 

3 The outcomes of two medical tests were provided 

(two binary cues: mammogram and ultrasound) 

4 The outcomes of three medical tests were provided 

(three binary cues: medical test 1, medical test 2, and medical test 3) 
 

Table 1.2: The four tasks of Study 1 
 
Each student received the statistical information for two of the four tasks in 

probabilities and for the other two in natural frequencies. As an illustration of the tasks 

consider the two different versions (probability version vs. natural frequency version) of 

Task 3: 
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Task 3: Probability version 

 
The probability of breast cancer is 1% for a woman at age 40 who 

participates in routine screening. If a woman has breast cancer, the 

probability is 80% that she will have a positive mammogram. If a woman 

does not have breast cancer, the probability is 9.6% that she will also have a 

positive mammogram. If a woman has breast cancer, the probability is 95% 

that she will have a positive ultrasound test. If a woman does not have breast 

cancer, the probability is 4% that she will also have a positive ultrasound 

test. What is the probability that a woman at age 40 who participates in 

routine screening has breast cancer, given that she has a positive 

mammogram and a positive ultrasound test? 

 

Task 3: Natural frequency version 

 
100 out of every 10,000 women at age 40 who participate in routine 

screening have breast cancer. 80 out of every 100 women with breast cancer 

will receive a positive mammogram. 950 out of every 9,900 women without 

breast cancer will also receive a positive mammogram. 76 out of 80 women 

who had a positive mammogram and have cancer also have a positive 

ultrasound test. 38 out of 950 women who had a positive mammogram, 

although they do not have cancer, also have a positive ultrasound test. How 

many of the women who receive a positive mammogram and a positive 

ultrasound test do you expect to actually have breast cancer? 
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Figure 1.5 illustrates how the tree corresponding to Task 3 would look after 

filling in the natural frequencies in the “empty” tree of Figure 1.4. 

 

U+                                                                 

10000   women

M-  M+ 80  8950  M-

  breast cancer no breast cancer

76                                                                   

  100  9900

950  M+

U-U+  U-U+U- U-U+  

859235891238 1194

20

 
 

Figure 1.5: Natural frequency tree according to Task 3 
 
 

It is important to note that – concerning Study 1 – these trees serve only for 

visualization. The participants in this study were neither presented with trees nor told to 

construct them; rather, they had to solve the task based only on the wording. Besides 

requiring a numerical answer, we also asked them to justify their inferences. This 

allowed us a more detailed view of their reasoning processes. 

 

Results 

On average, the medical students worked one hour on all four tasks. Figure 1.6 

displays the percentage of Bayesian inferences (correct solutions) for each of the four 

tasks. 
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Figure 1.6: Results of Study 1: Percentage of Bayesian inferences for each of the four tasks 
 

In all of the tasks, replacing probabilities with natural frequencies helped the 

medical students make better inferences. In particular, participants’ performance on 

Task 3 contradicts Massaro’s (1998) claim that in the case of two cues “a frequency 

algorithm will not work” (p. 178). 

The percentage of Bayesian inferences averaged across the probability versions 

of the four tasks was 7% and across the natural frequency versions it was 45%. Natural 

frequencies were most helpful in Task 1, where the difference in terms of participants’ 

performance between the probability and the frequency version was 59% – 1% = 58%. 

In the other tasks there was still an increase in participants’ performance from the 

probability versions to the natural frequency versions of about 30%. The comparison 

between Task 3 and Task 4 suggests that for both the probability and the natural 

frequency versions, it did not matter whether information was provided on two or on 

three cues nor whether this information referred to named or unnamed tests (a possible 
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explanation for the unexpected equal performance when provided with two vs. three 

cues will be given in the general discussion). 

Note that the percentages of Bayesian inferences averaged across the four tasks 

(7% and 45% for probabilities and natural frequencies, respectively) are similar to 

those obtained in the classical experiments on basic tasks (16% and 46% for 

probabilities and natural frequencies, respectively) by Gigerenzer and Hoffrage (1995). 

These results demonstrate that the facilitating effect of natural frequencies on Bayesian 

reasoning can be extended to complex tasks – at least to cases with either 3 cue values 

or 3 criterion values or 3 cues. 

Whereas the results of Study 1 were obtained without previously training 

participants, in Study 2 we examined the effects of different training approaches on 

complex Bayesian reasoning. 

 

STUDY 2 

Sedlmeier and Gigerenzer (in press) and Kurzenhäuser and Hoffrage (2001) have 

shown that frequencies can also provide a means for training participants for Bayesian 

situations. In one of their studies Sedlmeier and Gigerenzer gave participants a 

computerized tutorial in the basic situation – either by teaching them Bayes’ rule or by 

teaching them how to represent the probability information in terms of natural 

frequencies. Compa-ring the efficiency of both procedures by testing the same 

participants with basic tasks in which the statistical information was provided in terms 

of probabilities yielded two results: First, the immediate learning success was twice as 

high with the representation training (frequency trees). Second, this success was stable. 

Even five weeks after training the performance of the participants remained a high 

90%, whereas with traditional training with probabilities (applying Bayes’ rule) the 

performance dropped to 15%. 

In Study 2 we addressed the question of whether a simple written instruction on 

how to solve a basic task, rather than a computerized training program, could improve 

participants’ ability to solve complex tasks. 
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Method 

We recruited advanced medical students (N = 78) from Berlin universities (none 

of them was a participant in Study 1) and divided them randomly into 3 groups. Instead 

of training, participants received a two-page instruction sheet on the basic 

mammography task – each group received a different instruction sheet with respect to 

the solutions presented (all 3 instructions are shown in Appendix I.2). The instructions 

for Group 1 introduced the basic mammography task by means of probabilities and 

presented the solution in terms of Bayes’ rule. The instructions for Group 2 also 

expressed the mammography task by means of probabilities but then showed 

participants how to translate probabilities into natural frequencies and place these into a 

frequency tree. In the instruction sheet of Group 3, the basic mammography task was 

already formulated in terms of natural frequencies and participants saw how these 

frequencies were placed into a frequency tree. 

After participants finished studying their instruction sheet, they were exposed to 

the complex Tasks 1 and 3 of Study 1. Participants of Group 1 and 2 got the probability 

versions of these tasks, whereas participants of Group 3 faced the same tasks expressed 

in terms of natural frequencies. Table 1.3 summarizes the design of Study 2. 
 

 Basic task used 
for instruction 

Solution presented Complex tasks 
tested 

Group 1 
(N = 27) 
 

Mammography task, 
formulated in terms of pro-
babilities (original task by 
Eddy, 1982) 

Probabilities are inserted 
into Bayes’ rule 

Tasks 1 and 3 of 
Study 1 (both 
tasks provided in 
probabilities) 

Group 2 
(N = 25) 

Mammography task, 
formulated in terms of pro-
babilities (original task by 
Eddy, 1982) 

(a) Probabilities are 
translated into natural 
frequencies 
(b) These are placed into a 
frequency tree and the 
correct answer is extracted 
from the tree 

Tasks 1 and 3 of 
Study 1 (both 
tasks provided in 
probabilities) 

Group 3 
(N = 26) 

Mammography task, 
formulated in terms of 
natural frequencies 
(adaptation of Eddy’s task 
by Gigerenzer & Hoffrage, 
1995) 

Natural frequencies are 
placed into a frequency 
tree and the correct 
answer is extracted from 
the tree 

Tasks 1 and 3 of 
Study 1 (both 
tasks provided in 
natural 
frequencies) 

 

Table 1.3: The design of Study 2 
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Results 

          Figure 1.7 displays the percentages of Bayesian inferences in Task 1 and Task 3 

separately for the three experimental groups. 
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Figure 1.7: The results of Study 2: Percentage of Bayesian inferences for complex Tasks 1 and 3 after 

instruction 
 
First, note that participants’ performance on Task 1 was similar to their 

performance on Task 3. This suggests that the learning effect of the different walked-

through solutions (Groups 1, 2, 3) is basically the same no matter which of the two 

complex situations is tested afterward. Let us discuss participants’ performance for 

each group: 

Group 1: In this group participants had to generalize Bayes’ rule (in 

probabilities) to more complex situations. Figure 1.7 reveals that Group 1 exhibited the 

worst performance when confronted with complex Bayesian tasks (18% for Task 1 and 

22% for Task 3). However, compared with participants’ performance for the same 

tasks in Study 1 (1% for Task 1 and 6% for Task 3, see Figure 1.6) the proportion of 
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Bayesian inferences was quite high. At least for some of the participants being exposed 

to Bayes’ rule was beneficial: They managed to extend the basic formula to the case 

involving an unclear test result (which amounts to adding a corresponding term in the 

denominator) and to the case of two test results (which amounts to applying Bayes’ 

rule twice).  

Group 2: Participants of this group had learned from their instruction how to 

translate probabilities into natural frequencies for the basic situation. In spite of being 

tested in terms of probabilities just like Group 1, 40% of participants in Group 2 

obtained the correct solutions. These participants arrived at the correct solutions by 

performing the following steps: First they had to translate five probabilities (rather than 

three as was the case for the basic situation) into natural frequencies appropriately. To 

construct a corresponding tree they had to add nodes to the tree they had seen in the 

instruction. In the case of Task 1 they had to add nodes at the lowest level (which 

describes the mammography outcomes, see Figure 1.2) and in the case of Task 3 they 

had to add another level (which describes the ultrasound outcomes, see Figure 1.4). 

From these trees they finally had to extract the frequencies needed for the Bayesian 

solutions (namely in the form of “Laplacian proportions”, i.e., the ratio of successful 

cases divided by the number of cases that fulfill the condition).  

Group 3: Participants of Group 3 were the only ones who were trained and 

tested with natural frequencies. This instruction method reached a high performance of 

73% (Task 1) and 81% (Task 3). Recall that without instruction, performance on the 

same two tasks was lower, 59% and 38%, respectively (Study 1). Study 2 shows a 

stronger learning effect with Task 3 (two cues). Analyzing participants’ protocols 

reveals that participants found it easier to add another level to the basic tree than to add 

nodes within a level. In other words, extending Figure 1.1 to Figure 1.4 seemed to be 

more intuitive to participants than extending Figure 1.1 to Figure 1.2.  

To summarize: Study 2 shows that a simple instruction on how to solve 

Bayesian tasks in the basic situation can amplify performance in complex situations. 

The highest levels where obtained when both the trained and the tested task were 

consistently formulated in terms of natural frequencies. 
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In the next section we focus on several critiques and misunderstandings 

concerning the natural frequency approach regarding the basic situation and we close by 

providing a definition of natural frequencies, generalized to complex situations. 

 

ADRESSING CURRENT CRITIQUES OF THE NATURAL FREQUENCY 

APPROACH  

Until 1995 in cognitive psychology most research on Bayesian reasoning examined the 

problems people encounter when confronted with probability representations (for an 

overview see Koehler, 1996). In the following years most research on cognitive aspects 

in Bayesian reasoning referred either to Gigerenzer and Hoffrage (1995) or to Cosmides 

and Tooby (1996). Many articles since 1998 comment on or criticize – both 

theoretically and empirically – the natural frequency approach put forward in these two 

articles. In the following we address Massaro (1998), Macchi and Mosconi (1998), 

Mellers and McGraw (1999), Lewis and Keren (1999), Johnson-Laird et al. (1999), 

Fiedler et al. (2000), Over (2000a, 2000b), Macchi (2000), Evans et al. (2000), Sloman 

and Slovac (2001) and Girotto and Gonzales (in press). 

While we value these contributions for propagating the importance of Bayesian 

inference, most of the critiques are based on vague definitions (e.g., “nested sets”) or on 

misreadings of the original concepts (e.g., of the term natural frequencies). 

 

THE CONFUSION BETWEEN NATURAL FREQUENCIES 

AND FREQUENCIES PER SE 

The most frequent critique is that not just any kind of frequencies foster insight: 

additional specific conditions have to be fulfilled (Lewis & Keren, 1999; Macchi, 2000; 

Evans et al., 2000; Girotto & Gonzales, in press). Lewis and Keren, for instance, tested 

the following frequency version of Eddy’s task: 



 26

 

Ten out of every 1,000 women at age forty who participate in routine 

screening have breast cancer. Eight hundred out of every 1,000 women with 

breast cancer will receive a positive mammography report. Ninety-six out of 

every 1,000 women without breast cancer will also receive a positive 

mammography report. Here is a new representative sample of women at age 

forty who received a positive mammogram report in routine screening. How 

many of these women do you expect to actually have breast cancer? 
 

Their participants performed poorly. This poor performance, however, is not in 

conflict with the natural frequency approach, as suggested by Lewis and Keren. Rather 

the opposite is true: it is even predicted by this approach (Gigerenzer & Hoffrage, 1995, 

1999). Lewis and Keren’s frequencies do not stem from one observed sample and are 

thus not natural frequencies. Rather, their frequencies have been normalized with 

respect to several different classes, which makes Bayesian computation more complex 

than with natural frequencies. For instance, in their task two different numbers are 

assigned to the state “breast cancer”: Observe that the first piece of information (about 

the prevalence) mentions 10 women with breast cancer, whereas the second (about the 

sensitivity) mentions 1,000 women with breast cancer. In real-life settings, in contrast, a 

physician does not observe 10 woman with breast cancer and 1,000. Rather, natural 

frequencies consist of a breakdown of one class into subsets, as shown in Figure 1.1. 

This property of natural frequencies is due to the process by which they are 

acquired and is described by the term natural sampling. Gigerenzer and Hoffrage 

(1995) defined the term: “The sequential acquisition of information by updating event 

frequencies without artificially fixing the marginal frequencies (e.g., of disease or no-

disease cases) is what we refer to as natural sampling. In contrast, [...], an experimenter 

may want to investigate 100 people with disease and 100 people without disease. This 

kind of sampling with fixed marginal frequencies is not what we refer to as natural 

sampling” (Gigerenzer & Hoffrage, 1995, p. 686). Gigerenzer and Hoffrage called 

frequencies stemming from natural sampling frequency formats (1995, p. 687) or later, 

synonymously, natural frequencies (1999, pp. 425-426). This focusing on a special kind 
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of frequencies was not reckoned with by some authors addressing the natural frequency 

approach. 

Johnson-Laird et al. (1999) reported an experiment similar to that of Lewis and 

Keren and concluded:4 “In fact, data in form of frequencies by no means guarantee 

good Bayesian performance” (p. 81). What was apparently not clear to either Lewis and 

Keren (1999) or to Johnson-Laird et al. (1999) is that the frequencies considered by 

them did not follow Gigerenzer and Hoffrage’s recipe. Instead of natural frequencies 

both of them used normalized frequencies (i.e., fixing the marginal frequencies). 

 We now illustrate (Figure 1.8) the difference between natural frequencies and 

normalized frequencies in complex Bayesian situations. Krauss, Martignon, and 

Hoffrage (1999, p.171-172) constructed the following normalized frequencies 

describing the Bayesian situation of Task 3: 

 

Figure 1.8: Frequencies that are not natural frequencies (Task 3; two cues) 
 

In Figure 1.8, each cue is represented by a separate frequency tree. Krauss et al. 

(1999) tested the following version derived from Figure 1.8: 

                                                 
4 Johnson-Laird et al. (1999) refer to an experiment – actually conducted by Girotto and Gonzales (2000) 
– which suffers from the the same problem like Lewis and Keren’s task. Girotto and Gonzales provided 
the following information (translated from French and abbreviated): „Out of 100 people, 10 are infected. 
Out of 100 infected people, 90 have a positive test. Out of 100 non-infected, 30 have a positive test.“ In 
judging p(disease | positive test) participants, of course, turned out to be very bad. 
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  100  9900 

20 80 950  8950 

  breast cancer no breast cancer 

  M+ M-  M+  M- 

10000   women 

  100  9900 

  5 95 396  9504 

  breast cancer no breast cancer 

  U+ U-  U+  U- 
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100 out of 10,000 woman at age 40 who participate in routine screening have 

breast cancer. 80 out of 100 women with breast cancer will receive a positive 

mammogram. 950 out of 9,900 women without breast cancer will also receive 

a positive mammogram. 95 out of 100 women with breast cancer will receive a 

positive ultrasound test. 396 out of 9,900 women, although they do not have 

cancer, nevertheless obtain a positive ultrasound test. How many of the women 

who receive a positive mammogram and a positive ultrasound test do you 

expect actually to have breast cancer? 
 

Only 15% of participants could solve this frequency version correctly. Thus, in 

complex situations the statement remains true that not just any frequency representation 

works. 

Why are the numbers of Figure 1.8 not natural frequencies? The answer is: They 

do not refer to one total reference class and thus cannot be placed in one tree diagram. 

The frequencies of Figure 1.8 could only be obtained by testing disjoint groups of 

patients: one group with mammography test only (the tree on the left), the other group 

with ultrasound test only (the tree on the right). A physician who had sampled accor-

ding to Figure 1.8 would have difficulties to answer the question “p(B | M+ & U+) = ?”, 

because she has not sampled information on women with results on both test. Generally, 

to answer a question regarding two cues (e.g., M+ & U+), natural sampling means 

randomly selecting individuals displaying both cues, such as in Figure 1.5. 

Note that furthermore the frequencies of Figure 1.5 represent tests taken 

sequentially. Because a physician usually applies medical tests one after the other the 

results of Krauss et al. (1999) suggest: if the structure of information matches real-life 

settings the corresponding inferences will be facilitated. The two-cue case also shows 

that information should not consist of a juxtaposition of single natural frequency trees 

(as in Figure 1.8) but rather should be placeable in one tree. 

 As mentioned above, Gigerenzer and Hoffrage (1995) explicitly stated that not 

just any frequencies help and again made this clear in a reply to Lewis and Keren and 

Mellers and McGraw (Gigerenzer & Hoffrage, 1999). Astonishingly, there is a flow of 

new articles, which confuse natural frequencies with normalized frequencies. For 
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instance, Macchi and Mosconi (1998, p. 83) and Evans et al. (2000) try to disprove the 

natural frequency hypothesis by running experiments with normalized frequencies. It is 

not surprising that Evans et al. (2000) found that the results of their recent experiments 

“provide little encouragement for the hypothesis advanced by Cosmides and Tooby 

(1996) and Gigerenzer and Hoffrage (1995) that frequency formats per se are easier 

than probability formats” (p. 206). Why these authors fail to acknowledge Gigerenzer 

and Hoffrage’s definitions of natural sampling (1995, p. 686) and natural frequencies 

(1999, pp. 425-426) remains unclear. 

 

 DO WE NEED “NESTED SETS”, THE “SUBSET PRINCIPLE”, OR 

“PARTITIVE FREQUENCIES”?  

The second misunderstanding builds on the first. In this section we address three 

similar critiques that all share one feature: They each attribute the facilitating effect to a 

single property of natural frequencies. 

Advocates of the so-called “nested sets hypothesis” claim that it is not the 

frequentistic nature of information that fosters insight, but its nested sets property. They 

believe that if information is structured in terms of nested sets, the required inference 

will be simple. This “nested sets hypothesis” was promoted by Sloman and Slovac 

(2001) and – in a slightly different manner – by Evans et al. (2000). Evans et al. (2000) 

proposed “that it is the cueing of a set inclusion mental model that facilitates 

performance” (p. 211) and thus viewed this explanation as an alternative to the natural 

frequency approach. It is important to note that these authors do not specify their 

hypotheses precisely. What they probably mean is that their sets arise from successive 

partitioning starting from one and only one large sample. Without this last specification 

the facilita-ting effect of nested sets would be gone. For instance, in the task 

corresponding to the nested sets of Figure 1.8 participants performed poorly. 
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But even if the requirement is fulfilled and the partitioning procedure starts from 

one and only one set, the nested sets hypothesis fails to reflect a fundamental aspect of 

natural frequencies, namely that natural sampling means drawing randomly from a 

population. To illustrate that the nested sets property of information is not sufficient, 

consider the following counter-example: One could represent Lewis and Keren’s (1999) 

numbers (see above) in terms of “nested sets” by combining all women to reach a grand 

total of 2,000 women (Figure 1.9). 
 

 

Figure 1.9: Nested sets that are not naturally sampled and thus are not natural frequencies 
 

Although this tree represents nested sets, observe that the partition of the grand 

total does not reflect the base rate in the population. The given base rate in Lewis and 

Keren’s task – 10 out of 1,000 have breast cancer – cannot be integrated in the tree and 

the grand total – 2,000 women – does not stem from natural sampling. Although the 

frequencies of Figure 1.9 consist of nested sets, they do not represent what we would call 

“natural frequencies”. 

Johnson-Laird et al. (1999) and Girotto and Gonzales (in press) similarly believe 

that the frequentistic format is not crucial. Instead both attribute the facilitation of 

Bayesian reasoning to what they call the “subset principle”. This principle is (Johnson-

Laird et al., 1999, p. 80): “Granted equiprobability, a conditional probability, p(A | B), 

[...] equals the frequency (chance) of the model of A and B, divided by the sum of all the 

frequencies (chances) of models containing B.” Note that this definition matches 
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Equation 1.2 in Gigerenzer and Hoffrage (1995, p. 687), which gives the quotient that 

solves a Bayesian task in terms of natural frequencies. Thus, Johnson-Laird et al.’s 

(1999) subset principle brings nothing new – except their adding the word “model” to 

the discussion. Their principle is rather a mere redescription of yet another property of 

natural frequencies. Furthermore – as with the nested sets hypothesis – their principle is 

not sufficient for explaining facilitation effects. This is again illustrated by Figure 1.9, 

where the subset principle is fulfilled but insight is not provided. 

Macchi (1995, 2000) went along very similar lines with her notion of 

“partitiveness”. In 1995 she had recognized that even in a probabilistic format stressing 

the relationship between the provided pieces of information can make a difference. She 

reached an improvement of performance by changing the wording in the cover story 

slightly. She introduced the term “partitive” (instead of “nested”) to describe wordings 

that clarify the relationship between the percentages in the cover story. The following 

example is taken from Macchi (1995): 

 
(Non-partitive) “In a population of adolescents, 80% of suicide attempts are made by 

girls and 20% by boys. The percentage of death by suicide is three times higher among 

boys than among girls. What is the probability that an adolescent, selected at random 

from those who had died by suicide, was a boy?” 

(Partitive) “In a population of adolescents, 80% of suicide attempts are made by girls 

and 20% by boys. The percentage of suicide attempts that result in death is three times 

higher among boys than among girls. What is the probability that an adolescent, selected 

at random from those who had died by suicide, was a boy?” 

 

In Macchis’ “partitive” version the percentage of suicide attempts that result in 

death is clearly a part of the set described by the base rate (80% and 20% of suicide 

attempts). In her opinion, “the partitive formulation has the triple effect of identifying the 

data reference set, eliminating confusion [...] and making it possible to perceive and 

make use of the relationships between the data.” (Macchi, 2000, p. 220). Note that this 

statement remains true, if “partitive” is replaced by “natural frequency”. Indeed, Macchi 

(2000) also introduced “partitive” frequency versions of Bayesian tasks that are nothing 

else but natural frequency versions. It is not surprising that partitive probability versions 
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can be solved more easily, because they share crucial properties of natural frequencies. 

Probabilities per se are normalized and do not refer to one sample size but – when 

expressed as percentages – to a sample of 100. First when Macchi de-normalized 

probabilities by expressing them as percentages and connecting these percentages to 

each other by appropriate wordings these “probabilities” could express the nested subset 

relation bet- ween the information pieces. Similarly, Sloman and Slovac (2001) write: 

“... the advantage of frequency over single-event probability formats should disappear, 

when nested-set relations are made transparent in both formats...”. Note that, like for 

Macchi, in the probability format the nested set character has to be made transparent. 

Natural frequencies contain this aspect inherently. 

Connecting these reflections with the applications of Bayesian reasoning for risk 

communication delivers a new argument: If we want to help experts to understand 

Bayesian situations in medicine and law, natural frequencies are of great help (Hoffrage 

et al., 2000) and no need is felt for approximations or mimics of this representation 

format. Why should we teach medical students to represent a Bayesian diagnosis 

situation with partitive probabilities if we can use natural frequencies? 

 

COMPUTATIONAL COMPLEXITY  

Some critiques (e.g., Macchi and Mosconi, 1998) claim that in the basic task natural 

frequencies eliminate all need for computation, because this format already contains the 

numbers that compose the answer. Yet, this is exactly the point Gigerenzer and Hoffrage 

(1995) had made: “Bayesian algorithms are computationally simpler when information is 

encoded in a frequency format [...]. By ‘computationally simpler’ we mean that (a) fewer 

operations (multiplication, addition, or division) need to be performed and (b) the 

operations can be performed on natural numbers (absolute frequencies) rather than 

fractions (such as percentages)” (p. 687). Of course, this statement remains true 

considering natural frequencies in complex Bayesian situations.  

Our claim is that the story has to be told the other way around: Probabilities 

introduce the need for computations. By observing samples and assessing subsets’ sizes 

we are naturally performing and understanding Bayesian inferences. Things only 

become cumbersome when the statistical information is expressed in terms of 

probabilities: From that moment on Bayesian inferences consist of distressing 
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inversions. Side effects of probability formats are base-rate neglect and the confusion of 

different conditional probabilities. Performing Bayesian inference by means of natural 

frequencies, instead, requires no inversions and base rates cannot be neglected because 

every leaf of the tree carries the information about base rates implicitly. From this 

viewpoint, the base rate fallacy is not “a matter of established fact” (as concluded by 

Bar-Hillel, 1980, p. 215), but rather a byproduct – or even an artifact – of the 

normalization of natural frequencies to conditional probabilities. This might also 

explain the seemingly paradoxical observation that animals are good Bayesians 

(Gallistel, 1990; Real, 1991) whereas humans appear not to be. Animals in experiments 

are not faced with artificially constructed conditional probabilities, but in their natural 

ecology they rather experience natural frequencies. In the studies that documented base-

rate neglect humans were provided with conditional probabilities, which cannot be 

observed directly in nature. 

 

STOCHASTIC DEPENDENCY AND CAUSALITY  

Over (2000a) claims that “without higher-level hypotheses about causation or indepen-

dence, we would be stuck with what can be misleading information from natural 

sampling” (p. 190). We want to comment on this statement beginning with the issue of 

stochastic dependency. From a mathematical point of view one could criticize that our 

Task 3 contains no information on the conditional dependence of the mammogram and 

the ultrasound test, given the disease. In this task, p(U+ | B) = 95% is given, but there is 

no information about whether this probability is independent of the outcome of the 

mammography test (M+ or M-). For instance, when breast cancer is present, a positive 

mammography test may increase the probability that the ultrasound test is also positive. 

Imagine that in our Task 3 p(U+ | B & M+) was equal to 70% rather than to 95%. Even 

in this case, a physician would automatically sample the corresponding frequencies that 

would allow the correct estimate of p(B | U+& M+). Instead of 76 women with the 

configuration “B, M+, U+” (see Figure 1.5) she would now sample 56 women with this 

configuration (see Figure 1.10).  
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Figure 1.10: Natural frequency tree reflecting two stochastical dependent cues  
 

With the numbers 56 and 38 she can simply compose the answer “56 out of 94 

(= 60%)” to the question “p(B | M+ & U+) = ?”, without ever having heard of the 

concept of stochastic dependency. It is important to note that the physician could ignore 

any notion of stochastic dependency while relying on natural sampling. The concept of 

stochastic dependency only acquires importance when probabilities are introduced.  

In addition, Over (2000b) stresses the importance of considering higher-level 

hypotheses about causation. He gives the following example: “Suppose that 36 out of 

48 people feel sick and 27 of these 36 have eaten blackberries from some site. We 

notice this and that 9 out of the 12 people who did not feel sick also ate the blackberries. 

Now natural sampling will tell us that 27 people feel sick out of the 36 who ate the 

blackberries, and such a high relative frequency might lead us, if we used only natural 

sampling, to conclude that eating the blackberries caused the feeling of sickness.” 

Yet, to the best of our knowledge, there is no theory claiming that naive 

reasoning reduces causality assessments to just one proportion, and therefore we do not 

see why anyone in this situation should come up with such a conclusion. Because the 

proportion of sick people in the total sample (36
48

 =.75) coincides with the proportion 

of sick people in the subset of those who ate blackberries (27
36  =.75) there is no reason 



 35

to attribute the sickness to the blackberries. Because the predictive accuracy of “having 

eaten blackberries” is equal to zero, it probably will not be used as a cue at all. If we 

want to detect causality within naturally sampled information we compare our 

“Bayesian result” with the base-rate and only if these numbers differ noticeably will we 

hypothesize a causal relation. 

Note that both higher-level concepts are related because detecting causality can 

be reduced to assessing the direction of a dependency (Cheng, 1997). Over is right in 

stressing the importance of forming higher-level hypotheses and he is also right that 

only considering the result of Bayesian inferences is not sufficient to form such 

hypotheses. Yet, a simple comparison of the base-rate with the actual Bayesian 

inference (of course we do not need to compare exact percentages – rough proportions 

are totally sufficient) allows us to form hypotheses on causality. 

 

THE AMBIGOUS USE OF THE TERM “PROBABILITY VERSION”  

Some authors attempt to show that under certain circumstances participants can also 

handle probabilities. Yet, there is a problem shared by the probability versions of Fiedler 

et al. (2000), Macchi (2000), and Evans et al. (2000): Their so-called “probability 

versions” contain information in terms of absolute numbers. For instance, the statistical 

information of the “probability version” of Fiedler et al. (2000), is: 5 
 

The study contains data from 1,000 women. 99% of the women did not have 

breast cancer and 1% had breast cancer. Of the women without breast cancer 

10% had a positive mammogram and 90% had a negative mammogramm. Of 

the women with breast cancer 80% had a positive mammogram and 20% had a 

negative mammogram. Task: What´s the probability of breast cancer, if a 

women has a positive mammogram result? 
 

It is not surprising that participants can cope with these “probability versions”. 

Providing the total sample (“the study contains data from 1,000 women”) describes 

                                                 
5 Fiedler et al.’s (2000) main focus is the impact of the different ways information can be sampled. Since 
in the classical text problem paradigm information is already sampled and provided by the experimenter, 
we will not address this issue in this chapter. A dispute with Fiedler et al.’s sampling paradigm can be 
found in Kurzenhäuser and Krauss (2001). 
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precisely drawing a random sample. Therefore it mimics the procedure of natural 

sampling and facilitates computational demands a great deal: Computing 1% of 1,000 

women is just a simple division that leads automatically to natural frequencies (namely, 

“10 out of 1,000 women have breast cancer”). The following statement “80% of the 

women with breast cancer had a positive mammogram” now directly leads to “8 out of 

these 10 women have a positive mammogram”, etc.). The correct answer now easily can 

be derived – with no danger of confusing conditional probabilities, committing the base-

rate fallacy or struggling with any inversions. Moreover, one should note that Fiedler et 

al. (2000) did not provide probabilities, but relative frequencies (pure percentages 

without mentioning the term “probability”). As Gigerenzer and Hoffrage (1995) showed, 

participants performance is poor with relative frequencies when the grand total is not 

provided, because it is not clear what the percentages should be related to. We already 

saw that “starting from one grand total” is one of the keys for understanding Bayesian 

situations. Of course it is of scientific interest to provide versions like Fiedler et al.’s 

(2000), but instead of “probability version” such versions should rather be called 

“relative frequency version with providing the grand total and asking a probability 

question”. In our view, a probability version should only contain one format, namely 

probabilities. Evans et al. (2000), who wrote under the title “Frequency vs. Probability 

Formats” were imprecise when adopting even the two formats mentioned in their title: 

Instead of “probability versions” in their experiments they used “relative frequency 

versions” and in addition they misinterpreted the term “frequency formats” as “just take 

any frequencies”. 

Girotto and Gonzales (in press) also strained the term “probability version” and 

thus claimed that “probabilities” can easily be handled. They introduced a representation 

in terms of “numbers of chances”, which actually are the same as natural frequencies if 

one replaces cases with chances, such as replacing “in 4 cases out of 100” with “4 

chances out of 100”. If these “numbers of chances” corresponded to normalized 

frequencies, the effect would be gone. Numbers of chances thus just represent a clever 

way to translate natural frequencies into a language that looks like a single-event 

statement. 
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DEFINING “NATURAL FREQUENCIES”  

Since many of the critiques concerning the natural frequency approach centered on the 

concept of “natural frequencies” we close this chapter by providing a definition of this 

concept, which ought to clarify all misunderstandings. This definition, for the first time, 

is formulated in the general case. For our comprehensive definition of the term “natural 

frequencies” we make use of the notion of frequency trees: 

Imagine a tree diagram that starts from one root-node and is split into N levels. 

Assume that the number of branches starting at each node of the nth level is constant for 

n (n = 1, … , N). Furthermore, assume that the number a (a ∈ N) assigned to a node is 

equal to the sum bi
i=1

m
∑ , where the bi  (bi∈ N0 ) are the numbers assigned to nodes 

branching from it. 

 

 

Figure 1.11: In a categorization tree for each node a = bi
i=1

m
∑   

 

If this holds for every node of a tree, this tree is a categorization tree. 

 
Definition: 

A set of frequencies is a set of natural frequencies if and only if 

(a) a single categorization tree can display the frequencies 

(b) the frequencies can be considered the result of natural sampling, that is, the 

frequencies are obtained by a random sample, which is represented by the root-

node 
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Frequencies that follow this definition refer to one randomly drawn reference 

set and automatically consist of nested sets. Note that it is not required that the set of 

frequencies corresponds to a Bayesian task. Let us see how this definition provides 

straightforward answers to typical questions: 

Question 1: Can the simple expression “35 out of 42” be considered a natural frequency, 

even if no other information is presented and no task is posed? 

Answer: Yes, “35 out of 42” can be displayed in a tree consisting of two nodes and it can 

be considered the result of a natural sampling process. 

Question 2: If we reconfigure Figure 1.1 by first partitioning the sample with respect to 

the mammogram result and then with respect to the state of illness (tree on the right in 

Figure 1.12), do we still have natural frequencies? 
 

 

Figure 1.12: Natural frequency trees that describe the same naturally sampled reference set and that only 
differ with respect to the order of subsetting 
 

Answer: Yes, the natural frequency approach does not fix the order of subsetting. 

Although in a classical Bayesian text problem the provided information is inverse to the 

question, this is not a requirement for natural frequencies. 

Question 3: Imagine a simulator that draws randomly from a given population. If the 

randomly drawn numbers – for instance, the base rate – deviate from the expected 

values, do we still have natural frequencies? 

Answer: Yes, these numbers are natural frequencies because both conditions of the 

definition are fulfilled. 
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Question 4: Can we judge whether an unlabeled tree containing just frequencies reflects 

natural sampling? 

Answer: No, because not all frequencies that fit a tree are automatically natural 

frequencies. Natural frequencies cannot be seen content free. For instance, whether the 

set “1,000 out of 2,000”, “800 out of 1,000”, and “96 out of 1000” is a set of natural 

frequencies depends on what these numbers stand for. Figure 1.9 reflects a natural 

frequency tree if it describes a population where the base-rate is 50% and the two 

relevant conditional probabilities are 80% and 9.6% respectively. 

 

CONCLUSION 

The possibility of communicating statistical information in terms of natural frequencies 

is not restricted to what we called the basic situation with one binary predictor for 

inferring a binary criterion. In situations where more than one cue is provided, or where 

either cues or the criterion have more than two possible values, the statistical 

information can still be represented in terms of natural frequencies. In two studies we 

have shown that in complex Bayesian situations natural frequencies have the same 

beneficial effect as could be demonstrated for basic situations in previous research 

(Gigerenzer & Hoffrage, 1995; Hoffrage et al., 2000). Considering such extensions is 

important as in many real-life situations they are the rule rather than the exception. To 

reach a medical diagnosis, for instance, usually more than one test is applied, or in court 

trials usually more than one piece of evidence is available. 

However, extending the natural frequency approach certainly has its limitations. 

Natural frequencies are no doubt helpful in facilitating inferences in the case of two or 

three cues, where the amount of information is still cognitively manageable. In a 

Bayesian decision situation with 10 binary cues things may change. In this case, the 

corresponding frequency tree would amount to more than 2,000 natural frequencies. 

Although Krauss, Martignon and Hoffrage (1999) suggested a way of how to reduce 

complexity in such situations (by only considering the so-called Markov frequencies), 

we doubt that people are Bayesians regardless of the degree of complexity. Rather, it is 

our claim that the human mind is equipped with an adaptive toolbox containing simple 

heuristics that allow “fast and frugal” decisions – even in highly complex environments 

(Gigerenzer, Todd, & the ABC Research Group, 1999). These simple heuristics are 
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helpful in making inferences in situations under limited time, with limited knowledge, 

and within our cognitive and computational constraints. For instance, when memory 

limitations keep us from making use of natural frequencies, we could base our decision 

just on the best cue (e.g., Gigerenzer and Goldstein, 1999; see also general discussion). 

The common denominator between these fast and frugal heuristics and the 

natural frequency approach is ecological rationality. While the fast and frugal heuristics 

are ecologically rational, as they are adapted to the structure of information in the 

environment (Martignon & Hoffrage, 1999), it is ecologically rational to represent the 

statistical information required for a Bayesian inference task in terms of natural 

frequencies, as the human mind is adapted to this format. Future research has to reveal 

the crucial variables (e.g., number of cues) that trigger switching from being a Bayesian 

to being fast and frugal. In Martignon and Krauss (in press) we have undertaken the 

first tentative steps in this direction. 

Egon Brunswik once referred to the organism and its environment as “equal 

partners”. This was not meant to say that they are equal in all aspects of structural detail; 

rather, Brunswik suggested the simile of a married couple: “Perhaps the organism could 

be seen as playing the role of the husband and the environment that of the wife, or the 

reverse may be argued as well” (1957, p. 5). The advocates of the heuristics and biases 

program divorced natural reasoning processes (Brunswik’s organism) from the naturally 

available information format (Brunswik’s environment). Our studies have shown that 

changing the experimental situation so that it better reflects essential features of the 

environment (by providing natural frequencies and thus maintaining relevant base-rate 

information), reasoning will not only become more accurate, but also more consistent 

with the relevant statistical norm, namely Bayes’ rule. Thus, if Brunswik’s Mr. 

Cognition is reunified with his wife, Mrs. Environment, they will give birth to sound 

reasoning. 


