7 Anhang

7.1 Zum ATPase-Assay

Abb. I (F. Pratto, pers. Mitteilung) ATPase-Aktivität von δ_2 in Gegenwart von ω_2 , *parS*-DNA.und non*parS*-DNA. **A**) δ_2 zeigt eine schwache basale ATPase-Aktivität, welche in Gegenwart von *parS*-DNA mit der Erhöhung der ω_2 -Konzentration (bis ~1,5 µM) ansteigt. Die ATPase-Aktivität von δ_2 reduziert sich um ca. 50 %, wenn die Reaktion in Gegenwart von der non-*parS*-DNA durchgeführt wird. **B**) Die ATPase-Aktivität von δ_2 allein, nach der Prä-Inkubation mit ω_2 , ω_2 T29A [$\delta_2 + \omega_2$] oder [$\delta_2 + \omega_2$ T29A], oder nach der Zugabe vom ω_2 -präformierten δ_2 -*parS*-Komplex [($\delta_2 + parS$) + ω_2)]. **C**) Die ATPase-Aktivität von δ_2 allein, nach der Prä-Inkubation mit ω_2 in Gegenwart von nicht-spezifischer DNA [($\delta_2 + \omega_2$) + non-*parS*] oder nach der Prä-Inkubation mit $\omega_2\Delta$ N19 und *parS*-DNA [($\delta_2 + \omega_2\Delta$ N19) + *parS*] oder ohne ω_2 [$\delta_2 + parS$].

7.2 Primärsequenz-Vergleich von δ

Abb. II Primärsequenzvergleich (BLAST-Search) von ORF- δ (Delta) mit den ORF von Enterococcus. faecalis und Clostridium difficile (fast identische AS-Sequenz) und den strukturell bekannten ParAhomologen Proteinen wie Soj von Thermus thermophilus, MinD von Pyrococcus horikoshii und NifH von Azotobacter vinelandii. Die in Graustufen markierten Bereiche stellen identische Aminosäuren des jeweiligen Proteins dar, während die nicht markierten (weißer Hintergrund) Bereiche auf die nicht überlagerten Stellen deuten.

7.3 Gel-Shift-Assay (von F. Pratto)

Abb. III (F. Pratto, pers. Mitteilung) Gel-Shift-Assays der δ_2 - ω_2 -*parS*-DNA-Interaktion in Gegenwart von 0,05 mM ATP (oben) oder 0,05 mM ADP (unten). In dem oberen 4 %en nicht-denaturierenden SDS-PAGE wurden die unterschiedlichen ω -Proteine (ω_2 , $\omega_2\Delta N19$ und ω_2T29A) in ihrer Interaktion mit 0,2 nM *parS*-DNA (423-bp [α^{32} P]-*Hind*III-*Kpn*I) und δ_2 -Protein überprüft. Die rechtwinkligen Dreiecke symbolisieren die steigende ω_2 - und δ_2 -Konzentration (2 und 4 μ M für ω_2 ; 1, 2 und 4 μ M für δ_2) des jeweiligen Proteins. In dem unteren Gel wurden alle Proteine in Gegenwart von ADP getestet.

7.4 Kristallkontakte in der Monomer-Monomer-Grenzfläche

Tabelle I Kontakte in der Monomer-Monomer-Grenzfläche der Struktur $[\delta \cdot ATP\gamma/Mg^{2^+}]_2$. Gelistet sind die Wasserstoffbrücken und hydrophobe Kontakte zwischen dem P-Loop der Kette A' und dem der Kette B' sowie zwischen H6 und H9 der Kette A' und H6 und H9 der Kette B' des Komplexes $[\delta \cdot ATP\gamma/Mg^{2^+}]_2$. Die mit "***" kennzeichneten H-Brücken haben einen Abstand >3.3 Å.

AS-Rest	Kette (A) Atom	AS-Rest	Kette (B) Atom	Distanz [Å]
P-Loop-Phe44	0	P-Loop-Gln76	NH2	3.44 ***
P-Loop-Gly46	Ν	P-Loop-Gln76	01	2.86
P-Loop-Gln76	01	P-Loop-Gly46	Ν	2.86
P-Loop-Gln76	N2	P-Loop-Phe44	0	3.44 ***
H6-Lys130	NZ	H9-Asp203	01	3.21
H6-Arg133	NH1	H9-Asp203	01	3.20
H6-Arg133	NH1	H9-Asp203	O2	3.04
H6-Arg133	NH2	H9-Asp203	O2	2.85
H9-Asp203	01	H6-Arg133	NH1	3.20
H9-Asp203	02	H6-Arg133	NH1	3.04
H9-Asp203	O2	H6-Arg133	NH2	2.85
H9-Asp203	01	H6-Lys130	NZ	3.21