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Introduction 
 

Even the birth of probability theory, which is usually dated from a correspondence 

between Blaise Pascal and Pierre Fermat in 1654, was connected with a probabilistic 

uneasiness: Both mathematicians worked on two problems on behalf of the Chevalier de 

Méré and – although they could solve them – de Méré was unhappy: Not, because the 

solutions were too sophisticated, but because they contradicted his intuition.1 Abraham 

de Moivre summarized the initial difficulties in the taming of chance: “Some problems, 

that bare posed by chance, at first sight seem very easy; one believes they can be solved 

with a bit of common sense. Unfortunately this evaluation too often proves to be false 

and mistakes based thereupon are not rare.” (see Krämer, 1996, p. 159). 

One century later – during the enlightenment – mathematicians and philosophers 

believed that these teething troubles had been solved. They were convinced that formal 

probability theory and human probabilistic reasoning are just two sides of the same 

coin. For instance, Pierre Simon de Laplace identified human thinking not as a victim 

but rather as a “killer” of probabilistic paradoxa. In his Essai philosophique sur les 

Probabilités from 1814 he wrote: “The mind is exposed to fallacies just as the visual 

sense is. Just like the sense of touch corrects the illusion of the latter, thinking and 

calculating correct the illusions of the former.” Deliberations of this kind prompted him 

to assume a close match between human thinking and probability theory: “The theory of 

probability is at bottom nothing more than good sense reduced to a calculus which 

evaluates that which good minds know by a sort of instinct, without being able to 

explain how with precision” (Laplace, 1814/1951, p. 196). In 1736, Jacob Bernoulli 

expressed a similar mental attitude in a letter to Wilhelm Gottfried Leibniz. He 

speculated that the law of large numbers is a rule that “even the stupidest man knows by 

some instinct of nature per se and by no previous instruction.” (see Gigerenzer et al., 

1989, p. 29). The available mathematical tools, in particular the theorem of Bayes and 

                                                 
1 One of the questions was how many times one has to toss two dice in order to get a double six, and the 
other question was how to split up the stakes fairly after interrupting a card game (for details see Barth 
and Haller, 1996, p. 72). 
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Bernoulli’s law of large numbers, were seen as descriptions of actual human judgment 

(Daston, 1988). 

This enlightened view of human cognition lasted until the middle of the 19th 

century. While Piaget and Inhelder were still claiming in 1956 that “deductive 

reasoning is the propositional calculus itself”, from the late 1960s this view shifted. 

Modern experimental psychology suggests that humans’ skills of statistical thinking are 

not very distinctive. In the past few decades a flurry of work documented the ways in 

which actual human reasoning differs from the probabilistic norm. This “heuristics and 

biases” view on human cognition is summarized by Kahneman, Slovic and Tversky 

(1982) in the book Judgment under uncertainty. Heuristics and biases. Deviations from 

the probabilistic ideal were regarded as proof that unaided human reasoning is riddled 

with fallacies. Kahneman and Tversky formulated their credo in 1973: “In making 

predictions and judgments under uncertainty, people do not appear to follow the 

calculus of chance or the statistical theory of prediction. Instead, they rely on a limited 

number of heuristics which sometimes yield reasonable judgments and sometimes lead 

to severe and systematic errors.” This paradigm dominated the research on probabilistic 

thinking until the nineties. Piattelli-Palmarini, for instance, reinforced this view in 1991: 

“We are a species that is uniformly probability-blind, from the humble janitor to the 

Surgeon General […]. We should not wait until Tversky and Kahneman receive a Nobel 

prize for economics. Our self-deliberation from cognitive illusions ought to start even 

sooner.” And Stephen Gould summarized in 1992: “Tversky and Kahneman argue, 

correctly, I think, that our minds are not built (for whatever reason) to work by the rules 

of probability.” 

Yet, the story of the evaluation of humans probabilistic abilities turned into 

something of a ping-pong match. A new turnaround toward an “enlightened view” of 

human cognition is exemplified by the work of Gigerenzer and Hoffrage (1995). Both 

psychologists took a closer look at the representation of uncertainty in the tasks used in 

Kahneman and Tversky’s “heuristic and biases” program. They realized that the 

uncertainty communicated in these tasks was expressed in terms of probabilities or 

percentages. As we have already seen in the preface, understanding percentages is often 

difficult per se, even when no complicated calculations are required. Gigerenzer and 

Hoffrage (1995) questioned whether it is possible to infer from the human inability to 
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solve such probability tasks to a fundamental lack of mental algorithms for judgment 

under uncertainty. They affirmed that mental algorithms need information and 

information needs representation. 

Is there a representation of uncertainty that is adjusted to human thinking? Surely 

probabilities and percentages cannot be observed directly in nature and are rarely 

processed in “natural”  human thinking. What other possibilities are there to represent 

uncertainty? We can represent probabilistic information in the following numerical 

representations:2 
 

Representations of 
probabilistic information

Example 

percentages 40% 
decimal numbers 0,4 
fractions 4

10  
absolute frequencies 4 out of 10 
odds ratio 4 : 6 

 

Table 0.1: Numerical representations of uncertainty 
 

Which of these representations is best adjusted to human thinking? According to 

theories about memory and attention, absolute frequencies are one of the categories of 

information that is registered automatically, i.e., without conscious intention and without 

interfering with other cognitive processes (automatic frequency processing, Hasher & 

Zacks, 1984). This suggests that participants should be presented with tasks in which 

uncertainty is expressed in terms of absolute frequencies to ascertain whether this form of 

representation improves their performance. 

 

The present debate on the role of representation of information to improve human 

insight (e.g., Gigerenzer and Hoffrage, 1999), we extend in chapters 1 and 2. This debate 

focuses on one of the most confusing and most controversial formulas of probability 

theory: Bayes’ rule. “Bayesian updating” – i.e., revising the probability of a hypothesis 

(H) when new data (D) arise – occurs in real-life reasoning in a variety of situations. Of 

                                                 
2 Non-numerical representations are, for instance, verbal expressions – such as “pretty sure” or “rather 
unlikely”. Visual representations of uncertainty – such as tree diagrams – will be introduced in chapters 1 
and 2. 
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great relevance are especially expert judgments. For example: A judge has to change her 

belief about the guilt of a suspect (hypothesis H) when new evidence (data D) is put 

forward. A physician has to change her belief about the state of her patient (hypothesis 

H) when provided with new test outcomes (data D). In 1995, Gigerenzer and Hoffrage 

were able to show empirically that replacing probabilities in such Bayesian reasoning 

tasks by natural frequencies – which are a special kind of absolute frequencies  – can 

foster participants’ insight dramatically. This is the starting point for the dissertation. 

In Chapter 1 the beneficial effect of natural frequencies will be introduced and 

discussed in detail. The aim of the first chapter is to extend Gigerenzer and Hoffrage’s 

(1995) natural frequency approach to complex-structured Bayesian situations: All re-

search concerning natural frequencies so far has only referred to situations in which one 

binary cue and one binary criterion is provided. For instance, this situation occurs if a 

physician has to judge the state of illness (binary criterion with the values “ill” and 

“healthy”) based on one medical test (binary cue with the values “test positive” or “test 

negative”). Real-life decisions often require dealing with more complex situations, such 

as cues or criteria with more than one value, or solving tasks with more than one cue: For 

instance, a physician might have to consider the outcomes of two medical tests (two 

cues), or different diseases might be possible (non-binary criterion). There has been 

scepticism in the literature regarding whether the natural frequency concept can be 

extended to such complex situations (Massaro, 1998). In this chapter, we provide 

empirical evidence that, even in these situations, communicating the statistical 

information in terms of natural frequencies is both possible and beneficial. The 

generalization of the natural frequency approach also turned out to be helpful when 

addressing some current critiques regarding this approach. Chapter 1 is closed by a 

definition of natural frequencies, which takes complex situations into account, and by 

discussing the limits of cue-integration. 

In Chapter 2 we investigate possibilities of de-constructing “Bayesian brain teasers”. 

As a touchstone for this claim we chose one of the most notorious brain teasers regarding 

probability theory, namely the Monty Hall Problem (or Three Door Problem). Apart from 

the natural frequency concept already discussed, we implemented other psychological 

manipulations into problem’s wording by making use of the following psychological 

elements: perspective change, mental models and less-is-more effect. By providing new 
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ways of representing the problem, we were able to increase participants’ performance to 

levels well above those found by previous researchers. Furthermore, constructing 

intuitive wordings of the Monty Hall problem as well as analyzing participants’ protocols 

afterwards reveals synergistic connections between the implemented elements, which in 

cognitive psychology usually are handled separately. 

In Chapter 3, we address scientific statistical thinking. Today, significance 

testing is the widest-spread method for evaluating hyotheses in the social sciences. 

Interestingly, when testing hypotheses, people tend to interpret the result of significance 

tests incorrectly and yet in a Bayesian way. 

Why is a sound understanding of the meaning of significance tests important? 

The experimenter is often not only responsible for conducting the experiment, she also 

is responsible for communicating the results of the experiment. This requires real 

insight into the underlying meaning of such a test result, since from this the following 

answers must be derived: What has to be communicated to the parties interested in the 

study? What consequences can be drawn? What does this significant test result actually 

mean, and, what cannot be inferred? In the third chapter, we experimentally 

demonstrate that the belief in common fallacies about the meaning of a significant test 

result were also held by many methodology instructors who teach statistics to 

psychology students. Indeed, we found that – albeit not the statistics professors tested – 

most methodology instructors shared the misconceptions of their students. We suggest a 

pedagogical approach to overcome these misconceptions by contrasting hypothesis 

testing with Bayes’ rule. If one wants to prevent students’ belief that a significant test 

result says something about the probability of hypotheses, one should explicate the 

approach that actually can deliver such probabilities. 

In the General Discussion, the dissertation concludes with a summary of results 

and suggestions for future work. 

To summarize: The basic hypothesis underlying this dissertation is that 

statistical information can be represented and taught in ways leading to a robust and a 

deep understanding of fundamental concepts of probability theory. The main ingredient 

of the problems chosen is the crucial concept of conditional probabilities. 


