Kapitel 3. Ergebnisse

3.1 Einführung

Der Zebrafisch hat sich in den vergangenen Jahren zu einem wichtigen Modellorganismus für die Erforschung der genetischen Ursachen von Krankheiten entwickelt (Barut et Zon 2000; Zon 1999). Jedoch sind viele Gene, die seine Entwicklung steuern, noch unbekannt. Das Washington University EST Project hat zum Ziel, weitere Gene zu identifizieren und sie funktionell zu charakterisieren. Bedingt durch die technologisierte Hochdurchsatz Sequenzierung treten jedoch ca. 15 –20% Fehler in der Zuordnung von Sequenzen und Klonnamen auf (Mitteilung Washington University Fish Lab).

Die in dieser Arbeit untersuchten Gene wurden unter dem Gesichtspunkt ihrer möglichen Implikation in humane Krankheiten ausgewählt. Kriterium für die Auswahl war eine bestimmte Homologie ihrer Nucleotid- und Proteinsequenz.

3.2.1 Identifizierung von Homologen der Zebrafisch EST Bibliothek und beim Menschen in Krankheiten involvierten Genen

Dazu wurde für die Sequenzen der ESTs (Stand Dezember 1999) ein BLAST-Abgleich mit der GeneCards-Datenbank (bioinformatics.weizmann.ac.il / cards) durchgeführt, welche im Menschen beschriebene Gene enthält. Aus dem Ergebnis wurde eine Teilmenge derjenigen Gene gebildet, welche in irgendeiner Form in Krankheiten im Menschen impliziert sind (S. Hennig, persönliche Mitteilung). Für diesen BLAST-Abgleich wurde ein Erwartungswert (p-value) von ≤ 1.0e⁻¹⁰ auf Proteinebene festgelegt.

Jedem Gen wurde ein Klon aus dem Zebrafish EST Datenset zugeordnet. Anschliessend wurde der automatisch generierte Sequenzabgleich zwischen EST und Krankheitsgen nochmals überprüft. Hier wurde als unteres Limit eine 70% Ähnlichkeit der Aminosäuren (engl. *similarity*) gesetzt. Die Klone, die diese Anforderungen erfüllten, wurden gepickt und in 96 well-plate Kulturen angeordnet, die mit dem Namen des Projektes (ZFGenecards) und einer Plattennummer versehen wurden (ZFGenecards_I, _II and _III). Zur Bestätigung der

Klonidentität wurden diese daraufhin nochmals sequenziert, um die Datensätze der Washington University zu überprüfen.

Basierend auf diesen Sequenzen wurde ein BLAST-Abgleich mit der *Swissprot-*Datenbank (www.expasy.ch) durchgeführt, um die Homologie zu den menschlichen Krankheitsgenen zu bestätigen. Die so gewonnenen Daten sind in Tabelle 1 aufgeführt. Sie enthält neben dem vermuteten Krankheitsgen dessen *Swissprot Accession* Nummer, sowie Angaben über die Homologie des Klons auf Proteinebene mit den entsprechenden Prozentangaben der Ähnlichkeit (engl. *similarity*) und Identität (engl. *identity*).

3.2.2. Charakterisierung von Zebrafisch Homologen mit menschlichen Krankheitsgenen auf der Basis von Gensequenzen

Die ausgewählten Klone bzw. deren zugeordnete Gene besitzen unterschiedliche funktionelle Gruppen. Sie kodieren für Proteine, die in der Zelle an so unterschiedlichen Prozessen wie Signaltransduktion, Ionentransport, Transkription und Metabolismus beteiligt sind. Eine Änderung ihrer Funktion, Expression oder Interaktion kann zu Krankheitserscheinungen führen. Diese sind besser verständlich, wenn man die physiologische Funktion des Gens kennt und sie nach Möglichkeit auch in den Gesamtrahmen von intrazellulären Prozessen einordnen kann (pathways). Die in-situ Hybridisierung liefert einen Nachweis über die Expression eines zu untersuchenden Gens und hilft somit, das Gen funktionell zu klassifizieren.

Einen Eindruck über die Vielfalt der Proteine, die in Krankheitsprozessen eine Rolle spielen, ist aus Tabelle 1 ersichtlich (siehe Protein).

Tab.1 Ergebnis der BLAST-Suche. Dem jeweiligen Krankheitsgen ist ein Klon der Bibliothek RZPDp609 mit Prozentangaben zu Identität und Similarität sowie dem Erwartungswert (p-Value) zugeordnet. Am Ende der Tabellen sind diejenigen Klone, deren Sequenzdaten von den an der Wahington University generierten abweichen (falsche Zuordnung), fehlende Krankheitszuordnung basiert auf der der Swissprot BLAST-Suche, da diese Datenbank nicht ausschliesslich Krankheitsgene beinhaltet; ein Fragezeichen besagt, dass lediglich eine nicht gesicherte Vermutung bzgl. der Implikation dieses Gens in eine Krankheit ist gegeben (Quelle: bioinformatics.weizmann.ac.il / cards). Die Angaben in den Spalten zu Krankheit und Protein entstammen ebenfalls dieser Quelle.

Genecards3

KLON NUMMER	SWISS-PROT	PROTEIN	ABKÜRZUNG	KRANKHEIT	P -VALUE	IDENTITÄT	SIMILARITÄT
RZPD p609L 1832	P43246	DNA mismatch repair protein msh2	MSH2	Colorectal cancer, hereditary nonpolyposis, type 1	1.7e-77	115 / 138 (83%)	130 / 138 (94%)
RZPD p609N 0532	O00255	Menin	MEN1	Multiple endocrine neoplasia I Hyperparathyroidism	8.0e-30	44 / 65 (67%)	52 / 65 (80%)
RZPD p609A 1733	Q01844	RNA-binding protein ews	EWSR1	Ewing sarcoma Neuroepithelioma	1.3e-47	52 / 79 (65%)	53 / 79 (67%)
RZPD p609J 1133	P35573	Glycogen debranching enzyme	AGL or GDE	Glycogen storage disease IIIa Glycogen storage disease IIIb	3.4e-137	187 / 239 (78%)	210 / 239 (87%)
RZPD p609C 2134	Q92629	Delta-sarcoglycan	SGCD	Muscular dystrophy, limb-girdle, type 2F	1.0e-117	170 / 230 (73%)	205 / 230 (89%)
RZPD p609E 2034	Q07812	Apoptosis regulator bax, membrane isoform alpha	BAX	Colorectal cancer T-cell acute lymphoblastic leukemia	2.1e-58	78 / 135 (57%)	110 / 135 (81%)
RZPD p609F 0934	O15341	Beta4-integrin	ITGB4	Epidermolysis bullosa letalis with pyloric atresia (eb-pa)	1.2e-70	68 / 97 (70%)	83 / 97 (85%)
RZPD p609I 0234	Q12824	SWI / SNF related, matrix associated, actin dependent regulator of chromatin subfamily B member 1	SMARCB1 or SNF5L1 or INI1	Rhabdoid tumors Rhabdoid predisposition syndrome, familial	1.0e-137	161 / 176 (91%)	167 / 176 (94%)
RZPD p609N 0634	P30153	Serine / threonine protein phosphatase 2A, 65 KDA regulatory subunit A, alpha isoform	PPP2R1A		6.6e-95	144 / 166 (86%)	153 / 166 (92%)

KLON NUMMER	SWISS-PROT	PROTEIN	ABKÜRZUNG	KRANKHEIT	P-VALUE	IDENTITÄT	SIMILARITÄT
RZPD p609O 0934	P55084	Hydroxyacyl- Coenzyme A dehydrogenase / 3- ketoacyl-Coenzyme A thiolase / enoyl- Coenzyme A hydratase (trifunctional protein), beta subunit	НАДНВ	Trifunctional protein deficiency, type II	1.2e-118	175 / 212 (82%)	194 / 212 (91%)
RZPD p609P 2134	P00558	Phosphoglycerate kinase 1 (ec 2.7.2.3) (primer recognition protein 2) (prp 2)	PGK1	Hemolytic anemia due to PGK deficiency Myoglobinuria / hemolysis	6.5e-100	107 / 126 (84%)	114 / 126 (90%)
RZPD p609P 0734	O00633	Protein-tyrosine phosphatase pten (ec 3.1.3.48) (mutated in multiple advanced cancers 1)	PTEN or MMAC1 or TEP1	Cowden disease Lhermitte-Duclos syndrome mutated in multiple advanced cancers	7.3e-114	82 / 119 (68%)	99 / 119 (83%)
RZPD p609E 1935	P15259	Phosphoglycerate mutase, muscle form (ec 5.4.2.1) (pgam-m) (ec 5.4.2.4) (ec 3.1.3.13) (bpg- dependent pgam)	PGAM2 or PGAMM	Myopathy due to phosphoglycerate mutase deficiency	1.7e-63	97 / 109 (88%)	101 / 109 (92%)
RZPD p609E 2135	P18858	DNA ligase i (ec 6.5.1.1) (polydeoxyribonucl eotide synthase [atp])	LIG1	DNA ligase I deficiency	1.7e-79	122 / 183 (66%)	150 / 183 (81%)
RZPD p609F 1635	O00482	Alpha-1-fetoprotein transcription factor			2.2e-41	62 / 73 (84%)	68 / 73 (93%)
RZPD p609F 1735	Q12895	Mannose-specific lectin precursor	MR60		1.6e-131	169 / 221 (76%)	196 / 221 (88%)
RZPD p609G 1135	P07510	Acetylcholine receptor protein, gamma chain precursor	CHRNG or ACHRG	Myasthenia gravis, neonatal transient	3.2e-96	130 / 191 (68%)	160 / 191 (83%)
RZPD p609G 1835	O14773	Tripeptidyl- peptidase i precursor (ec 3.4.14.9) (tripeptidyl aminopeptidase) (lysosomal pepstatin insensitive protease) (lpic)	CLN2 or TPP1	Ceroid-lipofuscinosis, neuronal 2, late infantile (Jansky-Bielschowsky disease)	1.7e-64	70 / 96 (72%)	85 / 96 (88%)
RZPD p609G 0635	Q12955	Ankyrin g	ANK-3		1.0e-70	104 / 130 (80%)	120 / 130 (92%)

KLON NUMMER	SWISS-PROT	PROTEIN	ABKÜRZUNG	KRANKHEIT	P -VALUE	DENTITÄT	SIMILARITÄT
RZPD p609H 2335	Q99816	Tumor susceptibility protein	TSG101	Tumor susceptibility gene 101 Breast cancer	2.3e-74	100 / 122 (81%)	112 / 122 (91%)
RZPD p609L 1635	P09936	Ubiquitin carboxyl- terminal hydrolase isozyme 11 (ec 3.1.2.15) (uch-11) (ubiquitin thiolesterase 11) (neuron cytoplasmic protein 9.5) (pgp 9.5)	UCHLI	Parkinson disease, familial	2.7e-44	50 / 66 (75%)	58 / 66 (87%)
RZPD p609O 1235	Q14739	Lamin b receptor (integral nuclear envelope inner membrane protein) (lmn2r)	LBR		7.3e-54	74 / 104 (71%)	91 / 104 (87%)
RZPD p609A 0636	O95958	Dj14217.3 (connective tissue growth factor (nov, gig) like protein) (fragment)	DJ142L7.3 or LIBC		2.8e-29	44 / 74 (59%)	57 / 74 (77%)
RZPD p609H 2136	P78457	6- phosphofructokinas e (ec 2.7.1.11) (phosphofructokina se) (phosphohexokinas e)	PFKM	Glycogen storage disease VII	6.8e-86	112 / 139 (80%)	128 / 139 (92%)
RZPD p609I 1836	Q15816	Transmembrane protein jagged 1	НЈ1	Alagille syndrome	1.6e-133	155 / 224 (69%)	186 / 224 (83%)
RZPD p609K 1836	O00238	Bone morphogenetic protein type ib receptor	BMPR1B		1.2e-11	25 / 47 (53%)	32 / 47 (68%)
RZPD p609N 0536	Q13337	DNA-pk (fragment)	PRKDC	?Severe combined immunodeficiency, type I	4.4e-62	82 / 143 (57%)	113 / 143 (79%)
RZPD p609O 2436	P09874	Poly [adp-ribose] polymerase (ec 2.4.2.30) (parp) (adprt) (nad(+) adp- ribosyltransferase) (poly[adp-ribose] synthetase)	ADPRT or PPOL	?Fanconi anemia ?Xeroderma pigmentosum	4.5e-102	156 / 202 (77%)	179 / 202 (88%)
RZPD p609J 1337	P98174	Putative rho / rac guanine nucleotide exchange factor (rho / rac gef) (faciogenital dysplasia protein)	FGD1	Faciogenital dysplasia (Aarskog-Scott syndrome)	2.8e-86	85 / 157 (54%)	112 / 157 (71%)
RZPD p609O 2437	O00232	Proteasome subunit p55	None		2.4e-106	162 / 201 (80%)	180 / 201 (89%)

KLON NUMMER	SWISS-PROT	PROTEIN	ABKÜRZUNG	KRANKHEIT	P-VALUE	DENTITÄT	SIMILARITÄT
RZPD p609P 2137	O95638	Ww domain binding protein-2	None		1.0e-63	51 / 108 (47%)	64 / 108 (59%)
RZPD p609B 2338	P06396	Gelsolin precursor, plasma (actin- depolymerizing factor) (adf) (brevin) (agel)	GSN	Amyloidosis, Finnish type	3.4e-70	98 / 138 (71%)	122 / 138 (88%)
RZPD p609H 0538	P35548	Homeobox protein msx-2 (hox-8)	MSX2 or HOX8	Craniosynostosis, type 2 Parietal foramina 1	4.8e-35	38 / 45 (84%)	42 / 45 (93%)
RZPD p609I 193	P02571	Actin, gamma 1	ACTG1 or ACTG		4.2e-118	167 / 172 (97%)	169 / 172 (98%)
RZPD p609I 053	O60620	Katanin p80 subunit	None	x-linked visceral heterotaxy (htx1)	3.4e-70	104 / 139 (74%)	123 / 139 (88%)
RZPD p609D 0440	Q03135	Caveolin-1	CAV1 or CAV		6.5e-66	80 / 106 (75%)	
RZPD p609D 0540	P35520	Cystathionine beta- synthase (ec 4.2.1.22) (serine sulfhydrase) (beta- thionase)	CBS	Homocystinuria, B6-responsive and nonresponsive types	1.1e-118	167 / 205 (81%)	189 / 205 (92%)
RZPD p609F 1740	Q16518	Retinal pigment epithelium-specific 61 kda protein	RPE65	Leber congenital amaurosis-2 Retinal dystrophy,	4.3e-105	138 / 190 (72%)	165 / 190 (86%)
RZPD p609F 0840	P12750	Ribosomal protein S4, X-linked	RPS4X or RPS4 or SCAR or CCG2		2.2e-122	171 / 187 (91%)	180 / 187 (96%)
RZPD p609P 0240	P41182	b-cell lymphoma 6 protein (bcl-6) (zinc finger protein 51) (laz-3 protein) (bcl- 5)	BCL6 or ZNF51 or LAZ3 or BCL5	Lymphoma, B-cell, Lymphoma, diffuse large cell	5.2e-76	101 / 132 (76%)	119 / 132 (90%)
RZPD p609P 0340	P49821	Nadh-ubiquinone oxidoreductase 51 kd subunit precursor (ec 1.6.5.3) (ec 1.6.99.3) (complex i-51kd) (ci-51kd)	NDUFV1 or UQOR1	Leigh syndrome, Alexander disease	4.9e-132	180 / 213 (84%)	198 / 213 (92%)
RZPD p609G 1141	P07099	Epoxide hydrolase (ec 3.3.2.3) (microsomal epoxide hydrolase) (epoxide hydratase)	EPHX1 or EPHX or EPOX	?Fetal hydantoin syndrome Diphenylhydantoin toxicity	6.9e-23	34 / 83 (40%)	50 / 83 (60%)
RZPD p609I 2241	Q03252	Lamin b2 (fragment)	LMNB2 or LAMB2		4.8e-61	93 / 130 (71%)	118 / 130 (90%)

KLON NUMMER	SWISS-PROT	PROTEIN	ABKÜRZUNG	KRANKHEIT	P-VALUE	IDENTITÄT	SIMILARITÄT
RZPD p609L 0341	O43772	Mitochondrial carnitine / acylcarnitine carrier protein (carnitine / acylcarnitine translocase)	CACT or CAC	Carnitine-acylcarnitine translocase deficiency	4.1e-119	165 / 211 (78%)	183 / 211 (86%)
RZPD p609L 0941	P04066	Tissue alpha-l- fucosidase precursor (ec 3.2.1.51) (alpha-l- fucosidase i) (alpha- l-fucoside fucohydrolase)	FUCA1	Fucosidase, alpha-L- 1, tissue fucosidosis	5.9e-121	146 / 205 (71%)	174 / 205 (84%)
RZPD p609I 1542	P25791	Rhombotin-2 (cysteine rich protein ttg-2) (t-cell translocation protein 2) (lim-only protein 2)	LMO2 or RBTN2 or RHOM2 or TTG2	Leukemia, acute T-cell	2.2e-56	78 / 85 (91%)	84 / 85 (98%)
RZPD p609I 2342	P24385	g1 / s-specific cyclin d1 (prad1 oncogene) (bcl-1 oncogene)	CCND1 or PRAD1 or BCL1	Parathyroid adenomatosis 1 Centrocytic lymphoma Multiple	6.7e-112	156 / 191 (81%)	176 / 191 (92%)
RZPD p609A 1043	P10071	Zinc finger protein gli3	GLI3	Greig cephalopolysyndactyly syndrome	1.5e-84	112 / 131 (85%)	124 / 131 (94%)
RZPD p609A 2343	P43034	Platelet-activating factor acetylhydrolase, isoform Ib, alpha subunit	PAFAH1B1 or PAFAHA or LIS1 or MDCR	Lissencephaly-1 Subcortical laminar heterotopia	1.2e-110	146 / 157 (92%)	151 / 157 (96%)
RZPD p609E 2443	P12955	Xaa-pro dipeptidase (ec 3.4.13.9) (x-pro dipeptidase) (proline dipeptidase) (prolidase) (imidodipeptidase)	PEPD or PRD	Prolidase deficiency	3.4e-106	139 / 182 (76%)	162 / 182 (89%)
RZPD p609I 2143	P13686	Tartrate-resistant acid phosphatase type 5 precursor (ec 3.1.3.2) (tr- ap) (tartrate-resistant acid atpase) (tratpase)	ACP5		2.9e-75	50 / 75 (66%)	62 / 75 (82%)
RZPD p609F 2344	Q99707	5- methyltetrahydrofol ate—homocysteine methyltransferase (ec 2.1.1.13) (methionine synthase, vitamin- b12 dependent) (ms)	MTR	Methylcobalamin deficiency, cbl G type	3.5e-44	42 / 55 (76%)	51 / 55 (92%)

KLON NUMMER	SWISS-PROT	PROTEIN	ABKÜRZUNG	KRANKHEIT	P-VALUE	IDENTITÄT	SIMILARITÄT
RZPD p609G 0244	Q05901	Neuronal acetylcholine receptor protein, beta-3 chain precursor	CHRNB3	Myasthenic syndrome, slow-channel congenital	1.6e-25	39 / 50 (78%)	43 / 50 (86%)
RZPD p609K 1444	P43003	Excitatory amino acid transporter 1 (sodium-dependent glutamate / aspartate transporter 1) (glial glutamate transporter) (glast1)	SLC1A3 or EAAT1 or GLAST1		1.9e-120	162 / 201 (80%)	174 / 201 (86%)
RZPD p609L 0444	P11055	Myosin heavy chain, fast skeletal muscle, embryonic (muscle embryonic myosin heavy chain) (smhce)	МҮН3		4.3e-62	99 / 133 (74%)	116 / 133 (87%)
RZPD p609C 0745	P05787	Keratin, type ii cytoskeletal 8 (cytokeratin 8) (k8) (ck 8)	KRT8 or CYK8		3.7e-115	178 / 224 (79%)	198 / 224 (88%)
RZPD p609J 0147	Q15672	Twist related protein (h-twist)	TWIST	Acrocephalosyndactyly 3; Saethre-Chotzen syndrome	1.2e-74	96 / 109 (88%)	100 / 109 (91%)
RZPD p609J 0247	O60438	Rim abc transporter	ABCA4 or ABCR	Stargardt disease-1 Retinitis pigmentosa-19	2.5e-57	64 / 107 (59%)	85 / 107 (79%)
RZPD p609K 2347	O60652	Winged-helix transcription factor forkhead 5	FOXB1 or FKH5		2.5e-85	115 / 138 (83%)	118 / 138 (85%)
RZPD p609M 1247	P09417	Dihydropteridine reductase (ec 1.6.99.7) (hdhpr) (quinoid dihydropteridine reductase)	QDPR or DHPR	Phenylketonuria due to dihydropteridine reductase deficiency	4.9e-26	47 / 78 (60%)	60 / 78 (76%)
RZPD p609D 2248	P13804	Electron transfer flavoprotein alpha- subunit precursor (alpha-etf)	ETFA	Glutaricaciduria, type IIA	2.2e-80	120 / 147 (81%)	132 / 147 (89%)
RZPD p609F 1548	P09329	Ribose-phosphate pyrophosphokinase i (ec 2.7.6.1) (phosphoribosyl pyrophosphate synthetase i) (ppribp) (prs-i)	PRPS1	Phosphoribosyl pyrophosphate synthetase- related gout	2.7e-26	46 / 53 (86%)	49 / 53 (92%)

KLON NUMMER	SWISS-PROT	PROTEIN	ABKÜRZUNG	KRANKHEIT	P-VALUE	DENTITÄT	SIMILARITÄT
RZPD p609K 1848	P21281	Vacuolar atp synthase subunit b, brain isoform (ec 3.6.1.34) (endomembrane proton pump 58 kd subunit) (v-atpase b subunit) (ho57)	ATP6B2		2.2e-38	46 / 57 (80%)	51 / 57 (89%)
RZPD p609P 0548	P21333	Endothelial actin- binding protein (abp-280) (nonmuscle filamin) (filamin 1)	FLN1 or FLN	Heterotopia, periventricular	1.1e-146	202 / 222 (90%)	213 / 222 (95%)
RZPD p609C 1349	Q16775	Hydroxyacylglutath ione hydrolase (ec 3.1.2.6) (glyoxalase ii) (glx ii)	HAGH or HAGH1 or GLO2	Glyoxalase II deficiency	3.4e-87	121 / 152 (79%)	133 / 152 (87%)
RZPD p609D 1150	P04901	Guanine nucleotide binding protein (G protein), beta polypeptide 1	GNB1		3.9e-156	215 / 219 (98%)	216 / 219 (98%)
RZPD p609K 0750	P12829	Myosin light chain 1, embryonic muscle / atrial isoform	MYL4 or MLC1		3.6e-99	132 / 169 (78%)	150 / 169 (88%)
RZPD p609K 2153	P32929	Cystathionine gamma-lyase (ec 4.4.1.1) (gamma- cystathionase)	СТН	Cystathioninuria	5.7e-126	117 / 156 (75%)	135 / 156 (86%)
RZPD p609L 1753	P34949	Mannose-6- phosphate isomerase (ec 5.3.1.8) (phosphomannose isomerase) (pmi) (phosphohexomutas e)	МРІ	Carbohydrate-deficient glycoprotein syndrome, type Ib	4.7e-104	124 / 179 (69%)	142 / 179 (79%)
RZPD p609L 0653	Q13286	Cln3 protein (batten's disease protein)	CLN3 or BTS	Ceroid-lipofuscinosis, neuronal 3, juvenile (Batten, Spielmeyer-Vogt disease)	1.6e-40	58 / 102 (56%)	77 / 102 (75%)
RZPD p609I1 256	P17735	Tyrosine aminotransferase (ec 2.6.1.5) (l- tyrosine:2- oxoglutarate aminotransferase) (tat)	TAT	Tyrosinemia type II, Richner-Hanhart Syndrome	2.6e-100	136 / 189 (71%)	161 / 189 (85%)
RZPD p609I0 456	P11168	Glucose transporter type 2, liver	SLC2A2 or GLUT2	Diabetes mellitus, noninsulin-dependent, Fanconi-Bickel	1.1e-103	142 / 212 (66%)	174 / 212 (82%)

KLON NUMMER	SWISS-PROT	PROTEIN	ABKÜRZUNG	KRANKHEIT	P -VALUE	DENTITÄT	SIMILARITÄT
RZPD p609O 0256	P41235	Hepatocyte nuclear factor 4-alpha (hnf- 4-alpha) (transcription factor hnf-4) (transcription factor 14)	HNF4A or NR2A1 or TCF14 or HNF4	MODY, type 1 Diabetes mellitus,noninsulin- dependent	2.3e-145	189 / 221 (85%)	202 / 221 (91%)
RZPD p609C 1059	Q14117	Dihydropyrimidinas e (ec 3.5.2.2) (dhpase) (hydantoinase) (dhp)	DPYS	Dihydropyrimidinuria, variable clinical phenotype (epileptic or convulsive attacks,dysmorphic features)	5.8e-127	175 / 216 (81%)	197 / 216 (91%)
RZPD p609C 2159	Q92947	Glutaryl-coa dehydrogenase precursor (ec 1.3.99.7) (gcd)	GCDH	Glutaricaciduria, type I	2.2e-97	133 / 181 (73%)	163 / 181 (90%)
RZPD p609K 1732				keine Zuordnung möglich			
RZPD p609H 0631				keine Zuordnung möglich			
RZPD p609P 2448				keine Zuordnung möglich			
RZPD p609N 0356				keine Zuordnung möglich			
RZPD p609A				keine Zuordnung möglich			
2047 RZPD p609G				keine Zuordnung möglich			
0144 RZPD p609I				keine Zuordnung möglich			
0943 RZPD p609I				keine Zuordnung möglich			
043 RZPD p609I				keine Zuordnung möglich			
2453 RZPD p609J				keine Zuordnung möglich			
0934 RZPD p609C				keine Zuordnung möglich			
023 RZPD p609L				keine Zuordnung möglich			
2234 RZPD p609C 2033				keine Zuordnung möglich			

KLON	SWISS-PROT	PROTEIN	ABKÜRZUNG	KRANKHEIT	P-VALUE	DENTITÄT	SIMILARITÄT
RZPD p609C 2333				keine Zuordnung möglich			

Genecards2

KLON- NUMMER	SWISSPROT	PROTEIN	ABKÜRZUNG	KRANKHEIT	P-VALUE	IDENTITÄT	SIMILARITÄT
RZPD p609A 0329	P11166	Glucose transporter type 1, erythrocyte / brain	SLC2A1or GLUT1	Glucose transport defect, blood-brain barrier	5.3e-89	124 / 160 (77%)	145 / 160 (90%
RZPD p609A 0824	O43520	Potential phospholipid- transporting ATPase IC	FIC1 or PFIC	Cholestasis, progressive familial intrahepatic- 1, Byler disease	8.2e-57	74 / 127 (58%)	94 / 127 (74%)
RZPD p609A 1413	O75452	Sterol / retinol dehydrogenase	None	Defects in rdh5 are a cause of fundus albipunctatus (fa), a rare form of stationary night blindness	4.6e-76	110 / 192 (57%)	148 / 192 (77%)
RZPD p609A 2013	P51659	4) (17-beta- hydroxysteroid dehydrogenase 4)	HSD17B4or EDH17B4	Hydroxysteroid (17-beta) dehydrogenase 4 D-bifunctional protein deficiency	5.8e-121	176 / 213 (82%)	193 / 213 (90%)
RZPD p609A 2014	P09923	Alkaline phosphatase, intestinal precursor (ec 3.1.3.1) (iap)	ALPL	Hypophosphatasia, infantile Hypophosphatasia, childhood,	3.7e-51	83 / 129 (64%)	102 / 129 (79%)
RZPD p609A 2112	Q92821	Myosin viia	MYO7A or USH1B	Usher syndrome, type 1B Deafness, autosomal recessive 2, not a perfect match	4.4e-90	72 / 128 (56%)	99 / 128 (77%)
RZPD p609B 0817	P11172	Uridine 5'- monophosphate synthase	UMPS	Oroticaciduria	1.9e-82	78 / 114 (68%)	94 / 114 (82%)
RZPD p609B 1114	Q14308	Fibroblast growth factorreceptor 3 (Precursor)	FGFR3 or JTK4	Achondroplasia, thanatophoric dwarfism	5.5e-69	101 / 111 (90%)	106 / 111 (95%)
RZPD p609B 1228	O43826	Glucose 6-phosphate translocase	G6PT1	Glycogen storage disease Ib Glycogen storage disease Ic,	4.4e-40	68 / 91 (74%)	74 / 91 (81%)
RZPD p609B 1325	P43026	Growth / differentiation factor 5 precursor (gdf-5) (cartilage-derived morphogenetic protein 1) (cdmp-1)	GDF5 or CDMP1	Acromesomelic dysplasia, Hunter-Thompson type	8.8e-67	89 / 118 (75%)	107 / 118 (90%)

KLON- NUMMER	SWISSPROT	PROTEIN	ABKÜRZUNG	KRANKHEIT	P-VALUE	DENTITÄT	SIMILARITÄT
RZPD p609B 1628	P08754	Guanine nucleotide- binding protein g(k), alpha subunit (g(i) alpha-3)	GNAI3	Disease?	4.4e-47	73 / 83 (87%)	76 / 83 (91%)
RZPD p609B 2017	P02751	Fibronectin precursor (fn)	FN1 or FN	Disease?	9.2e-29	32 / 53 (60%)	43 / 53 (81%)
RZPD p609B 2112	Q03181	Peroxisome proliferator activated receptor beta (ppar- beta) (ppar-delta) (nuclear hormone receptor 1) (nuc1) (nuci)	PPARB or NR1C2 or PPARD	Disease?	7.1e-43	67 / 87 (77%)	81 / 87 (93%)
RZPD p609B 2215	Q16688	Amp deaminase (ec 3.5.4.6) (myoadenylate deaminase) (amp aminase) (adenylic acid deaminase) (fragment)	AMPD2	Disease?	2.1e-124	174 / 199 (87%)	187 / 199 (93%)
RZPD p609C 0715	P28360	Homeobox protein msx-1 (hox-7)	MSX1 or HOX7	Hypodontia, autosomal dominant Hypodontia, familial tooth agenesis (fta), wolf-hirschorn syndrome (whs)	3.5e-78	89 / 92 (96%)	91 / 92 (98%)
RZPD p609C 1127	Q13289	Uv-damaged DNA binding factor	None	Xeroderma pigmentosum, group E, subtype 2	1.5e-27	48 / 61 (78%)	52 / 61 (85%)
RZPD p609C 1328	P20585	DNA mismatch repair protein msh3 (divergent upstream protein) (dup) (mismatch repair protein 1) (mrp1)	MSH3 or DUG or DUC1	Disease?	6.7e-79	75 / 113 (66%)	99 / 113 (87%)
RZPD p609C 1513	P18283	Glutathione peroxidase- gastrointestinal (ec 1.11.1.9) (gshpx-gi) (glutathione peroxidase-related protein 2) (gprp)	GPX2	Hemolytic anemia due to glutathione peroxidase deficiency	6.0e-89	93 / 127 (73%)	110 / 127 (86%)
RZPD p609C 2212	P00338	l-lactate dehydrogenase m chain (ec 1.1.1.27) (ldh-a)	LDHA	Exertional myoglobinuria due to deficiency of LDH-A	3.2e-143	196 / 237 (82%)	223 / 237 (94%)
RZPD p609D 1521	Q07352	Tis11b protein (butyrate response factor 1) (egf-response factor 1) (erf-1)	BRF1 or TIS11B or ERF1		1.1e-81	69 / 71 (97%)	70 / 71 (98%)
RZPD p609D 1715	P46100	Transcriptional regulator atrx (x-linked helicase ii) (x-linked nuclear protein) (xnp)	ATRX or RAD54L or XH2	Alpha-thalassemia / mental retardation syndrome	1.2e-112	163 / 215 (75%)	185 / 215 (86%)

KLON- NUMMER	SWISSPROT	PROTEIN	ABKÜRZUNG	KRANKHEIT	P-VALUE	IDENTITÄT	SIMILARITÄT
RZPD p609D 1929	P05091	Aldehyde dehydrogenase, mitochondrial precursor (ec 1.2.1.3) (aldh class 2) (aldhi) (aldh-e2)	ALDH2 or ALDM		3.9e-96	140 / 167 (83%)	154 / 167 (92%)
RZPD p609D 2025	P22607	Fibroblast growth factor receptor 3 precursor (fgfr-3) (ec 2.7.1.112)	FGFR3 or JTK4	Achondroplasia Hypochondroplasia	1.7e-138	191 / 217 (88%)	205 / 217 (94%)
RZPD p609E 1015	O75923	Dysferlin	None	Muscular dystrophy, limb-girdle, type 2B Miyoshi	5.1e-23	39 / 58 (67%)	49 / 58 (84%)
RZPD p609E 2411	Q93099	Homogentisate 1,2-dioxygenase (ec 1.13.11.5) (homogentisicase) (homogentisate oxygenase) (homogentisic acid oxidase)	HGD or HGO	Alkaptonuria	9.9e-15	31 / 67 (46%)	42 / 67 (62%)
RZPD p609E 2431	O75534	Unr protein	UNR or D1S155E or KIAA0885		8.1e-23	41 / 62 (66%)	50 / 62 (80%)
RZPD p609F 1211	P00439	Phenylalanine-4- hydroxylase	РАН	Phenylketonuria Hyperphenylalaninemia, mild	7.4e-106	148 / 186 (79%)	163 / 186 (87%)
RZPD p609F 2227	O75444	Long form transcription factor c- maf	C-MAF		1.7e-50	83 / 124 (66%)	97 / 124 (78%)
RZPD p609G 1824	Q15532	Ssxt protein (synovial sarcoma, translocated to x chromosome) (syt protein)	SSXT or SYT	Sarcoma, synovial	1.2e-78	74 / 95 (77%)	79 / 95 (83%)
RZPD p609G 2011	Q05810	Hexokinase d, liver isozymes	GCK	Glucokinase (hexokinase 4, maturity onset diabetes of the young 2) hexokinase d,	3.4e-136	193 / 229 (84%)	211 / 229 (92%)
RZPD p609H 0823	P02489	Alpha crystallin a chain	CRYAA or CRYA1	Cataract, zonular central nuclear, autosomal dominant	2.8e-96	70 / 88 (79%)	83 / 88 (94%)
RZPD p609H 1115	P38571	Lysosomal acid lipase / cholesteryl ester hydrolase [Precursor]	LIPA	Wolman disease Cholesteryl ester storage disease	6.1e-26	32 / 50 (64%)	42 / 50 (84%)
RZPD p609H 1724	P00492	Hypoxanthine-guanine phosphoribosyltransfer ase	HPRT1 or HPRT	Lesch-Nyhan syndrome,	1.4e-113	164 / 182 (90%)	174 / 182 (95%)
RZPD p609I 0721	Q02218	2-oxoglutarate dehydrogenase e1 component, mitochondrial precursor	OGDH	Alpha-ketoglutarate dehydrogenase deficiency	2.9e-85	121 / 144 (84%)	132 / 144 (91%)
RZPD p609I 1522	P16615	Sarcoplasmic / endoplasmic reticulum calcium ATPase2	ATP2A2 or ATP2B	Darier disease	1.4e-160	223 / 259 (86%)	239 / 259 (92%)

KLON- NUMMER	SWISSPROT	PROTEIN	ABKÜRZUNG	KRANKHEIT		DENTITÄT	SIMILARITÄT
RZPD p609I 1911	Q15094	Pro-alpha-1 type v collagen	COL5A1	Ehlers-Danlos syndrome, type II Ehlers- Danlos syndrome	3.4e-83	115 / 148 (77%)	127 / 148 (85%)
RZPD p609I 1922	P41212	Ets-related protein tel (ets translocation variant 6)	ETV6 or TEL1 or TEL	Leukemia, acute lymphoblastic	5.0e-63	83 / 130 (63%)	102 / 130 (78%)
RZPD p609J 0316	P51790	Chloride channel protein 3 (clc-3)	CLCN3	Nephrolithiasis, Dent disease	2.3e-107	118 / 127 (92%)	124 / 127 (97%)
RZPD p609J 0811	P02753	Plasma retinol-binding protein precursor	RBP4	Retinol binding protein, deficiency of, cause night vision problems.	2.6e-84	109 / 174 (62%)	141 / 174 (81%)
RZPD p609K 0213	Q13677	Alpha-2- macroglobulin (fragment)	A2M	Emphysema due to alpha-2-macroglobulin deficiency, Alzheimer	1.9e-88	74 / 121 (61%)	95 / 121 (78%)
RZPD p609K 0412	P11766	Alcohol dehydrogenase class iii chi chain	ADH5 or ADHX or FDH	??	6.8e-103	114 / 168 (67%)	133 / 168 (79%)
RZPD p609L 0915	Q99081	Transcription factor htf4 (transcription factor 12)	TCF12 or HTF4 or HEB		7.9e-46	65 / 84 (77%)	70 / 84 (83%)
RZPD p609L 1013	P11310	Acyl-coa dehydrogenase, medium-chain specific mitochondrial precursor	ACADM	Acyl-CoA dehydrogenase, medium chain, deficiency of	1.5e-90	119 / 144 (82%)	130 / 144 (90%)
RZPD p609L 1129	P50416	Carnitine o- palmitoyltransferase i, mitochondrial liver isoform	CPT1A or CPT1	CPT deficiency, hepatic, type I	4.8e-104	144 / 184 (78%)	165 / 184 (89%)
RZPD p609L 1517	P11498	Pyruvate carboxylase precursor	PC	Pyruvate carboxylase deficiency	2.3e-89	124 / 134 (92%)	129 / 134 (96%)
RZPD p609L 1812	Q01581	Hydroxymethylglutary l-coa synthase, cytoplasmic	HMGCS1 or HMGCS		1.0e-66	78 / 106 (73%)	88 / 106 (83%)
RZPD p609L 1927	Q97025	Envelope glycoprotein (fragment)	ENV	Endogenous retroviral family W	0.36	5 / 11 (45%)	8 / 11 (72%)
RZPD p609L 2423	P06905	Myelin proteolipid protein (plp) (lipophilin) [contains: myelin protein dm-20]	PLP1 or PLP	Pelizaeus-Merzbacher disease, spastic paraplegia 2, uncomplicated	5.2e-88	73 / 115 (63%)	91 / 115 (79%)
RZPD p609M 0524	Q16640	Plectin1	PLEC1	Muscular dystrophy with epidermolysis bullosa simplex	8.6e-45	46 / 58 (79%)	51 / 58 (87%)
RZPD p609M 1312	P02675	Fibrinogen beta chain precursor	FGB	Dysfibrinogenemia, beta type Afibrinogenemia, congenital	5.2e-80	90 / 190 (47%)	135 / 190 (71%)

KLON. NUMMER	SWISSPROT	PROTEIN	ABKÜRZUNG	KRANKHEIT	P-VALUE	DENTITÄT	SIMILARITÄT
RZPD p609M 2216	P46531	Neurogenic locus notch protein homolog 1 precursor (translocation- associated notch protein tan-1) (fragment)	NOTCH1 or TAN1	Leukemia, T-cell acute lymphoblastic	2.4e-72	83 / 100 (83%)	91 / 100 (91%)
RZPD p609M 2411	P16930	Fumarylacetoacetase (ec 3.7.1.2) (fumarylacetoacetate hydrolase) (beta- diketonase) (faa)	FAH	Tyrosinemia, type I	1.0e-86	129 / 176 (73%)	138 / 176 (78%)
RZPD p609N 0326	O75027	Atp-binding cassette, sub-family-b,member 7,mitochondrial [Precursor]	ABCB7 or ABC7	Anemia, sideroblastic, with ataxia	2.0e-54	80 / 109 (73%)	92 / 109 (84%)
RZPD p609N 0527	Q13040	Atp-binding cassette protein (fragment)	None		3.3e-84	89 / 121 (73%)	106 / 121 (87%)
RZPD p609N 0713	P10159	Initiation factor 5a (eif- 5a) (eif-4d) (rev binding factor)	EIF5A		6.8e-50	66 / 94 (70%)	83 / 94 (88%)
RZPD p609N 2010	P10660	40s ribosomal protein s6 (phosphoprotein np33)	RPS6		4.3e-22	45 / 47 (95%)	45 / 47 (95%)
RZPD p609N 2130	P31751	Rac-beta serine / threonine kinase (ec 2.7.1) (rac-pk-beta) (akt2 kinase)	AKT2	Ovarian carcinoma	1.2e-121	90 / 106 (84%)	97 / 106 (91%)
RZPD p609N 2320	Q03135	Caveolin-1	CAV1 or CAV		5.4e-91	113 / 151 (74%)	130 / 151 (86%)
RZPD p609O 0120	P31153	s-adenosylmethionine synthetase gamma form (ec 2.5.1.6) (methionine adenosyltransferase) (adomet synthetase) (mat-ii)	MAT2A or MATA2 or AMS2		2.3e-65	96 / 109 (88%)	100 / 109 (91%)
RZPD p609O 0229	P21439	Multidrug resistance protein 3 (p- glycoprotein 3)	ABCB4 or PGY3 or MDR3	Cholestasis, progressive familial intrahepatic, type III	4.8e-97	124 / 182 (68%)	149 / 182 (81%)
RZPD p609O 1326	P26367	Paired box protein pax- 6 (oculorhombin) (aniridia, type ii protein)	PAX6 or AN2	Aniridia Peters anomaly Cataract, congenital, with	7.0e-13	29 / 31 (93%)	30 / 31 (96%)
RZPD p609P 0227	Q12926	Elav-like protein 2	ELAVL2 or HUB	Embryonic lethal, abnormal vision	3.0e-153	141 / 160 (88%)	149 / 160 (93%)
RZPD p609P 1523	Q14353	Guanidinoacetate n- methyltransferase (ec 2.1.1.2)	GAMT	GAMT deficiency neurologic syndromes and muscular hypotonia	1.7e-103	138 / 176 (78%)	154 / 176 (87%)

KLON- NUMMER	SWISSPROT	PROTEIN	ABKÜRZUNG	KRANKHEIT	P-VALUE	IDENTITÄT	SIMILARITÄT
RZPD p609P 2414	O15382	Branched-chain amino acid aminotransferase, mitochondrial precursor (ec 2.6.1.42) (bcat(m))	BCAT2 or BCATM or ECA40	?Hypervalinemia or hyperleucine- isoleucinemia	1.2e-34	55 / 84 (65%)	63 / 84 (75%)
RZPD p609P 2014				keine Zuordnung möglich			
RZPD p609P 0516				keine Zuordnung möglich			
RZPD p609I 0626				keine Zuordnung möglich			
RZPD p609F 0623				keine Zuordnung möglich			
RZPD p609F 0815				keine Zuordnung möglich			
RZPD p609K 202				keine Zuordnung möglich			
RZPD p609P 1313				keine Zuordnung möglich			
RZPD p609O 1722				keine Zuordnung möglich			
RZPD p609O 1110				keine Zuordnung möglich			
RZPD p609N 1917				keine Zuordnung möglich			
RZPD p609N 122				keine Zuordnung möglich			
RZPD p609N 0516				keine Zuordnung möglich			
RZPD p609D 0317				keine Zuordnung möglich			
RZPD p609M 1515				keine Zuordnung möglich			
RZPD p609M 1026				keine Zuordnung möglich			
RZPD p609M 0810				keine Zuordnung möglich			

KLON- NUMMER	SWISSPROT	PROTEIN	ABKÜRZUNG	KRANKHEIT	P-VALUE	DENTITÄT	SIMILARITÄT
RZPD p609I 0726				keine Zuordnung möglich			
RZPD p609I 0310				keine Zuordnung möglich			
RZPD p609M 1020				keine Zuordnung möglich			
RZPD p609H 0326				keine Zuordnung möglich			
RZPD p609G 1725				keine Zuordnung möglich			
RZPD p609K				keine Zuordnung möglich			
2310 RZPD p609F				keine Zuordnung möglich			
0412 RZPD				Keine Zuordnung mognen			
p609J 1726				keine Zuordnung möglich			
RZPD p609E 1431				keine Zuordnung möglich			
RZPD p609D 0210				keine Zuordnung möglich			
RZPD p609C 1921				keine Zuordnung möglich			
RZPD p609C 1628				keine Zuordnung möglich			
RZPD p609B				keine Zuordnung möglich			
1929 RZPD p609M				keine Zuordnung möglich			
0613 RZPD p609A				keine Zuordnung möglich			
2329 RZPD p609A				keine Zuordnung möglich			
0415							

3.2.3 Charakterisierung von Zebrafisch Homologen mit menschlichen Krankheitsgenen auf der Basis von Krankheiten

Tabelle 1 zeigt die grosse Bandbreite von Krankheiten auf, die von "klassischen" Erbkrankheiten wie Muskeldystrophien oder Syndromen (z.B. Prader-Willi, Greig), angeborenen Missbildungen oder Tumorleiden bis hin zu neurodegenerativen Erkrankungen reicht. Die höchste Anzahl an Zebrafischklonen wurde für Gene gefunden, welche in Zusammenhang stehen mit metabolischen Störungen. Dies ist mit hoher Wahrscheinlichkeit auf das Ausgangsgewebe der hier verwendeten cDNA Bibliothek zurückzuführen (gewonnen aus Gewebe von 24 hpf. Embryonen und Lebergewebe des adulten Zebrafisch).

Allerdings kann nicht immer eine Klassifizierung geleistet werden. Dies ist z.B. der Fall für den Klon RZPDp609H1724, welcher für die Hypoxanthinphosphoribosyltransferase 1 (HPRT1) kodiert, ein metabolisch wirksames Enzym, um Purine wiederzuverwerten. Nach Mutation wird das klinische Bild jedoch vor allem durch neurologische Symptome geprägt (Selbstverstümmelungstendenz und Demenz).

3.3 Stadien der Zebrafischentwicklung

Durch die Verwendung von fünf verschiedenen Stadien des sich entwickelnden Embryos ist es möglich, die Expression und Aktivität des entsprechenden Gens sowohl topographisch als auch, zumindest rudimentär, zeitlich sichtbar zu machen. Dies stellt gegenüber Screenings im Modellorganismus Maus (Neidhart 2000) oder dem Krallenfrosch *Xenopus laevis* (Gawantka 1998) einen Vorteil dar, da zumindest in der Maus die Erstellung eines Expressionsprofils mit einem ungleich höheren Aufwand verbunden ist als im Zebrafisch. Desweiteren hat der Zebrafisch bereits nach 24 Stunden einen von der Organanlage im Menschen nach ca. 40-45 Tagen vergleichbaren Entwicklungsstand erreicht.

Für ein Screening eignet sich der Zebrafisch auch deshalb, da eine grosse Anzahl von Embryonen gleichzeitig untersucht werden können; so ist mit 25-30 Embryonen auf einmal eine in-situ Hybridisierung in einem 1.5 ml Eppendorfgefäß durchführbar.

3.4 Whole-mount in-situ-Hybridisierungsscreen

3.4.1 Screening von 150 Klonen (ESTs)

Die Zebrafisch ESTs, welche aufgrund ihrer Homologie zu den Krankheitsgenen ausgewählt worden waren, sollten auf ihre funktionelle Homologie untersucht werden. Dies hatte zum Ziel, die physiologische Funktion in der Embryonalentwicklung in Bezug zu setzen zum Auftreten in Krankheitsvorgängen. Ferner bildet das Screening nach klar lokalisierbarer Expression von Genen die Grundlage zur weiteren Verwendung für funktionelle Experimente.

In diesem Projekt wurden 150 Klone von ZFGenecards_II und ZFGenecards _III auf ihr Expressionsmuster untersucht. Von den ursprünglichen 186 Klonen kam es bei 36 zu Problemen bei der Minipräparation (siehe auch 2.3), so dass diese Klone hier nicht berücksichtigt werden.

Die in situ Hybridisierungen wurden per Hand in 1.5 ml Eppendorfgefäßen durchgeführt unter Zuhilfenahme eines Heizblockes und anschliessend unter Verwendung eines InSituPro Roboters nochmals verifiziert, wie im Methodenteil beschrieben. Klone, welche ein gewebsspezifisches Expressionsmuster aufwiesen, wurden nochmalig in einer dritten Hybridisierung überprüft. Dies auch, da Verunreinigungen sowie technische Probleme auftraten, wie z.B. eine frühzeitige Verfärbung oder thermisch bedingte, für eine photographische Aufnahme unzureichende Antikörperbindung.

Jeder Klon wurde in den sechs Entwicklungsstufen shield (6 hpf), tailbud (10 hpf), 10 Somiten (14 hpf), 24 Somiten (18 hpf), 24 hpf. und 36 hpf. hybridisiert. Whole mount in-situ Hybridisierung ist an Embryonen, die älter als 36 Stunden sind, aufgrund der dickeren Zellschichten nur noch unzureichend möglich. Daher wurden nur diese sechs Stadien bearbeitet; die Organanlagen sind darüberhinaus nach 24 Stunden bereits vollständig angelegt (siehe Abbildung 2) so dass sich diese Beschränkung auch unter dem Gesichtspunkt der Fokussierung auf die frühe embryonale Entwicklung rechtfertigen lässt.

Insgesamt zeigten 39 der 150 untersuchten Klone ein spezifisches Expressionsmuster während der ersten 24 Stunden ihrer Entwicklung (26%). Eine Expression in den 36 hpf. Embryonen war nicht zu erkennen, was darauf schliessen lässt, dass die RNA Sonden nicht zureichend in die inneren Zellagen eindringen konnten und somit eine Expression in den

inneren Organanlagen nicht möglich war. Die Klone mit spezifischen Expressionsmustern sind in Tabelle 2 aufgeführt. Der Anteil dieser Klone ist in etwa gleich demjenigen, welcher in anderen, nicht selektiven Screenings gefunden wurde (26% in Gawantka et al. 1998, 17.8% in Neidhardt 2000, A. Musa, in press und persönliche Mitteilung). Da in diesem Screening gezielt Klone ausgesucht wurden, die als krankheitsimpliziert bekannt sind, wurde mit einer höheren Anzahl von spezifisch exprimierten Klonen gerechnet. Diese Annahme hat sich nicht bestätigt. Allerdings muss man die für einen Screen kleine Anzahl von 150 untersuchten Klonen im Gegensatz zu den randomisierten Screens in der Maus (5348 Klone) und *Xenopus* (1765 Klone) berücksichtigen, die nur beschränkt die Möglichkeit eines Vergleichs zulassen. Grundlage für die Analyse einer solch hohen Klonanzahl in randomisierten Screens war darüberhinaus die Verwendung von Hochdurchsatztechnologien (high-through-output technology), die in dieser Arbeit nicht verwendet wurden.

Wahrscheinlich ist die hohe Anzahl von für metabolische Enzyme kodierenden Genen eine Erklärung für die nicht höher ausgefallene Zahl an spezifisch ausgeprägten Expressionsmustern, da diese Gene in praktisch sämtlichen Geweben essentielle Aufgaben erfüllen, die eine klare topologische Zuordnung unmöglich machen.

Tab. 2 Liste der Klone, welche ein differentiertes Expressionsmuster zeigten. Bei 7 Klonen war das Expressionsmuster durch Hintergrundverfärbung zum Zeitpunkt der Analyse nicht mehr zu eruieren. Die 8 Klone am Ende der Tabelle sind diejenigen, deren Sequenz von der Washington University falsch zugeordnet war. Bemerkungen: die fett gesetzten Klone sind in Kapitel 3 beschrieben; Expressionsmuster für 24 hpf. Embryonen, wenn nicht anders vermerkt

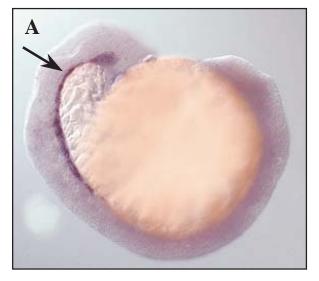
KLON NUMMER	SWISS-PROT	PROTEIN	ABKÜRZUNG	KRANKHEIT	EXPRESSIONS- MUSTER	P-VALUE	DENTITÄT	SIMILARITÄT
RZPD p609A 0329	P11166	glucose transporter type 1, erythrocyte / brain	SLC2A1or GLUT1	Glucose transport defect, blood- brain barrier	Pronephros duct	5.3e-89	124 / 160 (77%)	145 / 160 (90%)
RZPD p609B 2017	P02751	fibronectin precursor (fn)	FN1 or FN	?Ehlers-Danlos syndrome, type X	Tailbud, otic vesicles	9.2e-29	32 / 53 (60%)	43 / 53 (81%)
RZPD p609F 2227	O75444	long form transcription factor c-maf	C-MAF	Multiple myeloma	Hindbrain (14 hpf)	1.7e-50	83 / 124 (66%)	97 / 124 (78%)
RZPD p609J 0811	P02753	plasma retinol- binding protein precursor	RBP4	Retinol binding protein, deficiency of, cause night vision problems.	Yolk sac extension, yolk sac	2.6e-84	109 / 174 (62%)	141 / 174 (81%)
RZPD p609P 0227	Q12926	elav-like protein 2	ELAVL2 or HUB	Embryonic lethal, abnormal vision	Trigeminal ganglia (18 hpf), forebrain, mauthner cells, trigeminal ganglia (24 hpf)	3.0e- 153	141 / 160 (88%)	149 / 160 (93%)
RZPD p609L 0444	RZPDp60 9L0444	myosin heavy chain, fast skeletal muscle embryonic (muscle embryonic myosin heavy chain) (smhce)	МҮН3	? muscle dystrophy	Somites	4.3e-62	99 / 133 (74%)	116 / 133 (87%)
RZPD p609C 2134	Q92629	delta-sarcoglycan	SGCD	Muscular dystrophy, limb-girdle, type 2F	Somites	1.0e- 117	170 / 230 (73%)	205 / 230 (89%)
RZPD p609E 1935	P15259	Phosphoglycerate mutase, muscle form (ec 5.4.2.1) (pgam-m) (ec 5.4.2.4) (ec 3.1.3.13) (bpg- dependent pgam)	PGAM2 or PGAMM	Myopathy due to phosphoglycerate mutase deficiency	Somites, brain, eye	1.7e-63	97 / 109 (88%)	101 / 109 (92%)

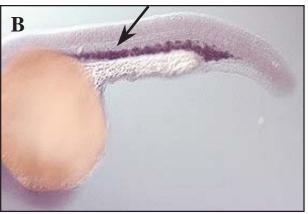
KLON NUMMER	SWISS-PROT	PROTEIN	ABKÜRZUNG	KRANKHEIT	EXPRESSIONS- MUSTER	P-VALUE	IDENTITÄT	SIMILARITÄT
RZPD p609K 1836	O00238	bone morphogenetic protein type ib receptor	BMPR1B		Hind-, midbrain (18, 24 hpf) somites (10 hpf)	1.2e-11	25 / 47 (53%)	32 / 47 (68%)
RZPD p609J 1337	P98174	putative rho / rac guanine nucleotide exchange factor (rho / rac gef) (faciogenital dysplasia protein)	FGD1	Faciogenital dysplasia (Aarskog- Scott syndrome)	Brain	2.8e-86	85 / 157 (54%)	112 / 157 (71%)
RZPD p609P 0240	P41182	b-cell lymphoma 6 protein (bcl-6) (zinc finger protein 51) (laz-3 protein) (bcl- 5)	BCL6 or ZNF51 or LAZ3 or BCL5	Lymphoma, B-cell, Lymphoma, diffuse large cell	Blood	5.2e-76	101 / 132 (76%)	119 / 132 (90%)
RZPD p609I 1542	P25791	rhombotin-2 (cysteine rich protein ttg-2) (t-cell translocation protein 2) (lim-only protein 2)	LMO2 or RBTN2 or RHOM2 or TTG2	Leukemia, acute T-cell	10 hpf. Expression ?	2.2e-56	78 / 85 (91%)	84 / 85 (98%)
RZPD p609I 2342	P24385	g1 / s-specific cyclin d1 (prad1 oncogene) (bcl-1 oncogene)	CCND1 or PRAD1 or BCL1	Parathyroid adenomatosis 1 Centrocytic lymphoma Multiple	Blood, hindbrain, epiphysis?	6.7e- 112	156 / 191 (81%)	176 / 191 (92%)
RZPD p609I 2143	P13686	tartrate-resistant acid phosphatase type 5 precursor (ec 3.1.3.2) (tr- ap) (tartrate-resistant acid atpase) (tratpase)	ACP5		Shield (6 hpf)	2.9e-75	50 / 75 (66%)	62 / 75 (82%)
RZPD p609K 1444	P43003	excitatory amino acid transporter 1 (sodium-dependent glutamate / aspartate transporter 1) (glial glutamate	SLC1A3 or EAAT1 or GLAST1		Neural crest	1.9e- 120	162 / 201 (80%)	174 / 201 (86%)
RZPD p609J 0147	Q15672	twist related protein (h-twist)	TWIST	Acrocephalosyndactyly 3; Saethre-Chotzen syndrome	?	1.2e-74	96 / 109 (88%)	100 / 109 (91%)
RZPD p609L 1753	P34949	mannose-6- phosphate isomerase (ec 5.3.1.8) (phosphomannose isomerase) (pmi) (phosphohexomutas e)	MPI	Carbohydrate-deficient glycoprotein syndrome, type Ib	Brain ?	4.7e- 104	124 / 179 (69%)	142 / 179 (79%)
RZPD p609L 0653	Q13286	cln3 protein (batten's disease protein)	CLN3 or BTS	Ceroid-lipofuscinosis, neuronal 3, juvenile (Batten, Spielmeyer-Vogt disease)	Blood	1.6e-40	58 / 102 (56%)	77 / 102 (75%)

KLON NUMMER	SWISS-PROT	PROTEIN	ABKÜRZUNG	KRANKHEIT	EXPRESSIONS- MUSTER	P-VALUE	DENTITÄT	SIMILARITÄT
RZPD p609I 0456	P11168	glucose transporter type 2, liver	SLC2A2 or GLUT2	Diabetes mellitus, noninsulin- dependent, Fanconi-Bickel	Brain	1.1e- 103	142 / 212 (66%)	174 / 212 (82%)
RZPD p609P 1523	Q14353	Guanidinoacetate n- methyltransferase (ec 2.1.1.2)	GAMT	GAMT deficiency neurologic syndromes and muscular hypotonia	Somites,	1.7e- 103	138 / 176 (78%)	154 / 176 (87%)
RZPD p609O 1326	P26367	paired box protein pax-6 (oculorhombin) (aniridia, type ii protein)	PAX6 or AN2	Aniridia Peters anomaly Cataract, congenital, with	Hind- and forebrain (14, 24 hpf)	7.0e-13	29 / 31 (93%)	30 / 31 (96%)
RZPD p609D 1929	P05091	aldehyde dehydrogenase, mitochondrial precursor (ec 1.2.1.3) (aldh class 2) (aldhi) (aldh-e2)	ALDH2 or ALDM		Lateral plate of mesoderm, tailbud, otic vesicle	3.9e-96	140 / 167 (83%)	154 / 167 (92%)
RZPD p609M 2216	P46531	neurogenic locus notch protein homolog 1 precursor (translocation- associated notch protein tan-1) (fragment)	NOTCH1 or TAN1	Leukemia, T-cell acute lymphoblastic	Brain, notochord, neural plate	2.4e-72	83 / 100 (83%)	91 / 100 (91%)
RZPD p609E 1015	O75923	Dysferlin	None	Muscular dystrophy, limb-girdle, type 2B Miyoshi	Somites	5.1e-23	39 / 58 (67%)	49 / 58 (84%)
RZPD p609P 2414	O15382	branched-chain amino acid aminotransferase, mitochondrial precursor (ec 2.6.1.42) (bcat(m))	BCAT2 or BCATM or ECA40	?Hypervalinemia or hyperleucine- isoleucinemia	Paraaxial mesoderm, somites, tailbud	1.2e-34	55 / 84 (65%)	63 / 84 (75%)
RZPD p609D 2025	P22607	Fibroblast growth factor receptor 3 precursor (fgfr-3) (ec 2.7.1.112)	FGFR3 or JTK4	Achondroplasia Hypochondroplasia	Hindbrain	1.7e- 138	191 / 217 (88%)	205 / 217 (94%)
RZPD p609P 0734	O00633	Protein-tyrosine phosphatase pten (ec 3.1.3.48) (mutated in multiple advanced cancers 1)	PTEN or MMAC1 or TEP1	Cowden disease Lhermitte-Duclos syndrome mutated in multiple advanced cancers	?	7.3e- 114	82 / 119 (68%)	99 / 119 (83%)
RZPD p609G 1135	P07510	Acetylcholine receptor protein, gamma chain precursor	CHRNG or ACHRG	Myasthenia gravis, neonatal transient	?	3.2e-96	130 / 191 (68%)	160 / 191 (83%)
RZPD p609I 1836	Q15816	Transmembrane protein jagged 1	НЈ1	Alagille syndrome	?	1.6e- 133	155 / 224 (69%)	186 / 224 (83%)
RZPD p609I 053	O60620	Katanin p80 subunit	None	x-linked visceral heterotaxy (htx1)	?	3.4e-70	104 / 139 (74%)	123 / 139 (88%)

KLON NUMMER	SWISS-PROT	PROTEIN	ABKÜRZUNG	KRANKHEIT	EXPRESSIONS- MUSTER	P-VALUE	IDENTITÄT	SIMILARITÄT
RZPD p609D 1150	P04901	Guanine nucleotide binding protein (G protein), beta polypeptide 1	GNB1		?	3.9e- 156	215 / 219 (98%	216 / 219 (98%)
RZPD p609I 0626					Heart (18 hpf., 24 hpf)			
RZPD p609K 1732					Blood			
RZPD p609N 0516					Somites			
RZPD p609M 1026					Tailbud, ectoderm, skin			
RZPD p609P 1313					?Somites			
RZPD p609G 0144					?			
RZPD p609H 0631					Shield left right symmetry (6 hpf)			
RZPD p609A 2047					Notochord (10 hpf), gut (18 hpf), brain (24hpf)			

3.4.2 Beschreibung der Expressionsmuster


Die in Abb. 4 bis 10 dargestellten Bilder sind Beispiele für beobachtete spezifische Expressionsmuster in bestimmten Organen des sich entwickelnden Zebrafischembryos. Aus der Anordnung nach Entwicklungsstadien lassen sich Rückschlüsse auf den zeitlichen Verlauf der Expression ziehen. Die Klone, deren Musterbildung hochspezifisch ist, sind bevorzugte Kandidaten für eine funktionelle Analyse, die auf eine Einordnung des entsprechenden Gens in bereits bekannte Entwicklungsschritte auf genetischer und Proteinebene sowie deren Interaktionen (pathway) abzielt.

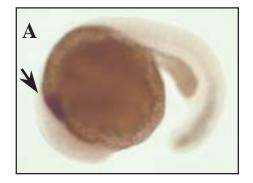

Die organspezifischen Expressionsmuster der Embryonen sind im folgenden in der Reihenfolge der Organsysteme wie in der Einleitung (siehe 1.4) beschrieben.

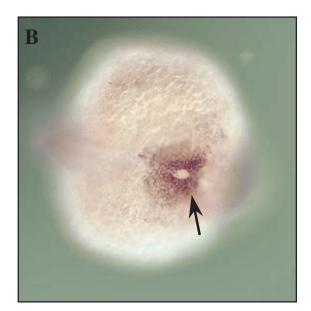
3.4.2.1 Blut und Haematopoiese

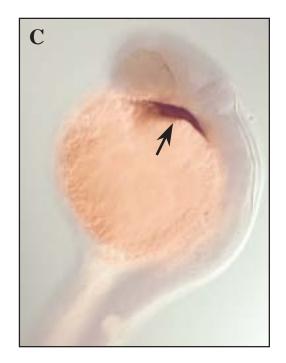
Der Klon RZPDp609K1732 (Abb.4) ist ein Beispiel für ein Expressionsmuster im Blutsystem. Das Expressionsmuster ist nachweisbar ab dem Entwicklungsstadium nach 18 hpf. und bleibt im 24 hpf. Embryo bestehen. Die körnig erscheinende Struktur der Erythrocyten im vasculären System ist durch die auf den RNA-Sonden enthaltene Antikörperfärbung deutlich erkennbar.

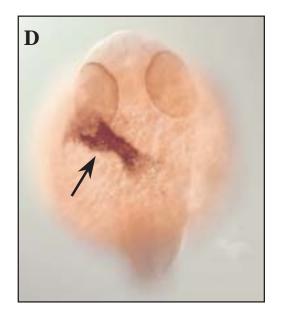
Die wiederholte Sequenzierung im Anschluss an die Hybridisierung ist noch nicht abgeschlossen. Es ist daher noch unklar, ob dieser Klon ein bekanntes oder unbekanntes Gen repräsentiert. Die Sequenz von lediglich 5 Aminosäuren verlangt jedoch nach einer wiederholten Sequenzierung. Das klar und deutlich abgrenzbare spezifische Expressionsmuster rechtfertigt auf jeden Fall weitere Experimente zur funktionellen Einordnung des Klons.

RZPDp609K1732

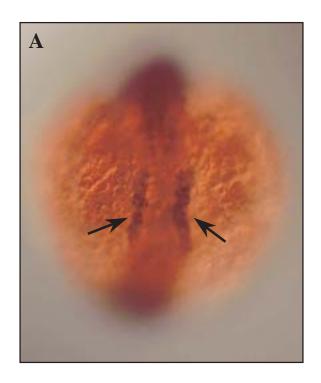

Abb. **4 A** 18 hpf. Embryo mit Expressionsmuster im Blut, ebenso im 24 hpf. Embryo **B**, die körnige Struktur der Erythrocyten ist erkennbar


3.4.2.2 Herz


Ein spezifisches Expressionsmuster im sich entwickelnden Herzen zeigte der Klon RZPDp609I0626 (Abb. 5). **Typisch** ist die Struktur der Herzkammer, die entwicklungsbiologisch erst spät gebildet wird. Die Färbung zeigt deutlich die Charakteristika des Hohlorgans, dessen Muskelgewebe durch die Antikörper beladene Sonde rot aufleuchtet. Zur Verdeutlichung wurde eine Aufnahme in unkonventioneller Position vorgenommen (von cranial). Es zeigt sich deutlich der Vorteil des Zebrafischs, welcher es ermöglicht, ohne Dissektion ein inneres Organ durch transparente Zellen hindurch zu beobachten. Probleme bei der Sequenzanalyse traten hier gleich dem vorherigen Klon in 3.3.2.1 auf.


3.4.2.3 Niere

Der Pronephrosgang ist im Zebrafisch das Äquivalent zur menschlichen Niere und dient der Ausscheidung von toxischen Substanzen. Die Färbung beginnt im 18 hpf. Embryo und ist auch im nächsten untersuchten Entwicklungsstadium (24 hpf.) noch sichtbar. An diesem Organ lässt sich sehr schön das Prinzip der symmetrischen Organanlage veranschaulichen, welches in den meisten Organen so vorkommt (Ausnahmen Blutsystem, Herz). Die Sequenzdaten für den Klon RZPDp609A0329 (Abb. 6) wurden nach der Hybridisierung nochmals verifiziert und der Klon als in der Sequenz zu 77% homolog zu einem Gen identifiziert, welches beim Menschen für einen Glucosetransporter im Gehirn (*SLC2A1*) kodiert (siehe Tabelle 2 und Kapitel 4).



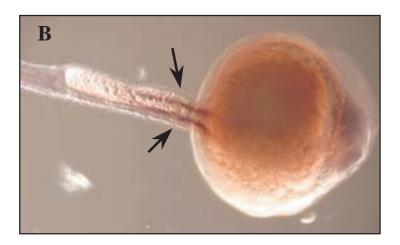
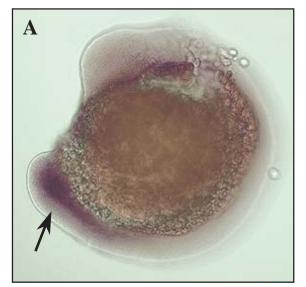

RZPDp609I0626

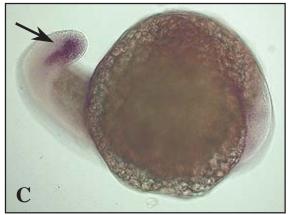
Abb. **5 A** und **B** 18 hpf. Embryo in lateraler (A) sowie in cranialer Ansicht (B), in (B) kann man den sich bildenden Ventrikel erkennen, welcher den vasculären Durchflusstrakt umgrenzt; die gleiche Perspektive wurde für **C** und **D** 24 hpf. Embryonen gewählt

RZPDp609A0329

Abb. **6 A** ein 14 hpf. Embryo mit spezifischem Expressionsmuster im Pronephrosgang; **B** 24 hpf. Embryo mit dem gleichen Muster (siehe Pfeile)


3.4.2.4 Zentrales Nervensystem

Die zwei hier aufgeführten Klone RZPDp609B2017 und RZPDp609F2227 besitzen Expressionsmuster im Gewebe des Zentralen Nervensystems. Interessanterweise zeigte sich bei einem der hier gezeigten Gene (RZPDp609B2017) eine Expression auch in anderen anatomischen Strukturen des Embryos zur gleichen Zeit. Man kann daraus den Schluss ziehen, dass ein Gen in zwei räumlich getrennten Regionen gleichzeitig aktiviert werden kann und dort gleiche oder auch unterschiedliche Aufgaben erfüllt. In diesem Screen hat sich die Anzahl der Klone, welche ein solches Muster zeigten, auf zwei Resultate (RZPDp609J0811 / RZPDp609B2017) beschränkt (siehe 3.4.2.5). Die auf wenige Zellen beschränkte Färbung unterstreicht nochmals die Stärke der in-situ Hybridisierung, nämlich die Visualisierung von topographisch äusserst begrenzt auftretender Genexpression in nur wenigen Zellen.


Eine spezifische Expression im Ohrbläschen (engl. *otic vesicle*) und dem Schwanzteil des Embryos (engl. *tailbud*) zeigt der Klon RZPDp609B2017 (Abb. 7). Sequenzdaten ergaben eine 60% Identität mit einem Vorläufer von Fibronectin, welches beim Ehlers-Danlos Syndrom eine Rolle spielen soll. Dies ist jedoch lediglich eine Vermutung. Die Sequenzbestätigung der vermuteten Sequenz nach dem Erhalt des Ergebnisses der Hybridisierung ist noch nicht abgeschlossen.

Ein charakteristisches Expressionsmuster für eine andere Hirnregion zeigte der Klon RZPDp609F2227 (Abb. 8). Ab dem 14 hpf. (Abb. 8B) Stadium zeigt sich eine markante Färbung im Rhombencephalon (Teil des *hindbrain* [engl.]). Dieser Klon könnte als Markergen dienen aufgrund seiner absoluten Spezifität für diese anatomische Struktur.

Im 10 hpf. Embryo (Abb. 8A) ist diese spezifische Expression bereits sichtbar. Homologie zeigte der Klon zu 66% mit einem Transkriptionsfaktor (*C-Maf*), dessen Translokation im Menschen ein Multiples Myelom auszulösen vermag.

RZPDp609B2017

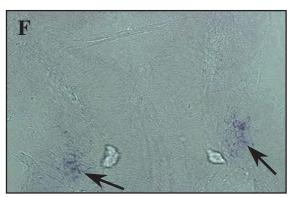
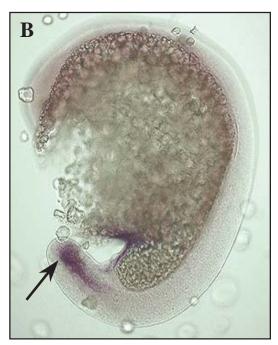
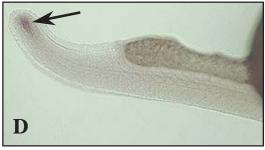
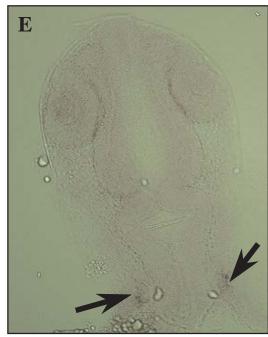
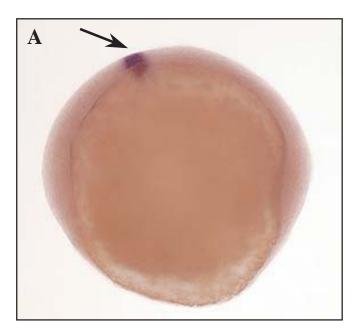
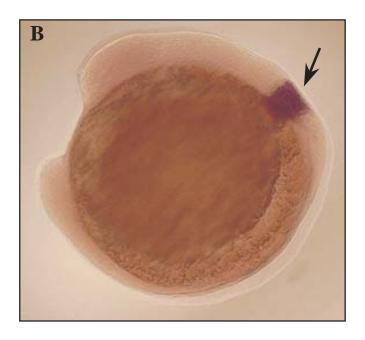
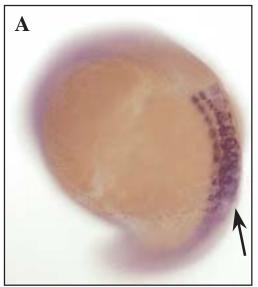






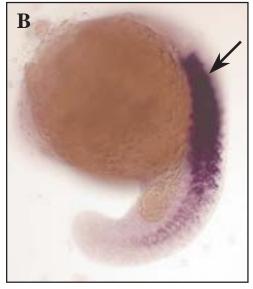
Abb. **7 A** 14 hpf. und **B** 18 hpf. Embryo mit Expressionsmuster im Schwanzteil (tailbud) aus lateraler Ansicht **C** 18 hpf. Embryo wie in B vertikal gedreht **D** 24 hpf. Embryo Ausschnitt des Schwanzteil **E** Detail des Expressionsmuster im Ohrbläschen im 24 hpf. Embryo in **F** vergrössert



RZPDp609F2227

Abb. **8 A** 10 hpf. Embryo und **B** 14 hpf. Embryo mit Expressionsmuster im Rhombencephalon

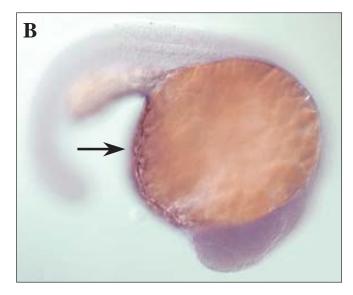

3.4.2.5 Andere Organe

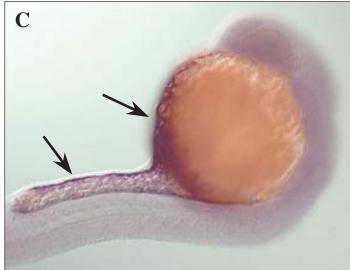

Die Somiten zählen zu den Strukturen, in denen in diesem Screen häufig nachweisbar Klone exprimiert waren. Der Klon RZPDp609L0444 (Abb. 9) ist ein Beispiel einer auf dieses Gewebe beschränkten Expression. Bemerkenswert ist auch hier die symmetrische Anlage, sowie die feinen Ausläufer, welche Rückschlüsse auf das Muster ihrer Entstehung zulassen. Die Sequenz für diesen Klon ist zu 74% der Sequenz des vermuteten Krankheitsgens äquivalent, welches für Myosin codiert, ein Muskelprotein, dessen Struktur in Zusammenhang gebracht wird mit Muskeldystrophien. Auch im Menschen ist dieses Gen bereits in embryonalem Gewebe exprimiert.

Den Klon RZPDp609J0811 (Abb.10) zeichnet ein feines Expressionsmuster mit einer Färbung sowohl im Dottersack als auch in der sogenannten Dottersack Verlängerung aus. Der Embryo wurde seziert, um die Färbung im Inneren besser analysieren zu können. Dies ist auch ein Beweis dafür, dass die antisense RNA in innere Zellagen vordringen kann und in der Lage ist, auch in sehr dünnen Zellschichten wie dem Epithel des Dottersacks zuverlässig an mRNA zu binden.

Die zugehörige Sequenz dieses Klons besitzt eine 62% Homologie für das dazugehörige Krankheitsgen, welches physiologisch ein Retinol- Transportprotein (*RBP4*) im Plasma codiert.

Letztlich zeigte sich jedoch, dass es sich um ein bereits bekanntes Zebrafisch Gen handelt.





RZPDp609L0444

Abb. 9 A 18 hpf. Embryo mit
Expressionsmuster in den Somiten aus
halb lateraler –dorsaler Ansicht,
bemerkenswert ist die symmetrische
Ausrichtung und klare Begrenzung B
ebenfalls ein 18 hpf. Embryo aus
lateraler Ansicht C Aufnahme mit
entferntem Dottersack

RZPDp609J0

Abb. **10 A** 18 hpf. Embryo mit dissektiertem Rumpf in ventraler caudaler Ansicht und Expressionsmuster in der Dottersack-verlängerung **B** zeigt einen 18 hpf. Embryo in lateraler Ansicht mit Färbung an der Aussenseite des Dottersack C Färbung an der Aussenseite des Dottersack (oberer Pfeil) und der – verlängerung (unterer Pfeil) persistiert auch im 24 hpf. Embryo