Chapter 3

Pangaea

Pangaea is a system that can distribute centralized Java programs, based on static source code
analysis and using arbitrary distribution platforms as a backend. It thus distributes programs
automatically, in the following four senses:

e Pangaea automatically analyzes the source code of a program, estimating its run-time
structure and determining distribution-relevant properties.

e Based on this information, the distribution strategy for the program can be decided upon.
This involves where to place objects, and when to employ object migration. To specify the
distribution strategy, the programmer is provided with a graphical view of the program,
in which he may configure the program for distributed execution, assisted by automatic
tools.

e After the program has been configured, the desired distribution strategy is implemented
automatically by regenerating the program’s source code for a chosen distribution platform.

e At run-time, the placement of some or all of the program’s objects can be adjusted au-
tomatically based on their communication behavior. This is realized by an asynchronous
migration facility supplied by Pangaea’s run-time system.

The architecture of the system is shown in fig. 3.1. Pangaea can be considered a distributing
compiler: The source language of this compiler is pure Java, the target language is the particular
Java dialect (and possibly, interface definition or configuration language) of the distribution
platform to be used. Like a classical compiler, Pangaea consists of a front-end (the static
analyzer plus the user interface and configuration utilities), and a code-generating back-end. The
back-end architecture is generic, so that code generators for arbitrary distribution platforms can
be easily developed and plugged in.

By its nature, Pangaea assumes Java’s native programming model of Threads € Objects (see
page 14), and is geared towards explicit distribution platforms using remote invocation as their
basic communication mechanism (page 15). This is because only under the explicit approach,
aspects of the distribution are still visible in the source code, which is both a drawback of this
model which Pangaea seeks to overcome, and a potential for optimization that Pangaea exploits.

In particular, Pangaea enables two kinds of optimization that are essential for platforms that
follow the remote invocation model, and which can only be found by static analysis (as opposed
to a clever run-time system):

e The first optimization is to find the dynamic scope of object references, and thus to de-
termine which objects do communicate at run-time, and which objects can be statically

55

Centralized Program
- (100% Java)
Distribution

Requirements

java
Analyzer
— Pangaea
Backend-Adapter (CORBA) JIP) (D’stha)
| —
java Distributed Program
N (backend-specific)
l/ ‘ RN
'
CORBA JavaParty Doorastha etc.

|
Executable Program
.class

Figure 3.1: The Architecture of Pangaea

guaranteed not to communicate. Under a given distributed configuration, this information
can be used to determine which objects must be remotely invokable, and which can stay
local.

e The second optimization is to detect immutable objects, or objects that are used immutably
within the program. Such objects can be replicated freely within the distribution environ-
ment, and passed by value in remote invocations without affecting the semantics.

According to the classification we gave in chapter 1, Pangaea targets both concurrent, com-
putational programs (where the goal of distribution is speedup), and client/server programs
(where the goal of distribution is to meet external constraints). In both of these areas, Pangaea
adheres to the single-program model. In particular, this means that it cannot transform a cen-
tralized program into separate client and server applications, so that a server may be started
independently and an arbitrary number of clients can connect to it. While it is conceivable that
Pangaea could be extended to allow this kind of scenario, it is not an immediate focus of our
work.

Pangaea also does not address the problem of partial failure (see also page 52). We consider
the entire distributed system to be fault-free. In the event of a failure, we regard it as the
distribution platform’s responsibility to shut down the application in an orderly way. As we
have argued in the previous chapter, this assumption is reasonable for the domain of concurrent,
computational programs, while it is clearly not sufficient for the client/server world. In this
domain, however, we maintain that a layer below the application logic would be required to
solve the problem, which is beyond the scope of our work.

56

In the remainder of this chapter, we will describe the individual components of the Pangaea
system in turn:

e We have developed a new source code analysis algorithm for Pangaea, which provides an
object-oriented, macroscopic view of the program’s run-time structure that is suitable for
further distribution analysis. Unlike other analysis algorithms that have been published
in the literature, our algorithm follows a decidedly object-oriented approach. We will
describe this algorithm in section 3.1.

e Pangaea’s graphical user interface, essentially a graph editor, provides a useful tool for
program understanding in its own right, and is the means by which the programmer can
specify distribution requirements. We will describe it in section 3.2.

e The act of specifying a distribution strategy for a program is called configuring the pro-
gram. This involves where to place individual objects, which objects may be kept local on
each machine, and for which objects asynchronous object migration should be employed.
The programmer specifies the configuration in Pangaea’s graphical user interface, assisted
by automatic tools. We cover this process in section 3.3.

e After the configuration is complete, the types of the program are classified, which means,
for example, that some types must be remotely invokable, others migratable, etc. The
classification of the program’s types is an abstract way of describing the implementation of
the chosen distribution strategy. Classification is carried out automatically by Pangaea and
forms the basis for the subsequent code generation step. We will describe the classification
algorithms in section 3.4.

e Pangaea’s back-end code generators regenerate the source code of the program, transform-
ing it into a distributed program for the chosen distribution platform, while preserving the
centralized program’s semantics. This includes making some classes remotely invokable,
turning some object allocation statements into remote allocations, and other transforma-
tions. There are back-end code generators for CORBA, JavaParty, and Doorastha. We
will describe them in section 3.5.

e Pangaea provides its own run-time system in addition to that of the distribution platform.
Its main purpose is to implement asynchronous object migration, which means that objects
are monitored at run-time and moved to the partition from which they are most frequently
accessed. Another purpose of the run-time system is to provide a general numbering
scheme of partitions (machines) on each platform. We will describe the run-time system,
particularly the migration subsystem, in section 3.6.

e Controlling a distribution platform in order to make it ready for program execution, and
shutting it down properly afterwards, works different for each platform and can be very
complex. Pangaea therefore provides a small Launcher utility that hides these differences
and complexities, so that executing a distributed program becomes very similar to the
centralized case. The Launcher is described in section 3.7.

57

3.1 Object Graph Analysis

The run-time structure of an object-oriented program can be represented by an object graph.
Approximating this graph statically is a prerequisite for higher level analyses such as the distri-
bution analysis carried out in Pangaea,; it is also helpful in contexts of software maintenance and
re-engineering. However, most existing techniques for static analysis of object-oriented programs
are not adequate for deriving general object graphs from the source code. We have therefore
developed a new algorithm that is capable of doing so. The algorithm covers the entire Java lan-
guage except class loader interaction and reflection. It is flow-insensitive but context-sensitive,
and therefore has a low computational complexity.

For object-oriented programs, static analysis typically answers questions such as: what is
the run-time type of an expression that appears in the code (Palsberg and Schwartzbach 1991,
Plevyak and Chien 1994); where does a certain pointer variable point to at run-time (Steensgaard
1996, Shapiro and Horwitz 1997, Chatterjee et al. 1999); what method will actually be called in
a dynamically dispatched call (Grove et al. 1997). This information is useful, either directly or
indirectly, for compiler optimizations such as static binding of method calls.

However, this is a fairly traditional view of an object-oriented program. It considers the
program to be a static sequence of statements, grouped in procedures (methods), manipulating
a passive data structure on the heap (the objects). This is not the view that programmers are
trained to have. For them, a program at run-time actually consists of a set of objects that
interact with each other by invoking methods or accessing fields; following either a single or
multiple flows of control. Some of the program’s objects might happen to share the same code;
nonetheless the programmer views them as separate entities.

This is often more than a philosophical issue. For example, when programs are distributed
across multiple machines, the unit of distribution is generally the object, not the class. Program
understanding, as required for software maintenance and re-engineering, is another area where
an object-oriented view of a program is needed.

The algorithm described in this section analyzes the source code of a Java program to derive
an object graph from it, representing the program’s run-time structure. Despite its immediate
use in Pangaea, it has turned out as a very useful tool for program understanding as well, allowing
the programmer to quickly grasp the essential structure of a program before even looking into
the source code. In addition, we believe our algorithm is a vital contribution to all sorts of
analyses where the storage structure of an object-oriented program is sought, e.g. concurrency
analysis (model checking) (Corbett 1998).

The result of our algorithm is a graph, the nodes of which represent the objects that will exist
at run-time, with three kinds of edges between them: creation edges, reference edges, and usage
edges. The algorithm approximates the actual run-time structure in that (a) some nodes in the
object graph may be summary nodes that represent zero to many actual run-time objects, (b)
reference edges and usage edges are conservative, and (c) at least in the final object graph, we
consider objects as unstructured containers of references, abstracting from their internal details.

According to the way in which analysis algorithms are usually classified (e.g. Shapiro and
Horwitz (1997)), our algorithm is largely flow-insensitive (not considering the flow of control
within methods), it is however contezt-sensitive in that method invocations and field accesses
are distinguished at the level of objects, not types. Due to its flow-insensitivity, the algorithm
is of low computational complexity (essentially polynomial). Our initial experience shows that
non-trivial real-world programs can thus be analyzed in acceptable time.

Before we describe the algorithm, we will review some existing techniques for the analysis
of object-oriented programs, showing that they are not sufficient for constructing general object
graphs.

58

public class Main {

public static void main (...) {
Worker wl = new Worker();
Worker w2 = new Worker();
3: wl.doWork(); ... w2.doWork();
// maybe in parallel

.
) O——0O

Worker Algorithm

N =

public class Worker {

4: Algorithm a; D

5: public Worker() { Main \

6: a = new Algorithm(); O - O
Worker Algorithm

7 public void doWork() {

8: while (...)

9: a.calculate (...);

}
}

public class Algorithm {
10: public void calculate (...) { ... }

}

Figure 3.2: Example Program and Corresponding Object Graph

3.1.1 Related Work

Our work is related to, but distinct from, existing techniques for call graph construction, concrete
type inference, and points-to analysis of object-oriented programs. There is considerable overlap
between these areas, e.g. points-to analysis often involves some kind of call graph construction
and vice versa, yet the headings under which we discuss them do indicate the primary focus of
the corresponding research.

Call graph construction (Grove et al. (1997) and references therein) is concerned with finding,
for each call site in a program, the corresponding set of methods that may be invoked at run-
time, the goal being compiler optimizations such as static binding of method invocations, or to
enable method inlining and further interprocedural analyses. Call graphs, as introduced in the
literature, are distinct from object graphs in that they refer to the static types of a program,
not the dynamic instances. As an example for this difference, consider the program in figure 3.2,
where two Worker objects each use an Algorithm object to perform a calculation. A call graph
for this program is easy to construct, as all calls are monomorphic: the call sites in line 3 refer
to Worker.doWork() in line 7, while in line 9, Algorithm.calculate() in line 10 is called. This
call graph (not shown in fig. 3.2), while it is sufficient for the kinds of compiler optimization
that we mentioned above, does not, however, imply the run-time structure of the program in
the sense that is shown in figure 3.2, which represents the relations between instances. For this
information to be captured in a call graph, a notion of calling context that includes the identity
(not the type) of the implicit this parameter would be required. We are not aware of any such
approach.

Concrete type inference (Palsberg and Schwartzbach 1991, Plevyak and Chien 1994, Gil and
Itai 1998) subsumes techniques to derive, for expressions appearing in the program code, precise
type information, thus potentially reducing or eliminating polymorphism, and thereby enabling
compiler optimizations similar to those mentioned above. It is clear, however, that this also does
not capture relations between instances: in the example program, all types are easily resolved
monomorphically, but this only represents the fact that, e.g. Worker objects access Algorithm

59

objects, but not their numbers and one-to-one correspondence.

Based on this observation, an extension of type inference has been described by Philippsen
and Haumacher (2000). In their algorithm, helper polymorphism is introduced into programs in
order to make the types of separate instances distinct, so that traditional type inference can then
be used to yield instance-level structure (in this case, for the purpose of locality optimization in
concurrent Java programs). The technique is, however, only applied to Threads and Runnable
objects. If it were extended to the general case, it could yield similar results to the algorithm
we present here. A difference is however that the algorithm of Philippsen and Haumacher is
flow-sensitive, and thus problematic for larger programs (very long running times are reported
in Haumacher (1998)). It is also questionable whether the attempt to create, ideally, a separate
type for each instance, is conceptually sound, as it blurs the otherwise useful distinction between
types and instances.

A third large body of research is subsumed by the term points-to analysis. Citing Chatterjee
et al. (1999), the goal of points-to analysis is to determine, at each program point, the objects to
which a pointer may point during execution. Some of this research is stack-oriented (Andersen
1994, Steensgaard 1996, Shapiro and Horwitz 1997, e.g.), i.e. it only considers pointer variables
on the stack (whether they point to the stack or to heap-allocated storage), but not pointers
between objects on the heap, and thus it is not immediately relevant for our purposes.

Chatterjee et al. (1999) describe an approach called Relevant Context Inference (RCI), which
extends traditional stack-oriented techniques towards object-oriented programming, i.e. to gen-
eral pointer structures between heap-allocated objects. A closer look, however, reveals that RCI
does not accurately provide the information we are interested in. The main reason for this is that
RCI identifies object allocations and pointer expressions by their textual location in the program
code, not parameterized by the instance they appear in at run-time. In our example program in
listing 1, RCI would summarize the two Algorithm objects into a single node “objects created
at line 6”7, and thus lose their identity. While it is true that our own algorithm uses “summary
nodes” frequently as well, it folds the object graph to a much lesser degree than RCI does.

Also subsumed under the term points-to analysis, other research has focused entirely on
heap-allocated data structures (Chase et al. 1990, Vitek et al. 1992, Sagiv et al. 1996, Corbett
1998). The common methodology of these analyses is to perform an abstract interpretation of
the program code and to construct, for each statement, a storage structure graph that represents
the possible heap structures at that statement. Often, this approach is used to allow some kind
of shape analysis of the heap structure, e.g. to prove that, if a procedure receives a list-like data
structure, it preserves the property of list-ness during execution (Chase et al. 1990, Sagiv et al.
1996).

More closely related to our work, Vitek et al. (1992) and Corbett (1998) have applied the
above approach to object graphs of complete programs. Both algorithms are flow-sensitive; they
may thus provide higher accuracy than our algorithm at the cost of prohibitive performance for
larger programs. The algorithm of Vitek et al. is defined for a Smalltalk-like toy language, while
Corbett’s algorithm is part of a model checker for concurrent Java programs. No implementation
or performance figures are reported for either algorithm. It must also be noted that both
approaches suffer from their heritage of traditional, non-object-oriented program analysis: they
maintain the notion of a static program code that manipulates a passive data structure on the
heap. One of the results of this is that the analysis of polymorphic method calls becomes more
complicated than it could be if the objects were considered “active” first-class entities, as in our
approach. To reduce polymorphism, Vitek et al. employ the common, type-based technique
of including k levels of the dynamic call chain as context information. In Corbett’s algorithm,
on the other hand, all method calls must be inlined prior to the actual analysis (implying that
recursion cannot be analyzed), and polymorphism is accounted for by simply inlining the code

60

of all corresponding method implementations in a switch statement — which, as the author
acknowledges, results in an exponential complexity and also forfeits much of the precision that
a flow-sensitive algorithm could otherwise have.

By contrast, our own algorithm is flow-insensitive (and thus applicable to large programs),
and based entirely on the notion of objects which, at run-time, organize themselves into an
object graph. We will now describe this algorithm in detail.

3.1.2 Algorithm Description

The entities that our algorithm deals with are the types of a program, and the objects that
these types are instantiated to at run-time. Our model of these entities — the “ontology” of our
algorithm — is shown in Figure 3.3.

JavaType <

0..n

StaticObject [] | DynamicObject

| ConcreteObject O | | IndefiniteObject ©

Figure 3.3: Ontology

In Java, the types of objects are called reference types, which can be classes, interfaces, or
array types. As we are not concerned with primitive types, we will also use the word Java type
as a shorthand for classes, interfaces, and arrays.

Java types may have “static” and “non-static” members. To deal with this distinction in a
natural way, it is helpful to introduce a slightly different type model for analysis purposes: we
say that a Java type defines, optionally, both a static type (comprising the static members) and
a dynamic type (the non-static members). We consider these types, and their instances, entirely
separate entities'. Of a static type, precisely one instance exists at run-time (a static type is
pretty much the same as a module), while a dynamic type may have an arbitrary number of
instances. We use the common term analysis type, or simply type, to refer to both static types
and dynamic types in the following.

At run-time, types are instantiated to objects. We call the single instance of a static type
a static object, and the instances of a dynamic type dynamic objects. Of the latter, there are
two further subcategories: a concrete object represents a single instance of a dynamic type, the

IThere is, in fact, no special relation between the instances of a Java class and the static members of that class,
as compared to static members of other classes. The instances do have privileged access to any private members
of their class, but this is only a question of accessibility and not important for our analyses.

61

existence of which at run-time is certain. An indefinite object, on the other hand, summarizes
0 to n objects of a dynamic type; the algorithm cannot determine their precise number. (Note,
though, that the use of indefinite objects does not mean that the algorithm degenerates into a
mere type-based analysis: for a given dynamic type, several indefinite objects may exist in an
object graph; each represents those instances of the type that occur in a certain context.)

The relations between objects that we are interested in are creation, reference, and usage.
We say that

e an object a creates an object b if the statement by which object b is allocated is executed
in the context of object a;

e an object a references another object b if, at any time during execution, a reference to b
appears in the context of a (either in a field, variable, or parameter, or as the actual value
of an expression; we also say that a owns a reference to b or simply that a knows b);

e an object a uses an object b if a invokes any methods or accesses any fields of b.

It is clear that usage implies reference, because an object can only use another object if it
owns a reference to it, but not vice versa (e.g. a collection object owns references to the objects
contained in it, but does not usually invoke any methods of these objects). Similarly, creation
usually implies reference, because an object that creates another object immediately receives a
reference to it. (An exception are object allocations that occur as actual method parameters;
some of these cases are recognized by the algorithm, see our description of step 3 below for
details.)

The object graph is constructed in the following steps:

Step 1. Find the set of types that the program consists of.

Step 2. Build a type graph from these types, which captures usage relations and data flow
relations at the type level.

Step 3. Approximate the object population of the program, which yields the nodes of the object
graph, plus creation edges and initial reference edges.

Step 4. Propagate references in the object graph, based on the data flow information from the
type graph.

Step 5. Create usage edges in the object graph.

We will now describe each of these steps in detail.

Step 1: Finding the types of the program

The Java types that a program consists of are those contained in the dependency closure of the
program’s main class. We say that a Java type depends on another type if it makes any kind
of syntactic reference to it (an obvious exception being class java.lang. Object, which is part of
every program although it needn’t be referred to explicitly). The set of Java types naturally
implies the set of analysis types of the program, according to the ontology described above.

This definition ensures what may be called the closed-world assumption of our algorithm:
at run-time, control cannot reach any statement that is not covered by the static dependency
closure.

It must be noted, though, that Java programs can dynamically modify and extend themselves
through explicit class loader interaction and run-time reflection. Naturally, the use of these

62

features poses a whole set of new problems for any static analysis algorithm. We are not
adressing these in our work, and our algorithm cannot handle programs that make use of these
features. At present, this does not seem like a serious limitation, as few programs actually fall
into this category. Future research in this area is however desirable.

Our algorithm is also restricted to analysis of complete programs; we have not investigated
techniques to analyze libraries, and to combine such analyses incrementally when analyzing
programs that use these libraries.

Step 2: Constructing the type graph

Ultimately, we are interested in the run-time objects of the program and their relations. However,
what we have so far is only the set of types from which the objects will be instantiated. Our
next step is therefore to analyze some relations at the type level, capturing them in a type graph,
which will later be used when we construct the actual object graph.

A relation between two types is a folding of the relations between any objects that are
instantiated from these types. To deal with this folding, a natural shorthand terminology will
be used in the following: we say that “a type A calls a method of another type B” if the code
of A contains a method call statement, the syntactic target of which is a method declared in
type B. As our algorithm is flow-insensitive, the existence of such a statement is enough for
us to conclude that at run-time, any object that is instantiated from A might call any object
instantiated from B (subtyping will be dealt with at a later stage). An analogous definition
holds for expressions such as “type A accesses a field of type B”, etc.

Q new O

reference d ™ fi new -7 d
_ «_reference reference .- reference
run-time N e
objects . dataflow ¢~ .-%.. dataflow .-

,,,,,, ~ .

O reference O O

import edge

type graph . _SABD> >. .< <ABD> .
B A

(a) Export (b) Import
Figure 3.4: Data Flow between Objects

Given this, we can define the type graph as a directed graph, Gy =< T, E,, E., E; >, where
T is the set of types that we computed in the first step, and E,, E., and E; are usage edges,
export edges, and import edges, respectively.

A usage edge < A, B >, simply means that type A uses type B, i.e. it calls methods or
accesses fields of type B.

Ezport edges and import edges are data flow edges which indicate that references of a certain
type may propagate from objects of one type to objects of another type, e.g. as parameters of
method calls or by direct field accesses. We distinguish two fundamental kinds of such reference
propagation (see fig. 3.4): to export a reference means that an object a owns a reference to an
object d, and passes it to an object b. To import a reference means that an object a owns a

63

reference to an object b, from which it receives a reference to an object d which only b knew
before.

In the type graph, we represent this by export edges and import edges from a type A to a
type B, annotated by a third type D, which is the type of the data. The type graph contains
an export edge < A, B, D >, if

e A calls a method of B, and at least one of the actual parameters of this method call is of
type D, or

e A assigns (writes) to a field of B, and the actual r-value of the assignment is of type D, or

e B is an array and A assigns (writes) references to objects of type D into B,
and there is an import edge < A, B, D >; if

e A calls a method of B that has D as its declared return type, or
e A reads a field of B, the declared type of which is D, or

e B is an array with element type D and A reads elements of B.

Two remarks about these definitions: First, they imply that we do not give full object status
to exceptions, although they might, technically, be used to carry (and hence, pass) objects of
arbitrary types as a payload. However, this is not a restriction in principle; see the end of this
section for a discussion of alternatives. Second, the above rules do need slight extensions for
inner classes, which we omit here for brevity.

Finally, a note about subtyping and polymorphism. In principle, we do not need to consider
these at this stage of the algorithm, because the information can easily be inferred conservatively
from the type graph constructed so far. For example, an export edge < A, B, D >, that we
found syntactically implies analogous export edges for all subtypes of A, B, and D within the
program. In other words, if an object of type A may export references of type D to objects
of type B, then any object of any subtype of A might also export references of type D or any
subtype of D to any object of type B or any subtype of B. It is however a pure implementation
issue whether we actually insert additional data flow edges to cover these cases, as they are
completely redundant. In our implementation, we chose to propagate edges to subtypes on both
their source and destination side (A and B), in order to speed up subsequent interpretation of
the graph (in step 4 of the algorithm), but we do not create additional edges for subtypes of the
data types (D) in order not to use too much memory.

We may now proceed to construct the object graph, which is a directed graph G, =< O, E,, E,., E,,
where O is the set of run-time objects of the program (we also call it the object population), and
E., E,, and E, are sets of creation edges, reference edges, and usage edges, respectively.

In step 3 of the algorithm, the object population is constructed, using indefinite objects
(summary nodes) where necessary and concrete objects where possible. In step 4 the reference
structure within the object population is computed, and in step 5, usage relations are inferred.

Step 3: Generating the object population

The object population of a program is a complete, but finite representation of the potentially
infinite set of objects that the program will create at run-time. In the terms of our algorithm,
the object population is a set of static objects, concrete objects and indefinite objects, which
form the nodes of the object graph. The algorithm constructs this set by examining the object

64

allocation statements in the program, determining which objects may (or definitely will) create
which other objects.

We distinguish two kinds of allocation statements: an initial allocation is an object allocation
that is executed exactly once whenever the enclosing type is instantiated, and never thereafter
(in the context of this particular object). A mnon-initial allocation, on the other hand, is an
object allocation of which the algorithm cannot determine how often, if ever, it will be executed
at run-time.

Our algorithm considers an allocation as initial for its enclosing type A if

e it is the r-value of a field initializer of A, or

e it occurs plainly in an initialization method of A, where plainly means that it is not nested
in any kind of control structure, and an initialization method is defined as either

— the constructor? of A, or
— a static initializer of A, or

— the main() method, if A is the program’s static main type
(and there is no explicit call to main() within the program), or

— the run() method, if A is a Runnable object
(and there is no explicit call to run() in the program), or

— a private method of A that is called exactly once and plainly from another initializa-
tion method of A.

Based on this definition, the algorithm can compute, recursively, which objects create which
other objects. It begins by adding the static objects of the program (one static object for each
static type is trivially part of the object population), and then proceeds as follows:

e For each static object of a type A that is added to the object population, the algorithm
adds one concrete object for each initial allocation in A, and one indefinite object for each
type that is non-initially allocated in A.

e For each concrete object of a type A that is added to the object population, concrete
objects and indefinite objects are added in the same manner as for a static object.

e For each indefinite object of a type A that is added to the object population, all allocation
statements in A are treated as non-initial allocations, i.e. for each type that is allocated
in A, an indefinite object is added to the object population.

Intuitively, the above means that static objects and concrete objects may recursively create
further concrete objects — those that they allocate initially. Indefinite objects, however, may
only create further indefinite objects (because it is not known how many objects an indefinite
parent object actually represents). Also, note that the non-initial allocations of a type are
summarized by the types being allocated. An indefinite object therefore represents all instances
of a certain type that may be created by a given parent object, excluding any concrete objects
of the same type that were created by that parent. (We chose not to distinguish individual
allocation statements within the parent type for indefinite objects, because that keeps the size

2Dynamic types with multiple constructors may have different sets of initial allocations for each constructor,
and the chaining of constructors along the inheritance hierarchy also needs to be taken into account. As the
details are trivial to spell out, we omit them here.

65

of the object graph somewhat smaller. We have found this to produce adequate results for our
purposes.)

Whenever a concrete object or indefinite object is added to the graph, we also add both a
creation edge and a reference edge from the parent object to the new object. In the next step,
these initial references will be propagated within the graph to determine which objects may
know and use which other objects at run-time. However, there are three special cases that need
to be considered.

First, static objects are referred to by name in Java, not by object references. To deal with
this in a uniform way, we therefore add “pseudo” reference edges from each dynamic object to
any static objects it uses, according to the type graph.

Second, if an object allocation appears directly as an actual method parameter, then the
creator does not actually receive a reference to the created object. However, at this stage of the
algorithm it is not usually known which object is actually called and receives the reference. The
only exception are allocations that are used directly as constructor parameters, because here the
receiver is immediately known. The algorithm adequately handles this case; in all other cases,
we conservatively consider the creator to own the reference, which is later propagated to the
possible receivers in step 4.

A third special case that needs to be considered are cycles in the creation structure: if an
indefinite object allocates an indefinite object that has the same type as one of its (transitive)
parent objects, the algorithm would not terminate, and create an infinite amount of objects.
(For concrete objects, this cannot happen because these are allocated initially — a cycle here
would mean that the program itself falls into endless recursion immediately after startup.)
For indefinite objects, the algorithm recognizes cycles by keeping track of all parents for each
indefinite object. If a cycle is detected for a type A, the algorithm does not add a further
indefinite object of type A, but rather adds creation and reference edges back to the existing
parent of type A, and terminates the recursion.

Step 4: Propagating References

After the object population has been computed, the object graph contains the representation
of all objects that could possibly exist at run-time, connected by creation edges and reference
edges. We now use the data flow information from the type graph to propagate the references
edges within the object graph until a fixed point is reached.

The actual algorithm corresponds exactly to the scenarios shown in fig. 3.4: it iterates over
all triples of objects < a,b,d > for which reference edges < a,b >, and < a,d >, (or < b,d >,)
exist, and matches the types of the objects against the data flow edges of the type graph. If a
corresponding edge exists, a new reference < b,d >, (or < a,d >,) is added to the graph.

It is here that subtyping must be accounted for. If the type graph did not contain redundant
data flow edges for subtypes (see step 2), we’d have to search it for data flow edges of the form
< A,B,D > where A, B, and D are the types or any supertypes of a, b, and d. But as our
type graph has been constructed to contain redundant edges for all subtypes of sources and
destinations already, we only need to search for supertypes of D, which is further simplified
because in the implementation, we combine all edges between two types into a single edge
annotated with a set of data types.

Step 5: Adding usage edges

After the object references have been propagated, it is known which object could possibly interact
with which other objects. We may now add usage edges to the graph: there is a usage edge

66

between two objects a and b if there is a usage edge < A, B >,, between their types A and B in
the type graph, and there is a reference edge < a,b >, in the object graph.

As in the previous step, subtyping is adequately considered here. When the type graph was
constructed (see step 2), redundant usage edges were added for all known subtypes on both the
source and destination side. In other words, this means that if an object a of type A knows an
object b of type B, and A or any supertype of A uses B or any supertype of B, then the object
a is considered to use object b.

Complexity

Let s be the number of statements in the program, ¢ the number of types in the program, and
n the number of run-time objects (the size of the object population computed in step 3). The
first and the second step of the algorithm are uncritical: the first step — finding the types of the
program — only involves standard syntactic type inference (better than O(s?)), and the second
step (construction of the type graph) is linear in s.

Constructing the object population (in step 3) is linear in n, the number of run-time objects
needed. It is not obvious how this number relates to the static size of the program. The worst
case occurs when only concrete objects are used, as each concrete object could allocate an
arbitrary number of further concrete objects, provided that types of parent objects are not used
again and that each such allocation occurs due to an individual statement in the code. In a
program with ¢ types, each of which contains s/t initial allocation statements, the size of the
object graph is thus (s/t)’.

This exponential complexity is however unlikely to occur in practice. In real programs,
concrete objects represent the static part, or “skeleton” of the run-time structure, which is
usually small, while everything that depends on input data or user interaction is modelled by
indefinite objects. In the eleven programs we will discuss below, there is in fact a roughly linear
correspondence between s and m: the final object graphs contain about one object (static,
concrete, or indefinite) for every 10-50 lines of source code.

In step 4, references are propagated among triples of objects using fixed-point iteration (sim-
ilar to computing the transitive closure). Our algorithm is optimized in that it only considers
those references that were created in the previous step for further propagation. For each refer-
ence, this requires work that is linear in n, and since at most n? reference edges may exist in
the graph, the entire step has complexity O(n?).

Step 5, the creation of usage edges, is again uncritical: checking whether a usage edge is
needed between two objects, and possibly creating the edge, requires essentially constant time,
and it must be done for each pair of objects connected by a reference edge, which is at most n?
times.

The overall complexity of the algorithm is thus O(n?), where n appears to be linear in the
size of the program s for real-world programs.

Case Studies

We will illustrate the kinds of results that our algorithm delivers in a two case studies now, look-
ing in detail at the object graphs of two small to moderately sized programs. The performance
of our implementation for several other programs will be given after that.

Case Study 1: Producer/Consumer

Figure 3.5 shows the program code of a simple producer/consumer program. This program is
the same that Corbett analyzed in his paper (Corbett 1998), with one added complexity: rather

67

public class IntBuffer {

protected Integer[] data,;
protected int count = 0;
protected int front = 0;

public IntBuffer (int capacity) {
data = new Integer[capacity];

}

public void put (Integer x) {
synchronized (this) {
while (count == data.length)
try {
wait ();
} catch (Exception e) {
e.printStackTrace();
}
data[(front 4+ count) % data.length] = x;
count = count + 1;
if (count == 1)
notify All ();

}

public Integer get () {
synchronized (this) {
while (count == 0)

public class Producer implements Runnable {

protected int next = 0;
protected IntBuffer buf;

public Producer (IntBuffer b) {
buf = b;

public void run() {
while (true) {
System.out.println ("Put.” + next);
buf.put (new Integer (next—+-+));

public class Consumer implements Runnable {

protected IntBuffer buf;

public Consumer (IntBuffer b) {
buf = b;

}

public void run() {
while (true) {
Integer x = buf.get ();
System.out.println(” Get.” +x.intValue());

try { }
wait (); }

} catch (Exception e) {
e.printStackTrace(); }

}

Integer x = datalfront];
front = (front + 1) % data.length;
count = count — 1;
if (count == data.length — 1)
notify All ();
return x; new Thread (new Producer (buf)).start();
} new Thread (new Consumer (buf)).start();

} }

public class Main {

public static void main (String argv(]) {
IntBuffer buf = new IntBuffer(2);

Figure 3.5: A Simple Producer/Consumer Program

than passing primitive integers from the producer to the consumer, we modified the program to
use Integer objects, so that they would also be visible in the object graph, which is shown in
figure 3.6.

The structure of the program is immediately clear from the graph: there is a Producer and
a Consumer object, which both implement the Runnable interface; they are executed in parallel
by corresponding Thread objects. Producer and Consumer share the IntBuffer object, through
which the Integer objects are passed. Internally, the IntBuffer stores the Integer objects in
an array. For clarity, we have omitted the creation edges for all objects except for the Integer
objects, and one reference edge from Main to the IntBuffer object. Each usage edge shown
naturally implies a reference edge.

All objects in the graph are concrete, i.e. it is certain that only one instance of them will
exist at run-time, except for the Integer objects, which are created in arbitrary numbers by
the Producer. They are referenced (but not used) by the IntBuffer and its internal array; the
Consumer does use them (extracting the integer value and printing it).

68

O—0O

/’hread ’Produce\\ / Integer(]

D ,,,,,,,,,,,,,,,,,,,,,,

Main\ Integer \ /IntBuffer

O———0O

Thread Consumer
[] static object — usage edge
O concrete object -+ creation edge
© indefinite object -» reference edge

Figure 3.6: Object Graph of the Producer/Consumer Program

Case Study 2: Hamming’s Problem

Hamming’s problem is one of the four Salishan problems, a suite of typical parallel programming
problems often used to compare the expressiveness of parallel programming languages. For
Hamming’s problem, the task is to output a sorted sequence of integers of the form p?, where i =
0,1,2,... and p is any of a given set of prime numbers {a, b, c,...}. The parallel implementation
is to have one thread for each of the primes, which computes the p’ values for that prime. All
threads deliver their results to a centralized manager which selects the next number for the
sequence among them.

Figure 3.7 shows the object graph of a Java implementation of this algorithm?®. The size of
the program is about 170 LOC; the object graph is computed in 6 seconds (see the following
section for detailed results). All creation edges have been omitted from the graph; all usage
edges and reference edges are shown (each usage edge implies a reference edge).

The graph shows an indefinite number of StreamProcessor objects (one for each prime). The
sequence of numbers produced by each is internally stored in an IntStream queue, which in
turn is realized as a Vector of Integer objects. All StreamProcessors use a common MinFinder
object to which they deliver their results (the reference to the MinFinder is obtained from a static
variable in the StreamProcessor class). Internally MinFinder uses an instance of java.lang. Object
for synchronization purposes.

A non-trivial property of this object graph is that polymorphism in the Vector class is
adequately analyzed here: as with all Java collection classes, the element type of Vector is
Object, i.e. anything could be stored in a Vector. However, due to the way we compute the
reference structure within the graph, we can infer correctly that in these Vector objects, only
the Integer objects created by the corresponding IntStream are stored. We have found that even
in large programs where many different collections for different actual element types are used,
the algorithm usually determines correctly which objects are stored where.

However, there is also a counter-example in this graph. The object used for synchronization
by the MinFinder is actually of type java.lang.Object. This object is created by the main

31 would like to thank Michael Philippsen of the JavaParty team for giving me access to this program

69

Integer

; f \O

Object MinFinder) D/Sa@n rocessor

StreamProcessor

static object

concrete object

© OO

indefinite object

""" * reference edge

usage edge Vector Integer

Figure 3.7: Object Graph for Hamming’s Problem

Hamming object, and passed to the MinFinder. Since the algorithm is flow-insensitive, it
must be assumed that any object could be passed along this edge, and therefore the MinFinder
receives references to all objects that Hamming knows, i.e. also the indefinite Thread object and
the two arrays (static objects are not passed). Furthermore, since MinFinder invokes methods
of the Object instance, it must also be assumed that it uses all other objects that it knows,
including the ones that were mistakenly passed to it in the previous step. The graph thus
contains several spurious reference and usage edges.

Despite this imprecision, the object graph is not only useful for understanding the program,
but also for deciding on a distribution policy. The StreamProcessor objects, although their actual
number is not known statically, can be assigned to available nodes in a round-robin fashion. It
is implied by the graph that the IntStream, Vector, and Integer objects are used privately by
each StreamProcessor, they therefore do not need to be remotely invokable, or be considered by
a consistency protocol if a DSM system is used. Under the assumption that the other objects of
the program are all assigned to a single node, it can be inferred that actually only the MinFinder
itself is ever invoked across a distribution boundary, and must thus be remotely invokable.

Performance

We have implemented the algorithm using the Barat framework for static analysis of Java
programs (Bokowski and Spiegel 1998). The implementation itself comprises 2,000 lines of Java
code (non-comment, non-blank).

Using this implementation, we have run the algorithm on a set of programs, ranging from 75
to 10,000 lines of code (excluding the Java standard library). The programs are briefly described
in table 3.1. Each program was written by a different author; none was adapted for the analysis
in any way. Experiments were made using JDK 1.2 (with JIT enabled) on a Sun UltraSparc 10
with 128 MB of memory, running under Solaris 2.6.

70

size objects edges
program lines® ‘ typesb static ‘ concr. ‘ indef. ‘ total | creat. ‘ ref. ‘ usage
buffer 74 10 1 6 0 7 6 8 7
hamming 174 24 5 4 5 14 9 22 17
rch 263 11 2 10 1 13 11 23 22
paraffins 556 43 7 1 52 60 53 296 205
trace 915 47 5 31 36 85 257 177
sepia 1,176 49 6 4 124 | 134 128 | 2,728 854
chess 2,474 133 21 37 58 | 116 98 446 275
z3 3,917 164 35 142 72 | 249 217 733 464
jhotdraw 6,163 276 39 22 250 | 311 272 1 9,236 | 2,848
vgj 10,352 197 47 15 319 | 381 375 | 7,633 | 4,700
javafig 10,699 218 49 25 385 | 459 445 | 4,263 | 3,844

“without comments and blank lines
bexcluding standard library, except when directly referenced

Table 3.2: Analysis Results

program H description ‘

buffer producer /consumer example

hamming | Hamming’s Problem (Salishan benchmark)
reh RC5 cracking program

paraffins || Paraffins Problem (Salishan benchmark)
trace simple ray tracer

sepia graph drawing demo

chess chess opening database

z3 73 machine simulator

jhotdraw | drawing application framework

vgj graph drawing tool

javafig Java version of xfig (presentation viewer)

Table 3.1: Example Programs

The results shown in tables 3.2 and 3.3 indicate that the algorithm generally scales well for
programs up to 10,000 lines of code, with computation times on the order of several minutes
at most. The number of reference and usage edges, and the times needed to compute them,
is strikingly high for some programs, though, and might turn out problematic for even larger
programs. We are tackling this problem in the following ways:

e When visualizing the object graphs, displaying several thousand reference or usage edges
is clearly not useful. We have found it convenient to display only the creation edges at
first, and to lay out the graphs according to these. This gives a very intuitive insight into
the hierarchical structure of a program. Our analysis tool then lets the user selectively
display reference or usage edges leading to or coming from a certain object in the graph.
We have found this an excellent means to explore the run-time structure of a program.

e The high numbers of reference and usage edges are generally due to fine-grained objects
which are extensively passed around and hence, aliased, within the object graph. For
larger programs, it could be useful to either suppress such small objects from the graph

71

program H step 1¢ ‘ step 2 ‘ step 3 ‘ step 4 ‘ step 5 ‘ total time

buffer 2.6 0.4 0.5 0.0 0.0 3.5
hamming 4.6 0.5 0.5 0.1 0.0 5.7
rch 2.8 0.6 0.8 0.2 0.0 4.4
paraffins 7.4 0.8 1.6 1.6 0.0 11.4
trace 10.5 1.0 2.8 1.2 0.0 15.5
sepia 9.1 1.2 4.5 39.5 0.1 54.4
chess 34.2 4.0 10.5 3.0 0.0 51.7
z3 71.0 6.6 6.6 9.7 0.3 94.2
jhotdraw 156.2 224 29.1 | 767.7 0.9 976.3
vgj 124.9 12.4 21.6 | 682.1 0.4 841.4
javafig 182.8 13.1 27.6 | 124.0 0.3 347.8

“includes I/O and parsing

Table 3.3: Times needed for Analysis (in seconds)

completely (if no data passes through them), or to collapse the types of such objects
into a single indefinite object. This could be done interactively by the programmer, but
automatic criteria, e.g. depending on object size, are also conceivable.

Possible Improvements

In the form presented here, the algorithm has already proved useful for program understanding
and distribution analysis. However, there is still room for improvements such as the following:

e To consider ezceptions as full objects (see section 3.1.2) means to model the throwing
of an exception as a data flow event, just as if a method had multiple return types. To
realize this, the algorithm needs to annotate every method declaration with the types of
exceptions it may throw, and to propagate these sets of exceptions up in a call graph,
which may be constructed ad hoc using simple hierarchy analysis without much loss of
precision. In a simple solution, an object automatically imports any indefinite exception
objects owned by objects that it calls methods of; this approach does not consider whether
the object actually catches all of these exceptions, or passes them on to its own callers.
More sophisticated exception analysis, some of which could readily be incorporated into
our algorithm, has been described in Robillard and Murphy (1999).

e When indefinite objects are added to the object population, they can only create further
indefinite objects (see section 3.1.2). This may result in the loss of some precision that
is actually still inherent in the algorithm. For example, in the program shown at the
beginning in listing 1, if the Worker objects were not allocated initially by the Main
object, the object graph would be folded and contain only an indefinite Worker object
and an indefinite Algorithm object, thus losing the information that there is a one-to-one
correspondence between these objects. One way to remedy this would be to mark reference
edges as one-to-one-edges initially, and remove this property if edges are exported or
imported. A more general solution would be not to consider individual objects as indefinite,
but rather to introduce summary subgraphs, which may contain concrete objects, and yet
be considered indefinite as a whole.

e The algorithm could be combined with flow-sensitive techniques to provide additional
precision, while still capitalizing on the object-oriented perspective we introduced.

72

3.1.3 Conclusions

We have shown that existing approaches to static analysis of object-oriented programs are mostly
concerned with type-level information. While this is sufficient for common compiler optimiza-
tions, we are currently seeing the advent of other kinds of high-level analyses such as distribution
analysis and concurrency analysis. These require instance-level information, i.e. approximation
of object graphs, but little has yet been done to tackle this problem. The algorithm that we
presented here is a step towards filling this gap. Unlike some previous work, our algorithm
embodies a decidedly object-oriented view of the problem, which enables high accuracy even
though the algorithm is flow-insensitive, which in turn means that it has low computational
complexity.

To our knowledge, our algorithm is the only true object graph algorithm that has fully been
implemented for a main stream language (Java), and validated on a range of non-trivial example
programs of considerable size. We have found the resulting object graphs highly descriptive in
terms of program understanding, and they form the basis on which the subsequent stages of
Pangaea operate to distibute programs.

3.2 User Interface

Pangaea’s user interface is a graph editor that allows the programmer to view the object graph
produced by the analyzer, and configure the corresponding program for distributed execution
by assigning objects to partitions. The configuration is usually done semi-automatically: the
programmer can freely assign the objects, but he is being assisted by automatic algorithms that
operate on the graph. Once the configuration has been completed, the user interface finally
allows the programmer to trigger the generation step, which creates a distributed version of the
original program, according to the configuration previously specified.

Figure 3.8 shows the main window of the graph editor?.

To start the analysis, the programmer enters the name of the program’s main class into a
dialog. As described in the previous section, the “program” is defined as the dependency closure
of this main class. For practical analyses, it is however essential to limit the scope of the analyzer,
lest large parts of the Java standard library would be included in even the simplest programs.
Screen output, for example, can be treated as an entirely local feature, and can therefore safely
be excluded from the analysis. To control this, we have added a type filter to the analyzer,
which can be adjusted in a separate dialog, shown in figure 3.9.

The type filter works by defining two special categories of types, system types and irrelevant

types.

e A system type is a type that the analyzer captures, but only as a “black box”, which
means that its internals are not resolved. Objects of such types may therefore appear in
the object graph, but the dependency closure does not extend beyond them.

e An irrelevant type, as the name implies, is completely irrelevant for the analysis, and not
captured in the graph in any way.

The filters for these categories are implemented as a set of regular expressions to be matched
against type names; these regular expressions can be edited in the type filter control dialog
shown above. If an expression matches a given type name, Pangaea considers the type to belong
to the corresponding category. Additionally, it is possible to set or clear a subtype flag for each

iThe editor was written using the JHotDraw framework by Erich Gamma; available from
sourceforge.net/projects/jhotdraw.

73

) (Pangaes =a%
File layout Display

=

i

.

i

i

e i
N |
Use j"*’
ﬁ_ Analyze Program: EE
rc5 Manager | jﬁ

.

o2

P

OK Cancel Type Filter... :

4 '- | b

Selection Tool |

Figure 3.8: The User Interface of Pangaea

expression (shown as a checkbox in each row). When set, this flag means that any subtypes of
types covered by an expression should also be blocked.

It is the responsibility of the programmer to ensure that the type filters do not block seman-
tically relevant objects from the object graph. The default setting, shown in fig. 3.9, works fine
for simple, screen-based programs, but needs to be adapted for more complicated cases.

After the analysis has completed, the main window shows the object graph of the program
(fig. 3.10). Initially, the graph is layed out as a tree along its creation edges (this implies that
each static object forms a separate tree, but normally only the tree rooted in the main class
is relevant). We have found that this layout according to creation edges gives a very intuitive
understanding of a program’s structure, and is also simple to achieve algorithmically. Despite
a lot of experimentation, we haven’t found any satisfactory means of laying out the graphs
according to their reference or usage edges. Because of their much more complicated structure,
we also chose not to display these edges in the graph initially, although they can be activated
from the Display submenu. Further options in this pull-down menu allow to mark immutable
objects visually (by changing their labels to green), or to hide them from the graph completely.

On the left hand side, the programmer is provided with a number of tools to operate on the
graph. From top to bottom:

Selection Tool The selection tool allows the programmer to select individual objects and drag
them to a new position, to achieve a better optical layout of the graph. It is also possible
to select and move several objects at once, either by dragging the pointer to create a
“rubberband box”, or by pressing the middle mouse button on an object, which selects
the subtree rooted in that object. It is also possible to trigger the tree layout algorithm

74

avah.langy. string
javal.langh. System
ioh,. Printstream
Y. Throwable

Figure 3.9: Type Filter Configuration Dialog

RC5_32_12_8

Figure 3.10: An Object Graph within the User Interface

75

for a subtree of objects, using a context menu on the right mouse button.

Zoom Tool The zoom tool lets the programmer zoom into and out of the graph, using a
“rubberband box” to select an area to be displayed (left button), or by clicking the middle
button anywhere in the display area, which centers the display at that location using a
zoom scale of 1.0. Clicking the right mouse button reduces the zoom scale by a factor of
two.

Reference Tool and Usage Tool The reference and usage tools allow selective display of
reference and usage edges in the graph. When, for example, the reference tool is active,
right-clicking an object shows all reference edges that point to that object, while a click
with the middle button shows all reference edges that emanate from the object. (When a
new object is clicked, any previously displayed reference edges are removed again, unless
the shift key is pressed simultaneously.) We have found these two tools an excellent means
to explore the reference and usage structure of a program, while it is usually impractical
to display all reference and usage edges simultaneously, because of their sheer number.

Partition Tool The partition tool is used to configure the program for distributed execution. It
allows the programmer to assign objects to partitions, to indicate whether objects should
be migratable, and to trigger the automatic graph assignment algorithm. All of these
actions are accessed via the right-button context menu that is activated by the partition
tool (fig. 3.11). We will describe the precise meaning of these menu items in the following
section.

[]

Integer

- A
Clear Partition
Toggle Migratable

: Partition O {Root)
Partition 1
Man === Partition 2
Partition 3

== Ahstract A
Mew Abstract Partition

Assign Graph

L]
RC5_22_12_8

Figure 3.11: The Partition Menu

After the programmer has configured the program, using the tools and the automatic algo-
rithms provided, the final step is to generate the distributed program. The dialog to initiate
this, accessible from the File menu, is shown in figure 3.12.

In this dialog, the Root path is the directory below which the generated code should be
written, and From prefix and To prefiz: define a textual mapping for the program’s type names:
If a type’s name starts with the From prefix, that prefix is replaced by To prefix in the generated
program. This allows to write the generated code to a different package hierarchy than the
original program.

76

@ (Tenerate L4

Generate

~Paths

Root path: |,fhc:me,fspiegel,fja\.ra,r |

From prefix: [rcs. |

Ta prefix; |distributed. res. |

; Backend-

) Carba
! JavaParty
i® Doorastha

‘ oK H Cancel

Figure 3.12: Generation Dialog

3.3 Configuration

To configure a program means to specify a distribution strategy for it. This includes where to
place individual objects, but more than that: some objects may be kept local on each partition,
or passed around by value, and thus have no particular location at all. Other objects may be
under the control of the asynchronous migration subsystem, and so their location may vary over
time. Yet others may be passed around by move, so their location varies synchronously.

The configuration thus includes all distribution-related aspects of a program, specified at the
object level, and independent from the particular distribution technology that will later be used
for the implementation.

When defined in this way, Pangaea is a good tool for configuring a program because (a) it
has information about the program’s object structure in the form of the object graph, and (b) its
front-end /back-end architecture allows to abstract from the particular features of distribution
platforms. Nonetheless, the above definition of a configuration is an ideal one and Pangaea only
partially matches it. This is because (a) the object graph usually does not resolve all individual
objects, but groups some of them together as indefinite objects. Thus, no individual distribution
strategy can be specified for these objects. The second point (b) is that Pangaea’s back-end
adapters cannot provide an equal set of features for each platform. For example, there is no
asynchronous migration subsystem for CORBA because that platform does not support object
migration at all.

In the current implementation of Pangaea, an object can either be assigned to a partition
(meaning that it should be located on that partition, at least initially), or it can be left unas-
signed. Additionally, an object can be marked as migratable; objects that are not marked in
this way are not migratable. Altogether, this results in four possible combinations as shown in
table 3.4.

An object that is assigned to a particular partition but is not migratable will simply reside on
that partition, statically. If the object is migratable in addition, it will start out on its assigned
partition, but can later move if decided by the migration subsystem. If an object is unassigned,
this means that it will be a local object. A local object is created on the same partition as its
creating object; if it is subsequently passed to another partition, it is passed by value (copied).
When a static object is local, this means that a copy of it will be placed on each partition that

77

migratable not migratable

. asynchronous . .
assigned . . static location
migration
unassigned not allowed local

Table 3.4: Possible Configurations for an Object

references it. Local objects thus have no particular location within the system at all. (It is clear
that the fourth combination, unassigned and migratable, does not make sense and is therefore
not allowed.)

The configuration does not specify whether an object is (or should be) remotely invokable. If
an object is assigned to a particular partition, but is only referenced from within that partition,
then it need not be remotely invokable. The classification of objects into global (remotely
invokable) and local objects is therefore a derived property of the entire object graph, and will
be dealt with in section 3.4. All that can be said at the configuration level is that unassigned
(local) objects will never be remotely invokable, and that assigned objects may have to be
remotely invokable.

Abstract Partitions

There is an important case often found in concurrent programming where it is insufficient to
assign objects to particular partitions. In concurrent programs, there is often an indefinite
number of Thread objects, usually created in loops controlled by configuration parameters. For
example, a manager/worker application will usually have its number of workers controlled by a
configuration switch. The resulting Thread objects, and all the objects created by these threads,
will therefore be represented as indefinite objects in Pangaea’s object graph. Hence, only the
indefinite object that stands for all of the application’s worker threads could be assigned to a
partition, and thus all workers would end up on the same processor.

We have therefore added the concept of abstract partitions to Pangaea. An abstract partition
is a partition that will, at run-time, be realized by multiple concrete partitions. To this end,
Pangaea’s code generator annotates the statement that creates a Thread object on an abstract
partition with a call to Pangaea’s round-robin scheduler, to obtain a partition number to use.

Abstract partitions do have an identity. (As concrete partitions are numbered 0, 1, 2, etc.
in Pangaea, we label abstract partitions distinctively as partition A, B, C, etc.) This allows
Pangaea to decide whether two objects are on the same abstract partition. At run-time, this
means that individual instances of these (indefinite) objects will end up on the same concrete
partition, and thus potentially do not need to be remotely invokable.

As an example, reconsider the graph of the Hamming program in figure 3.13 (we already
discussed this graph in section 3.1, page 69). The “workers” in this program are the StreamPro-
cessor objects shown in the lower right, along with their local IntStream, Vector, and Integer
objects. When we assign the Thread objects to an abstract partition, and the hierarchy below
the indefinite StreamProcessor objects to the same abstract partition, this means that these
objects will in fact be local to their corresponding threads, placed onto the same processors, and
do not need to be remotely invokable.

78

Integer

Thread

I = Abstract Partition "A"

," ’ , /?hreaN
' éf

Object MinFinde D//Sﬁ@w rocessor

StreamProcessor

Math

U] static object
O concrete object
©

indefinite object

""" > reference edge

—® usage edge

Vector Integer

Figure 3.13: An Abstract Partition used for Hamming’s Problem

Automatic Assistance

Although the process of finding and specifying a distribution strategy for a program is not
fully automated in our current system, Pangaea does provide some automatic tools that assist
the programmer in this task. In some cases, little or no additional work is required from
the programmer, although he is still free to override or fine-tune any or all of the automatic
decisions. Due to our focus on the other areas of automation (automatic analysis, automatic
implementation, and automatic fine-tuning at run-time), we have barely scratched the surface
of automatic strategy-finding. Other algorithms to enhance this process are easily conceived,
given the existing Pangaea framework. Within this section, we will outline some of these other
algorithms as well.

A prerequisite for any reasonable distribution strategy is to identify immutable objects, since
these can always be local, and passed to other partitions by copying, without affecting the
program’s semantics.

An immutable object is an object whose state cannot, or does not change after it has been
created. Depending on whether we use the words “cannot” or “does not”, two definitions of
immutability result. An object cannot change after it has been created if its type is statically
immutable, meaning that it does not provide any modifying operations or direct access to object
state. More formally, a type T is statically immutable if

e all of T’s non-private instance fields (if it has any) are final,

e write accesses to private instance fields of T occur only in the constructors of T (or in field
initializers, which is technically equivalent),

e only private fields of this instance are written to, and

e the supertype of T is immutable.

79

A weaker definition results if we use the words “does not change” above. Although its type
may not be immutable, a particular object may be immutable within a given program. This is a
definition at the level of individual objects, and may for example catch cases where a programmer
has not set field protections as tightly as possible, or provided write methods simply out of habit,
although they are never actually used.

Since Pangaea resolves the run-time structure of a program to the level of individual objects
(not just the types), this property would be easily checkable by annotating the usage edges in
the object graph as write edges vs. read-only edges. (At the type level, methods would have to
be classified as write methods or read-only methods. Using this information, usage edges in the
type graph could be classified as write edges or read-only edges; this could then be carried over
into the object graph.) In our current system, however, we have only implemented a check at the
type level because it was sufficient for the small number of programs we evaluated our prototype
with. Pangaea’s graph editor can mark immutable objects visually, or completely hide them
from the object graph. The programmer can thus incorporate the immutability information
in his decisions, but it is also used by the second automatic assistance tool, Pangaea’s graph
assignment algorithm.

It is a simple algorithm that helps distributing concurrent programs consisting of a number
of threads, and objects used by these threads both internally and globally. The idea is simply to
assign the static main object to the root partition, and Thread objects to other partitions in a
round-robin fashion (the actual assignment may be deferred until run-time by using an abstract
partition, see previous section). Every other object that is neither the main object nor a Thread
object is assigned to the same partition as its parent object, where the parent is defined as either
the creating object, or the executing Thread object in the case of a Runnable object. Objects
of immutable types, however, are never assigned to a partition.

With this assignment scheme, the objects on which a thread operates privately are naturally
co-located with that thread, while any objects used for global communication at least start out
on a reasonable location which can later be adjusted by the run-time system. For examples of
the use of the automatic assignment algorithm, see the RC5 and the Ray Tracer case studies in
chapter 4. For these programs, the algorithm easily finds the correct distribution strategy and
requires only very little additional programmer interaction to fine-tune it.

Another promising approach to automatic strategy-finding is graph partitioning. In client/server
programs, there will usually be several “layers” of objects between those objects that must re-
side on the server and those that must reside on the client. An optimal distribution boundary
between client and server is one that minimizes network communication, and it can be found by
partitioning the object graph.

The general graph partitioning problem is to divide a graph in two or more parts, so that
the number of edges crossing the boundaries is minimized. There are many variants of this
problem, including for example the case where edges are weighted and the optimization criterion
is to minimize the total weight of all boundary-crossing edges. Although the general graph
partitioning problem is NP-hard (Lengauer 1990), there do exist good approximation algorithms
that operate in linear time (Hendrickson and Leland 1993, Diekmann et al. 1994).

To use such an algorithm in Pangaea, it would be helpful (although perhaps not essential)
to annotate usage edges within the object graph with their estimated communication volume at
run-time. This could be done using similar heuristics as those in the Orca compiler (see page
41): if a call to an object occurs in a loop, it is taken to be executed “many” times; if it occurs
in a branch of an if-statement, the estimated number of executions is reduced by 50%, and the
like. The actual amount of data (parameters) transferred over a usage edge would not be a
significant issue in most cases, since the order of magnitude of both local and remote calls is not
influenced by the number or size of parameters unless they are very large (Spiegel 1998).

80

3.4 Classification

While the configuration of a program is a specification of a distribution strategy at the object
level, independent of particular distribution technology, the classification of the program’s types
is the first step towards implementing the chosen strategy on a given platform. Classification is
a transformation of the object-level strategy back to the type level, and it is partly influenced
by the capabilities of the actual distribution platform to use.

Types are classified as local, global, or migratable, according to the following definitions and
rules:

e Objects of local types are copied to each partition where they are needed, which means that
they are passed by value in remote invocations, or, in the case of static types, replicated
on each partition that references them. A type is classified as local if all of its instances
in the object graph are unassigned (see page 77).

e Objects of global types are remotely invokable and, in the case of dynamic types, passed
to remote partitions by network reference. The instance of a global static type is kept on
a single partition, and accessed remotely if needed. A type is classified as global if

— at least one of its instances in the object graph is assigned to a particular partition,
and

— at least one of its instances is created remotely or referenced remotely.

An object is created or referenced remotely if at least one creating or referencing object
is assigned to a different partition than the object itself. Note also that usage implies
reference in our graphs.

e Objects of migratable types are monitored and potentially migrated at run-time by Pan-
gaea’s asynchronous migration subsystem. A type is classified as migratable if it is a global
type according to the definition above, and additionally, at least one of its instances in the
object graph is marked as “migratable”.

e In addition to the above, immediate classification, inheritance needs to be taken into
account. Normally, this means that if a type is global or migratable, then all of its
supertypes and subtypes within the program need to have that property as well, although
some distribution platforms allow exceptions to this rule.

Several notes are in order about this classification scheme. First and foremost, it is a rather
crude and simple transformation from the object level back to the type level. This is witnessed
by each occurence of the phrase “at least one of a type’s instances” in the rules above. In effect,
it means that we can lose much of the precision inherent in the object graph. For example, if
only a single instance of a type is referenced remotely, it means that the entire type must be
classified as global. An alternative would be to introduce a cloning mechanism at classification
time: if different instances of a type are used differently within the graph (e.g. one is only used
locally and another is used remotely), then the type can be cloned into a local type and a global
type in the distributed program. This only works of course if the two instances are located in
referentially disjoint areas of the object graph (although an automatic conversion mechanism
for instances of cloned types could be conceived as well). We have not implemented a cloning
mechanism in Pangaea, because for the relatively small programs that we distributed with our
prototype, there was no actual need for it.

81

The types of the distributed program are not completely the same ones as those of the
centralized program, however: during analysis, we split each type into a static and a dynamic
type. If both of these types end up as being local in the distributed program, then we can
combine them again into a single Java class. If however at least one of them is global, then
they need to be kept separate in the distributed program, so two individual types with different
names will be generated, one comprising the static part, the other the dynamic, non-static part.

Another important observation is that arrays can become global or migratable as well, since
we treat them as ordinary reference types during analysis. At code-generation time, global
arrays are wrapped into remotely invokable objects; we will describe this in more detail in the
next section. It should be pointed out, however, that the lack of a cloning mechanism in Pangaea
can have quite drastic effects with arrays: if a single integer array in an application needs to
be remotely invokable, then this results in all of the application’s integer arrays being wrapped
into objects. (Although the price for this is not as high as one might believe, as we will see in
one of our case studies in the following chapter.)

It is also a deliberate consequence of our rules that local types and immutable types are
orthogonal concepts: a type can be local even if it is not immutable, and immutable types do
not actually need to be local. As explained in the previous section, a type is then and only
then classified as local if all of its instances are unassigned in the configuration. This gives the
programmer freedom in the use of local (replicated) instances. For example, an 1/O facility,
even though it may not be technically immutable, can be replicated conveniently by leaving it
unassigned in the object graph.

Finally, our implementation framework allows us to add backend-specific rules to the clas-
sification process. An example for this is a constraint in Doorastha that requires the types of
instance variables of a globalizable type to be globalizable as well. The reason behind this is
that the instance variables of a globalizable type could be accessed remotely, and therefore it
is conservatively ensured that their types allow this. We are not particularly happy with this
constraint, because Pangaea can do a better job at inferring whether these types do need to be
globalizable. However, Pangaea’s classification framework allows us to incorporate this rule for
Doorastha as well, and identify these “secondary globalizable types”.

3.5 Back-End Code Generators

Pangaea’s back-end code generators implement the distribution strategy that is specified by the

configuration and classification steps, by re-generating the program’s source code as appropriate

for the distribution platform to use. The resulting code, although human-readable, is not actually

meant to allow further modification by the programmer. We regard the output as a kind of

“distribution assembler” code that happens to be written in a high-level programming language.
In particular, Pangaea’s code transformations involve:

e Name Mapping The program code is regenerated using a different package hierarchy, to
avoid overwriting the original version. Additionally, the names of types that are separated
into static and dynamic parts are changed to distinguish the types from each other. Since
Java allows unlimited access between the static and dynamic parts of a type, all variables
and methods are made public when types are separated. (In exotic cases, this could cause
conflicts in method resolution, which would be solvable by systematic method and variable
renaming.)

o Migration Instrumentation If a type has been classified as migratable, its code is trans-
formed so that

82

— each instance gets an attached watcher object,

— the watcher object is notified each time a method of its observed object (the base
object) is called,

— each of the base object’s methods gets an additional parameter that identifies the
partition from which it was called, and

— each call of a base object method in the program is transformed so that it supplies
the local partition number in the additional parameter.

e Globalization of Types If a type has been classified as global (or migratable, which implies
globality), it is transformed into a remotely invokable type, using the mechanisms of the
chosen platform. This includes global arrays, which are wrapped into objects that are then
made remotely invokable using the same mechanism as above.

e Allocation Annotation Each object allocation expression (“new” expression) for a global
or migratable type is annotated with the partition number on which the object should be
created, again using the mechanisms of the chosen distribution platform.

Of the above transformations, the first two are carried out generically, independent of the
actual platform used; this is also true for part of the globalizing array transformation. The name
mapping and migration transformations are straightforward, for some details of the latter, see
Busch (2001). The globalizing array transformation is illustrated in the following example for
an array of type byte:

public class Array$byte {
private byte[| data;

public Array$byte (int length) {
data = new byte[length];

}

public Array$byte (byte arg0, byte argl, ... byte arg7) {
data = new byte[8];
data[0] = arg0;
data[l] = argl;

data[7] = argT7;
}

public void set (int index, byte value) {
data[index] = value;

public byte get (int index) {
return data[index];

}

public int length() {
return data.length;

}

Figure 3.14: Generic Code for a Global Array Object

The actual array is stored in the instance variable data. There are two constructors, one that
takes only a length as an argument, and one that takes eight individual byte values. The former

83

is used for array allocations of the form new byte/n/, while constructors with individual argument
values are generated on demand for each different kind of array initializer found in the program.
Finally, there are get(), set() and length() methods that map the standard array operations.
For completeness, additional methods would be required to map the C shortcut operators in
expressions such as afi/++, --afif, and afi] %= 5. Careful attention would have to be given
however to the intricate dependencies between these operators and the rules of evaluation order
given in the Java language specification. For example, the following code:

int [| a = new a[l];

al0] = 9;

al0] += (a[0] = 3);
System.out.println (a [0]);

is required to produce a result of “12” in Java, while it is unspecified in ANSI/ISO C (§15.7.1
in Gosling et al. (2000)). A straightforward transformation of the above into method calls is
bound to break the semantics, and a faithful implementation is likely to involve a lot more work,
although we have no reason to doubt that it is in fact possible. Due to the prototypical nature
of our system, we have chosen not to implement the shortcut operators, and instead slightly
rewrite our example programs manually in the few cases where these operators were used.

In the remainder of this section, we will describe the code transformations for each individual
platform, followed by a discussion of the limitations of our back-ends in section 3.5.4. To illus-
trate the transformations, we will use the smallest possible distributed program, a client/server
version of Hello World. The centralized version’s code is shown below:

public class Client {

public class Main { private Server s;

public Client (Server s) { public class Server {

public static void main (String argv[]) { this.s — s:

Server s = new Server(); } public String getMessage() {
Client ¢ = new Client(s); return ” Hello,_world!”;
o-dolt (); public void dolt() { }
System.out.println }
} (s.getMessage());
}

Figure 3.15: “Distributed” Hello World, Centralized Version

The main method creates a Client and a Server object. On invocation of the client’s dolt()
method, it calls the server’s getMessage() method, from which it receives the string “Hello,
world!”, which it then prints to its own standard output. The architecture is captured intuitively
in Pangaea’s object graph of the program, shown below, along with the distribution strategy we
choose: the Main class, the Client object, and the Server object are assigned to partitions 0, 1,
and 2, respectively.

3.5.1 CORBA

The CORBA adapter was developed in a separate Master’s Thesis by Sven Knofel (2000). For a
general introduction to CORBA, please refer to our discussion in chapter 2, page 26. The basic
idea of the adapter is to generate an IDL file which describes the global types of the program.
From this IDL file, the IDL compiler supplied by the CORBA implementation generates the
appropriate interfaces, stubs and skeletons. The classes of the centralized program are renamed

84

static object

Partition O Main creation edge

reference edge

[]
O dynamic object
-
>
.

usage edge

Partition 1 Partition 2

Client Server

Figure 3.16: Object Graph of Distributed Hello World

and plugged into the inheritance hierarchy of the types generated by the IDL compiler. A
special complication lies in the fact that Java is case-sensitive, while CORBA is not. To avoid
name clashes, all Java identifiers are therefore transformed so that, for example, RemoteObject
becomes RemoteObject_0_6, i.e. the positions of capital letters are appended to the identifier.

CORBA also does not have a concept of remote object creation. Since remote object creation
is essential for our model of distributing programs, Pangaea’s CORBA run-time system there-
fore supplies a generic CorbaObjectServer that is installed on each partition when the program
starts up. The CorbaObjectServer allows the creation of arbitrary CORBA objects via remote
invocations, and also supports transferring the byte code of the corresponding classes if they
are not locally present. To allow the creation of objects with arbitrary constructor parameters,
these parameters are transferred via generic sequences of CORBA Anys, and assembled into a
constructor invocation via Java reflection within the CorbaObjectServer.

Figure 3.17 shows the IDL file and the Main class of the CORBA version of Distributed Hello
World. The object creation expressions in the main method have been replaced with calls to
newly generated, private methods that take both the constructor parameters and the number of
the partition on which the object is to be created (new$Server_0() and new$Client_0(). Within
these methods, the CORBA name server is contacted to look up the reference of the CorbaOb-
jectServer on the target partition, which is then called to create the actual object. The second
method, new$Client_0(), shows some additional work that is needed to wrap the reference to
the Server object into a CORBA Any sequence and pass it to the object server.

By comparison, the transformed versions of the Client and Server class shown in figure 3.18
are relatively straightforward. The inheritance hierarchy has been changed and the classes have
been renamed by adding an Impl suffix, since the interfaces that are used on the client side
carry the original (case-sensitivity-mangled) names of Client and Server. The actual invocation
of the Server in the dolt_2() method of the client shows no sign that the invocation is remote.

Although the code in the Main class is machine-generated and could be written somewhat more
elegantly, it shows the amount of distribution-related work that is required by the programmer in
typical CORBA applications, even to set up a very simple object structure as in our Distributed
Hello World program.

Pangaea’s CORBA adapter has several additional capabilities not demonstrated in this sim-
ple program. Among them is the ability to remotely create Threads and Runnable objects, which
is complicated by the fact that Java system types cannot be incorporated into IDL descriptions.

85

#include <CorbaObjectServer.idl>;

module distributed {
interface Server 0 : pangaea::runtime::corba:: RemoteObject_ 0.6 {
wstring getMessage-3 ();
h
interface Client 0 : pangaea::runtime::corba::RemoteObject 06 {
void dolt-2 ();

)

b

package distributed,;
import org.omg.CosNaming.x;
import org.omg. CORBA.Any;

public class Main_0 implements java.io.Serializable {
public static void main (java.lang.String[] argv) {
Server_0 s = new$Server_0 (2);
Client_0 ¢ = new$Client_0 (1, s);
c.dolt_2 ();
}
private static Server_0 new$Server_0 (int parti$ion) {
try {
String args|[] = {};
org.omg.CORBA.ORB orb = org.omg. CORBA.ORB.init(args,null);
NamingContextExt nc = NamingContextExtHelper.narrow(orb.resolve_initial references(” NameService”));
NameComponent [| name = new NameComponent[1];
name[0] = new NameComponent(” CorbaObjectServer” +parti$ion, ”service”);
pangaea.runtime.corba.CorbaObjectServer os =
pangaea.runtime.corba.CorbaObjectServerHelper.narrow (nc.resolve(name));
Any|] parObjectName = new Any|[0];
Any[] parObject = new Any[0];
Any re$ult = os.newInstance(”distributed.hello.corba.Server_0” ,parObjectName,parObject);
return Server_OHelper.narrow(re$ult.extract_Object());

catch (Exception e) {
e.printStackTrace();
}

return null;
}
private static Client_0 new3Client 0 (int parti$ion, Server 0 s) {
try {
String args[] = {};
org.omg.CORBA.ORB orb = org.omg. CORBA.ORB.init(args,null);
NamingContextExt nc = NamingContextExtHelper.narrow(orb.resolve_initial references(” NameService”));
NameComponent [| name = new NameComponent[1];
name[0] = new NameComponent(” CorbaObjectServer” +parti$ion, ”service”);
pangaea.runtime.corba.CorbaObjectServer os =
pangaea.runtime.corba.CorbaObjectServerHelper.narrow(nc.resolve(name));
Any|] parObjectName = new Any|[1];
Any[] parObject = new Any[1];
parObjectName[0] = org.omg.CORBA.ORB.init().create_any();
parObjectName[0].insert_string(” distributed . hello . corba.Server_0”);
parObject[0] = org.omg. CORBA.ORB.init().create_any();
parObject [0].insert_Object (s);
Any re$ult = os.newInstance(”distributed.hello.corba.Client_0” ,parObjectName,parObject);
return Client_OHelper.narrow(re$ult.extract_Object());

catch (Exception e) {
e.printStackTrace();

return null;
}
}

Figure 3.17: IDL File and Main class of Distributed Hello World, CORBA Version

86

package distributed;

import org.omg.CosNaming.x;
import org.omg. CORBA.Any;

public class Client_O0Impl
extends pangaea.runtime.corba.RemoteObject_0_6Impl
implements Client_0Operations {

private Server 0 s;

public Client_0Impl (Server.0 s) {

super();
this.s = s;

}

public void dolt_2 () {
System.out.println(this.s.getMessage_3());

}
}

package distributed;

import org.omg.CosNaming.x;
import org.omg.CORBA.Any;

public class Server_0Impl
extends pangaea.runtime.corba.RemoteObject_0_6Impl
implements Server_O0Operations {

public java.lang.String getMessage_3 () {
return ”Hello,_world!”;

}

Figure 3.18: Server and Client class of Distributed Hello World, CORBA Version

The CORBA adapter also implements a protocol to pass objects by value using serialization,
because it was developed at a time when objects-by-value where not part of the official CORBA
specification. These features, along with several more complicated case studies, are described in
detail in Knofel (2000).

3.5.2 JavaParty

The JavaParty version of Distributed Hello World is shown in figure 3.19. The principle is the
same as in the CORBA version, but the implementation is much simpler since JavaParty hides
most of the complexity from the programmer (and likewise, from Pangaea’s code generator). The
Client and Server classes have been declared as “remote”, which is the only change to these
classes. As in the CORBA version, the object creations in the Main class have been moved into
separate, private methods that allow arbitrary work to be done before and after the allocations.
While a remote object creation shows no syntactic difference from a local one, JavaParty requires
a separate call to the local machine’s run-time system to set the target partition for the next
creation statement, and to clear this setting again after the remote creation has been performed.
This mechanism obviously creates a racing condition and is therefore suboptimal. JavaParty
does have other mechanisms to specify creation targets, but none of them lent itself easily to
our needs. With some additional effort, Pangaea could itself make sure that the object-creation
methods are atomic, by introducing an additional per-machine synchronization variable.

87

public class Main {

static { public remote class Client {
new pangaea.runtime.javaparty.RootPartition();
) private Server s;
public static void main (java.lang.String[] argv) { public Client (Server s) {
Server s = new$Server (1); super();
Client ¢ = new$Client (2, s); this.s = s;
c.dolt (); }
} public void dolt () {
private static Client new$Client (int parti$ion, Server s) { System.out.println(this.s. getMessage());
jp.lang.DistributedRuntime.set Target (parti$ion); }
Client re$ult = new Client(s);
jp.lang.DistributedRuntime.set Target(); }
return re$ult;
}

private static Server new$Server (int parti$ion) {
jp.lang.DistributedRuntime.set Target (parti$ion);
Server re$ult = new Server();

jp.lang.DistributedRuntime.set Target(); public remote class Server {
return re$ult;
} public java.lang.String getMessage () {
return ”Hello,_world!”;
} }
}

Figure 3.19: Distributed Hello World, JavaParty Version

Another change in the Main class is the addition of a static initializer that creates a Pangaea
RootPartition object. This statement, which is executed at class-loading time even before the
main() method is called, sets up Pangaea’s run-time system that will be described in more detail
in section 3.6.

For static objects that are assigned to a particular partition (including the static Main object
in this example), a different assignment scheme than for remote object creations is used. Java-
Party allows the programmer to specify a ClassDistributor class when the run-time environment
is started. An instance of this class is called with the name of each “remote” class as it is loaded
by JavaParty, and must return the partition number on which the class object (containing the
static variables) should be allocated. Pangaea generates such a ClassDistributor class for each
distributed program, containing the names of any global static types and the numbers of the
partitions to which they have been assigned. Pangaea’s Launcher automatically supplies the
name of this ClassDistributor class to the JavaParty environment when it starts up.

We implement global arrays in JavaParty by using the generic code shown in figure 3.14,
and simply adding the keyword remote to the class definition.

3.5.3 Doorastha

The Doorastha version of Distributed Hello World, shown in figure 3.20, is again very similar
to the JavaParty version, except that tags in comments are used to indicate distribution-related
properties. This means that the program could be translated by an ordinary Java compiler as
well. The global Client and Server types are annotated with the globalizable tag, and the object
creation statements receive the partition information from a remotenew tag. This has the advan-

88

public class Main {

static {
new pangaea.runtime.doorastha.RootPartition();

}

public static void main (java.lang.String || argv) {
Server s = new /*:remotenew :host=doorastha. RuntimeSystem.hosts[1]+/ Server();
Client ¢ = new /+:remotenew :host=doorastha. RuntimeSystem.hosts[2]x/ Client(s);
c.dolt ();

}
}

public /*:globalizablex/ class Client {
private Server s;

public Client (Server s) {
this.s = s;

}

public void dolt () {
System.out.println(this.s.getMessage());

}
}

public /*:globalizablex/ class Server {

public String getMessage () {
return ”Hello,_world!”;

}

Figure 3.20: Distributed Hello World, Doorastha Version

tage that no separate methods are needed for remote object creations, since they are preserved
as being single expressions that can be used anywhere an expression is allowed. Doorastha does
expect a host name instead of a partition number as the creation target; fortunately, the run-
time system supplies the available host names in an array that is indexed according to Pangaea’s
partition numbers.

We implement global static objects by annotating each individual member with Doorastha’s
unique tag. A parameter of this tag specifies the host on which the member should be allocated;
we can thus assign all members of a type to one particular host, as required by Pangaea’s
distribution model. Global arrays are implemented by taking the generic code shown in figure
3.14 and adding the globalizable tag.

3.5.4 Limitations

Pangaea’s code generators are intended to preserve the semantics of the centralized program,
possibly “correcting” any semantic changes that are introduced by the individual distribution
platforms. For the most important case of this, the change in semantics for remote invocations
with local parameter types (which are passed by value on all platforms), this is already ensured
by Pangaea’s configuration and classification mechanism. All types used as parameters in remote
invocations are automatically classified as global because of the structure of the object graph,
unless the programmer chooses to make them local by explicitly making the corresponding
objects unassigned, or the assignment algorithm identifies them as immutable and leaves them

89

[barat.OutputVisitor |

[pangaea.backend.NameMappingVisitor |

| pangaea.backend.OutputVisitor |

[pangaea.backend.MigrationVisitor |

| pangaea.backend.doorastha.OutputVisitor |

[|X

| pangaea.backend.doorastha.MigrationVisitor |

Figure 3.21: The Hierarchy of Pangaea’s Output Visitors

unassigned by default.
There are however many more subtle changes such as the following:

e It is not possible to pass an instance of a Java system type to a “remote” JavaParty object
by reference (since system types cannot be made “remote”, see page 32). This could only
be circumvented by an awkward trick involving an external static variable from which the
“remote” object “pulls” the reference by itself.

e When a synchronized method of an object a calls an object b which in turn calls another
synchronized method of a, this is possible in the centralized case because the executing
thread owns the lock on object a. In a distributed setting where b is on another partition,
the returning call will however normally be issued by another thread, and this thread will
not be allowed to enter the locked object a. Thread identity would have to be managed
on a global basis to solve this.

e Although immutable objects can be passed by value without semantic changes, object
identity and, for example, hash code values are in fact affected by this. The corresponding
operations would have to be reimplemented in a non-trivial way to solve this, or pass-
by-value would have to be forbidden for types on which these operations are used in a
program.

Pangaea, in its current form, cannot “correct” any of the above cases because of limitations
in its code generation mechanism. Barat, the Java analysis framework with which Pangaea is
implemented, does not allow the abstract syntax trees of a program to be modified (Bokowski
and Spiegel 1998). The code generators are therefore implemented as a hierarchy of Visitors
operating on the abstract syntax trees (Gamma et al. 1995). Each Visitor attempts to carry out
a single transformation such as name mapping or instrumentation for the migration subsystem.
The entire code generation has to be carried out in a single pass however, resulting in the need
to combine all of the Visitors in a single inheritance hierarchy, as shown in figure 3.21.

It is clear from the picture that this mechanism has been stretched to its limits by the four
main transformations that the current system implements (name mapping, asynchronous migra-
tion, globalization, and remote object creation). Additional, and more complex, transformations
could only be carried out by modifying the abstract syntax trees directly, and incrementally.
If Pangaea was implemented using an analysis framework that allowed this, each of the above
cases could be handled individually, and more could be added as they are discovered.

90

This would never result in a proof that centralized execution semantics are completely pre-
served. However, neither is there a proof that any centralized execution environment fully
complies with the specification of a real-world programming language. Sometimes, there is
even reason to doubt that the specification itself guarantees some of its asserted properties
(Drossopoulou and Eisenbach 1997). Compilers and execution environments are built according
to specifications using careful up-front consideration and incremental improvement. Distributed
execution environments must follow the same path, although it remains to be desired that dis-
tributed execution is incorporated into the specification from the beginning.

3.6 Run-Time System

The primary purpose of Pangaea’s run-time system is to provide the application with asyn-
chronous object migration. This means that at run-time, the placement of some objects may be
readjusted based on observations of their actual communications behavior. We call this kind of
migration asynchronous because it is not directly linked with the application’s logic and con-
trol flow; it is performed by an entity that is external to the application itself. On the other
hand, we use the term synchronous object migration for explicit migration commands within the
application code, also in more structured forms such as pass-by-move parameters.

Technically, as we will see, asynchronous object migration might well be realized by code
that is executed synchronously, i.e. within the same thread as the application code. Our term
asynchronous simply means that the application code is not aware that migration analysis is
carried out while it is executing.

Pangaea’s migration subsystem was developed in a separate master’s thesis by Miriam Busch
(2001). The system is generic in two dimensions: (1) it can use arbitrary strategies for deciding
when to migrate an object, and (2) it is independent of the actual way in which an object
migration is triggered and performed on a given middleware platform.

The system does, however, assume that the underlying platform supports object migration.
Among the platforms that we provide back-ends for, this is true for JavaParty and Doorastha,
but not for CORBA. The run-time system, as we describe it here, has therefore only been
implemented for the former two. (Pangaea’s special run-time system for CORBA has already
been described in section 3.5.1).

When the code for a migratable class is generated, Pangaea places hooks into it that will inform
the run-time system of the communication behavior of the class’s instances. Recall from section
3.5 that this involves:

e cach migratable object gets an attached watcher object,

e the watcher object is notified each time a method of its observed object (the base object)
is called,

e cach of the base object’s methods gets an additional parameter that identifies the partition
of the caller, and

e cach call of a base object method in the program is transformed so that it supplies the
local partition number in the additional parameter.

At run-time, the base object interacts with the watcher and the rest of the migration sub-
system as depicted in figure 3.22. For each call to the base object, the number of the calling
partition is passed on to the watcher object, which in turn passes it to a MigStrategy object.
At adjustable intervals (either after a fixed number of received calls, or a certain amount of

91

:Base object ‘Watcher :MigStrateqy MigrateCommand

I
aCaIIggartition)I "

| I
|
notifyCall(partitipn) |

hotifyCall(partition)

- - - - — -
decideMig _ ,

| gdestination

I
|
|
|
|
|
|
|
migrate(basebbject, destination) . !

Figure 3.22: Interaction of Watcher and Strategy

time), the watcher asks the MigStrategy whether the base object should be migrated, and if so,
where. If the MigStrategy advocates a migration, the watcher then calls the platform-specific
MigrateCommand to actually perform it.

Each part of the above mechanism is configurable by using different implementations for the
corresponding objects. This is illustrated by figure 3.23 which shows the hierarchy of the classes
that make up the run-time system. There is a dedicated Configuration object that controls
the choice of implementations for the Watcher, MigStrategy, and MigrateCommand interfaces
(indicated by the grey associations in the figure).

«interface»
Watcher
+notifyCall (partlD:int) .
< nterfaces +i ncr Sensi tivity(percent: doubl e) «interface»

MigStrategy

+notifyCall (partlD:int)
+deci deM g(): int

MigrateCommand
+m grate(o: Obj ect, dest:int)

-y = - - === =T === =n

1 ! \ ; X !

! . . 1 |

N ! Synowatcher| [Asyncwatcher [StatisticStrategy | :
doorastha.MigrateCommand | : .
[}

«copyabl e» NoMigration

Configuration

+creat eWat cher (): Watcher
+createStrategy(): MgStrategy
+get M grat eConmand(): M gr at eConmand

1
[javaparty.MigrateCommand |

Figure 3.23: Class Hierarchy of the Run-Time System

Two implementations of the Watcher interface exist: the SyncWatcher asks the MigStrategy
whether to migrate after a fixed number of calls received (the default is 50); the AsyncWatcher
asks after a given amount of time has passed (the default is 100 milliseconds). Note that both
Watchers report each individual call synchronously to the strategy, they only differ in when
they ask for a decision based on the accumulated information.

Three strategies have been prototypically implemented: the StatisticStrategy advocates a
move to the partition from which the most calls were received, the Randomized strategy selects
a destination at random, and NoMigration, as the name implies, never advocates a migration.
Clearly, the StatisticStrategy is the most sensible one of the three, and in real use, it might
be further subclassed to fine-tune its decisions. For example, a threshold might be imposed
by which the number of calls from one partition must exceed those from other partitions for a
migration to take place, etc.

The MigrateCommand encapsulates how a migration is actually triggered on the given plat-
form. The abstract interface of it is:

92

public interface MigrateCommand {
public void migrate (Object o, int destination);

}

meaning that the command takes the object that should be migrated, and the number of the
destination partition as parameters. For JavaParty, this is implemented straightforwardly as:

public void migrate (Object o, int destination) {
jp.lang.DistributedRuntime.migrate ((jp.lang.RemoteObject)o, destination);

}

which is to say that Pangaea’s migration request is translated directly into an equivalent call
to JavaParty’s run-time system. (This further assumes that the partition numbers of JavaParty
and Pangaea are equivalent, see below.) Doorastha, on the other hand, does not have such
an equivalent migration command. In Doorastha, only the parameter mode pass-by-move is
available to achieve object migration, and Pangaea therefore uses a trick: each partition gets a
remotely accessible Partition object that resides on that partition and identifies it. To migrate
an object to a partition, Pangaea calls a dummy method of the remote Partition object which
has a single by-move parameter:

public void migrate(Object o, int destination){
Partition . getPartition (). getPartition (destination).take(o0);

}

(The local partition, accessed via the static method call Partition.getPartition() offers a
method getPartition (destination) that can return references to any other partition in the system.
The dummy method take() is then called on the destination partition, which triggers migration
via pass-by-move.)

The above mechanism has a subtle caveat, though. When the watcher object operates syn-
chronously (as illustrated in figure 3.22), it implies that whenever a migration is triggered, there
is an active method on the base object. Neither JavaParty nor Doorastha do however allow
strong migration. With Doorastha, the situation is fortunately not as grave, since the migration
does happen eventually, after the active method has returned. With JavaParty, however, migra-
tion simply fails. This leaves asynchronous watching as the only alternative on this platform.
(We have not investigated any further how JavaParty’s migration mechanism behaves when a
method is called while a migration is in progress.)

An Exercise in Staticness: Setting up the Partition Objects

As we have seen, one prerequisite for the migration subsystem to work is to have a dedicated
Partition object on each partition. Besides being used as a trick to trigger Doorastha’s migration
mechanism, these Partition objects serve a number of additional purposes:

e They introduce a consistent numbering scheme for partitions (starting with number 0,
the “root partition” from which the program was started). While JavaParty does have
a similar numbering scheme, there is no such thing in Doorastha (hosts are identified by
their names).

e The numbering scheme itself is the prerequisite for Pangaea’s simple round-robin scheduler
that is used for the assignment of threads on abstract partitions (cp. section 3.3). It is
the Partition object on the root partition that stores and gives out the master counter;
all other Partition objects may obtain the next scheduled partition number from there via
remote invocations.

93

e Finally, the Partition objects provide the migratable objects on each partition with access
to the migration subsystem’s Configuration object.

At start-up time, the run-time system must therefore ensure that there is a unique Partition
object on each partition, and a special RootPartition object on the root partition (the class
RootPartition naturally inherits from the Partition class). All Partition objects must have
access to the RootPartition, and furthermore, all application objects that will subsequently be
created on the partitions must have access to “their” local Partition object. This is illustrated
in figure 3.24.

s A e A
Partition 0 (Root Partition) Partition 3

RootPartition Partition

Partition 1 local access Partition 2

O
application
object

Partition Partition

remote
— access

. / - /

Figure 3.24: Objects Representing Partitions

Such a scheme is not entirely trivial to implement within the semantic framework of the
Java language and the distribution platforms we use. The approach we have chosen is to create
the RootPartition object first, and let it create the Partition objects on the other partitions
remotely. The local point of access for each partition’s Partition object is realized by storing
its reference into a static variable. This however requires that the corresponding classes be
replicated on each partition, including their static variables.

This scheme works well with Doorastha, because Doorastha by default replicates static vari-
ables on each host (a static variable must explicitly be marked as “unique” in order not to have
it replicated). With Doorastha, it is therefore straightforward to create the Partition objects
remotely and realize the local point of access as a static variable of the Partition class. (Each
Partition instance, in its own constructor, stores a reference to this into the static variable.)

With JavaParty, the same scheme breaks however because (a) only “remote” (global) classes
allow remote object creation, and (b) the static variables of global classes are always kept on
a single host only. It is therefore not possible for the Partition objects to be created remotely
and their class to function as the local point of access. It would be possible to give up on either
of these requirements, and we choose the first one: an additional, global PartitionLauncher

94

‘main :RootPartition :Configuration :Partition :PartitionLauncher

T
«create»

I
«create» ! | |
> | | | |
< - - - - - - ! !
I <<create remotely>> .|
: ' F «create»
: rToT T T T >
i St rTTTTTTT e [
g — — - — 4 ma | | |
L | | |
|

Figure 3.25: Initialization Mechanism for JavaParty

is introduced, which is itself being created remotely from the root partition and then creates
the Partition object locally. The Partition class can therefore be local and function as the
point of access. A consequence of this is however that RootPartition can no longer inherit from
Partition, since “remote” classes cannot inherit from local classes in JavaParty. This results in
the hierarchy of classes shown in figure 3.26.

pangaea. runtine. javaparty pangaea. runti ne pangaea. runti me. door ast ha
«i nterface»
«gl obal » Partitionl
RootPartition
4 «gl obal »
L. 1____J Partition
«gl obal » :-
PartitionLauncher .
|
[
1
Partition |- = =-=-=-=-=-=-=-=-=-=-$ === - - - ! «gl obal »

RootPartition

Figure 3.26: Implementations of the Partition Objects

Had we given up on the second requirement, and provided a point of access outside of the
Partition class, then both Partition and RootPartition could have been “remote” and inheritance
would have been possible. However, since local access to “remote” classes is not fully optimized
in JavaParty (see chapter 4) and can be almost as slow as a remote access, we chose the former
alternative although it breaks the inheritance hierarchy.

The difficulties thus encountered highlight the fact that the concept of staticness is a some-
what alien concept in the Java language itself, which in turn makes it difficult to adapt it to the
distributed case.

95

3.7 Launcher

The distribution abstraction in Pangaea would not be complete if the user was finally exposed to
the complexities of starting a program on one of the platforms supported. On each of them, this
involves starting one or more server processes on each host, monitoring their output for diagnostic
messages, then starting the program in a platform-dependent way, and finally shutting down
the system in an orderly, and once again platform-dependent way.

Logically, however, the concept is simple: All the user wants to do is to run a program on
a given set of hosts. Of course, we are saving a lot of complexity here because we adhere to
the single-program model, and do not consider long-lived server components, as for example
HERON does (page 21). Still, the single-program model is an important case where most of
the platform-handling complexity is simply unnecessary.

We have therefore created a small Launcher utility that lets the user run a distributed
program in almost the same way as a centralized Java program. The only additional information
that needs to be supplied is the names of the machines to use. The Launcher is implemented as
a small Java framework that is independent of the rest of Pangaea.

The command for starting a centralized program is

java package.MainClass argl arg2 ... argN

The command for activating Pangaea’s Launcher is the same, except that ‘java’ is replaced
by ‘pgjava’ and the names of the hosts to use are inserted before the main class name:

pgjava hostl host2 ... hostN package.MainClass argl arg2 ... argN

The name of the main class (and hence, the end of the host list) is found by iterating through
the argument list until the first name that represents a loadable Java class is found. Since in rare
circumstances, this could be ambiguous (a host and a Java class could have the same name), a
double hyphen may be inserted after the host list for disambiguation:

pgjava hostl host2 ... hostN -- package.MainClass

The Launcher first determines what distribution platform to use for the program. To this
end, Pangaea’s code generator places a file named PLATFORM into the distributed program’s
main directory (the directory where the main class resides). This file contains a single line that
identifies the platform for which the program was generated.

The Launcher then opens ssh connections to each host listed on the command line. Issuing
shell commands on these connections, the Launcher first starts the platform, it then ezecutes
the program, and finally shuts down the platform again. Within the Launcher’s implementation
framework, these three steps are implemented individually for each platform. During the entire
operation, the Launcher collects the output from each ssh connection and displays it on its own
terminal, each line being prefixed with the name of the host from which it originated.

To start the platform means to create a distributed execution environment comprising all of
the participating hosts, which is ready to accept programs for execution.

e For CORBA, this means to start a name server and place its object reference into a text
file where the other components can find it. Then, Pangaea’s CorbaObjectServer (cp. page
84) is started on each host.

e JavaParty requires a runtime manager (jprm) to be started on a dedicated host; once it is
operational, individual JavaParty virtual machines (jpvms) can be started on each host.

96

e Doorastha does have a facility to start the platform in a centralized way, and to collect any
output from the participating hosts in a centralized location (Doorastha’s run-time system
itself opens ssh connections to each host, for example). To make it fit with Pangaea’s
Launcher architecture, we actually use a simpler fallback mechanism where a SpawnServer
is started on each machine. Java virtual machines are only created on demand during
program execution, however if there is a SpawnServer running on a given host, it can be
instructed to create the JVM itself and to collect any output from that JVM and write it
through to its own controlling terminal.

Once the platform is operational, the program to run is executed. The Launcher in its current
form does not do anything to deploy the code to the participating hosts, and neither is there any
mechanism that partitions the application’s code base into components (as in HERON, page
21). In Pangaea, we simply assume that there is a shared filesystem and each host has access
to the entire application’s byte code. This is not a restriction in principle, however. We simply
haven’t implemented any deployment mechanism because it was not necessary for the kinds of
programs we studied. A common start, execute, and shutdown mechanism, however, was sorely
needed. The Launcher would in fact be a good abstraction to integrate a deployment mechanism
into as well.

Starting the program is simple on each of the platforms, given that the platform itself is
already operational. It only takes a single command on each of them, the precise syntax of
which is encapsulated by the Launcher.

After program execution, it needs to be ensured that the platform is shut down carefully
and properly, because on each subsequent run, the Launcher will assume that the platform is
not already started (see below for possible improvements on this).

e Shutting down the CORBA platform is implemented in a separate utility that is part of
Pangaea’s CORBA runtime system. It queries the name server to find the CorbaObject-
Server on each machine, and then shuts it down by invoking a special method of it.

e JavaParty has a special utility, jprk, which encapsulates the shutdown mechanism. It only
needs to be called once on one of the participating hosts.

e A two-step process is required on Doorastha: First, the JVM on each host needs to be
terminated. This is accomplished by invoking a special doorastha.Shutdown utility on the
root host, which transitively kills all JVMs on the other hosts. Second, all SpawnServers
need to be terminated as well, which is done by invoking the Shutdown utility once more
on each individual host.

In a more advanced version of the Launcher, it might be worthwhile to separate the start
/ execute / shutdown steps from each other, so that the platform could be brought up and
used for an arbitrary number of program executions before it is finally shut down. The exact
semantics of this would have to be worked out, however, in particular the question of whether
already-loaded classes should be re-used in subsequent program executions, including the values
of their static variables.

97

98

