Aus dem Institut für Sportmedizin der Freien Universität Berlin (Direktor Univ.-Prof. Dr. med. Dieter Böning)

Blutgerinnung und Fibrinolyse bei hochintensiver Kurzzeitbelastung

Inaugural-Dissertation
zur
Erlangung der Doktorwürde
des Fachbereichs Humanmedizin
der Freien Universität Berlin

vorgelegt von Renate Leithäuser aus Marl

Referent: Prof. Dr. R. Beneke Korreferent: Priv.-Doz. Dr. H.-Ch. Gunga

Gedruckt mit Genehmigung des Fachbereichs Humanmedizin der Freien Universität Berlin

Promoviert am: 12.12.2003

Inhaltsverzeichnis

Α	Einleitung	5
В	Stand der Wissenschaft	8
1	Plasmatisches Gerinnungssystem und körperliche Belastung	8
2	Fibrinolyse und körperliche Belastung	9
3	Körperliche Aktivität und hämostatisches System	10
3.1	Überwiegend anaerobe Belastung und hämostatisches System	12
3.2	Wingate Anaerobic Test	13
4	Fragestellung	13
С	Methodik	14
1	Durchführung der Experimente	14
1.1	Probanden	14
1.2	Untersuchungsgang	14
1.3	Belastungstests	15
1.3.1	Mehrstufen-Maximaltest	15
1.3.2	Wingate Anaerobic Test	16
1.4	Blutentnahmen	17
1.4.1	Kapillarblutentnahmen	17
1.4.2	Venöse Blutentnahmen	18
2	Meßgrößen der Beanspruchung	19
2.1	Atemgase	19
2.2	Blutlaktat	20
2.3	Herzfrequenz	20
2.4	Blutgase	21
3	Meßgrößen des Gerinnungssystems	21
3.1	aktivierte partielle Thromboplastinzeit	21
3.2	Thromboplastinzeit / Prothrombinzeit nach Quick	22
3.3	Gerinnungsfaktor VIII-Aktivität	22
3.4	Fibrinogen	23
3.5	Fibrinmonomere	23

4	Meßgrößen des Fibrinolysesystems	24
4.1	Gewebetyp Plasminogen Aktivator	24
4.2	Fibrinspaltprodukt D-Dimere	24
4.2.1	Einfluß von Milchsäure auf die D-Dimere-Bestimmung	25
5	Thrombozyten	25
6	Meßgrößen zur Abschätzung der Veränderung des	
	Plasmavolumens	26
6.1	Hämoglobin/Hämatokrit-Methode	26
6.2	Eiweißmethode	27
7	Statistische Auswertung	28
D	Ergebnisse	29
1	Belastungs- und Beanspruchungsmeßgrößen	29
1.1	Mehrstufen-Maximaltest	29
1.2	Wingate Anaerobic Test	29
2	Gerinnungsmeßgrößen	31
2.1	Globaltests des plasmatischen Gerinnungssystems	31
2.1.1	Aktivierte partielle Thromboplastinzeit (aPTT)	31
2.1.2	Thromboplastinzeit / Prothrombinzeit nach Quick (TPZ)	32
2.2	Gerinnungsfaktor VIII-Aktivität (FaVIII)	33
2.3	Fibrinogen	34
2.4	Fibrinmonomere (FM)	35
3	Fibrinolysemeßgrößen	36
3.1	Gewebetyp Plasminogen Aktivator	36
3.2	Fibrinspaltprodukte D-Dimere	37
3.2.1	Einfluß von Milchsäure auf die D-Dimer-Bestimmung	38
4	Thrombozyten	39
5	Plasmavolumenveränderungen	40
6	Vergleich der Plasmavolumenveränderungen mit den	
	hämostatischen Ergebnissen	42
7	Korrelationsanalysen	43
7.1	Leistungsmeßgrößen	43

7.2	Zusammenhang der Vorbelastungswerte von Gerinnung und	
	Fibrinolyse mit der Leistungsfähigkeit	43
7.3	Zusammenhang der Nachbelastungswerte von Gerinnung und	
	Fibrinolyse mit Leistungsfähigkeit und Leistungsmeßgrößen des	
	Wingate Anaerobic Tests	43
7.4	Zusammenhang zwischen den hämostatischen Größen	44
8	Zusammenhang der hämostatischen Meßgrößen mit den	
	metabolischen Variablen Blutlaktatkonzentration, pH-Wert sowie	
	den Plasmavolumenveränderungen im Verlauf des Wingate	
	Anaerobic Test	46
8.1	Meßgrößen der Gerinnung	46
8.2	Meßgrößen der Fibrinolyse	47
9	Zusammenfassung der Ergebnisse	48
E	Diskussion	50
1	Diskussion der Ergebnisse der Belastung und Beanspruchung	50
1.1	Mehrstufen-Maximaltest	50
1.2	Wingate Anaerobic Test	51
1.2.1	Blutlaktat	51
1.2.2	pH-Wert	51
1.2.3	Plasmavolumen	52
1.3	Der Wingate Anaerobic Test – wirklich überwiegend anaerob?	53
2	Gerinnungsaktivierung durch kurzdauernde, überwiegend anaerobe	
	Leistung	56
2.1	Mögliche Einflußgrößen auf die Aktivierung der Gerinnung bei	
	körperlicher Belastung	62
2.1.1	Einfluß der metabolischen Variablen Blutlaktatkonzentration, pH-	
	Wert und der Plasmavolumenveränderung	62
2.1.2	Weitere mögliche Ursachen der Gerinnungsaktivierung	65
3	Fibrinolyseaktivierung durch kurzdauernde, überwiegend anaerobe	
	Leistung	69

3.1	Mögliche Einflußgrößen auf die Aktivierung der Fibrinolyse bei	
	körperlicher Belastung	73
3.1.1	Einfluß der metabolischen Variablen Blutlaktatkonzentration, pH-	
	Wert und der Plasmavolumenveränderung	73
3.1.2	Weitere mögliche Ursachen der Fibrinolyseaktivierung	75
4	Vergleich Gerinnungsaktivierung und Fibrinolyse	78
4.1	Ausmaß der Aktivierung im Hämostasesystem	79
4.2	Nachbelastungsverhalten von Gerinnung und Fibrinolyse	82
5	Schlußfolgerungen	84
F	Zusammenfassung	86
G	Abkürzungsverzeichnis	88
Н	Literaturverzeichnis	90
I	Anhang	100
J	Danksagung	107