
5 Validation

In this chapter, the performance of the developed cloud detection algorithm will be

quantified by means of independent cloud coverage measurements. Beforehand, the exact

objectives and principle limitations of cloud detection will be specified.

A universal cloud detection should satisfy each of the following five requirements:

1) Each actually cloud free case shall be detected as cloud free.

2) Each pixel classified as cloud free shall be in fact cloud free.

3) Each actually cloud covered case shall be detected as cloudy.

4) Each pixel classified as cloudy shall be in fact cloud covered.

5)  In average, the cloud detection shall produce bias-free results to be applicable 

for deriving cloud coverage statistics.

The first four points lead to the results that a pixel shall be categorized only as

non-classifiable (undecided), if its actual cloud coverage is ambiguous, meaning that the

pixel encloses fractional sub pixel cloud coverage. Due to pixel diameters of several

kilometers, this would lead to a tremendous amount of non-classifiable pixels.

Consequently, high classification rates are only obtainable at the expense of requirement

2) and 4), by classifying also a huge amount of pixels with fractional sub pixel cloud

coverage.
Maximilian Reuter, FU Berlin
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Naturally, the results of a cloud detection algorithm distinctly depend on the underlying

definition for clouds. Definitions based on e.g. the total water path, the impact on the

radiation budget, or the visual recognizability are possible. The cloud definition used for

the developed cloud detection scheme could be specified by the cloud-visibility within

one of the channel combinations utilized for the manual classification (section 4. 2).

Exemplarily the neural networks nig_sea_nn and nig_sea_acs_nn introduced in

section 4. 2, have been confronted with simulated channel brightness temperature data

from clouds with varying total water path and cloud top pressure. The post processed

network outputs are shown in figure 5-1. High and therefore cold clouds are already

detected at total water path values of only  to  with high confidence

values. The nig_sea_acs_nn network, using BTACSBTE, is inferior in detection of low

clouds even with large total water path. In all likelihood, low 

differences are overestimated by this network. However, the improved capability of low

level cloud detection by the nig_sea_nn network is associated with the fact that cloud free

cases are classified with confidence values of only 0.90 to 0.95, at best. In addition the

nig_sea_acs_nn  network produces less frequent ambiguous results with low confidence

values. On the basis of figure 5-1, it can be estimated that the developed cloud detection

algorithm is sensitive to the total water path in the range of approximately  to

. Assuming a homogenous cloud consisting of droplets with an effective radius

of , the corresponding optical thicknesses at 550nm  can be estimated to

0.125 and 12.5, respectively by the following equation [Stephens, 1994].

(5-1)

 stands for the density of water ( ). In the following, the performance of three

different cloud detection algorithms based on the developed neural networks will be

analyzed: the FUBno ACSBTE algorithm, based on those neural networks that do not use

BTACSBTE, the FUBACSBTE algorithm, based only on neural networks using BTACSBTE,
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and the FUBACSBTE(night,twilight) algorithm using BTACSBTE only at nighttime and under

twilight conditions. The latter has been identified as the superior algorithm and is

recommended for routine cloud detection.

5. 1 Data basis and validation methods

5. 1. 1 Synoptical observations

Synoptical (synop) observations are made according to a standardized procedure at fixed

times of the day at the stations of the national synop observation networks. Parameters

describing the current meteorological situation, including the total cloud coverage and the

cloud base height (CBH) among others are reported. In general, both parameters are not

automatically measured, but are manually estimated by a meteorologist. The total cloud

coverage is given in octas. The observing meteorologist is supposed to report 0 or 8 octas

only if the entire field of view is completely cloud free or cloud covered, respectively. If

there is any fractional cloud coverage in the field of view, the total cloud coverage is

Figure 5-1: Post processed neural network output of the networks nig_sea_nn (left) and nig_sea_acs_nn
(right) depending on the total water path and the cloud top pressure. XTRA simulated TOA brightness
temperatures of a hypothetical water cloud with droplet effective radius of 6µm have been used as input
data. Additionally the confidence levels 50%,  80%,  90%, and  95% are illustrated.
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estimated between 1 and 7 octas as linear as possible, thus e.g. 4 octas corresponds to a

total cloud coverage of 0.5. 9 octas shall be reported if there is fog in the field of view, or

if the cloud coverage cannot be determined for any other reason. These cases have been

excluded from the validation dataset.

The synop cloud coverage estimation profits from the powerful human pattern recognition

capabilities, but the disadvantage is, that the results are only of subjective nature.

Investigations e.g. of Mohr [1971] and of Hahn et al. [1995] prove that the synop cloud

coverage estimation differs from linearity and varies from daytime to nighttime. In

Rossow et al. [1993] it is also noted that actually “sky cover is not the same quantity as

the earth cover seen from a satellite viewing the nadir point”.

Many ground-based instruments like ceilometers, LIDARs, or cloud RADARs can

determine with high reliability the cloudiness and also the cloud base height. But

generally, results of these instruments represent only a narrow region above the

instrument, while the synop observation is only limited by the range of vision, usually

30km to 50km [Henderson-Sellers et al., 1987]. This becomes important when

comparing cloud coverage measurements to satellite pixels with diameters of at least 3km,

where homogenous cloud coverage within a pixel cannot be presumed. Systems as

described in Dürr and Philipona [2004], deriving the total cloud amount by

measurements of the surface longwave downward radiation are only rare compared to

synop stations.

Europe wide, there is a dense network of synop stations, generating three-hourly reports

on the meteorological situation. As the station density in SEVIRI’s field of view outside

of Europe is much lower, the validation region has been limited to Europe. Additionally,

it should be noted that the part of sea-based synop reports e.g. from ships or oil rigs is

negligible compared to the part of land-based synop reports.
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Altogether, 1378165 synop reports within the long-term validation phase from

July, 1st 2004 to December, 31st 2004 and additionally 35022 within the short-term

validation phase from June, 3rd 2004 to June, 8th 2004 have been used for validation

purposes.

All analyzed synop data has been provided by Dr. E. Reimer, Freie Universität Berlin.

5. 1. 2 Statistical methods

To quantify the quality of a categorizing cloud mask (derived from the cloud detection

output) by means of independent measurements like synop reports, several performance

quantities can be calculated from the contingency table A given by table 5-1.

All synop reports with total cloud coverage of 0 or 1 octa are classified as cloud free.

7 and 8 octas are rated as cloud covered. The remaining reports with total cloud coverage

between 2 and 6 octas are classified as undecided.

As the SEVIRI pixels are generally much smaller than the field of view of a synoptics and

as there is no information on the spatial distribution and position of fractional cloud

coverage within the synoptics’ field of view, non of the undecided synop reports can be

used for quantifying the performance of cloud detection and masking without restrictions.

A synop reported cloud coverage of only 2 octas could e.g. properly be classified as cloud

covered, if the SEVIRI pixel covers only the cloudy part of the synoptics’ field of view.

cloud mask

cloud free undecided cloud covered

sy
no

p

cloud free

undecided

cloud covered
Table: 5-1: Contingency table A. The matrix elements  represent frequencies of occurrence.

A1 1, A1 2, A1 3,

A2 1, A2 2, A2 3,

A3 1, A3 2, A3 3,

An m,



80 5 Validation
The risk of accidentally observed complete cloud covered or cloud free pixels when synop

reported 1 or 7 octas, respectively, is neglected in support of the total amount of validation

data. The number of unambiguous synop reports with 0, 1, 7, or 8 octas utilized for

quantifying the cloud mask performance amounts to 896865 within the long-term

validation phase and to 21481 within the short-term validation phase.

Consequently for the contingency table applies:

(5-2)

The undecided synop reports between 2 and 6 octas have been analyzed for qualitative

estimation of the sensitivity of the cloud detection to fractional sub pixel cloud coverage.

This will be described in section 5. 2. 5. Additionally, they are used for calculation of the

bias between the mean cloud coverage derived from the cloud detection algorithm and

from the synop reports.

In order to obtain a categorizing cloud mask, a confidence threshold  between 0.5 and

1.0 has been defined dividing the cloud detection output (representing cloud covered

probabilities) into the categories clear sky, undecided, and cloud covered. The scheme to

categorize the cloud detection output is shown in figure 5-2 and will be discussed more

detailed in section 5. 1. 3.

The cloud mask performance has been quantified by the following statistical parameters:

• The probabiltiy of the cloud mask hitting a cloud free synop report in 

percentage:

, (5-3)

• the probabilty of the cloud mask hitting a cloud covered synop report in 

percentage:

, (5-4)

A2 1, A2 2, A2 3, 0= = =

ct

CM hits cloud
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A1 i,
i
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CM hits
cloudy synop

A3 3,

A3 i,
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∑
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• the probability of the synop report confirming a cloud free cloud mask 

classification in percentage:

, (5-5)

• the probability of the synop report confirming a cloud covered cloud mask 

classification in percentage:

, (5-6)

• the probability of accordance of cloud mask and synop report often referred 

to as “proportion correct” (e.g. in Stephenson [2000]) in percentage:

, (5-7)

• the percentage of undecided cloud mask cases of overall  cases:

, and (5-8)

• the generalized Kuipers skill score KSS as defined in Wilks [1995]:

. (5-9)

In addition to these statistical parameters, the overall bias of all cloud detection outputs

compared to the corresponding synop reports (including undecided cases) defined as

difference between their mean values have been calculated.

The Kuipers skill score (also referred to as Hanssen and Kuipers discriminant, Peirce skill

score, or true skill statistic) is often utilized to describe the performance of a forecast or

measurement in relevance to an assumed truth. In contrast to the proportion correct which

is heavily influenced by the most common category, the Kuipers skill score is also suitable

for data with asymmetrical distributions (e.g. more cloudy than cloud free cases). Its value

synop confirms
cloud free CM
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can be interpreted as accuracy of the forecast/measurement in predicting the correct

category, relative to that of random chance. It is not interpretable as intuitively as e.g. the

probability for correct cloud free measurements, but in exchange it is suitable to describe

the cloud mask performance by only one number. The Kuipers skill score would be 1 only

if the forecast was always true, 0 if the forecast was randomly chosen, and -1 if the

forecast was always contrary to the truth. In Woodcock [1976], the Kuipers skill score is

recommended to be the most suitable skill score for scientific and administrative

purposes.

Referring to BMRC [2004], the non-parametric bootstrap method, introduced by

Efron [1979], is ideally suited to estimate confidence intervals of verification scores like

the Kuipers skill score. As briefly described in BMRC [2004], the non-parametric

bootstrap procedure is quite simple: 1) Generate a bootstrap sample by drawing (with

replacement) a random sample of N cloud detection output/synop pairs from the full set

of N samples. 2) Compute the verification statistic (e.g. Kuipers skill score). 3) Repeat

steps 1 and 2 numerous times. 4) Calculate e.g. standard deviation or confidence intervals

of the verification statistic from the results of step 3. In the following, any margins of error

concerning the quality of cloud detection or masking have been derived by calculating the

standard deviation of 100 bootstrap samples.

5. 1. 3 Categorizing the output of the cloud detection algorithm

As described in the latter section, a confidence threshold  in the range of [1.0, 0.5] is

utilized to categorize the network output in clear sky, undecided, and cloud covered cases.

Therefore, the confidence value  of the network output  is defined analog to

equation (4-4) and the categorizing is done as shown in figure 5-2.

Based on the synop long-term validation dataset, the influence of  on the accordance of

the cloud mask with the corresponding synop reports has been analyzed. The results are

given in figure 5-3. The statistical parameters given by equation (5-3) to (5-9) are depicted

ct

conf out

ct
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in respect to different values of  for the three algorithms FUBnoACSBTE, FUBACSBTE,

and FUBACSBTE(night,twilight). As expected, while decreasing  from 0.98 to 0.5, the ratio

of undecided cases falls smoothly from more then  to . With the decreasing ratio

of undecided cases, the probability of the cloud mask hitting a cloud free synop report

increases by about . The same applies to the probability of the cloud mask hitting a

cloud covered synop report. Compared to this, the probability of the synop report

confirming the cloud mask decreases only marginally at the same time. This means that

the major part of cloud detection outputs with low confidence values can be categorized

reliably, too. This is confirmed by a monotonic increasing Kuipers skill score and a

monotonic increasing proportion correct which both reach their maxima at the confidence

threshold 0.5. Thus, all further validation studies are based on this confidence threshold

value.

It stands out that generally the FUBACSBTE(night,twilight) algorithm produces best results,

followed by the FUBACSBTE algorithm. The reasons for this behavior will be discussed

in section 5. 2. 1.

Figure 5-2: Scheme to categorize the cloud detection output by its confidence value  (defined analog
to equation (4-4)) and the confidence threshold .
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Figure 5-3: Cloud mask performance for the algorithms FUBnoACSBTE, FUBACSBTE, and
FUBACSBTE(night,twilight) dependent on the confidence threshold  varying from 0.98 to 0.5.ct
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5. 2 Long-term validation

5. 2. 1 General performance

The overall performance of cloud detection and masking within the half year long-term

validation phase from July, 1st 2004 to December, 31st 2004 was derived for the different

FUB algorithms. Table 5-2 shows that at nighttime and even more under twilight

conditions, the usage of BTACSBTE leads to better results in all investigated categories,

except for the bias that does not change much. The Kuipers skill score increases from

0.634±0.001 to 0.658±0.001 at nighttime and from 0.655±0.002 to 0.699±0.002 at

twilight. For the neural networks for twilight conditions, it seems that the usage of

BTACSBTE can compensate the missing or ambiguous BT039 information. This behavior is

contrary to that at daytime, where the usage of BTACSBTE leads to a larger negative bias

and less performance in the categories “CM hits cloudy synop” and “synop confirms

cloud free CM”. As a result, the Kuipers skill score decreases from 0.858±0.001 to

0.811±0.001. Especially for low, warm clouds over land, where the BTACSBTE data is less

accurate than over sea, the channels in the visible spectral region provide much more

information on the cloud coverage than BTACSBTE does. An over-interpretation of

BTACSBTE when creating the training dataset might be the reason for the fact that the

additional usage of BTACSBTE reduces the cloud detection quality at daytime. As the

daytime networks are only utilized for 30.8% of all cases, the disadvantages of the

FUBACSBTE algorithm at daytime compared to the FUBno ACSBTE algorithm are

compensated by the advantages at nighttime and twilight in the overall statistic. To

combine the strengths of both, the FUBACSBTE(night,twilight) algorithm was defined

utilizing BTACSBTE information only at nighttime and twilight. This algorithm leads to

best overall results. Its Kuipers skill score amounts to 0.724±0.001, its proportion correct

is 86.96±0.04% and its bias of -0.0100±0.0003 is rather small.
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In order to estimate the quality of cloud detection and masking over possibly snowy

surfaces, 10679 synop reports from stations higher than 2000m have been analyzed. The

FUBACSBTE(night,twilight) algorithm produced the best results, although a Kuipers skill

score of 0.67±0.01, a proportion correct of 81.0±0.6% and a bias of 0.087±0.005

indicate that discriminating clouds from snowy surfaces is not trivial and leads to an
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51.6
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±0.09

87.77
±0.06

80.04
±0.09

84.73
±0.07

82.98
±0.05

0.634
±0.001

0.0411
±0.0005

FUBACSBTE
77.98
±0.09

87.84
±0.06

80.62
±0.10

86.02
±0.06

83.96
±0.05

0.658
±0.001

0.0362
±0.0005
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t FUBno ACSBTE
17.6

79.90
±0.20

85.62
±0.10

68.00
±0.19

91.76
±0.09

84.04
±0.10

0.655
±0.002

-0.0372
±0.0008

FUBACSBTE
82.95
±0.18

86.97
±0.10

70.89
±0.20

93.02
±0.08

85.86
±0.09

0.699
±0.002

-0.0399
±0.0009
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FUBno ACSBTE
30.8

93.78
±0.06

91.97
±0.07

86.94
±0.11

96.29
±0.04

92.63
±0.05

0.858
±0.001

-0.0568
±0.0004

FUBACSBTE
93.66
±0.08

87.40
±0.08

80.89
±0.13

96.03
±0.05

89.67
±0.06

0.811
±0.001

-0.0844
±0.0006
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FUBno ACSBTE

100

81.76
±0.07

88.64
±0.04

80.43
±0.07

89.49
±0.04

86.14
±0.04

0.704
±0.001

-0.0072
±0.0003

FUBACSBTE
83.46
±0.07

87.53
±0.04

79.27
±0.07

90.26
±0.04

86.05
±0.03

0.710
±0.001

-0.0197
±0.0004

FUBACSBTE(n.,t.)
83.50
±0.06

88.94
±0.04

81.18
±0.06

90.42
±0.04

86.96
±0.04

0.724
±0.001

-0.0100
±0.0003

Table: 5-2: Summarizing statistics describing the cloud detection/masking performance of the FUB
algorithms during the whole long-term validation phase. The overall results for the FUB algorithm that is
recommend for routine operation are gray-shaded.
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overestimation of cloudiness in these cases. In Kästner and Kriebel [2001] an alpine

cloud climatology is described. For this publication the APOLLO cloud detection scheme

was utilized. Its overestimation of cloudiness for non-vegetated (possibly snowy) surfaces

is specified with 15%. According to Rossow et al. [1993], the ISCCP cloud detection

algorithm seems to behave contrary to this, as there is an underestimation of cloudiness

over polar land surfaces of about 22%.

5. 2. 2 Land/sea differences

As different neural networks and different thresholds IDT and EDT (section 3. 2. 2) are

used for land and sea surfaces, the land/sea dependency of the cloud detection and

masking performance has been analyzed for the FUBACSBTE(night,twilight) algorithm which

is recommend for routine operation. The results are given in table 5-3. The column

“number of synop reports“ shows that only approximately 10% of the analyzed synop

reports are assigned to sea surfaces according to SEVIRI’s land/sea mask. The

FUBACSBTE(night,twilight) algorithm produces in nearly all analyzed categories better

results over land surfaces. Solely, the probability of the synop report confirming a cloud
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FUBACSBTE(n.,t.)

1237838 83.85
±0.07

89.23
±0.05

80.90
±0.08

91.03
±0.04

87.33
±0.04

0.7308
±0.0008

-0.0093
±0.0004

se
a 140327 81.12

±0.20
85.86
±0.16

83.15
±0.18

84.08
±0.17

83.66
±0.12

0.6697
±0.0025

-0.0157
±0.0012

Table: 5-3: Summarizing statistics describing the overall cloud detection/masking performance of the
FUBACSBTE(night,twilight) algorithm depending on land/sea.
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free cloud mask classification is reduced slightly over land. This complies with the fact

that most of the land-networks are more effective in classifying the samples of their

training and test datasets with higher confidence levels.

5. 2. 3 Seasonal features

Using the Kuipers skill score as performance index, it was analyzed in which manner

seasonal features affect the quality of cloud masking. Figure 5-4 shows, that the cloud

masking performance is reduced in fall and winter with simultaneously increased

variability. The lowered performance in these seasons can be a consequence of less

contrasts between clouds and surfaces in the thermal channels due to colder surfaces or in

the visible channels due to snowy surfaces. Furthermore, the daytime networks are less

often utilized in fall and winter. The quality difference between the three tested algorithms

shows no seasonal effect. For almost every day, the FUBACSBTE(night,twilight) algorithm

produces the best results.

Figure 5-4: Seasonal evolution of cloud mask performance on a daily basis expressed by the Kuipers skill
score. The overall values are given by the dashed lines.

FUBACSBTE (night,twilight)

FUBACSBTE

FUBno ACSBTE

Jul 01 Aug 01 Sep 01 Oct 01 Nov 01 Dec 01
date

0.2

0.4

0.6

0.8

1.0

K
S

S



5. 2 Long-term validation 89
5. 2. 4 Influence of the cloud height

In section 5. 2. 1 it was already suggested that an overvaluation of BTACSBTE compared to

the information from the visible channels while creating the training dataset might be the

reason for the lowered performance of the daytime networks utilizing BTACSBTE. In the

introduction of chapter 5, the neural networks nig_sea_acs_nn and nig_sea_nn have been

confronted with simulated SEVIRI data. Consistently, it was shown that the usage of

BTACSBTE is advantageous for the detection of clear sky cases with high confidence values

but disadvantageous for the detection of low clouds.

All cloud covered synop reports from the long-term validation phase have been analyzed

in respect to the estimated cloud base height (CBH) which is part of each synop report.

When confronting the neural networks with measured data, the statistic in figure 5-5

shows that the usage of BTACSBTE only at daytime leads to a smaller probability for

detecting low clouds. Overall, the best results for detecting clouds with CBH less than

1000m have been obtained using the FUBACSBTE(night,twilight) algorithm. In addition,

figure 5-5 shows that for clouds with CBH greater than 2500m, the probability of

detection is reduced again. This can be explained by the fact that these clouds are often

cirrus clouds with low total water path and therefore hard to detect. The effect, that the

probability for detection of high clouds is greater at nighttime than at daytime might be a

result of differing synoptical cirrus detection quality.

5. 2. 5 Sensitivity to fractional cloud coverage

In section 5. 1. 2 it was suggested, that ambiguous synop reports with cloud coverage

between 2 and 6 octas can be utilized for a qualitative analysis of the cloud detection

algorithm’s sensitivity to fractional sub pixel cloud coverage.
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For unambiguous synop reports with cloud coverage of 0, 1, 7, or 8 octas, the probability

of fractional cloudiness within the corresponding SEVIRI pixels is negligible. Assuming

hypothetically, all SEVIRI pixels would have no fractional sub pixel cloud coverage, even

for all ambiguous synop reports. In this case there should be a linear relationship between

the synop reported cloud coverage and the mean corresponding cloud detection output in

the range of 1 to 7 octas. Without doubt this hypothesis is erroneous, because the

probability to stumble on fractional cloudiness within a SEVIRI pixel will have its

maximum somewhere between 2 and 6 octas synop reported cloud coverage. For this

reason, the deviation from linearity of the statistical relationship between synop and cloud

Figure 5-5: Influence of cloud base height (CBH) taken from synop observations on the probability of
cloud detection. The x-axis gives the estimated minimum level of cloud base height, so that 2500m
represents all clouds with a cloud base height greater equal 2500m.
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detection output allows qualitative conclusions on the cloud detection algorithm’s

sensitivity to sub pixel cloudiness. A curve progression below linearity indicates that sub

pixel cloud fraction is more often interpreted as cloud free while a curve progression

above linearity indicates the contrary. In the case of a linear relation, neutral sensitivity to

sub pixel cloud fraction can be assumed.

Figure 5-6: Sensitivity of cloud detection to sub pixel cloud fraction under daytime, twilight, and
nighttime conditions and in the overall average. Curve progressions below the depicted linearity indicate
low sensitivities while a curve progressions above linearity indicate the contrary. For reasons of simplicity
in each plot the linearity is depicted only for the FUBACSBTE(night,twilight) algorithm.
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Of course, the whole argumentation applies only if the synop observations between 1 and

7 octas have a linear relationship to the actual cloud coverage. As already mentioned in

section 5. 1. 1, this assumption is only a rough approximation [Mohr, 1971].

Nevertheless, this investigation is suitable for a qualitative comparison of different

algorithms among themselves.

Figure 5-6 shows that all compared algorithms have a lower sensitivity to fractional sub

pixel cloudiness at daytime and twilight than at nighttime and in the overall average. This

is one reason for the underestimation of the mean cloud coverage at daytime and twilight,

expressed by negative bias values (table 5-2). A possible reason for non-linear sensitivity

to fractional sub pixel cloud coverage is the non-linearity of BT039 to the sub pixel

temperature composition (figure 2-6 and figure 2-22).

5. 3 Short-term validation

5. 3. 1 General performance

The Institut für Weltraumwissenschaften contributes to the cloud top pressure validation

project of EUMETSAT (ITT 03/527). As incorrect cloud masking can cause large errors

in cloud top pressure processing, the performance of the EUMETSAT cloud detection

was analyzed by means of synoptical observations. The results have been compared to

those from the FUB cloud detection.

The investigated EUMETSAT cloud mask has been briefly introduced in chapter 1. A

detailed algorithm description can be found in EUMETSAT [2004a]. As the EUMETSAT

cloud mask is part of the EUMETSAT cloud analysis (CLA) product, it will be referred

to as EUMETSATCLA in the following.

The analyzed data extends over the total cloud top pressure validation project’s second

measurement phase from June, 3rd 2004 to June, 8th 2004. Table 5-4 summarizes the

general performance of cloud detection and masking within this period. The results for the
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EUMETSATCLA
87.3
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±1.2
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±0.5

88.8
±0.6

0.794
±0.011

-0.062
±0.005

EUMETSATCLA
90.1
±1.0
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±0.8
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±1.2
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±0.6
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±0.6
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±0.011
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±0.007
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±0.005
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±0.002

FUBACSBTE
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±0.3

87.8
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79.7
±0.6

96.3
±0.2

89.7
±0.3

0.812
±0.005

-0.102
±0.003

EUMETSATCLA
91.5
±0.4

86.1
±0.4

77.1
±0.6

95.2
±0.2

87.9
±0.3

0.776
±0.006

-0.093
±0.003
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l
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100

82.5
±0.4

91.8
±0.2

86.8
±0.4

88.9
±0.3

88.1
±0.2

0.743
±0.005

-0.008
±0.002

FUBACSBTE
89.0
±0.3

88.2
±0.3

83.1
±0.3

92.5
±0.2

88.5
±0.2

0.772
±0.004

-0.049
±0.002

FUBACSBTE(n.,t.)
89.2
±0.4

91.5
±0.2

87.2
±0.4

92.8
±0.2

90.6
±0.2

0.807
±0.004

-0.026
±0.002

EUMETSATCLA
89.6
±0.3

85.1
±0.3

79.7
±0.4

92.6
±0.2

86.9
±0.2

0.747
±0.005

-0.075
±0.002

Table: 5-4: Summarizing statistics describing the cloud detection/masking performance of the FUB
algorithms and the EUMETSATCLA algorithm within the whole short-term validation phase. The overall
results for the FUBACSBTE(night,twilight) and for the EUMETSATCLA algorithm are gray-shaded.
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algorithms FUBno ACSBTE, FUBACSBTE, and FUBACSBTE(night,twilight) are similar to the

results from the long-term validation phase given in table 5-2. Compared to this phase, the

overall detection quality profits from a higher percentage of daytime cases and from larger

Kuipers skill score values for the nighttime and twilight algorithms utilizing BTACSBTE.

In the overall statistic, the FUBACSBTE algorithm is superior to the algorithm

FUBno ACSBTE. Nevertheless the FUBACSBTE(night,twilight) algorithm produces the best

results.

The overall performance of the EUMETSATCLA algorithm measured by the Kuipers skill

score amounts to 0.747±0.005 compared to 0.807±0.004 for the

FUBACSBTE(night,twilight), 0.772±0.004 for the  FUBACSBTE, and 0.743±0.005 for the

FUBno ACSBTE algorithm. The main weakness of the EUMETSATCLA algorithm seems to

be the under estimation of cloudiness manifested in an overall bias of -0.075±0.002 and

lower probabilities of the cloud mask hitting a cloudy synop observation and of a synop

report confirming a cloud free cloud mask pixel. This cloud free bias is partly caused by

a low sensitivity to sub pixel cloud fraction. The FUBACSBTE(night,twilight) algorithm has

a similar sensitivity to sub pixel cloud fraction, but its overall bias amounts only to

-0.026±0.002. The overall probabilities that the cloud mask hits a cloud free synop report,

and that a synop observation confirms a cloudy cloud mask pixel are slightly higher for

the EUMETSATCLA than for the FUBACSBTE(night,twilight) algorithm.

5. 3. 2 Land/sea differences

Analog to section 5. 2. 2, the land/sea dependency of the performance of cloud detection

and masking has been analyzed within the short-term validation phase for the

EUMETSATCLA and for the FUBACSBTE(night,twilight) algorithm. Table 5-5 shows that the

land/sea dependency of the FUBACSBTE(night,twilight) algorithm within the short-term

validation phase is comparable to that within the long-term validation (compare

table 5-3): The algorithm produces better results in nearly all categories over land

surfaces. In principle the EUMETSATCLA algorithm shows a similar behavior but the
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performance differences between land and sea are much more pronounced. As extreme

example, the probability of a synop report confirming a cloud covered cloud mask

classification decreases from 94.2±0.2% over land surfaces to 77.2±1.3% over sea

surfaces. The Kuipers skill score decreases from 0.769±0.005 over land surfaces to

0.573±0.020 over sea surfaces. The corresponding values for the

FUBACSBTE(night,twilight) algorithm are 0.815±0.004 for land surfaces and 0.742±0.015

for sea surfaces.

5. 3. 3 Influence of the cloud height

Analog to section 5. 2. 4, it was analyzed for the short-term validation phase, in which

manner the probability of cloud detection depends on the cloud base height. Figure 5-7

shows, that the EUMETSATCLA algorithm has the lowest overall detection rate for

synoptical observed cloud coverage. This behavior is pronounced especially for low
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FUBACSBTE(n.,t.)
31699

89.8
±0.4

91.6
±0.3

87.0
±0.4

93.5
±0.2

90.9
±0.2

0.815
±0.004

-0.027
±0.002

EUMETSATCLA
91.5
±0.3

85.4
±0.3

79.6
±0.5

94.2
±0.2

87.7
±0.2

0.769
±0.005

-0.084
±0.002

se
a

FUBACSBTE(n.,t.)
3323

84.4
±1.1

89.8
±1.0

89.0
±1.1

85.4
±1.1

87.1
±0.8

0.742
±0.015

-0.018
±0.007

EUMETSATCLA
75.4
±1.4

81.9
±1.3

80.3
±1.4

77.2
±1.3

78.7
±1.0

0.573
±0.020

0.005
±0.010

Table: 5-5: Summarizing statistics describing the overall cloud detection/masking performance of the
FUBACSBTE(night,twilight) algorithm and the EUMETSATCLA algorithm depending on land/sea.
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clouds with cloud base height between 0m and 50m, where the probability of detection

decreases to less than 79%. The underestimation of low clouds could be a consequence of

an overvaluation of one of the dynamic threshold tests utilizing estimated clear sky

brightness temperatures. This would be conform with the underestimation of low clouds

by the FUBACSBTE algorithm, as the usage of BTACSBTE can be interpreted as a dynamic

threshold method. It was announced on the EUMETSAT website that the scene

classification scheme was updated on August, 23rd 2004 with the effect that “more pixels

are now classified as cloud during daytime” [EUMETSAT, 2004c]. A comparison to

results of the updated cloud detection scheme, in particular with regard to the overall bias

and the detection probability of low clouds, would be an interesting future task.

For all tested algorithms, high clouds with CBH greater than 2500m have been detected

with similar probabilities. It is highly visible that the probability of detection is distinctly

lower for these clouds than for clouds at medium heights. This might hint at weaknesses

of both algorithms in the detection of thin cirrus clouds. Not without reason, the problem

of thin cirrus detection is discussed in numerous publications [e.g. Ackerman et al., 1990;

Hutchison and Choe, 1996].

5. 3. 4 Visual cloud mask evaluation

Undoubtedly, it is possible to find excellent but also just good cases for any of the

analyzed cloud masks for an exemplary visual comparison. The 6th of June 2004, 12:00

UTC has been chosen as a representative example. For this date, figure 5-8, figure 5-10,

figure 5-12, and figure 5-14 show a quasi true color composite (TCC) image, an inverted

and histogram equalized BT108 image, the corresponding FUBACSBTE(night,twilight) , and

the EUMETSATCLA cloud masking results, respectively. These images display huge parts

of SEVIRI’s full field of view. In the following, these images will be called “full disk”
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images. Corresponding views zoomed on the European region are given in figure 5-9,

figure 5-11, figure 5-13, and figure 5-15. Most of all used synop stations are located in

this region.

The full disk and the zoomed images are alternately arranged to enable easy comparison

between the cloud masks, the BT108, and the TCC images simply by turning the pages.

The zoomed images additionally show all analyzed synop reports of this point in time

with unambiguous cloud coverage status. Triangles represent synop observation with 7 or

8 octas cloud coverage, while the squares indicate observations with 1 or 0 octas cloud

coverage. The symbols are centered on the synop stations. In the cloud mask images,

green symbols represent successful cloud masking while red symbols represent the

opposite.

Some prominent features are highlighted in both TCC images (figure 5-8 and figure 5-9)

and will be discussed in the following:

Figure 5-7: Influence of cloud base height from synop observations on the probability of cloud detection
analog to figure 5-5 but for the short-term validation phase.
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Full disk

In region b) the actual status of cloud coverage is not apparent from the TCC image due

to the high reflectance of xeric surfaces. In this region, the BT108 image shows cloud

features that seem to be overestimated by the EUMETSAT algorithm.

The clouds above sea in region c) are optically very thin as they cannot be observed in the

TCC image but only in the BT108 image. These clouds are overestimated by the

EUMETSAT but underestimated by the FUB algorithm. The very high and thin cirrus

clouds in region e) are also less pronounced by the FUB algorithm. However, as shown

in some of the following examples, the underestimation of thin clouds is not a general

characteristic of the FUB algorithm.

In accordance with section 5. 3. 3, low level clouds above relatively warm surfaces are

often underestimated by the EUMETSAT algorithm, exemplarily highlighted by a)

and f). Clouds of this type are also problematic for the FUBACSBTE algorithm.

Illustrated in region g), some low level clouds above cold sea are underestimated by the

FUB algorithm. The sharp edge of the area erroneously classified as cloud free (near

-50°N) is caused by switching to the twilight algorithm at low sun angles. Information

from the channels in the visible spectral region is not available for this algorithm,

additionally the contrast between BTACSBTE and BT108 of the low level clouds is very low.

Unsolvable ambiguities are the result.

In region d)  the EUMETSAT and the FUB algorithm produce different results. This

might be caused by the high aerosol concentration in this region. The separation of clouds

from aerosols in this case is ambiguous, so that the rating of the algorithms is not possible.

Nevertheless, the patterns visible in the TCC image are better represented in the FUB

cloud mask.
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Europe

In some cases, low level clouds above sea surfaces are misinterpreted by both algorithms.

Region a) and d) show a distinct underestimation by the EUMETSAT algorithm. An

example for underestimation of those clouds by the FUB algorithm is given by region c).

In all of these cases the particular algorithm seems to underestimate the information from

the channels in the visible spectral region.

Region e) shows that the EUMETSAT algorithm is possibly more sensitive to a

misaligned land/sea mask.

In respect to the illustrated synop observations, region b) is obviously the region with

most differences between both algorithms. In this region the EUMETSAT algorithm often

classifies optically thin clouds erroneously as cloud free. Detailed investigation by means

of the channel combinations introduced in section 4. 2 suggests, that the missed clouds are

optically thin, low or mid level water clouds. This hypothesis is verified by the

corresponding synop reports with cloud base heights between 300m and 1500m. It should

be emphasized that these are definitely no cases with sub pixel cloud fraction. As

mentioned before, only unambiguous synop reports have been analyzed for this

comparison.

Overall, in this example it is highly visible that cloudy areas are represented less expanded

in the EUMETSAT cloud mask image than in the corresponding FUB cloud mask image.

It is suggested that the EUMETSAT algorithm is in average less sensitive to low and mid

level clouds with low total water path. Therefore, fractional sub pixel cloud coverage of

this type is also underestimated.                        
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Figure 5-8: Full disk, true color composite, June, 6th 2004, 12:00 UTC.

a)

d)

e)

b) c)

f)

g)
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Figure 5-9: Europe, true color composite, June, 6th 2004, 12:00 UTC.

e)

d)
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c)
b)
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Figure 5-10: Full disk, BT108 (histogram enhanced), June, 6th 2004, 12:00 UTC.
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Figure 5-11: Europe, BT108 (histogram enhanced), June, 6th 2004, 12:00 UTC.
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Figure 5-12: Full disk, FUBACSBTE(night,twilight) cloud mask, June, 6th 2004, 12:00 UTC.

cloud coveredcloud free not processed
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Figure 5-13: Europe, FUBACSBTE(night,twilight) cloud mask, June, 6th 2004, 12:00 UTC.

cloud coveredcloud free not processed
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Figure 5-14: Full disk, EUMETSATCLA cloud mask, June, 6th 2004, 12:00 UTC.

cloud coveredcloud free not processed
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Figure 5-15: Europe, EUMETSATCLA cloud mask, June, 6th 2004, 12:00 UTC.

cloud coveredcloud free not processed
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