
Chapter 2

Distributed Object Systems:

An Evolutionary Perspective

This chapter adopts an evolutionary perspective on the development of distributed object sys-
tems over the past decades. We will show numerous approaches on how object-orientation and
distribution can be combined, ranging from early projects such as the Emerald language, to
the most recent Java-based systems. Our goal will be to identify the general trends in these
developments, and we will ultimately show how the Pangaea system is a natural step in the
evolution towards handling distribution transparently and automatically.

This chapter is not a general treatise of distributed systems. We deliberately confine ourselves
to the relation between object-orientation and distribution. Object-orientation is a programming
paradigm that is widely accepted as a mature approach to software development over a wide
range of application areas. While object-orientation is not the only programming paradigm in
existence, it is the one that both industry and academia have been most decidedly embracing in
recent years, as can be seen from the introduction and widespread adoption of languages such
as C++, Java, and C#.

We may therefore consider object-orientation as a given fact, an accepted methodology for
software construction. The question is, then, how the additional requirement of distribution can
be integrated with this paradigm in a natural way, so that the benefits of object-orientation are
maintained. Various approaches have been suggested to achieve this integration. To present
and discuss them in a systematic way, we will use the hierarchical scheme shown in figure 2.1.

At the lowest level, every distributed system works by message passing. The most straightfor-
ward approach to writing distributed programs is, therefore, to make message passing available
to the programmer. This is realized in libraries such as PVM (Geist and Sunderam 1992, 1993)
or MPI (Snir et al. 1995). Despite having originated from a conventional programming back-
ground, both of these de-facto standards have been adapted to object-oriented languages, and
Java in particular (Yalamanchilli and Cohen 1998, Baker et al. 1999, Ma et al. 2002). Although
PVM and MPI are sophisticated and mature, providing for example group communication and
advanced synchronization primitives, there is nothing particularly object-oriented about them.
They are low-level interfaces to distribution services, independent of the paradigm of the pro-
gramming language used.

Similarly, a programmer can choose to access the message passing layer almost directly via
socket communication. Sockets usually provide connection-oriented, stream-based communica-
tion, which allows the programmer to send and receive messages of arbitrary length. Still, the
programmer is required to define the format of these messages, and the processing routines to
handle them, all by himself.

13



Communication
Mechanism

(Programming Language)
Explicit Implicit

(DSM)

Distribution−OrientedThreads & Objects

Message Passing

Remote Invocation

Migration

Replication

Caching

Programming Model

Distribution Abstraction

Implementation

Type of Abstraction

Figure 2.1: Integrating Object-Orientation and Distribution

To achieve a more thorough integration of object-orientation and distribution, the message
passing layer must be abstracted from. There are two different aspects that characterize this
distribution abstraction layer: first, it involves the introduction of communication mechanisms
that are more akin to the object-oriented paradigm, thus being at a higher conceptual level
than mere message passing. The basic kinds of these communication mechanisms are remote
invocation, migration, replication, and caching (we will discuss them in more detail below).

The second characteristic aspect of the distribution abstraction layer is how the new com-
munication mechanisms are made available to the application program. This can be done either
explicitly, by expressing and controlling them within the programming language, or implicitly,
by providing an execution environment that handles distribution without the program (and the
programmer) being aware of it. The former, explicit approach is also known as the “middleware”
approach, while the latter, implicit approach is traditionally referred to as “distributed shared
memory” (DSM).

As we will see when discussing individual systems, the choice of communication mechanisms
and the type of abstraction (explicit or implicit) are largely independent of each other, and
any combination between them can in fact be found in the wild. Traditionally, though, the
DSM approach has been more akin to replication and caching, while middleware platforms have
mainly been using remote invocation and migration as their communication mechanisms.

On top of the distribution abstraction layer, the actual application program is implemented.
In the simplest case, the program adheres to the same programming model that is used for a
centralized application. The most common object-oriented programming model is that of threads
and objects, and this is what most distributed object systems suggest to the programmer. There
are however other possible programming models, often specific for distributed applications. An
example for this are mobile agents, which are technically realized via remote invocation combined
with object migration; yet they follow a different programming model that is distribution-
specific.

14



In the following, we will describe the evolutionary progress in the development of distributed
object systems. To this end, we have selected a number of systems from the literature which
we consider important and characteristic stages in this development. This choice is necessarily
subjective and could well be argued about in detail. We are convinced, however, that the general
picture portrayed by this choice is an adequate one.

We will group systems by their most characteristic feature, the type of distribution abstrac-
tion they use. Thus, we will first look at the explicit approach in section 2.1, then at the implicit
approach in section 2.2.

2.1 The Explicit Approach

An explicit distributed object system is a system where remote communication is expressed
within the programming language itself. There is an inherent tension in this approach because
at the same time, the goal of distribution abstraction is to hide the complexities of remote
communication from the programmer. Explicit systems do achieve this goal by using traditional
object-oriented programming techniques, such as inheritance and the separation of interface and
implementation. When applied consequently, this can in fact mean that distribution is invisible
to the application programmer, although behind the scenes, it may be expressed using the same
language. On the other hand, the explicit approach does allow varying degrees of distribution
transparency, depending on how the abstraction is actually realized.

Historically, explicit systems have been using remote invocation as their dominant commu-
nication mechanism, although other mechanisms can be implemented explicitly as well. The
key idea of remote invocation is to use the same mechanism for remote communication between
objects as for local communication: the invocation of methods. In this, remote invocation sys-
tems follow the idea of the Remote Procedure Call (RPC), which was introduced as a means
to facilitate communication in module-oriented, procedural programs (White 1976, Birrell and
Nelson 1984).

In a Remote Procedure Call, the remote target procedure is not called directly, but the call
goes to a “dummy procedure” on the caller’s machine. This dummy procedure (also called a
client stub) sends a network message to the callee’s machine, including the name of the procedure
to be invoked and the actual parameters of the call. (Transporting the parameters via a network
message is also called marshalling them.) On the callee’s machine, the network message is
received by an adapter (the server stub) which unmarshals the parameters and performs the
actual call. After that, results are returned to the caller using the same mechanism in reverse.

Remote Object Invocation (ROI) is the object-oriented extension of RPC. Compared to
traditional RPC, there are two additional issues involved:

• Stubs are created at the object level, not for individual methods. With ROI, a remote
object is therefore realized as a stub object or proxy object on the client side, and a skele-
ton object on the server side. These objects perform, for each individual method, the
marshalling and unmarshalling of parameters.

• Since objects have an identity, they are usually accessed by reference in object-oriented
languages. As references are usually implemented as pointers (direct memory addresses)
within a program’s address space, and pointers cannot readily be used across distribution
boundaries, network references must be introduced. A network reference is a “pointer” to
an object which, in addition to the object’s memory address, includes the information at
which machine the object physically resides.

15



Remote invocation systems differ in how similar the semantics of a remote invocation are
to a local invocation, and how much work is required by the programmer to actually make an
object remotely invokable. A remote invocation mechanism alone, however, is not sufficient for
building distributed programs. Objects that should reside on separate nodes somehow need to
get to these nodes in the first place, and, having been placed onto the desired nodes, the objects
need to make initial contact with each other.

There are two general approaches to this:

• One may concentrate on the task of binding to an already existing instance on another
host. This can be realized by publishing the instance’s network reference to an external
facility, usually called a name server, from which a client may receive the reference if it
knows the name under which it is stored. With this approach, a distributed application
consists of a set of stand-alone programs that are started independently of each other.

• A more integrated solution is remote object creation: Here, the statement that creates an
object is annotated with a specification of which machine the object should be created
on. After the remote creation has taken place, the creating object immediately receives a
network reference to the remote object, and can henceforth communicate with it. For this
to work, it is clear however that the participating machines or run-time systems need to
establish their initial contact by some other means on a lower level. (Often a name server
is used at this level instead.)

Remote invocation and remote object creation, by themselves, would only allow for static
distributions of objects. Remote invocation systems therefore often provide some form of object
mobility in addition. An object is said to migrate from one node to another if it is physically
transferred to the new node, and can no longer be accessed at the previous location afterwards.
Any references that point to the previous location are subsequently redirected, usually by a
forwarding mechanism. Object migration can be strong, which means that an object can move
even while some of its methods are executing. The execution is interrupted, and resumes at the
destination node at exactly the same point. Weak migration, on the other hand, means that
there must not be an active thread in an object when a migration is initiated.

Transferring an object to another node without invalidating the original object results in a
copy being created. This is often used as a weak alternative to true object migration. Objects
can also be replicated, meaning that an object physically resides at more than one node, with
the replicas being held consistent in some fashion by the run-time system. In the special but
common case where an object (or the state of a class) is immutable, there is no need for a
consistency protocol and replication can be performed at no cost at all.

Object caching is a variant of replication where replicas are created on demand, usually for a
short period of time. Object replication and object caching are less common in explicit systems
based on remote invocation, but essential for implicit (DSM) systems. We will therefore discuss
them more thoroughly in section 2.2.

The number of systems we chose to portray the explicit approach is fairly large, reflecting the
dominance of this paradigm within both academia and industry. To structure the presentation,
we therefore group these systems into three further categories. Section 2.1.1 describes early
systems, which we define loosely as projects dating before the wide-spread adoption of the
explicit approach in the form of industry standards, which are described in the following section
(2.1.2). Finally, section 2.1.3 covers current research platforms from the late 1990s onwards.
Although it has not been an intention in selecting them, one characteristic feature of them is
that they are all Java-based.

16



2.1.1 Early Systems

The early explicit distributed object systems often involve a special programming language that
was designed with easy distribution in mind. Some of these systems are module-based or object-
based rather than object-oriented, but we still include them here because they develop important
concepts that can likewise be found in later, object-oriented systems.

Emerald

Emerald (Jul et al. 1988) is a distributed object system that was developed at the University of
Washington, comprising the Emerald programming language and compiler, and a corresponding
distribution platform implemented on VAX and Sun 3 computers. Although being dated as early
as the mid-1980s, the Emerald system implements the remote invocation model more thoroughly,
cleanly, and elegantly than most later projects. This is reminiscent of the conceptual clarity of
early object-oriented languages such as Simula-67 and Smalltalk, which are still not matched by
many of the more recent languages such as C++ and Java.

The Emerald language is an object-based programming language with neither classes nor
inheritance. It was specifically designed so that the language semantics allow for a distributed
implementation.

An Emerald object consists of four components (Jul et al. (1988), p.112):

• A unique network-wide name;

• A representation, that is, the data local to the object, which consists of primitive data and
references to other objects;

• A set of operations that can be invoked on the object;

• An optional process.

The remote invocation model is realized to such a degree in Emerald that it is completely
invisible to the programmer: any object can potentially be invoked remotely, with identical
semantics as in a local invocation. In particular, the local parameter passing semantics are re-
tained for remote invocations. To achieve this, any object reference that appears as an argument
in a remote invocation is converted into a network reference.

Emerald objects are mobile in the strong sense: the system keeps track of any active invo-
cations of an object; when an object is moved, it is ensured that all activation records within
the system are updated correctly.

The programmer can control the locations of objects using a number of primitives provided
by the language:

• “locate X” – return the node where object X resides

• “move X to Y” – colocate X with Y

• “fix X at Y” – fix X at a particular node

• “unfix X” – make X mobile again after a fix

• “refix X at Z” – atomically perform an unfix, move, and fix at a new node

17



A common problem with mobile objects is that it often does not make sense to move a
single object alone. There are often internal objects on which an outer object critically depends,
and these should be moved along with the containing object. To allow this, Emerald provides
an “attach” modifier for instance variables. Any objects stored in variables marked with this
modifier are moved along with the containing object. (This is a transitive but not a symmetric
relation: an internal object itself may be moved explicitly, and no attempt will be made to move
the containing object with it.)

In addition to these primitives, Emerald allows parameter objects to be passed by move or by
visit. These passing modes are semantically equivalent to pass-by-reference, but, as their names
imply, pass-by-move lets the parameter object be moved to the site of the callee, while pass-by-
visit means that additionally, the object is moved back to the caller when the invocation returns.
These passing modes, which are specified by annotating the formal parameter declarations of a
method, allow for a more structured control of object location, as compared to using the other
mobility primitives directly.

There are no further distribution-related constructs. Internally, there are three different
categories of Emerald objects:

• Global objects are objects that can potentially be invoked remotely.

• Local objects are objects for which the compiler can infer that they will never be invoked
remotely.

• Direct objects are objects, the data area of which is physically embedded into a containing
object. For example, primitive data values (which are nonetheless considered objects in
Emerald) fall into this category.

The implementation of Emerald seeks to minimize the performance impact of distribution
on local operations. The reasoning behind this is that distributed operations, such as a remote
method call, are orders of magnitude slower than corresponding local operations. Therefore, the
authors argue, there is likely no noticeable impact if the duration of distributed operations is
increased by a few CPU cycles, while these few CPU cycles do matter tremendously when spent
in the local case.

For this reason, Emerald uses direct memory addresses within objects, which means that
local operations incur zero overhead. However, when objects are passed across distribution
boundaries, these direct addresses are translated on the fly to substitute them with references
to proxy objects within the caller’s address space.

In a case study performed by the authors, an electronic mail system was implemented in
Emerald, where individual mail messages are represented as objects. The authors were able
to make these messages mobile, and hence let them move from the mail sender to the mail
receiver, simply by adding the word “move” in two places of the program, which resulted in a
performance gain of 22% for a simulated workload of mail traffic.

Distributed Smalltalk

Distributed Smalltalk (Bennett 1987) upgrades the traditional Smalltalk environment (Goldberg
and Robson 1983) to a distributed object system.

One characteristic feature of Smalltalk is that there is no distinction between an application
and the programming environment — the programmer modifies the programming environment
so that it becomes the application. This in turn means that every Smalltalk “application”, along
with the programming environment, has the property of being reactive: every object within the
system can be presented to the user for inspection and modification. “Every object” includes

18



ordinary instances, but also classes (“objects that describe behavior”, in Smalltalk terminology),
and even low-level implementation objects such as stack frames.

The task of turning Smalltalk into a distributed object system is therefore different and more
difficult than with most other object-oriented languages. Keeping with Smalltalk’s philosophy,
it means to convert a single-user, single-address space programming environment into a multi-
user programming environment where every aspect of the system is always ready for interactive
inspection and instant modification.

In particular, this means that compatibility between classes on different machines becomes
an immediate and urgent problem. Several possible solutions are discussed in Bennett (1987),
and the one finally implemented in Distributed Smalltalk is a conservative one. It requires that
classes and instances be co-resident : each object must have its implementation locally available,
which in turn means that object mobility within the system is restricted. For system classes,
the issue is mitigated because system classes are replicated on each machine, and to move an
object of a system class only involves a superficial compatibility check (since the system class
could have been modified locally on one of the hosts nonetheless). User-defined classes, on the
other hand, are not replicated, and if an object of a user-defined class is to be moved, its class
(and possibly the classes from which it inherits) is moved to the destination as well (otherwise,
for example the values of class variables would no longer be unique per class).

The remote invocation mechanism of Distributed Smalltalk exploits the fact that Smalltalk
is a weakly-typed language: there is only a single class of proxy objects, which redefines the
doesNotUnderstand: method so that it forwards the actual message selector and its argu-
ments to the remote system. This works well for all methods that are called via the standard
lookup mechanism of Smalltalk, but it does not work for some basic “no-lookup” primitives
such as the “==” operator. Distributed Smalltalk solves this problem by rewriting the source
code so that, for example, “==” is replaced with EqualEqual, an equivalent method that falls
under the standard lookup mechanism and is provided by Distributed Smalltalk.

Other areas that are given special attention in Distributed Smalltalk include:

• Garbage Collection. Distributed Smalltalk lets each host use its own local garbage col-
lector, and prevents objects from being reclaimed if they are remotely, but not locally
referenced. This is realized by a RemoteObjectTable object on each host, which contains a
local reference to each object that is known to another host. Two separate algorithms are
then employed to turn distributed garbage into local garbage so that it can be reclaimed:
one algorithm is very fast but cannot detect cycles of garbage that span multiple hosts,
while the other can detect such cycles but is comparatively slow. For details, see Bennett
(1987).

• Error Reporting and Remote Debugging. The error reporting facilities of Smalltalk have
been thoroughly adapted to the distributed case. If an error is signalled in a remotely
invoked object, the error is reported back to the host that issued the invocation. Here, a
modified debugger is activated that allows the programmer to inspect the stack frames of
both the local and the remote process.

• Node Autonomy. Distributed Smalltalk allows the “owner” of a workstation to exercise
control over what objects may or may not be remotely accessed. For example, the display
bitmap is an object that should not normally be accessible to outside users, or at least
only in a controlled manner. For the latter case, the system allows the user to specify a
surrogate object (termed an “agent”) to which all remote invocations are delegated. The
surrogate object may then decide which invocations should be forwarded to the real object,
and if so, how. An example for this would be to restrict remote users so that they have
only access to a reserved area on the local machine’s display bitmap.

19



The author reports performance figures that are typical for remote invocation systems: a
remote invocation in Distributed Smalltalk takes about three orders of magnitude longer than
a local invocation. Of this additional time, only one fourth was attributable to actual network
communication.

DOWL

DOWL (Achauer 1993) is an object-oriented programming language and run-time environment
that is based on similar ideas as Emerald, however it extends them in a number of ways. DOWL
is a distributed extension of the Trellis language and its corresponding environment (O’Brien
et al. 1987). Trellis, by itself, is a strongly typed, object-oriented language with multiple in-
heritance. There is a “multiple-activity” system that enables concurrent programming. Similar
to Smalltalk, Trellis features its own programming environment that is itself written in Trellis,
comprising a window system and an incremental compiler.

Similar to Emerald, DOWL allows for fully transparent remote invocation of objects, the
semantics being identical to the local case. Any object, except for instances of some built-in
types, can become remotely invokable; this happens dynamically at run-time (via substitution
of proxies). No changes in the source code are necessary.

While (almost) any object can be invoked remotely, types can also be marked as replicated,
which means that instances of such a type are copied to other address spaces. Hence, each
address space will have its own local replica of such an object. (There is however no consistency
protocol in DOWL. If centralized semantics are to be preserved, then replication must therefore
only be used for immutable objects.)

As in Emerald, DOWL offers constructs to control object location and mobility. Unlike
Emerald, however, these constructs are mostly not primitives, but integrated into the object
model. This means that, for example, it is possible to change a type’s migration characteristics
by overriding an inherited operation.

Nodes are represented as objects in DOWL. Furthermore, each object has an instance variable
named $location (instance variables are named components in DOWL terminology, but we use
the more common object-oriented term to avoid confusion). Assigning a $Node object to an
object’s $location variable causes the object to migrate to that particular node (this is strong
migration; it can also happen while an operation on the object is active). This way, it is also
easy to co-locate two objects, by assigning the value of one $location variable to another.

Migration can be inhibited by fixing an object to a particular node. This can be done at
the type level, using the attributes $fixed and $mobile (which means the opposite), or for an
individual object using the instance variable $fixed at. Assigning a node object to this variable
has a similar meaning as moving the object via $location, but the latter will be ignored if
the object is already fixed, while it causes an exception with the former. Fixing an individual
object with this mechanism is temporary (assigning Nil unfixes it again), while the type-level
attributes cause all objects of a type to be permanently fixed or mobile.

Objects can be grouped together using an $attach attribute for instance variables, as in
Emerald. Two further attributes, $move and $visit, can be used to achieve pass-by-move and
pass-by-visit parameters, also as in Emerald. However, these attributes are more general than
that: unlike in Emerald, $move and $visit can be applied to any variable, not just to formal
parameters. For example, when an instance variable is marked as $move, then any object
assigned to that variable is moved to the variable’s containing object along with the assignment.
(The author points out that $move and $visit are actually “syntactic sugar”, as their effect
could be achieved with primitive migration operations as well. However, they allow for a more
structured way to control object mobility within a program.)

20



Several non-trivial applications were implemented in DOWL, or upgraded to DOWL from
Trellis. The largest and most challenging of these was the Trellis developing environment itself,
comprising about 65,000 lines of code. The only problem that had to be solved in order to turn
it into a distributed application was to handle predefined types and system facilities, such as
the window system and file I/O, correctly. This was basically achieved by marking some types
as replicated or fixed. Altogether, only about 100 lines of code had to be changed in order to
make all editors, browsers, inspectors, etc. operate on remote objects instead of local ones.

In summary, DOWL appears as a natural, evolutionary advance over the Emerald language,
the ideas of which underlie both systems. DOWL achieves a better integration of mobility
constructs with the object model, and enhances location control toward a level that would be
required for the construction of large distributed systems.

HERON

Heron (Finke et al. 1993, Wolff and Löhr 1996) is an object-oriented distribution platform based
on the Eiffel language. Despite its focus on Eiffel, Heron has been designed with heterogeneity
in mind, and has in fact been demonstrated to interoperate with Pascal programs. Heron

follows the remote invocation model, paying particular attention to a number of issues that are
hardly dealt with elsewhere in the literature.

To begin with, Heron insists on complete distribution transparency, allowing no distribution-
related changes or constructs in the source code at all. Instead, the process of distributing a
program is performed entirely by an external configuration utility and a proxy generator. In
this, Heron goes even further than, for example, Emerald or DOWL, which do have some
distribution-related primitives. The reason we still consider Heron as an explicit platform
(where distribution is handled within the programming language) is that the configuration de-
scription still needs to be written by the programmer; it has only been moved outside of the
program for separation of concerns. Since Heron uses an existing language, Eiffel, which was
developed without distribution in mind, the goal of complete transparency could not fully be
achieved (see Wolff and Löhr (1996) for a complete discussion of transparency limitations).

Unlike many other distributed object systems, Heron features distributed objects in the
sense that the implementation of a single object can be distributed (spread out) over multiple
machines. (An object that only resides on one machine is, strictly speaking, not distributed.)
There are two cases of this:

• Heron allows remote inheritance, which means that parts of an object that belong to
different classes can reside on different machines. This feature is particularly necessary
because of Eiffel’s peculiar way to use inheritance where in other object-oriented languages,
aggregation or delegation would be used. For example, in Finke et al. (1993), a Client class
inherits from a Servers class in order to obtain remote references to the server objects.

• A dispersed object is an object that appears to the outside world as a single object, but
which is internally realized as multiple instances of the same class that reside on different
hosts. An example for this is a Set object which is made up of several sub-Set objects
which are not visible to the user.

To configure a program for distributed execution means to split it into components, which
are defined in Heron’s configuration language. Statically, a component is a subset of the classes
that make up the application, plus stub and skeleton classes needed for interfacing with other
components. Technically, a component is realized as an Eiffel program that can be started
on a given host and which interacts with other components on other hosts. There may be

21



multiple instances of any given component at run-time. To distinguish this dynamic aspect of
a component from the static aspect referred to before, a run-time instance of a component is
also called a compostance, while the static “bundle” of classes is called a compilent. Within each
compostance, objects of the classes that the compilent contains may be created.

A component can either be instantiated (loaded) when it is first accessed by another com-
ponent, or it can be declared as a server component, which means that it is started once and
then shared by all other components. This way, public servers can be realized.

Within the configuration description, a component C may specify that objects of a class s
should be created in another component D. This way, Heron realizes remote object creation
without actually modifying the creation statements in the source code.

When referring to another component in the configuration file, this does not actually involve
the host or filename from which the other component will be loaded at run-time. These references
are resolved in a separate step by the Heron linker.

Equanimity

Equanimity (Herrin and Finkel 1991, 1993) is a software package that can split centralized
programs into client and server parts, where the actual distribution boundary between client and
server is not fixed, but dynamically adjusted at run-time to improve performance. Equanimity
is module-based rather than object-oriented, but deserves to be mentioned here because it
already deals with many of the issues found in distributed object systems. Unlike most of the
other systems we are discussing, particularly the early ones, Equanimity does not use a special
programming language; it can, at least theoretically, be used to distribute existing programs.

The package consists of a set of tools built upon and extending standard UNIX facilities, such
as the dynamic linker dld, and Sun RPC. The unit of distribution is a module, which the authors
define as “a self-contained collection of subroutines and their associated data”. Technically, an
Equanimity module is a UNIX compilation unit represented as an object file.

Modules are transformed into remotely callable units using the standard RPC facilities.
Additionally, modules can migrate between client and server; this is hidden from callers by a
“local/remote switch” (LR switch), which is a software wrapper that decides whether a subrou-
tine is locally available or must be called remotely (see fig. 2.2). The LR switch also gathers
statistics about calls to the module, and may initiate module migration if it seems likely to
improve the overall application performance.

The decision when to migrate can be based on varying strategies, such as

network-load, which minimizes the number of bytes transferred over the network by observing
calls to and from each module, and migrating the module if the number of bytes transferred
remotely exceeds that of locally transferred bytes by a certain threshold,

network-load, call-frequency normalized, which extends the above by taking into account
the actual number of calls between each module (many calls with few parameters are more
expensive than few calls with many parameters because of the fixed cost of each call),

CPU-load, which seeks to migrate modules to the CPU with the most power to run them; this
is based on the speed of each CPU and its currently measured load, and a programmer-
provided estimate of the CPU time needed to run each subroutine of a module,

hybrid strategies consisting of weighted combinations of the above.

Module migration is weak : the LR switch counts how many times a module has been entered
and exited by threads of control; a module can only migrate if no thread currently occupies it.

22



Module
B

Module
A

Module
B

Module
A

direction
of migration

direction
of migration

server
to client

migration
request

client
to server
migration
request

RPC
stub

RPC
stub

LR switch LR switch

thread of execution thread of execution

Client

Server

Figure 2.2: The Equanimity System

There are facilities for migration between heterogeneous architectures (essentially realized by
keeping binaries for all architectures around, and using a machine-independent data transmission
format). It is also possible to use different versions of a module at the same time.

Equanimity only splits a centralized program in two halves with a dynamic boundary; it
does not convert it into a multi-threaded client/server application where many clients access a
single server. If several clients are launched, a separate server is spawned for each of them.

Generation of RPC stubs and LR switches is semi-automatic; the authors estimate that
a fully automatic stub generator is feasible, but would be as complex as a compiler. Also,
Equanimity cannot convert all kinds of subroutines into remotely callable ones: the only allowed
parameter mechanisms are pass-by-value and pass-by-value/result; addresses (pointers), and
heap-allocated data structures cannot be used as parameters.

Thus, Equanimity will in practice not likely be able to distribute an arbitrary existing pro-
gram. The programmer is restricted to a very small set of language constructs for any remotely
callable modules, and hence, distribution must be designed-in from the initial phases of program
development.

The authors present several case studies. One of them is an Equanimity wrapper around
an X window system server (see fig. 2.3). A client program that is linked to this wrapper
can migrate parts of its code to the server machine, so that graphics-intensive operations are
executed locally on the server.

A recurring pattern of all the case studies is that they have strictly hierarchical, layered
architecures, where the fan-out of each module is higher than its fan-in (one call to a subroutine
triggers several calls to modules of lower layers). At least under the network-load strategy, the
optimal distribution boundary for such a program is clear: all modules, except for the root
module at the top of the hierarchy, must be migrated to the server, and this is precisely what
Equanimity does.

23



normal distribution
boundary in X

initial distribution
boundary with
Equanimity

distribution boundary
after service rebalancing

X
Server

Message
Queue

X Library

X Library

Equanimity
X Server

Standard
X Client

X Client
Equanimity

Figure 2.3: An Equanimity X Server

2.1.2 Industry Standards

Industry standards of the explicit approach to distributed object systems have been defined from
the early 1990s onwards. In this section, we will cover the main three ones of them, Java/RMI,
CORBA, and C#.

Java/RMI

Java/RMI (Wollrath et al. 1996, Sun Microsystems 1997) is Sun’s native mechanism for remote
method invocation on the Java platform. It is thus an industry standard, and also the basis of
almost all of the more experimental Java distribution platforms discussed further below.

To make a class remotely invokable in Java/RMI, the methods of the class need to be de-
clared in an interface which extends java.rmi.Remote. On the client side, the remote object is
accessed through this interface; this allows the system to actually delegate the call to a stub (see
fig. 2.4). The stub, together with the skeleton on the server side, is automatically generated
by the RMI compiler. The compiler further requires that each method of the remote interface
be declared to throw java.rmi.RemoteException. If a communication error occurs in a remote
call to that method, this exception (a subclass instance, actually) is thrown to the client. Since
RemoteException is a checked exception, the calling method in the client must provide a handler
for it, or explicitly propagate it further up to its own callers. On the server side, the actual imple-
mentation object needs to be defined as an extension of java.rmi.server.UnicastRemoteObject,
or an equivalent class, which “provides the framework to support remote reference semantics.”1

In order to make initial contact between clients and servers, a simple bootstrap naming server,
the RMI “registry,” is provided. There is no built-in construct for remote object creation. Two
other important features of Java/RMI are distributed garbage collection and code downloading,
which allows clients and servers to interoperate even if they do not share a file system, or have

1Java/RMI documentation of java.rmi.server.RemoteServer, the superclass of UnicastRemoteObject.

24



UnicastRemoteObject

ServerImpl

ServerStub ServerSkel

Remote

Server

Client

ServerStub ServerSkel

ServerImpl

Figure 2.4: Remote Method Invocation in Java/RMI

local access to the same codebase.

The parameter passing modes of remotely invoked methods are slightly different from stan-
dard Java semantics. In the local case, objects are always passed by reference. In the remote
case, an object is only passed by reference if its class is itself a remotely invokable class. If it is
not, then the class must be serializable, and the object is passed by value through serialization.
Objects of types that are neither remote nor serializable cannot be passed in remote invocations
(an exception is thrown in this case).

This diversion from standard Java semantics is motivated by performance reasons. It is
clear that pass-by-reference can only be realized remotely via network references, and that the
parameter object must itself be remotely invokable so that the callee, after having received the
network reference, can actually access it (see fig. 2.5). This, however, requires further remote
invocations back from the callee to the caller’s host. For performance, it would often be better
if the parameter object could actually be moved to the callee. In the absence of true object
migration (and language constructs such as pass-by-move in Emerald), a kind of second-best
guess is to pass the object by value, so that a copy is created at the callee’s site, which can then
be accessed locally (see fig. 2.5). For a detailed analysis of the performance issues, see Spiegel
(1998).

The price to be paid for this weak replacement of true object migration is the different se-
mantics of remote invocations. This is particularly odd as one of the goals of the RMI mechanism
is to make remote calls transparent, in the sense that they are syntactically indistinguishable
from local calls. And since Java/RMI does indeed succeed at that, the difference in semantics
becomes a particularly mean trap for the programmer. As it turns out (Brose et al. 1997), it
is possible to construct situations in which the actual semantics of a given call is totally unpre-
dictable, because it cannot be foreseen whether the object that a given reference points to is
local or remote.

As discussed in Spiegel (1998), passing objects by value remains an important opportunity for
optimization in distributed programs, even if a platform does also support true object migration.
There are situations where it is semantically safe to use it (e.g. for immutable objects), and the
Pangaea system does indeed exploit such opportunities.

From what has been said, it becomes clear that Java/RMI requires a lot of explicitly
distribution-related programming. For one thing, the use of specific RMI-related interfaces

25



Caller Callee

Parameter

Caller Callee

Parameter

Distribution Boundary

pass−by−value

Serialization

Invocation

pass−by−reference

Figure 2.5: Remote passing mechanisms

and superclasses means that the inheritance hierarchy of remotely invokable objects is dictated
by the RMI architecture, and not by the application. Second, the fact that every remote call
might fail with the checked exception java.rmi.RemoteException means that this exception
must always be handled explicitly on the client-side — even if all the application can do in
response is to exit cleanly, and require human intervention. The result is that the code on the
client-side gets drastically longer, due to the presence of exception handlers, and lacks clarity.

This is, however, in part, no accident. The designers of Java/RMI have stated explicitly
(Waldo et al. 1994) that they consider distribution transparency a bad idea, and that a pro-
grammer should always be aware of whether a given method call will be local or remote. We
will discuss this claim in detail in section 2.3. For the moment, suffice it to say that Java/RMI
does indeed make distribution issues, and remote calls in particular, painfully obvious in the
program code. It could only be argued that it does not go far enough in this regard: almost the
only thing that still does not differentiate local calls from remote ones is the actual syntax of
the call.

The decidedly non-transparent nature of Java/RMI has motivated several researchers to
build distributed Java systems with a higher degree of transparency, among them JavaParty,
Manta, and Doorastha, which we will discuss below. These platforms often use Java/RMI as the
basic communication mechanism behind the scenes, reaping the benefits of distributed garbage
collection, code downloading and remote exception handling. They do attempt, however, to
make it much less apparent in the source code whether an object is remote or not.

CORBA

CORBA (the “Common Object Request Broker Architecture”) is a widely used industry stan-
dard for distributed applications. The CORBA standard (OMG 2000) is defined by the OMG,
an open-membership, not-for-profit consortium of major companies in the computer industry.
Several implementations of the CORBA standard exist and are in wide use today, such as Orbix 2,

2www.orbix.com

26



Visibroker3, JacORB4 (Brose 1997), and MICO5 (Puder and Römer 2000).

CORBA is an interoperability layer between different hardware platforms, operating systems,
applications, and programming languages. The standard defines an object-oriented model of the
entities in such settings, and provides the infrastructure for them to communicate, following the
remote invocation model. A CORBA application thus consists of a number of CORBA objects
(which can be anything from entire applications to fine-grained objects at the programming
language level); these objects communicate via an “Object Request Broker” (ORB), which is an
infrastructure layer typically implemented as a user-space library (see fig. 2.6).

Server
Object

Network

(User−Space Library)

ORB
(User−Space Library)

ORB

Client
Application

ORB Layer ("Bus")

Client Server

Figure 2.6: Client, Server, and the ORB Layer

Because CORBA is language-neutral, it defines its own interface definition language (IDL).
To create a CORBA object (i.e. one that is accesible via the ORB infrastructure), the program-
mer describes the object’s interface in CORBA IDL and provides an implementation of that
interface in an arbitrary programming language. The IDL description is then used to generate
appropriate stubs and skeletons (see fig. 2.7).

Although not a full programming language, CORBA IDL is an object-oriented language, the
syntax and object model of which are loosely based on C++. Its core constructs are:

• Interface types, which define the operations and publically visible attributes of remotely
invokable objects (for attributes, accessor operations are generated, so attributes are ac-
tually just a shorthand notation). There is also a special kind of “oneway” operations,
which are executed asynchronously at run-time. Interface types can be related by multiple
inheritance.

• Value types, which define objects that can be passed to other CORBA objects by value. The
reason for providing this construct is the same as with Java/RMI: it is a simple substitute
for true object migration (see the previous section for a discussion of this). CORBA
value types are slightly more general than Java/RMI’s mechanism, though: Similar to
“expanded” types in Eiffel, it is possible for a value type to inherit from an interface type
and vice versa. In a given method call, the actual parameter passing mechanism is then

3www.borland.com/visibroker
4www.jacorb.org
5www.mico.org

27



ORB

Skeleton
Code

ORB

Client
Proxy
(Stub)

Client Application

of Server
IDL description

Object

Server

IDL Compiler

Network

Figure 2.7: Generating Stub and Skeleton from IDL

determined by the types of the formal and the actual parameter. For example, if an actual
parameter of a value type is passed to an operation that expects an interface supertype of
it, then the parameter is passed by reference instead of by value. In effect, this means that
passing mechanisms can be decided per operation instead of per type, as under Java/RMI.

The correspondence of IDL constructs to the constructs of a given implementation language
is described in formal “language mappings.” Such mappings exist for all major programming
languages, including C, C++, COBOL, Ada, Smalltalk, and Java. It is a natural consequence of
this generality that no single programming language can be mapped entirely seamless to CORBA
IDL. This is especially true for non-object-oriented languages like C and COBOL, where the
object-oriented structure of IDL needs to be simulated by conventional language constructs.
But even for languages such as Java, which are conceptually very close to IDL, many disparities
arise (Brose 1998). The more important ones of these are:

• Strings and arrays are base types in IDL, but object types in Java. One consequence of
this is that null references to strings and arrays cannot be expressed in IDL, or passed in
remote invocations mediated by the ORB.

• IDL provides three parameter passing modes in, out, and in out, the latter two of which
have no correspondence in Java. As a result, parameters with these modes need to be
wrapped into special “holder objects” on the Java side.

• Method names are case sensitive in Java and can be overloaded, both of which is not true
in IDL.

Writing a distributed application using CORBA thus requires the programmer to adapt to
the programming model imposed by CORBA IDL. A CORBA object will look very different from
an ordinary Java object for local use, which in turn means that distribution must be designed
into the application from the very beginning. This is further reinforced by the fact that the ORB
requires various inheritance relations to be fulfilled by the application code (see fig. 2.8). Similar
to Java/RMI, this means that the inheritance hierarchy suggested by the application logic will
often be distorted (the tie approach illustrated in fig. 2.8 has been introduced to mitigate this).

CORBA does, however, go beyond being only a remote invocation facility. For one thing,
it should be noted that CORBA objects as we described them so far are not simple remotely

28



arbitrary class

written by programmer

generated from IDL

system type

Class
Interface

delegate

ServerOperations

Object
org.omg.CORBA.

ServerObjectImpl
org.omg.CORBA.portable.

ServerPOA

ServerImpl
(classical approach)

ServerPOATie

_ServerStub

IDLEntity
org.omg.CORBA.portable.

org.omg.PortableServer.

Servant

ServerImpl
(tie approach)

Figure 2.8: Inheritance Hierarchy for Interface Type Server

invokable instances: The Portable Object Adapter (POA) allows the programmer to specify
policies how an object should behave when invoked by multiple clients. For example, a separate
instance may be created for each client or a single instance might serve all requests; it may also
be specified whether requests should be serialized or may be executed in parallel.

Additionally, CORBA defines an infrastructure framework for enterprise applications in the
form of services. These include a Naming Service, Trading Service, Transaction Service, Per-
sistence Service, Security Service, Event Service, and others. All of these services are provided
in the form of APIs, generic client/server architectures, and programming conventions. This
means that although, for example, event handling does transcend the traditional object-oriented
programming model, the CORBA services do not affect the actual programming model of im-
plementation languages. This is a pragmatic solution, the obvious drawback of which is that
it leads to an awkward “simulation” of features such as event handling, which more advanced
programming languages will provide as a first-class language construct.

In summary, CORBA is a pragmatic approach to providing a distribution infrastructure
for enterprise applications, where the main focus is on interoperability between heterogeneous
platforms and programming languages. As such, distribution transparency is only a minor
objective of CORBA. Similar as with Java/RMI, pretty much the only thing that is indeed
distribution-transparent is the actual invocation of a remote object. In practically all other areas,
distribution-related issues are completely visible in the source code. A CORBA application must
necessarily be completely different from a centralized program that performs the same task.

C#

C# is Microsoft’s attempt at providing a next-generation object-oriented language for Internet
applications. The language is similar in spirit to Java, but adds constructs such as enumeration
types and value types, reference parameters, and variable-length argument lists (for a feature-
by-feature comparison of C# and Java, see Obasanjo (2001)).

Similar to Java’s RMI middleware, C# also provides a native distribution mechanism that is
commonly referred to as “remoting” (Rammer 2002). Like Java/RMI, it is an implementation of
the remote invocation model, but it seeks to avoid some of the shortcomings of Java’s approach.
In particular, the following similarities and differences can be noted (Löhr 2002):

• As in Java/RMI, classes of remotely invokable objects must inherit from a special super-
type, System.MarshalByRefObject.

29



• In C#, however, an object and its proxy do not need to share a common interface. Proxies
in C# are introduced transparently, and can be cast to the actual type of the object that
they refer to.

• Additionally, C#’s proxies are not generated by a separate, compile-time utility such as
rmic in Java/RMI, but created dynamically at run-time using class metadata.

• There are no checked exceptions such as RMI’s RemoteException in C#; the programmer
is therefore not forced to provide handlers for communications failures.

• C# programs do not need an external naming service (like the rmiregistry) to publish
object references. Binding to existing instances can be accomplished by letting the local
run-time system contact the remote run-time system, and there is also a remote object
creation mechanism that works similarly.

Despite these improvements, C#’s “remoting” suffers from some of the same shortcomings as
Java/RMI. Ironically, these shortcomings are manifest in the awkward name “remoting” itself,
which perpetuates the misunderstanding that “remoteness” were a property of an object, while
it is in fact a relation between two objects A and B. In other words, a “remote” object (even if
it was “remoted” by .NET) is usually local to other objects at the same time.

The semantics of a remote invocation, however, are slightly different from a local one, similar
to Java/RMI. If an object does not inherit from MarshalByRefObject, but is serializable, then it
is passed by value instead of by reference. Additionally, C#’s new reference parameters, when
used for serializable objects, are implemented as pass-by-value/result.

While these different semantics must not only be kept in mind by the programmer when
dealing with “remoted” objects, it is also possible to construct cases where the programmer
has no chance of knowing whether an object is really remote, and accessed via a proxy, or not.
Invocation semantics can thus be unpredictable (Brose et al. 1997, Löhr 2002).

In summary, C#’s “remoting” appears as an incremental improvement over Java/RMI, but
not a revolutionary or evolutionary one. Although it offers a higher degree of transparency, it
suffers from some of the same principal shortcomings, and, attempting to become an industry
standard, also provides only a conservative set of features, lacking, for example, object migration
or replication, which are common on recent research platforms.

2.1.3 Current Research Platforms

We use the term current research platforms for explicit distribution platforms that were devel-
oped after the introduction of the two early industry standards, CORBA and Java/RMI. This
research is at least partially motivated by the conservative nature of the standards, which these
experimental systems seek to transcend.

JavaParty

Contrary to Java/RMI’s approach, where the fact that a class is remotely invokable is almost
deliberately underlined in the source code, JavaParty (Philippsen and Zenger 1997) sets out
to make this as unintrusive as possible. A new class modifier, remote, is introduced into the
language, and a modified Java compiler translates such classes into Java/RMI “remote” classes,
while also adapting any calls from client code. As a result, making a class remotely invokable
requires no effort within the source code at all, neither on the client side, nor on the server side
(except for inserting the new modifier). To illustrate this, Philippsen and Zenger (1997) created
distributed versions of the Salishan problems (Feo 1992) both in plain Java/RMI, and with the

30



JavaParty compiler. To use Java/RMI, the source code had to grow by 66.2% with respect to a
centralized version of the programs, while in JavaParty, the number of lines remained constant.
(Actually, 2.2% of the programs’ lines had to be slightly adapted, while under Java/RMI, 75.9%
of all lines had to be added, changed, or deleted.)

JavaParty also allows more language constructs to be used remotely than Java/RMI does:

• Not only methods, but also fields may be accessed remotely; this is achieved by generating
additional accessor methods and converting client-side accesses to method calls. (There
are special methods to simulate constructs such as o.i++.)

• The static part of a “remote” class is kept as a single instance on one node of the system;
it may also be accessed remotely. (Java/RMI does not allow remote access to the static
part of a class.)

At run-time, the system is realized as a cluster of cooperating JVM processes, which must
be started before any program can actually be executed. There is thus no need for explicit name
server interaction in the program code. Whenever an object of a remote class is created, the run-
time system decides on which JVM it should be allocated; this is configurable both externally,
and via explicit calls to the run-time system from within the source code. JavaParty also allows
object migration via a call to the run-time system. Although JavaParty’s documentation is silent
about this issue, we have found experimentally and by looking at JavaParty’s source code that
object migration is weak : it fails if there is an active method on an object.

Although JavaParty obviously offers a much higher degree of distribution transparency than
Java/RMI does, it must be noted that the semantics of its “remote” types are quite different
from standard Java. As implied by the underlying Java/RMI technology, the passing modes of
parameters are affected by whether the receiving class and/or the parameter class are marked
with the remote keyword (it is not relevant whether any of these objects is actually on a remote,
i.e. distant node). The resulting parameter passing modes are the following:

receiver .method ( );parameter

local

remote

local remote

by reference by reference

by value by reference

An obvious way to restore standard Java semantics would be to make all classes of a program
“remote”. This is, however, impossible for two reasons: (a) system classes cannot be made
“remote” because the source code is not available, and (b) the performance penalty would be
prohibitive, since calls to “remote” classes are several orders of magnitude more expensive than
local Java calls. The other option is for the programmer to be aware of the different semantics
and adapt to it. This, however, means that it is not generally possible to distribute programs that
were written without distribution in mind, at least not by simply adding the remote keyword to
a few classes. Also, some consequences of the JavaParty semantics are very difficult to program
with. One of them is that it is impossible to pass local references to “remote” objects at all,
i.e. it is impossible to pass an array reference or a reference to a system object to a remotely
invokable object, not even from the local host (fig. 2.9).

31



Distribution
Boundary

cannot be
passed 

Client Object "Remote" Object

Parameter Object

Local Client

invocation

remote

invocation
local

reference

Figure 2.9: JavaParty: Cannot pass local objects to remote objects by reference

Two additional projects related to JavaParty that should be mentioned are an optimized
re-implementation of RMI’s serialization mechanism, named KaRMI (Philippsen et al. 2000),
and an effort to use static analysis to automate object placement decisions (Philippsen and
Haumacher 2000). We will return to KaRMI in our case studies in chapter 4, and the static
analysis approach when discussing our own algorithm in section 3.1.

Manta

Manta (Maassen et al. 2001) is a platform that follows the same programming model as Java-
Party does, by introducing a remote modifier for Java classes. The semantics of it are only
slightly different from those of JavaParty. In particular,

• remote field access is not possible under Manta; it is caught as a compile-time error, and

• within “remote” classes, calls to this object, as in

remote class A {
void methodA (myObject obj) { ... }
void methodB (myObject obj) {

this.methodA (obj);
}

}

are treated as local calls under Manta, whereas JavaParty translates them into remote
calls via the RMI protocol stack. The Manta approach is faster of course, although it
could be argued that it is better to maintain semantic consistency as in JavaParty.

Unlike JavaParty, Manta is a native compiler. It targets x86 architectures, and is mainly used
on the Distributed ASCI Supercomputer (DAS-2), located at the Vrije Universiteit Amsterdam
and three other Dutch universities. The local clusters of this wide-area system consist of up to
72 Pentium III PC boards, connected via high-speed backbones (Myrinet and Fast Ethernet).
The underlying communications technology is the Panda layer that was developed in the Orca
project (see page 41). Since this layer is actually capable of replicating objects, an extension

32



to Manta could be built that takes of advantage of this for replicating Java objects. We will
discuss it in the next section.

RepMI

RepMI (Maassen et al. 2000), which stands for “Replicated Method Invocation,” is a subsystem
of the Manta platform (see previous section) that allows the programmer to replicate objects.
In principle, this would not entail a diversion from Java’s standard programming model, if
replication were completely hidden from the application code. RepMI does, however, impose a
non-standard programming model in order to replicate objects efficiently.

The key idea is to replicate certain specially marked objects or groups of objects on all nodes
of a parallel application. Invocations of read-only methods of these objects can then be carried
out locally, while invocations of write methods are broadcast to all replicas using totally ordered
group communication (which is provided by the Panda software layer upon which Manta and
RepMI are built). RepMI thus uses an update protocol (as opposed to an invalidation protocol)
with function shipping.

Replicating individual objects leads to a high communication overhead when complex data
structures, such as graphs or linked lists, are to be replicated. For this reason, RepMI uses clus-
ters of objects as the unit of replication. A cluster is a programmer-defined collection of objects
with a single entry point, called the root object, and an arbitrary number of objects reachable
from the root, called the nodes. To define clusters, the programmer must mark an applica-
tion’s classes with the special interfaces manta.replication.Root and manta.replication.Node.
The compiler then ensures that references to node objects remain private to the root object. As
a consequence, the root object is the only object of a cluster that is externally visible.

RepMI classifies the methods of root and node objects into read and write methods. This
analysis is carried out partly in the compiler, and partly in the run-time system, because it is
generally undecidable at compile-time due to polymorphism. This information is then used to
carry out read operations locally, and invoke the broadcast mechanism for write operations.

To ensure that the semantics of the centralized program are not affected, the compiler imposes
several further restrictions on cluster objects:

• No remote references. Cluster objects (roots and nodes) cannot contain references to
remote objects, because this could lead to the nested invocation problem: If a method of
a replicated object a calls a write method m of a non-replicated, remote (i.e. shared)
object b, then all replicas of a would independently invoke m on b, leading to multiple
state changes. The RepMI compiler therefore disallows remote references in clusters; this
also implies that root objects can only have primitive or array or node type parameters.

• Restrictions on the use of special interfaces. Classes cannot implement both the Root
and the Node interface, because that would make it difficult to cleanly separate different
clusters from each other. As a result, there may be no references from a node object back
to the root object of its own cluster. Another consequence is that root and node objects
may not themselves be remotely invokable.

• No static variables. There may be no static variables in root and node objects, as these
could also be accessed from outside the cluster.

• Only calls to “well-behaved” methods. Within root and node objects, only “well-behaved
methods” of other classes may be called. A well-behaved method is a method which
deterministically produces identical results on all machines. This means that the im-
plementation of well-behaved methods must not depend on static variables or methods,
random generators, I/O, or the local time.

33



Clusters are always replicated on all nodes of the computing environment. Technically, the
replicas are created immediately when the root object is created on one of the nodes. The
application code on a remote node, however, can only access its local replica after the creating
node has passed a reference to it. (The fact that replicas are created on all nodes, and not only
on those that actually need them, is not a principal restriction of RepMI. It only has not been
implemented otherwise because for the kind of small-scale parallel applications for which the
platform is intended, the existing behaviour is well-suited.)

Two case studies are presented in Maassen et al. (2000). The first is a branch-and-bound
implementation of the Traveling Salesperson Problem (TSP). In this program, each processor
needs to access a Minimum object to compare its current solution to the best solution that has yet
been found. Read accesses to this object are much more frequent than write accesses. In a näıve
implementation, the Minimum object is simply a remotely invokable object shared among all
processors, but this creates a prohibitive bottleneck, resulting in no speedup at all. The authors
then created (1) a manually optimized version of the program, where the current minimum value
is explicitly transferred to all processors using remote method invocations, and (2) a program
where the Minimum object is replicated using RepMI. Both programs significantly outperformed
the näıve implementation, with the RepMI version achieving only slightly less speedup than the
manually optimized program.

The second case study is a program solving the All-Pairs Shortest Paths Problem (ASP).
Here, a Matrix object needs to be worked on by all processors in a way similar to the TSP
example. Following the same strategy as for the TSP program, the authors found that the
RepMI version achieved an even higher speedup than the manually optimized version, due to
the use of the efficient broadcast mechanism supplied by the Panda layer (which was not available
to the purely RMI-based, manually optimized version).

Javanaise

Javanaise (Hagimont and Louvegnies 1998) is a Java platform where distribution is handled
entirely via object caching; the unit of caching being a cluster of objects. A cluster is defined
as a root object along with any private objects that it contains. Via caching, the clusters are
shared between the separate parts of an application, and the run-time system can also make
them persistent by storing them on disk.

The caching mechanism is implemented via proxy objects within the application program
itself (and code transformations are used to substitute proxies for the classes written by the
programmer). According to our classification, Javanaise is therefore an explicit system, although
in an unusual sense because it uses caching, rather than remote invocation as its communication
mechanism (at the implementation level, Javanaise processes communicate via sockets).

An additional, unusual feature is that application deployment is based on applets and code
downloading. A new client can “join” an existing application by connecting to it via a web
browser; the local program is then executed as an applet within a web page. (The primary
application domain of Javanaise is collaborative work on an Internet scale.)

Javanaise clusters are defined by an external configuration description, specifying which
classes are roots of clusters (called “cluster classes” for short). One requirement that a cluster
class must fulfill is that the types of any reference parameters of its methods are also cluster
classes. This means that clusters can only import or export references to other clusters, but not
to local, intra-cluster objects. The authors claim that clusters can readily be found in normal
application designs, and need only be identified during configuration. (Additionally, the types
of all objects within a cluster need to be serializable so that clusters can be transferred over the
network.)

34



After cluster classes have been identified, interfaces are generated for them (and the original
classes renamed) to allow substitution of proxies at run-time. In a second step, these cluster
interfaces are then annotated by the programmer to specify synchronization and consistency
requirements. In the implementation reported in Hagimont and Louvegnies (1998), it is only
declared whether methods are readers or writers, which allows for a simple invalidation-based
consistency protocol. Other consistency protocols would be possible, the authors claim, possibly
via different annotations.

cluster 1 cluster 2

proxy−out

proxy−in

cluster rootcluster root

Figure 2.10: Proxy Mechanism in Javanaise

Figure 2.10 shows the proxy mechanism of Javanaise in detail. Any reference to another
cluster is realized via two proxies: a proxy-out object in the originating cluster, and a proxy-in
object in the cluster that is referenced. (Note that both clusters reside in the same address
space — there are no remote references in Javanaise.) If there are multiple references to a single
cluster, then each of the referring clusters has its own proxy-out object, but there is only a single
proxy-in object in the cluster being referred to.

The proxy-out object contains a reference to the proxy-in object, and normally forwards
all method invocations to it. The proxy-in object, on the other hand, contains a reference
to the actual root object of the cluster, and forwards all method invocations to that object.
The references within the proxy objects, however, can also be null, and this means that the
corresponding cluster is not currently cached in local memory and needs to be fetched from
where it resides. To make this possible, each cluster has a globally unique identifier, which is
also stored in the proxy objects.

Invalidating a cluster on a given node can thus be accomplished by assigning null to the
reference within the proxy-in object. In this way, a strict coherence protocol can be imple-
mented (where each cluster always resides on a single node only), but also more relaxed forms
of consistency such as entry consistency.

Doorastha

The Doorastha system (Dahm 2000a,b) follows a similar path as JavaParty and Manta do,
using Java/RMI as an underlying distribution technology, but providing a higher-level, more
transparent programming model. As in JavaParty and Manta, classes can be specially marked
as “remotely invokable”, but Doorastha gives the programmer finer control over this and the
resulting semantic effects.

Doorastha does not change the Java language itself. Instead, classes are marked with special
comments (tags) that are recognized by the Doorastha compiler. This has the advantage that
Doorastha programs can also be compiled with a traditional compiler, resulting in centralized
execution. It is also possible to mark the byte code of system classes externally, i.e. without
actually modifying their source code.

Remotely invokable classes are called global classes, which means that instances of them can
be accessed from everywhere within an entire distributed system. The term “global” is more

35



accurate than “remote” in JavaParty and Doorastha, since “remoteness” is a relation between
objects, not a property of a single object or class. This also helps to underline the point that
“global” objects do behave differently than “local” ones, even when they are not called remotely.

To make a class remotely invokable, the programmer marks it with the tag ¡globalizable¿.
As the word implies, instances of such classes are not necessarily global, but can be turned into
global instances dynamically at run-time. This happens if and only if a reference to such an
instance is actually passed to a remote node; only then is a stub and skeleton created, which
results in higher performance for globalizable objects that are only used locally.

Classes may also be marked as copyable or migratable. Instances of copyable classes may be
passed to remote nodes by value, via serialization. To mark them copyable may be regarded
as an indication of the programmer that it is semantically safe to do so, or that he is aware of
the potential consequences. Migratable classes, on the other hand, are a subset of globalizable
classes. Instances of migratable classes are remotely invokable, but may also move from one
node to another to improve performance. (Migration is essentially weak in Doorastha, with
some support for “semi-strong” migration of threads. For details, see Dahm (2000b)).

The annotations of classes specify how their instances may be used in a distributed setting.
The actual behaviour at run-time is determined by further annotating individual method pa-
rameters and instance variables. There are three possible parameter passing modes: by-refvalue,
by-copy, and by-move. The first, by-refvalue, is the standard Java passing mode (references to
objects are themselves passed by value). By-copy means to pass an object by value via seri-
alization, and by-move means to pass it by refvalue, but to move it to the remote receiver at
the same time, as in Emerald (see page 17). The same three modes may also be applied to
individual instance fields, indicating how a field should be treated when the containing object
is copied or moved: for example, if the containing object is moved to another node, any fields
of it that are annotated as by-copy are not moved along, but copied to the receiving node via
serialization.

The Doorastha compiler and the run-time system check whether the tags of classes, param-
eters, and fields are compatible (e.g. only instances of globalizable classes may be passed to
remote objects by refvalue). The compiler performs static checking of these constraints, and
generates warnings if the constraints are not guaranteed statically, but might still be fulfilled at
run-time. For example, the declaration:

public class Alpha { ... }

public /∗: globalizable ∗/ class Beta {

public void method (Alpha a) { ... }

}

generates a compiler warning, because instances of class Alpha, which is not globalizable,
are passed to possibly globalized instances of class Beta by refvalue (the standard Java passing
mode). However, this is only a warning because at run-time, the parameters might still be of a
globalizable subtype of Alpha.

Similar to JavaParty, Doorastha’s execution environment is realized as a group of cooperating
JVM processes which must be started and registered before any program can be executed on
them. It is thus possible to implement remote object creation, and the programmer may request
it by adding a special tag to allocation expressions:

Beta b = new /∗:remotenew :host=”eagle”∗/ Beta();

36



import do.shared.∗;

public class Simple Parallel {

public static void main (String[] args) {

Array tasks = new Array (N);
Array data = new Array (N);

for (int i=0; i<N; i++) {
tasks .add (new My Task(), i);
data.add (new Param(), i);

}

Par par = new Par (tasks, data);
par. call ();

}

}

Figure 2.11: A Do! Program

Doorastha is one of the back-end platforms used by Pangaea. We will therefore revisit
Doorastha in chapters 3 and 4.

Do!

The Do! system (Launay and Pazat 1997, 1998) is a framework for parallel programming in
Java. The key idea is to provide the programmer with a set of collection data types that can
be used in a distributed setting. For parallel execution, the elements of such a collection are
mapped onto distinct processors, and it is the implementation of the collection class that handles
any remote communication. A program typically defines a collection of tasks and a collection
of data. At execution time, the tasks are combined with the data elements and distributed
using an “Operator” design pattern, resulting in an SPMD-like computation that follows the
“owner-compute rule” (the processor on which a data element is mapped is the only processor
that can modify the data).

The listing in Fig. 2.11 shows the setup of a simple distributed computation. The Array
data type is one of the special Do! data types; it is used here to create distributed collections
of both tasks (threads) and of data (the classes My Task and Param are user-provided and not
shown here). To execute the collection of tasks on the data, a Par object is created in the
second-to-last line, and then invoked.

The communication mechanism that is used within the distributed collections relies on
Java/RMI. Apart from this “implicit” remote communication, the Do! system also supports
explicitly distributed programming, correcting for the deficiencies in Java/RMI in much the
same way as JavaParty, Manta, or Doorastha. The programmer can mark certain classes as
remotely accessible (implementing the marker interface Accessible); a special compiler is then
used to transform these classes into RMI “remote” classes, preserving local parameter passing
semantics via code transformations (no details are given).

37



ProActive

ProActive (Caromel et al. 1998) is “a Java library for parallel, distributed, and concurrent
computing, also featuring mobility and security in a uniform framework” (from the project home
page). ProActive was formerly known as Java// (“Java Parallel”), and is based on previous
work on Eiffel// (Caromel 1993) and C++// (Caromel et al. 1996).

ProActive is a Java platform that adheres to the remote invocation model, but it suggests
a different programming model than standard Java, based on an active object pattern. An
active object is generally defined as an object with its own thread of control. In ProActive, this
concept is applied to remotely invokable objects. An active object serves remote invocations
asynchronously: control immediately returns to the caller, while the actual request is stored in
a queue and processed later by the active object’s own thread. The fact that the invocation is
handled asynchronously is hidden from the caller via transparent futures: any object returned by
a remote call is transparently substituted with a placeholder object; the result is only retrieved
when the caller actually accesses this object.

The active object pattern can thus introduce concurrency, and hence, parallelism even into
strictly sequential programs. If there are enough places where computations are called (triggered)
well before the results are actually used, then an overlap of communication and computation
results in the distributed case, and speedup may occur. It is also possible, though, to program
active objects explicitly, thus expressing other forms of concurrency.

ProActive is implemented as a pure Java library without any language extensions or special
execution environment. The transformation of objects into remotely invokable, active objects
occurs transparently, on the fly, at run-time, by means of a meta-programming library and Java’s
built-in reflection facilities.

Making objects active can be accomplished in one of the following ways (taken directly from
Caromel et al. (1998)). A standard object creation expression:

A a = new A (”foo”, 7);

is augmented by adding a node to instantiate the object on. There are three different ways
to do this:

• instantiation-based

Object[] params = { ”foo”, new Integer(7) };
A a = (A)Javall.newActive (”A”, params, myNode);

• class-based

class pA extends A implements Active {}
Object[] params = { ”foo”, new Integer(7) };
A a = (A)Javall.newActive (”pA”, params, myNode);

• object-based

A a = new A (”foo”, 7);
a = (A)Javall.turnActive (a, myNode);

It is thus possible to integrate remote method invocation and active objects very seamlessly
into standard Java programming. The activity of an active object is realized by a transparently-

38



added thread of control that executes a special method, live. The default implementation of live
(which is added transparently to the active object itself) looks as follows6:

public void live (Body myBody)
{

while (true)
{

myBody.serveOldest();
myBody.waitARequest();

}
}

which means that requests to the object (remote invocations) are handled in a FIFO manner
(the Body object is an object of the framework that owns the actual queue of requests). The
programmer may also override the live method to specify different handling policies. For exam-
ple, the following code realizes the classical bounded buffer algorithm, where put operations are
only allowed if the buffer is not full and get operations only if the buffer is not empty:

class BoundedBuffer extends FixedBuffer implements Active
{

public void live (Body myBody)
{

while (true)
{

if (this. isFull ()) myBody.serveOldest (”get”);
else if (this.isEmpty()) myBody.serveOldest (”put”);
else myBody.serveOldest();

}

myBody.waitARequest();
}

}

One of the main design goals of ProActive has been to create a library-based solution in
100% Java, with no additions to the language, no special compiler, and no special execution
environment (it is indeed possible, and one of the stated goals, that objects can be turned
active even without access to their source code). The price that Caromel et al. pay for this
commitment is that their system cannot handle all Java constructs. In particular, instances
of final classes (which includes all arrays) cannot be reified by the metaprogramming library;
the same is true for values of primitive types. The programmer is thus somewhat restricted in
his choice of language constructs, although these restrictions can easily be overcome within the
language itself (e.g. by using the standard wrapper objects for primitive values). It could be
argued that ProActive’s limitations must eventually be blamed on the not fully object-oriented
nature of Java itself.

The case studies discussed in Caromel et al. (1998) are (1) a distributed matrix-vector
product computation, and (2) an interactive, collaborative ray tracer application where several
users can concurrently modify a scene and observe the results on their screens. The matrix-vector
product program shows performance comparative to other distributed Java platforms: the main
bottleneck is identified as the serialization mechanism used by the underlying Java/RMI. The
authors conclude that unless this is enhanced, “it is today hard to achieve speedup on a network
of workstations where the communication/computation ratio is too high.” The collaborative ray
tracer shows how complex interactions and synchronization constraints can be expressed by the

6Caromel et al. (1998) do not show the public void keywords before live when they present this example, but
since this would be illegal Java, and since one of the other examples further down in the paper does have the
modifiers, we assume it is simply an oversight.

39



live method of a central dispatcher object. It is noted that in a straightforward design of this
program, it would have been natural to make instances of a class inheriting from java.awt.Frame
active. This approach was then abandoned because java.awt.Frame is “a heavy-weight class
with a lot of public methods.” Apparently, it was necessary to work around this (by introducing
another, user-written receiver object for the remote calls) because the generated stubs for the
AWT-based class would have been too large, and the resulting overhead too high.

2.2 The Implicit Approach

Rather than to deal with distribution from within the programming language, it can also be
handled implicitly by the execution environment. The advantage of this is that it achieves
complete distribution transparency from the programmer’s point of view. The disadvantage is
that because the abstraction is made below the programming language, the resulting efficiency
can be poor.

Historically, the implicit approach was first implemented in Distributed Shared Memory
(DSM) systems (Li and Hudak 1989). The idea of DSM systems is to provide programs with
a shared address space, which is transparently realized via message passing and data caching.
When a processor attempts to access a data item that is not in local memory, it is transparently
fetched from the node where it resides, and then accessed locally on the processor that needs it.

While distribution is thus invisible to the programmer, realizing the shared memory abstrac-
tion can be quite expensive, involving much more communication and computation overhead
than with remotely invoked methods. In order to achieve reasonable efficiency, it is often nec-
essary to introduce a “relaxed” consistency model, where objects are allowed to be temporarily
out of date, in a well-defined fashion.

DSM systems can be hardware-based or software-based. The former approach is mainly used
for high-end supercomputers, while the latter approach allows to create a DSM abstraction on
ordinary hardware, such as loosely coupled PCs and workstations, and even for machines on
wide-area networks such as the internet.

The unit of distribution and caching is usually a memory page of fixed size; we call such DSM
systems page-based. This, however, may lead to the problem of false sharing when unrelated
data items happen to be stored on the same memory page. To alleviate this, one approach is to
make the shared memory object-based, which means that individual objects, rather than pages,
are transferred and cached. Since data items within an object are usually closely related, false
sharing is reduced.

When objects are cached, a given object may exist, at least temporarily, in multiple replicated
instances. To keep these replicas consistent, various protocols can be used. The two general
approaches are:

• write-invalidate, which means that when one replica is written (changed), then all other
replicas are invalidated and need to be re-fetched by their corresponding hosts, and

• write-update, which means that any change to one of the replicas is written through to all
the other replicas using a broadcast mechanism.

A variant of both of these protocol types is to allow multiple writers at the same time,
which is realized by techniques called twinning and diffing that reconcile and merge concurrent
changes.

The strongest form of consistency between all replicas would be if they had identical values
all of the time. It is impossible to achieve this, due to the non-existence of a global time. The

40



question, then, is what weaker form of consistency is realized by a given protocol. The following
forms of consistency are generally distinguished (sorted from stronger to weaker categories):

• Sequential consistency means that the effect of a program execution on a replicated object
is the same as that of an equivalent sequential execution on a non-replicated object.

• Causal consistency means that the effects of causally dependent write operations are ob-
served in the same order by all nodes. A weak form of causal consistency results if only
the effects of write operations of any single process are observed in the same order by
everyone; this is called pipelined RAM consistency (PRAM consistency).

• Weak consistency is achieved if synchronization operations are sequentially consistent, and
each synchronization operation of a process only completes if (a) all writes of the process
to external replicas have completed, and (b) all writes of other processes to this processes’
local replicas have also completed (“synchronization forces temporary consistency”).

• Release consistency is a variant of weak consistency where replicas are only updated when
synchronization objects (locks) are released. In the basic form of release consistency, the
release operation only terminates after all replicas have acknowledged the update opera-
tion. Lazy release consistency, on the other hand, is a variant where this acknowledgement
is not sent; instead each process, when it acquires a lock, requests the updates from the
process that was the last to release that lock.

For a thorough discussion of these consistency models, and further weak consistency models,
see Tanenbaum (1995).

Caching is however not the only way to handle distribution implicitly. Remote invocation is an-
other option, and has in fact been used on newer systems, often in combination with caching and
replication schemes. This underlines our thesis that the type of abstraction (implicit or explicit)
in a distributed object system is independent from the actual communication mechanisms used.

Orca

Orca (Bal and Kaashoek 1993, Bal et al. 1998) is an object-based programming language and
distributed run-time environment. Although being described by its authors as a DSM system,
its initial design dates back to before the term DSM had actually been coined. Many of the
implementation decisions in Orca are therefore somewhat unusual when compared to other DSM
systems; they do however fit well with our classification of Orca as an implicit distributed object
system.

The Orca language was developed specifically to facilitate parallel programming and allow
special kinds of compiler and run-time optimizations. The Orca run-time system is entirely
software-based and, at least in its second version, has been implemented with the explicit goal
of portability. Recently, parts of the Orca infrastructure have been re-used to build the Manta
platform with its replicated method invocation (RepMI, see pages 32 and 33).

The unit of distribution in Orca is the shared object. A shared object, defined in the Orca
language, encapsulates a number of data items and makes them accessible only via the object’s
operations. There is no inheritance or polymorphism in the Orca language, and it has in fact
been further simplified: each operation can only access exactly one object; it is not possible to
build arbitrary graphs of objects via references. Operations are atomic, which means that Orca
objects are implicitly “synchronized” and resemble monitors.

A shared object is either stored on a single machine (and invoked remotely via RPC), or
replicated on all machines of the system. Coherence between the replicas is achieved using a

41



write-update protocol with function shipping (when a write operation is invoked on a replica,
the same operation is invoked on all other replicas so that their state changes correspondingly).
Coherence between the replicas is guaranteed because the update protocol uses a totally ordered
broadcast mechanism provided by the system.

The decision whether to replicate an object, or where to store it if it is not replicated, is
taken dynamically by the run-time system, guided by analysis performed in the compiler. The
idea is that if an object has a high read/write ratio (it is much more often read than written to),
then it is worthwhile to replicate it. If the ratio is low, it should be stored on a single machine
(because the many write operations would incur a high broadcasting overhead otherwise).

To estimate the read/write ratio, the compiler computes, for each process, the pattern of
object invocations it is likely to perform at run-time. These patterns are represented in an
augmented regular expression syntax such as:

A$W; [ B$R | {C$W} ]

which means that the process will perform a write operation on object A, followed by either
a read-only operation on object B or a repetition of write operations on object C. To estimate
control flow, the compiler assumes that each branch of an if-statement is taken 50% of the time,
and that loops are iterated “many” times, with a configurable meaning of “many” (16 is reported
in Bal and Kaashoek (1993)).

At run-time, the compiler’s estimates are used to decide on an object’s initial placement
or replication. The run-time system, however, keeps track of the actual invocations performed
during execution, and gradually decreases the influence of the compiler estimates by means
of an aging mechanism. If the read/write ratio passes a certain threshold, a non-replicated
object may become replicated and vice versa. Non-replicated objects are stored on the machine
that accesses them most frequently; if this machine changes, then non-replicated objects can
effectively migrate to another machine as well.

The performance of the Orca system was studied with a suite of ten typical parallel pro-
gramming applications, including the All-Pairs Shortest-Paths problem (ASP), a Barnes-Hut
simulation, and the Travelling Salesman Problem (TSP). To evaluate the effect of the compile-
time and run-time analyses, four different versions of the programs where created:

• a manual version where all objects were optimally placed and/or replicated by the pro-
grammer

• a static version where only the estimates by the compiler where used for placement deci-
sions

• a dynamic version where only the run-time statistics where used

• a combined version where both the compiler estimates and the run-time information where
used

The result is that the automatic placement decisions at compile-time and run-time (com-
bined) come very close to the optimal placement specified by the programmer. For eight of the
ten programs, the speedup is within 1% of the optimal version, while for the other two, the
manual speedup is 8.7% and 4.6% higher, respectively.

The static and dynamic programs reveal that the run-time statistics are more important than
the compiler heuristics. Only for one of the ten programs was the combined version slightly faster
than the dynamic version with no compiler support. For another program, the combined version
was slightly slower because the compiler made a wrong initial placement decision for certain

42



objects; this decision subsequently had to be corrected by the run-time system. If the compiler
heuristics alone are used for placement decisions (the static programs), then the performance
can degrade significantly if the compiler guesses wrong. The static version of one of the ten
programs had prohibitive performance, two others could not be completed at all due to memory
problems because of wrong placement decisions.

In summary, the Orca system shows that automatic placement decisions can be as good as
manual object placement by the programmer. The most significant drawback of Orca is that
it uses a special-purpose programming language that is not fully object-oriented, and has been
kept simple precisely to facilitate static analysis.

Java/DSM

Java/DSM (Yu and Cox 1997) was one of the first DSM systems for Java. It is built on top of
the TreadMarks DSM platform (Keleher et al. 1994), as a modified Java 1.0.2 virtual machine
that places the heap into the shared memory region provided by TreadMarks.

TreadMarks, by itself, is a software-based, page-based DSM system that runs on standard
Unix operating systems and workstations. To reduce communication overhead, especially by
tackling the problem of false sharing, TreadMarks uses a lazy implementation of release consis-
tency, and features a multiple-writer protocol. With these techniques, high speedups could be
achieved for a number of standard parallel computing benchmarks.

Java/DSM does not introduce any new optimizations that would specifically exploit or sup-
port the object-oriented nature of Java. Instead, the authors focus on heterogeneity (allowing
changes of data representation within objects from one machine to another) and distributed
garbage collection.

The case study that is reported for Java/DSM is a distributed spreadsheet application that
allows collaborative work. No performance figures are given for this application, but the authors
demonstrate how the shared memory approach results in much easier programming than using
Java/RMI.

Hyperion

Hyperion (Antoniu et al. 2000) is a Java DSM platform that is built on top of an existing run-time
system named PM2 which provides lightweight threads, inter-node communication primitives,
and a generic DSM layer. Hyperion uses a special compiler that translates Java bytecode to C
code with embedded calls to the PM2 run-time system; a traditional C compiler is then used
to translate this C code into native machine code. The Hyperion/PM2 platform itself runs on
several UNIX variants using a variety of network protocols.

The DSM layer of PM2 is page-based and allows for arbitrary consistency protocols that
can be implemented by customizing a DSM page manager and DSM communication module.
Hyperion takes advantage of this to implement the special, “relaxed” consistency protocol that is
allowed by the Java language specification (Gosling et al. 2000). Rather than requiring sequential
consistency, a Java implementation is free to provide a thread with its own local memory in
which it may cache objects. At synchronization points (i.e. when a Java lock is aquired or
released), these cached objects must be flushed into main memory. A Java programmer is thus
able to require stricter forms of consistency by using the Java synchronization primitives, while
a minimal use of synchronization enables a more efficient implementation under the “relaxed”
consistency model.

In a case study, the authors compare the performance of a multi-threaded program running
under Hyperion to that of sequential versions of the same algorithm, using both Java (which
is subsequently translated into intermediate C code), and hand-written C code. The program

43



studied solves the minimal-cost map-coloring problem using a branch-and-bound approach. The
execution times (in seconds) for the sequential versions are as follows:

program version time factor

Hand-written C 63 1.00

Java via Hyperion/PM2 324 5.14

Java via Hyperion/PM2, in-line DSM checks disabled 168 2.67

Java via Hyperion/PM2, array bounds checks also disabled 98 1.56

The DSM access checks do incur a significant overhead; removing them saves nearly 50% of
the execution time. The authors speculate that a DSM system that relies on page-faults rather
than in-line access checks might give better results; see also our discussion of Jackal (page 46)
which also uses access checks, but attempts to optimize many of them away in the compiler.

However, a significant amount of performance loss, when compared to the C implementation,
is also due to the Java language itself, e.g. its strict bounds-checking of arrays. But even without
these checks, a penalty of about 56% remains, which must be attributed to the object-oriented
programming paradigm. (The authors conclude that a comparison to hand-written C++ “would
probably be more fair to Hyperion”.)

The times for parallel execution of the multi-threaded version do show a significant speedup,
however. The execution time on a single node is already slightly lower than that given for the
sequential version above (273 s), because the multi-threaded version follows a more efficient
search path for the particular problem at hand. As more nodes are added, the system achieves
between 78% and 90% of the ideal speedup.

Juggle

Juggle (Schröder and Hauck 1998, 1999) is described by its authors as “a distributed virtual
machine for Java”. It allows the distributed execution of standard, multi-threaded Java pro-
grams without any changes in the source code. This is realized by reimplementing some of the
JVM’s byte code instructions to potentially access data on a remote host. According to our
classification, Juggle therefore is a distributed shared memory system, although in an unusual
sense.

In Juggle, method invocations are always local, while data is potentially accessed remotely,
by means of the redefined byte code instructions. Unlike traditional DSM, accessing a remote
data item does therefore not result in a fault and a subsequent caching of the data item in
local memory; it is rather realized as a remote invocation at the JVM level. This may of course
result in poor performance if a method performs several accesses to instance variables. Juggle
therefore allows objects (i.e. their instance variables) to migrate to other machines, or let them
be replicated, under the control of a runtime system that monitors which thread accesses an
object most frequently.

The authors do however not give any details about the actual migration or replication mech-
anisms used; it is therefore unclear whether migration is strong or weak, or what consistency
model and update policies underlie the replication system. As a matter of fact, the authors
admit that while they did already have a working implementation of Juggle’s virtual machine,
the actual distribution of programs was only simulated.

In a case study they perform, the authors therefore demonstrate Juggle’s effectiveness merely
by counting the number of local vs. remote accesses to instance variables, with and without
migration and replication enabled. The program studied is a ray tracer that renders a given
scene; at run-time, it consists of roughly 100,000 objects of which 188 are actually “distributed”.

44



re
nd

er
()

re
nd

er
()

re
nd

er
()

re
nd

er
()

Camera

shaderay()

Scene

Framesetpixel()

se
tra

y(
)

TraceRays

Geom ObjectsShaders

RenderThreads

Figure 2.12: Call Graph of the Juggle Ray Tracer

While a distributed execution without migration or replication enabled resulted in 5.5·106 remote
accesses, this number could be reduced by a factor of 20 with migration and replication switched
on.

It is instructive, however, to take a closer look at the ray tracer program itself.7 The main
rendering loop of the program looks as follows:

public static void render(Frame f, Scene sc, int sx , int sy , int ex, int ey) {
...
Camera cam = sc.cam;
for (int y = sy; y < ey; y++) {

for (int x = sx; x < ex; x++) {
Ray r = new Ray();
cam.setray (r , (double)x / six, (double)y / siy);
Color c = sc.shaderay (r);
f . setPixel (x, y, c );

}
}

}

The render() method is executed by each of the parallel threads, with each of them using
different parameters sx, sy, ex, and ey to indicate which part of the scene should be rendered. The
render() method itself, however, is static, which means that it only exists in a single instance
according to Java’s centralized programming model. In Juggle, however, we have seen that
methods are replicated on every node of the system, and it is clear that the programmer,
in writing the ray tracer, took advantage of that implementation technique. This is further
underlined if we consider the other objects involved in the computation. Figure 2.12 shows a

7I would like to thank Michael Schröder for giving me access to the source code.

45



schematic call graph of these objects.

The graph shows that in addition to the static render() method, there is also only a single
instance of the Scene, Camera, and Frame classes, “shared” by each of the rendering threads,
with the Scene’s shaderay() method actually performing most of the rendering work.

Again, this structure only allows for parallel execution if the code of these objects is internally
replicated on each node. A perhaps more object-oriented design would be to encapsulate the
rendering logic in objects local to each thread (which could then be distributed instance-wise),
and let them operate on a shared, but passive data structure describing the scene (cp. the ray
tracer in our second case study in chapter 4). On the other hand, it could be argued that it is
good object-oriented practice to make the data objects themselves “intelligent” and let them do
the actual work.

Either way, it is obvious that the ray tracer, as it is written, can only be distributed efficiently
on a platform with implicit code replication. There is no way to achieve anything similar on a
pure remote invocation platform without replication.

Jackal

Jackal (Veldema et al. 2001a,b) is a DSM compiler and run-time system for Java that targets
x86 architectures under Unix. The focus of Jackal is to provide aggressive optimizations at both
compile-time and run-time. It is a software-based, fine-grained DSM system, where fine-grained
refers to the unit of caching, named a region of 64 bytes. Objects are stored 64-byte-aligned; an
object may occupy one or more regions, but there can never be more than one object in a given
region. This eliminates the problem of false sharing between objects, and Jackal may therefore
also be considered an object-based DSM system.

Cache coherence is realized via software access checks inserted by the compiler. The con-
sistency protocol uses a home-based approach, where the master copy of each object is kept at
the node that created the object. The protocol allows multiple writers and uses an invalidation
scheme. Jackal takes advantage of the “relaxed” memory model allowed by the Java language
specification, in that regions are only flushed to or from main memory (the home node) at syn-
chronization points. The run-time system, however, goes even further than that and minimizes
communication by a technique called “adaptive lazy flushing”. It exploits the fact that flushing
can be avoided if a region is only accessed by a single processor, or if it is only read by the
threads that access it.

Jackal’s compiler optimizations seek to eliminate superfluous in-line access checks. The
compiler employs a number of existing, conventional techniques (common subexpression elimina-
tion, full redundancy elimination, and array aggregation), and introduces two novel approaches,
object-graph aggregation and computation migration.

Object-graph aggregation allows the compiler to detect situations where a root object ref-
erences other objects, and accesses them immediately after a call to the root object. These
secondary objects can then be fetched along with the root object, and the compiler may remove
any access checks for these secondary objects. To find graphs of related objects, the compiler
uses the traditional technique of heap approximation (Ghiya and Hendren 1998, Whaley and
Rinard 1999).

Computation migration, on the other hand, means to augment the DSM approach with
remote invocation: a computation is said to migrate to a remote node if it invokes code on that
node, thereby suspending the local thread until the remote code has been executed and control
returns. This technique, which is equivalent to a remote procedure call, is used in two situations
in Jackal: First, to execute a critical region that is protected by a lock on the home node of
the lock, and second, to co-locate the execution of a thread constructor with the data created

46



by that constructor. Unlike traditional RPC or Remote Method Invocation, it is however not
the user-defined methods that are called remotely. In Jackal, it is possible to execute only part
of a method remotely (e.g. a critical region). The compiler extracts this region and wraps it
into a newly generated, remotely invokable method, passing all the relevant variables to it as
parameters.

A suite of four applications was studied to analyze the impact of Jackal’s optimizations. On
the one hand, it was found that the access checks added by the compiler without optimization
increase the sequential execution time by a factor of up to 5.5 (2.2 on average). This is a very
similar value as that reported for the Hyperion system, see page 43. When enabled, Jackal’s
compile-time optimizations reduce this overhead to a mere 0.1 on average.

To evaluate parallel performance, the programs running under Jackal were compared to hand-
optimized RMI versions of the same algorithms, where the programmer has complete control
over communication patterns. Even with the access-check elimination optimizations switched on,
the performance of the DSM programs was generally poor when compared to the RMI versions.
Only when computation migration (compile-time) and lazy adaptive flushing (run-time) was
enabled, a “reasonable to good” performance could be achieved. Of these latter optimizations,
computation migration (i.e. remote invocation on a DSM system) was shown to have the most
significant effect, without which the run-time optimizations would have been almost useless.

cJVM

The Cluster Java Virtual Machine, or cJVM (Aridor et al. 1999, 2000), is a Java DSM system
that flexibly chooses among various communication mechanisms, including remote invocation
and caching both at the class, object, and field level. The decision when to use which mechanism
is taken at run-time, based on speculative just-in-time analyses performed at the byte code level.

The goal of cJVM is to execute unmodified Java programs on clusters of workstations,
without a program being aware that it is executing on a cluster. cJVM realizes this by means
of a modified implementation of the Java Virtual Machine, in which some of the byte code
instructions are re-implemented so that they can potentially operate remotely. There is thus no
special compiler in cJVM; it can execute arbitrary Java byte code.

Communication in cJVM is based on remote invocation and proxies, although in a generalized
sense: there are special kinds of proxies that execute methods locally, rather than actually
invoking the master object remotely. This optimization is possible if (a) a method is entirely
stateless (it does not read or write any of the receiving object’s state at all), or (b) the method
only reads some of the fields of the receiver (these fields are then cached within the proxy).
A cJVM proxy contains implementations for all three of the above cases (remote invocation,
stateless method, and read-only method), and can choose either of them for each individual
method. This choice can be based either on just-in-time analysis of the application’s byte code
as it is loaded, or on observations of an object’s communication behavior at run-time.

Caching thus happens in cJVM at various levels of granularity:

• The state of classes (static fields) is speculatively cached on every node, based on the ob-
servation that this state is usually not modified after class-loading time. If this speculation
turns out to be wrong (a static field is indeed modified), then all replicas are invalidated
and the value is henceforth accessed remotely on its master host.

• For objects that can statically proven to be immutable, the entire state is cached within
the proxy. All operations thus execute locally, and there is no need for an invalidation
protocol. (Immutability is detected at class-loading time by analyzing the byte code.)

47



• Additionally, cJVM can cache individual fields of an object if these fields are read-only in
practice. A field is read-only in practice if, in a particular run of the program, the field is
not modified after the object containing it has at least one proxy. At run-time, a read-only
in practice field can be implemented as read-locally, meaning that it is cached within the
proxy. Whenever a mutable class is loaded, cJVM marks all non-static, private fields as
read-locally. If a read-locally field is modified after it is cached, the replicas are invalidated
and the field loses its read-locally status. The read-locally status is kept at a per class,
per field level, based on the observation that usually, all instances of a class will behave
similarly within a program.

Based on the above caching policies, cJVM can thus execute some methods locally on the
proxy. In particular:

• Class methods are always executed locally, since usually the static fields that they access
will be available locally too. If a field is not cached, then only that particular field is
accessed remotely, but the methods still executes locally.

• Stateless methods (detected by a simple load-time analysis) are always executed locally.

• Methods that only access read-locally fields are also executed locally. If only one read-
locally field is invalidated, though, the method will henceforth be executed remotely.

A further class of optimizations concerns object placement. To ensure that the master copy
of each object is placed onto the most suitable node (where the least remote communication
results), cJVM identifies factory methods and attempts single chance migration.

A factory method is a method that creates an object which it then returns. There is a
high probability that the invoker of a factory method will subsequently use the returned object,
therefore it will usually be best to place this object on the invoker’s node. cJVM uses a simple,
flow-insensitive, non-conservative analysis at the byte code level to identify factory methods.
To ensure correct object placement, factory methods are then always executed locally at the
invoker’s site. This way, the invoker’s site is where the master copy of the returned object
will be created. Note that cJVM can potentially execute any method locally, because the
implementation of each individual byte code instruction has been modified so that it can operate
remotely if needed.

Single chance migration tries to identify cases where an object goes through two distinct,
non-overlapping phases in which it is used by two different threads. For example, it is common
in many programs that one thread creates an object and interacts with it to set it up, then
passes it to another thread that exclusively uses it for the rest of its lifetime. In this case, it is
beneficial to migrate the object’s master copy from the first thread’s node to that of the second
thread.

cJVM tries to identify these cases by (1) finding out which classes might be eligible for the
optimization, and then (2) detecting cases where an instance of an eligible class enters the second
phase of its lifetime. Initially, the system considers all classes eligible, excepting (among others)
those that are not relatively encapsulated : a relatively encapsulated class is one whose instances
are “not too dependent” on other objects which may be left behind if an instance is moved. At
run-time, the list of eligible classes is then pruned whenever the system detects that an object is
accessed remotely after it has been migrated (the object’s class is then no longer eligible for the
optimization). A migration is triggered whenever a node receives an object it has never seen in
response to a remote request, and the class of this object is still eligible for the optimization.

In Aridor et al. (2000), a data warehouse application is reported as a case study. The program
is based on a common benchmark for enterprise-type applications and comprises approx. 10,000

48



lines of code. Executing this program under cJVM, an efficiency of 80% could be obtained on a
four node cluster. The optimizations employed by cJVM were shown to reduce the number of
remote messages significantly, down to about 10% compared to the non-optimized version.

2.3 Conclusions

Based on the individual systems that we discussed in the previous sections, a number of general
trends in the development of distributed object systems can be identified.

The platforms with explicit abstraction within the programming language differ in how
much technical detail they do make visible to the programmer, and how similar distributed
programming and local programming are on these platforms. In other words, they differ in the
amount of distribution transparency they provide.

In the one extreme, the technicalities of remote invocation or object migration are completely
hidden from the programmer, and only the location of objects needs to be controlled. This can
be done either by language primitives as in Emerald, or externally, in a separate configuration
language as in Heron. At the other end of the spectrum are platforms such as CORBA and
Java/RMI that require a lot of distribution-related programming, ultimately achieving only
shallow distribution transparency at the syntactic level of individual method calls, with the
semantics of remote invocations being actually different.

As a general trend, it can be observed that those platforms featuring their own program-
ming language that was specifically designed for distribution achieve the highest degrees of
transparency (Emerald, DOWL, also Orca). Whenever an existing language is used, compro-
mises need to be made due to the fact that the language was not designed with distribution
in mind. A striking example for this is Distributed Smalltalk which was — as the author
himself claims — heavily influenced by the contemporary Emerald project. Adapting the spe-
cial Smalltalk programming environment and philosophy to distribution, however, posed major
technical difficulties and only led to modest results.

The lowest degree of transparency is achieved by non-experimental, industry-standard so-
lutions like CORBA and Java/RMI. While this can certainly be attributed to the inherently
pragmatic nature of real-world standards, there are also more far-reaching considerations behind
this which we will examine in the following section. A striking fact is, however, that research
projects in the past five years, although they have been trying to improve on the deficiencies of
the industry standards, have not reached the level of integration that was achieved already in
the very early projects such as Emerald. One reason for this is of course, as outlined above, that
they are dealing with existing languages (mostly Java nowadays) that do not lend themselves
to easy distribution due to their design.

On the other hand, with implicit systems (where distribution is handled in the run-time
system), transparency is simply not an issue. By their nature, distribution is completely invisible
to the programmer, which makes them appealingly elegant. The big problem of these platforms
is their lack of efficiency, which researchers are trying to compensate for by ever higher degrees
of clever automatic optimizations. Despite this, implicit platforms have not really been put to
use outside of academia yet.

Another clear trend in these developments is that the communication mechanisms become
independent from the type of abstraction. While in the past, the explicit approach was invariably
tied to the remote invocation model (maybe combined with object migration), and implicit
systems predominantly used caching and replication techniques, there are now all sorts of “cross-
over” efforts: implicit systems using remote invocation as in Jackal and cJVM (although Orca
already did this ten years ago), and caching on explicit platforms as in Javanaise.

49



2.3.1 Distributed Computing: A Note on A Note

In 1994, Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall wrote an internal memo-
randum at Sun Microsystems, titled A Note on Distributed Computing. This paper has received
considerable attention far beyond Sun, not least because it served as the blueprint for the devel-
opment of Java’s standard distribution technology, Java/RMI. In 1997, the Note was officially
published in a Springer collection on “Mobile Object Systems”. We briefly referred to this paper
already in our discussion of Java/RMI (see page 24), but will have a detailed look at its line of
reasoning now.

Waldo et al. argue that distributed and non-distributed programming cannot be unified,
and they do so with considerable rhetoric effort.

Every ten years (approximately), members of the language camp notice that the
number of distributed applications is relatively small. They look at the programming
interfaces and decide that the problem is that the programming model is not close
enough to whatever programming model is currently in vogue (messages in the 1970s
[...], procedure calls in the 1980s [...], and objects in the 1990s [...]). A furious bout of
language and protocol design takes place and a new distributed computing paradigm
is announced that is compliant with the latest programming model. After several
years, the percentage of distributed applications is discovered not to have increased
significantly, and the cycle begins anew.

A possible explanation for this cycle is that each round is an evolutionary stage
for both the local and the distributed computing paradigm. The repetition of the
pattern is a result of neither model being sufficient to encompass both activities
at any previous stage. However, (this explanation continues) each iteration has
brought us closer to a unification of the local and distributed computing models. The
current iteration, based on the object-oriented approach to both local and distributed
programming, will be the one that produces a single computational model that will
suffice for both.

A less optimistic explanation of the failure of each attempt at unification holds
that any such attempt will fail for the simple reason that programming distributed
applications is not the same as programming non-distributed applications. Just mak-
ing the communications paradigm the same as the language paradigm is insufficient
to make programming distributed programs easier, because communicating between
the parts of a distributed application is not the difficult part of that application
(op.cit., pages 4-5).

The difficult part, Waldo et al. continue, lies in four distinct areas where the local and the
distributed case are separated by insurmountable differences.

• Latency. A remote method invocation takes between four and five orders of magnitude
longer than a local method invocation, and the current trends in both processor speed
and network latency suggest that this will not fundamentally change in the future. As a
consequence, Waldo et al. argue, not paying attention to distribution from the earliest
phases of development may lead to designs with insurmountable performance problems.
It must be decided right from the beginning “what objects can be made remote and what
objects must be clustered together” (op.cit., page 5).

• Memory access. Direct memory addresses are not valid outside a single address space.
Waldo et al. conclude that if local and distributed computing are unified, this means
that programmers must not use address-space-relative pointers. However, this restriction

50



could only be enforced if the ability to get address-space-relative pointers were completely
removed from the programming language. This, on the other hand, would require pro-
grammers to learn a new style of programming, and thus give up the complete transparency
between local and distributed computing.

• Partial failure. In a distributed system, some components, such as a network link or an
individual node, may fail while others still function normally. This is different from the
local case, where failures at the system level are always total. Programmers thus have two
options: they can either ignore the possibility of partial failure, resulting in each partial
failure being unhandled and catastrophic, or they must enhance all of their interfaces to
report partial failures adequately, and make all of their code prepared for these events.
This, however, would mean that local computing becomes more like distributed computing,
and not the other way round.

• Concurrency. A similar argument can be made for concurrency (parallelism). Unlike
local objects, Waldo et al. say, distributed objects must always be prepared for truly
parallel invocations. In a distributed system, there is an actual indeterminacy in the
order of method invocations, while in the local case, the programmer has complete control
over invocation order when desired. Additionally, synchronization becomes much more
difficult in a distributed system, because there is no single point of resource allocation or
synchronization. Under a unified model, the burden to handle this complexity would have
to be placed on all objects, not just on those where it is actually required.

None of these arguments against distribution transparency holds up under closer inspection.
This is of course obvious for the argument regarding memory access. Since Waldo et al. wrote
their paper, we have seen the introduction of main stream languages with all direct memory
access constructs removed (Java and C#). This has not happened for distribution reasons,
but because of the insight that direct memory access is dangerous and error-prone by itself.
For example, most security incidents on the Internet are buffer-overflow attacks, caused by the
availability of general address arithmetic in the implementation languages used. The wide-
spread adoption of Java, especially among former C and C++ programmers, shows that it has
not been overly difficult for them to adjust their habits. The memory access argument can thus
be dismissed.

Neither is there much merit in the concurrency argument. Concurrent code that only works
in a pseudo-parallel, time-sliced mode is simply wrong concurrent code. It is true that the actual
parallelism in a distributed setting often uncovers concurrency bugs that were not apparent
during time-sliced execution. This is, however, not an excuse for writing incorrect code. (It may
be added that programmers are getting better at this, now that main stream languages tend
to have some form of concurrency support built in.) Finally, it is definitely not the case that
all objects must bear the burden of concurrency. It is quite common practice to make critical
system classes non-reentrant for the sake of efficiency (e.g. Java’s collection classes or the Swing
toolkit). This does place an additional burden on the programmer to follow certain guidelines
when using such objects in a concurrent setting, but experience has shown that this is absolutely
doable.

The latency argument hinges, for a large part, on the assumption that there must be a
static, one-way decision “what objects can be made remote and what objects must be clustered
together”. While this is true for platforms such as CORBA and Java/RMI, which require
significant programmer effort to make an object “remote”, other platforms let objects easily
move around within the system, and to make an object remotely invokable can be as simple as a
run-time operation that may happen at any time without programmer effort (e.g. in Doorastha
and ProActive, but this was in fact already demonstrated in Emerald in 1988).

51



Given a highly distribution-transparent platform, it is therefore possible to select distribu-
tion strategies late in the development process, or even later, at run-time. A deeper question
remains, however: It could be that distribution requirements need to be taken into account at the
architectural level. While one design might be easy to distribute efficiently, another might not
be efficiently distributable at all.

An example is the TSP program studied in the RepMI project (see page 34). Here, the
currently best route is stored in a Minimum object accessible to all processors. If this is indeed
realized as a single object, the latency of remote invocations causes the performance to degrade
prohibitively. With a different design, where there is no Minimum object, but the minimum
value is broadcast to all processors explicitly, much better performance results. Almost the same
performance, however, was achieved by replicating the Minimum object transparently using the
RepMI facility.

This suggests that the more sophisticated distribution platforms become, the more likely
distribution requirements will not need to be incorporated at the design level. If, on the other
hand, distribution does need to influence the design in a particular case, there is still no reason
why the distribution aspect should not be handled as transparently as possible. (Even if I need
to make different objects so that I have fewer remote invocations, there is no reason why the
remote invocations shouldn’t be transparent nonetheless.)

Last but not least, the issue of partial failure is indeed difficult. There are however answers
to it, if only partial ones.

• First, there are entire application domains where partial failure simply isn’t an issue. An
example is scientific computing. If one of the processors of a supercomputer fails during a
program run, there is usually no point in trying to mask this failure – one simply discards
the program results, repairs the fault, and starts over. In a domain such as this, it is
perfectly acceptable to require the entire distributed system to be fault-free, just like a
single computer. If a fault does happen, the application should, if possible, be shut down
in an orderly manner, but this is something that can well be done by the distribution
platform, not by the application.

• Second, there are other domains where partial failure indeed cannot be ignored. Client-
server computing on an Internet-wide scale is one of them. But while the problem must
be acknowledged, we don’t believe that the solution put forth by Waldo et al. is accept-
able. In Java/RMI — the brainchild of the authors of the Note —, any remote operation
may throw a RemoteException that signals a communications failure (which may also be
due to a problem at the remote host itself). There are 19 immediate subtypes of this ex-
ception type, including, for example, NoSuchObjectException, ServerError, ServerExcep-
tion, ServerRuntimeException, SkeletonMismatchException, and UnknownHostException.
Moreover, since RemoteException is a “checked exception”, the programmer must pro-
vide a handler for these exceptions with every remote call. What, however, is a program
supposed to do in response to an UnknownHostException? In the vast amount of cases,
there will still be no option except to shut down the application. Sophisticated retry and
replication schemes that could mask the failure, on the other hand, are too complicated to
be implemented within the application logic. There is a need for infrastructures that can
mask failures, but for very practical reasons, these need to be shielded from the application
logic as far as possible.

Despite the decided tone of their paper’s opening, none of the concrete, technical arguments
raised by Waldo et al. holds up under closer inspection. It would of course not be logically
sound to infer from this that their initial thesis — that local and distributed computing cannot
be unified — is wrong. It means, however, that we are on our own to evaluate it.

52



From our understanding of the history of computing, it is a history of abstraction. Abstrac-
tion, in turn, means to unify disparate low-level concepts under new higher-level concepts. In
this way, processor registers and main memory locations have been unified under the concept of
variables. The different increment instructions on different processors have been unified in C’s
++ operator. Paging strategies and memory architectures have been unified by virtual memory.

An important thing to note about these unifications is that usually, they don’t result from
subsuming one of the exisiting concepts under another, also existing concept. Instead, they
work by establishing a new concept that is capable of covering all the existing ones. The implicit
assumption of Waldo et al., that distribution transparency means to make distributed computing
just like local computing, is therefore questionable. In fact, when local and distributed computing
are unified, neither of them is likely to come out entirely unchanged. An example of this is the
trend towards abstract references in programming languages (which can be implemented as
addresses within main memory, but also as network references), along with the abolishment of
unshielded address arithmetic.

It could be that the final argument in favour of distribution transparency is that people are
simply trying. Ever since the introduction of Java/RMI, researchers have been dissatisfied with
its non-transparent nature, and sought ways to improve on it. We have discussed many of these
projects in the previous sections, and observed how they have actually come quite far in unifying
local and distributed computing.

2.3.2 The Need for Static Analysis

If distribution is a low-level concept, and ought to be hidden under an abstraction layer as far
as possible, the question which abstraction is the right one still remains. We have seen that
both the explicit approach (handling distribution from within the programming language) and
the implicit approach (handling distribution within the execution environment) do provide such
an abstraction.

Implicit abstractions are more complete than explicit ones because they hide the entire
distribution aspect from the programmer. Implicit Java platforms are often described as a
means to consider a cluster of workstations as a single JVM. By contrast, explicit systems do
require some work on the part of the programmer to make objects remotely invokable, to identify
clusters, and to arrange their placement, e.g. via remote object creation. This amount of work
is becoming less and less with more recent platforms, but it is nonetheless there.

Implicit abstraction tends to be less efficient than explicit abstraction, though. We have seen
this demonstrated in the Jackal case studies (see page 47); there is also a study that compares
Hyperion (page 43) and Manta (page 32) in this regard (Kielmann et al. 2001). The general
observation is that the implicit platforms, at best, come close to the performance of equivalent
programs written for explicit platforms. The reason for this is that with explicit platforms, the
programmer has finer control over the communications patterns within an application. With
implicit systems such as Distributed Shared Memory, there is usually more network communi-
cation and protocol overhead than would strictly be needed, due to the problem of false sharing
and the fact that an abstract consistency model needs to be maintained, not one that is defined
by the logic of the application.

Due to the nature of implicit abstraction, there is hardly anything that the programmer can
do to optimize performance (except choosing a different object structure that maps better to
the underlying system). The only way to compensate for the performance loss is therefore to
perform extensive analysis both at compile-time and run-time, and use the results to enable all
sorts of run-time optimizations. Orca, Jackal, and cJVM are examples of platforms that do this.

There is a higher potential for optimization with explicit platforms, because they allow finer

53



control over an application’s communication patterns. This potential for optimization, however,
is usually left entirely to the programmer (unlike with implicit systems, it can be left to the
programmer because at least aspects of the distribution are usually visible in the source code,
and can be controlled programmatically).

As a result, the programmer must decide

• where to place objects,

• which objects must be remotely invokable,

• when to use object migration or object caching.

Having decided on these issues, the programmer must then implement them on the distribu-
tion platform at hand, which can be more or less work, depending on the degree of distribution
transparency provided by that platform.

The Pangaea system that we will describe in the remainder of this thesis is meant to fill this
gap. It is a distributing compiler, the frontend of which uses static analysis to find distribution
strategies for a program under the remote invocation model. The backend is a code generator
that can implement these strategies on a given distribution platform. At run-time, this is
complemented with a generic migration subsystem that can move objects to other locations
based on their actual communication behavior.

54


