Freie Universitat i

Association measures and prior

information in the reconstruction of
gene networks

Mahsa Ghanbari

Dissertation zur Erlangung des Grades
eines Doktors der Naturwissenschaften (Dr. rer. nat.)
am Fachbereich Mathematik und Informatik

der Freien Universitat Berlin

Betreuer: Prof. Dr. Martin Vingron

Berlin
April 2015



Erstgutachter: Prof. Dr. Martin Vingron
Zweitgutachter: Prof. Dr. Hanspeter Herzel
Tag der Disputation: 20 July 2015



To the memory of
my beloved mother

ii



Acknowledgements

First and foremost, I would like to thank my supervisor Martin Vingron for his scientific
support and guidance during my PhD. I am grateful to him for giving me the opportunity

to pursue my PhD in his group with exceptional scientists and friendly environment.

My special thanks go to Julia Lasserre, who contributed to the design of the analysis
described in this thesis. I appreciated her help at work as well as her support and

friendship outside of the work.

I would like to thank all my office mates Brian Caffrey, Matthew Huska, Wolfgang Kopp,
Alessandro Mammana, Robert Schopflin and Edgar Steiger for cheerful atmosphere and
wonderful time we had together. Further, I wish to thank all the current and former
members of the Computational Molecular Biology group at MPIMG for the friendly and

motivating environment.

I would like to thank Juliane Perner, Brian Caffery and Matthew Huska for proofreading
the thesis and giving their valuable comments. I wish to thank Kirsten Kelleher for her

kind help through settling in Berlin.

I also want to thank the Computational Systems Biology research training group for
financial support of my PhD study as well as its members for fruitful discussions in

different meetings.

Finally, my warmest gratitude goes to my father Mohammadhossein, my sister Mozhdeh

and my brother Mohammad for their unending overseas love and support.

iii



Contents

Acknowledgements

Contents

1 Introduction
1.1 The regulation of gene expression . . . . . . . ... ... ... ...
1.2 Available biological data . . . . . . . .. .. ... ... .. .. .. .
1.2.1 Geneexpressiondata. . . . . . .. ...
DNA microarray data . . . . ... .. ... ... ......
RNA-Seqdata . ... ... ... .. ... .. ........
1.2.2 ChIP-Xdata . . ... ... ... ...

2 Review of statistical models for reconstruction of gene networks
2.1 Association measurements . . . . . . . ...
2.1.1 Correlation and partial correlation . . . . . .. .. ... ... ...
2.1.2  Mutual information and conditional mutual information . . . . . .
2.1.3 Distance correlation and partial distance correlation . . . . .. ..
2.1.4 Heller, Heller and Gorfine (HHG) measure . . . . . ... ... ...
2.1.5 Maximal Information Coefficient . . . . . .. .. .. ... ... ..
2.2 Relevance networks . . . . . . . . ...
2.3 Graphical models . . . . . . ...
2.3.1 Gaussian graphical models. . . . . . . .. ... o0
2.3.1.1  Estimation of partial correlation in the n >> p case . . .
2.3.2 Bayesian Networks . . . . . . . .. ... oo
2.3.2.1 BNs structure learning . . . . . .. ... ... ...
Constraint-based methods . . . . . . . ... ... ... ...
Score-based methods . . . . . .. ..o
Hybrid methods . . . . . .. .. ... ... .. .. ..
2.3.3 PCalgorithm . . . .. ... ... ..
2.4 Bootstrapping and bagging . . . . . .. ... Lo

3 Comparison of different methods for network reconstruction
3.1 Simulation of data . . . . . . .. . ...
3.1.1 Gaussiandata . . .. ... ...
3.1.2 Non Gaussian data . . . . . . . . . . . ...

iv

iii

iv

10
13
16
17
18
19
20
20
21
22
23
23
24
25
25



Contents v

3.1.3 DREAM Challenge data . . . . . . ... ... ... ... ...... 29
3.2 Validation . . . . . . . . . 30
3.3 Relevance networks with different association measurements . . . . . . . . 31

3.3.1 Performance of relevance methods with different number of samples 31

3.3.2 Effect of the noise on the performance of relevance methods . . . . 32

3.3.3 Performance of relevance methods on DREAM challenge data . . . 32

3.4 Graphical models . . . . . . . .. 32
3.4.1 Performance of graphical Gaussian model with different number

of samples . . . . . ... 33

3.4.2 Effect of noise on the performance of graphical Gaussian model . . 33

3.5 Conclusion . . . . .. e 33

4 Reconstruction of gene networks using prior knowledge: PriorPC Al-

gorithm 49
4.1 Introduction . . . . . . . . .o 49
4.2 Methods . . . . . . . e 51
4.2.1 PriorPC . . .. oo 52
4.2.1.1 Including prior knowledge . . . . . . . ... ... ... .. 52

4.2.1.2 Discarding the worst edges . . . . . . .. .. ... .... 53

4.2.1.3 3-tier structure . . . . .. ... L Lo o 53

4.2.2 Bagging and edge ranking . . . . .. ... L oo oL 54
4.2.3 Synthetic prior knowledge . . . . . . . ... oo 54

4.3 Results. . . . . o 55
4.3.1 Datasets . . . . . . .o 55
4.3.2 From PCto PriorPC . . . . . . ... . .. . . . 56
4.3.3 Effect of the parameter « . . . . . . . . .. ... ... ... ... 57
4.3.4 Effect of the amount of prior knowledge . . . . . . ... ... ... 58
4.3.5 Effect of the prior knowledge on the edges without prior . . . . . . 58
4.3.6 Robustness to erroneous priors . . . . ... ..o 59
4.3.7 Comparison of PriorPC to MEN and BBSR . . . . .. .. ... .. 62
4.3.8 Threshold for conditional independence test . . . . . . .. .. ... 63

4.4 Conclusion . . . . . . . e 64

5 Partial distance correlation and its application in gene network recon-

struction 67

5.1 Introduction . . . . . . . . . . e e e e 67

5.2 Methods . . . . . . . . e 68

5.2.1 Partial distance correlation . . . . . ... . ... ... ... ..., 68
5.2.2 Partial distance correlation as the independence measure in graph-

icalmodels . . . . . ... 70

5.3 Results. . . . . . e e e e e e e 70

5.3.1 Comparison of partial distance correlation with partial correlation 70

5.3.2 Effect of the number of samples on the performance . .. ... .. 72

5.3.3 Comparison of methods in the presence of different amount of noise 72

5.3.4 Performance comparison on DREAM challenge data . . . . . . .. 72
5.3.5 Performance of PC algorithm with pcor and pdcor as the inde-

pendence tests . . . . ... 73

5.4 Discussion . . . . . .. e e e 74



Contents vi

6 Summary 79
List of Figures 81
List of Tables 86
Abbreviations 87
Symbols 89
A Supplementary Figures 96
B Zusammenfassung 100

C Ehrenwortliche Erklarung 102



Chapter 1

Introduction

The regulation of gene expression is the key process in the cell to adapt the cell in re-
sponse to internal and external stimuli, allowing cells to have their own cell-type specific
expression patterns (in multicellular organisms). Since genes encode for regulatory ele-
ments such as transcription factors (TFs) which in turn regulate other genes, there are
complex interactions between genes through their products forming networks called gene
regulatory networks(GRNs). In other words, GRNs describe the interactions between
genes indirectly via their products. GRNs are usually represented as a graph, where
the nodes of the graph represent genes and the edges represent the interactions between

them.

Knowledge of GRNs can deepen our understanding of various diseases such as cancer
where the development of the disease is not guided just by one gene but by a network
of interacting genes. Furthermore, these networks help scientists in drug design and to

find the targets of the drug.

The advent of high-throughput technologies such as DNA microarrays and RNA-Seq
with the ability to measure the mRNA abundances of thousands of genes within a single
experiment offers the opportunity to study interactions among thousands of genes in a
living system. Under the assumption that mRNA abundance measurements of genes are
predictive for their activity level, many researchers tried to find meaningful informative
patterns in the gene expression data. For example genes showing similar patterns of
expression across experimental conditions are more likely to be involved in common
biological processes. Therefore by finding the association between genes one can gain
further insight into the underlying interactions of genes and especially gene functions.
Though many genes are coexpressed there are not necessarily direct interactions among
these genes, as for example genes separated by one or more intermediaries (indirect

relationships) may be highly coexpressed. It is therefore important to use algorithms

1



Chapter 1. Intorduction 2

capable of inferring direct interactions among genes for the purpose of gene network

inference.

GRN reconstruction from expression data is a challenging problem, not only because it
suffers from high dimensionality and low sample size, as the number of genes is generally
much larger than the biological samples, but also because biological measurements can
be extremely noisy. A variety of computational methods have been suggested to ad-
dress this problem including regression methods [1], graphical Gaussian models [2] and
Bayesian Networks [3]. Despite considerable progress in the field, current methods still
give relatively poor results due to the noisy and sparse nature of the data or are limited
to small datasets. Hence, the problem is still an active field and much remains to be
done to improve the reliability of the solutions without increasing the computational

cost. The readers are referred to [4, 5] for comprehensive reviews on the field.

Another issue concerning GRN inference is to find the (direct) nonlinear interactions
between genes. This is an important task since regulatory interactions are not necessarily
linear [6] which is the assumption in many methods for GRN reconstruction. While
(conditional) mutual information can detect (direct) nonlinear interactions, it is not
trivial to estimate it from finite continuous data. Hence finding a method capable of

capturing direct nonlinear associations is an essential task for inferring accurate GRNs.

In this thesis, we propose methods to tackle these problems concerning GRN recon-
struction. In Chapter 2, we provide an overview of some association measures as well as
some statistical models which use the association measures to find the (in)dependency
structure among genes and to reconstruct GRNs. The methods will be the basis for

models in the following chapters.

In Chapter 3, we investigate the performance of the methods introduced in Chapter 2
on different data sets and in different aspects to learn about their advantages as well as

disadvantages.

In Chapter 4, we describe an algorithm called PriorPC which tackles the difficulties
posed by gene expression data sets via the integration of prior knowledge. PriorPC is
based on the PC algorithm, a popular methods for Bayesian network reconstruction
which is known to depend strongly on the order in which nodes are presented. PriorPC

exploits this flaw to include prior knowledge.

In Chapter 5, we introduce a novel approach to compute the empirical partial distance
correlation, a generalization of the distance correlation with the ability to account for
the effect of other variables. As a result, it can detect direct nonlinear interactions.
The distance correlation is a recently proposed association measure capable of finding

nonlinear relationships with an elegant way to estimate it from data. However, in the
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context of multivariate analysis it is important to account for the influence of other

variables in finding direct interactions.

In chapter 6, we provide a brief summary of the thesis.

1.1 The regulation of gene expression

Gene expression is the process by which the information coded in genes is used to produce
functional gene products like RNAs and proteins. It starts with transcription, where
the information in DNA is used to create RNA. While some of these RNA molecules
can be the end product (non-coding RNAs), others (messenger RNAs) will be used as a

template to produce proteins in the process of translation.

The expression level of genes or the abundance of RNAs and proteins in a cell is regulated
at many stages. This allows cells to have their own cell-type specific expression patterns
(in multicellular organisms) and to respond to environmental changes. Gene regulation
can occur at all stages of gene expression with some differences between prokaryotic and
eukaryotic cells. For example, in prokaryotic cells, the DNA floats in the cell cytoplasm
and therefore transcription and translation occur almost simultaneously. In eukaryotic
cells, the DNA is inside a nuclear membrane, where it is transcribed into RNA. The
messenger RNA (mRNA) subsequently has to be transported to cytoplasm where it is
translated into protein. As a result, transcription and translation processes are physically
separated leading to a more complicated process. Furthermore, eukaryotic DNA is
densely packed into chromatin and in the default state the tightly coiled structure of
chromatin limits the access of the regulatory elements to the DNA. Therefore, in a
process called chromatin remodeling, the cell’s chromatin is made accessible in order for
gene transcription to occur. The altering of local chromatin structure is performed by
epigenetic modifications which lead to either the accessibility of regions of chromatin for
binding of transcriptional activators, or condensing chromatin into a transcriptionally

inactive state.

In both eukaryotes and prokaryotes, transcriptional regulation is considered as one of
the most important mechanism of gene regulation. The main participants of this form
of regulation are transcription factors (TFs). Transcription factors are proteins that
activate or repress the transcription of target genes by binding to a DNA region (regu-
latory sequences). Regulation in eukaryotes is more complicated than prokaryotic and
it requires the coordinated interactions of multiple proteins in a complex combinatorial

mechanism.
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In prokaryotes, binding of a TF to a promoter sequence determines whether or not RNA
polymerase binds to promoter and initiates transcription of a particular gene. Promoters
are regulatory sequences that are usually locate at the 5 of the transcriptional start site.
Repressor TFs also bind to an operator, a region that is generally located downstream

from and near the promoter, and inhibit the transcription.

In eukaryotes, the transcription process is a combinatorial mechanism involving both
cis-acting elements, and trans-acting elements such as TFs and enhancers. Promoters
are proximal DNA sequences that bind RNA polymerase for regulating gene expression.
Enhancers are short regions of DNA that interact with regulatory proteins and TFs to
promote expression of a distal or a proximal gene. In fact, activators bind to enhancer
and this activator-enhancer complex can bend the DNA molecule so that additional
transcription factors have better access to their bonding sites. In this way they recruit

RNA polymerase II which then begins the process of transcription.

Post-transcriptional regulations can also control how much mRNA is translated into
proteins. The translation of mRNA to proteins is also tightly controlled by some mecha-
nisms and even after the translation there are some regulations such as the modification
of proteins. However, gene expression data measures the mRNA levels and therefore

these aspects of gene regulation are not reflected in the data.

1.2 Available biological data

The postgenomic era provides scientists with a huge amount of biological data sets which
have proved to be valuable sources of information to discover the underlying interactions
among genes. Although, the gene expression data is the main source of data used to
infer GRNs, other data set like ChIP-x data provide valuable information that can help

obtain a more accurately inferred network.

1.2.1 Gene expression data

Gene expression levels are the activity level of a gene measured as the amount of its
resulting functional product. Since it is hard to measure the activity level of genes, the
abundances of mRNA are often used as a proxy for gene activity. The two most widely
used technologies to measure gene expression level are DNA microarray and RNA-seq
experiments which have the ability to measure gene expression values of a large number
of genes simultaneously. The raw data from both methods should go through some

prepossessing analysis to provide the gene expression data. The gene expression data
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are typically represented by an p x n matrix F, where p and n are the number of genes
and the number of samples respectively. Each entry e;; represents the expression level
of gene i (the molecular abundance of the mRNA transcribed from gene i) in condition
j. Expression data typically contain a large number of genes (on the order of hundreds
or thousands) but only contain comparatively few samples n (on the order of tens or
hundreds). Most of the standard learning methods have difficulty dealing with this
”small n, large p” data setting noted as p >> n. In addition, expression data suffers
from a high level of noise and when coupled with low sample size renders the analysis

of data even more challenging.

DNA microarray data DNA Microarray technology is a high-throughput method
which uses nucleic acid hybridization techniques to monitor the whole transcriptome on
a single chip. A DNA microarray is a small solid surface containing thousands to millions
of microscopic spots of gene specific sequences called probes. In order to measure the
expression level of genes, the mRNA material is extracted form cell and labeled with a
fluorescent dye. The labelled mRNA is then placed onto the slide where they hybridize
(bind) to the probe with its complementary gene sequence. Fluorescence signals are
then measured by scanning the microarray and are proportional to the concentration of
mRNA.

RNA-Seq data RNA-Seq (RNA Sequencing) is a novel high-throughput method
which utilizes next generation sequencing (NGS) to map and quantify the transcrip-
tomes. In its protocol, the first step is the reverse transcription of RNA into ¢cDNA
samples. The cDNA samples are then used as the input to NGS to produce short se-
quence reads. The reads are then mapped to the reference genome. Finally, read counts

obtained from mapping are used to estimate the gene expression levels.

1.2.2 ChIP-X data

Chromatin immunoprecipitation (ChIP) coupled with high-throughput techniques, such
as microarray (ChIP-chip) and NGS (ChIP-Seq), is a method to study the interactions
between specific proteins and a genomic DNA region. Specifically, it can be used to find
transcription factor binding sites (TFBS) of a specific transcription factor (TF) along a
DNA region (or the whole genome) and as a result to identify the potential targets of
the TF.

In the ChIP-chip protocol, the protein of interest is first cross-linked with the DNA
molecule. The DNA is then fragmented and an antibody specifically designed for the



Chapter 1. Intorduction 6

protein is used to recover the DNA-protein complex. The complex is reverse cross-linked
and the single stranded DNA is obtained, amplified, and denatured. The DNA strand
is labeled with a fluorescent tag and hybridized over cDNA strands of known DNA
positions arranged on a DNA array. Binding positions are then identified by measuring

the fluorescence signal along the DNA.

In the ChIP-seq protocol, the protein of interest is first cross-linked with the DNA
molecule. Following this, DNA is fragmented and an antibody specifically designed
for the protein is used to recover the DNA-protein complex. Then, the fragments are
sequenced and mapped to the reference genome. The read counts obtained from mapping

can then be used to localize protein binding sites.



Chapter 2

Review of statistical models for

reconstruction of gene networks

There is long history of using statistical methods to measure the associations among
variables in many fields including biology. The Pearson correlation coefficient which
quantifies linear associations, is probably the most well known method. However, the
Pearson correlation is not an accurate way to measure nonlinear association which are
ubiquitous in biology and especially in the context of GRNs where the regulatory re-
lationships between genes are known to be nonlinear [6]. A more general measure is
mutual information, which also quantifies nonlinear associations. However, reliably es-
timating mutual information from finite continuous data is a nontrivial task. Therefore,
quantifying nonlinear associations is an active field of research and some new measures

have been proposed recently which we introduce in this chapter.

We also describe some of the models, that are based on the concept of conditional inde-
pendence. In these models, each gene or more precisely gene-activities (gene expression
level) is considered as random variable and the aim is to find the (in)dependency struc-
ture among genes. The models differ on how they model the (in)dependencies between

the variables.

2.1 Association measurements

In the following, we first briefly define the concept of marginal and conditional indepen-
dence and then we introduce some association measurements that can be used to test

the (conditional) independence between variables.
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Two variables are called statistically independent if information about one does not
change the probabilities of the other. Statistical independence indicates that there is
no relation between two random variables. Consider two random variables X and Y
with a joint probability distribution f(x,y) (joint probability mass function for discrete
variables and joint probability density function for continuous variables) and marginal
distributions f(x) and f(y). Two variables X and Y are independent, denoted as X L Y,
if and only if their joint probability distribution is the product of the marginals:

f(z,y) = f(2)f(y)

If two random variables X and Y are not independent they are dependent and is denoted
as X LY.

In a multivariate analysis, it is important to account for the influence of other variables
on the relationship between two variables to detect direct interactions. We want to know
whether the relationship between two variables can be explained away by a subset of
other variables in the system. In other words, we want to distinguish between direct
and indirect relationships. Here enters the concept of conditional independence. Two
variables X and Y are called conditionally independent given a set of variables Z if, if
we know the value of one variable, the knowledge about Z does not provide any further

information about the other variable.

Formally, two variables X and Y are conditionally independent with respect to a prob-
ability distribution f given a set of variables Z, if f(X,Y|Z) = f(X|2)f(Y|Z), and
denoted as (X L Y|Z). The cardinality of the set Z is called the order of conditional
independence. Marginal independence is the special case of conditional independence

when there is no variable in the conditional set.

In reality, we have to estimate the independence of variables from observation data.
A variety of methods have been proposed to quantify the (in)dependence between two
random variables, each of which has its own advantages and disadvantages. In this
section, we do not introduce independence tests based on the association measures which
test the null hypothesis ”Hy: X and Y are independent (given Z)” against the alternative
hypothesis "H;:X and Y are not independent (given Z)”. We introduce them when it

is needed.

2.1.1 Correlation and partial correlation

The Pearson correlation coefficient, commonly referred to as the correlation coefficient,

is a widely used tool to measure the linear association between two variables X and
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Y. It is defined as the covariance of the two variables divided by the product of their

standard deviations:

cov(X,Y)

020y

r(X,Y) =

The empirical correlation coefficient in the presence of n iid samples (X;,Y;),i = 1,.

is computed as:
Y (X = X)(Y; - Y)

VEN (X - X2 2N, (Y - 72

where X and Y are the sample means of X and Y, respectively. The correlation coeffi-

r(X,Y) =

cient takes values in [—1,1]. Values of 1 and -1 indicate perfect (positive and negative)
linear relation between the variables where one variable is completely determined by the
other. If both variables are linearly independent, r(X,Y) = 0. The inverse statement is

not necessarily true, only when the underlying distribution of variables are Gaussian.

In multivariate analysis, the partial correlation coefficient is the generalization of the
correlation coefficients with the ability of controlling for other variables. It measures
the correlation between two random variables after removing the effect of one or several
other variables. The partial correlation coefficient between two random variables X and
Y conditioning on Z is the correlation between the residuals of X and Y after they are
regressed on the control variables Z. In other words, it is the correlation between the

parts of X and Y that are uncorrelated with Z.

Partial correlation of order zero, i.e. when the conditional set is empty, is equal to corre-
lation. Partial correlations of order ¢ > 0 can be obtained by solving two corresponding
regressions and then computing the correlation between the residuals. However, this
approach is time consuming and in practice the two common methods to compute the

partial correlation are the recursive formula and matrix inversion.

For Z C V\{X, Y}, the gth-order partial correlation can be obtained from (g—1)th-order

partial correlation by using the following recursive formula:

p(X,Y[Z2\{Zo}) — p(X, Zo|2\{Zo})p(Y, Zo|Z2\{Z0})

p(X,Y|Z) = VA= p2(X, Zo|2\{Zo}) (1 — p2(Y, Zo|2\{Zo}))

, forany Zg C Z

The matrix inversion approach allows to compute all full order partial correlations at
the same time. In this method, one should first compute the concentration matrix of

the data. The concentration matrix Q of p variables V' = {X}, X», ..., X}, } is the inverse
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of its covariance matrix ¥ (when it is positive definite and therefore invertible):
Q=x"

Partial correlation coefficients between X; and X (¢, = 1, ..., p) given all other variables
, ie. V\{X;, X;}, are then obtained by normalizing the off-diagonal entries of the

concentration matrix Q = (w;;):

wij

To obtain partial correlations by matrix inversion, the sample covariance matrix should

Pij = —

be positive definite which only holds when the number of variables is lower than the
number of samples. Therefore, in the cases like gene expression data with high vari-

able/sample ratio different methods have been suggested to overcome this problem.

Two variables X and Y are conditionally independent in the multivariate Gaussian case

if and only if the partial correlation between X and Y conditioned on Z is zero:
pX,Y\Z =0« X L Y‘Z

As a result, if the distribution of V' = {X}, X, ..., X} is multivariate Gaussian, two
variables are conditionally independent (given the remaining variables) if and only if the

corresponding entry in the concentration matrix is zero:
X; L Xj|V\{XZ‘,Xj} — Wij; = 0

However, (partial) correlation captures only linear associations and its power is reduced
when associations are nonlinear. In addition, zero (partial) correlation means indepen-
dency just in the case of a Gaussian distribution. If the underlying distribution of the
data is not Gaussian, other association measures that do not assume any particular dis-
tribution for the data can be more useful. However, partial correlation and correlation

are both widely used even when normality of data is questionable.

2.1.2 Mutual information and conditional mutual information

Mutual information is another widely used measure of association between two variables
[7]. MI is a fundamental concept of information theory defined by Shannon based on
the concept of entropy. The entropy is the uncertainty of a single random variable. For

two continuous random variables X and Y with marginal probability density function
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f(x) and f(y) and joint probability distribution f(z,y), marginal entropy H(X) and
joint entropy H(X,Y") are defined as:

——/ﬂWWU@Mx

H(X,Y) = /fxywmﬂxwﬂmw

where log is natural logarithm so that information is measured in natural units. Con-
ditional entropy H(X|Y) measures how much entropy variable X has if the value of a

second random variable Y is known and is defined as:

H(X|Y)=H(X,Y)— H(Y)

—— [ HH )y =y

While entropy is a measure of the uncertainty about one variable, mutual information
(MI) measures how much knowing one variable reduces uncertainty about the other. MI
is non-negative and equal to zero when X and Y are independent. The MI between two
variables X and Y is defined as:

To account for the influence of other variables in a multivariate system, conditional
mutual information (CMI) between two variables X and Y given the value of a third

variable Z is defined as:

CMI(X,Y\Z)://f(x,y,z)logmdxdy
= H(X,Z)+H(Y,Z) - H(Z) — HX,Y, Z)

= H(X|Z) - H(X|Y, Z)
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CMI is always non-negative and can be smaller or greater than the corresponding MI.

Further, CMI is zero if and only if X and Y are conditionally independent given Z.

MI and CMI are very promising tools to capture the association between variables owing
to their capability of characterizing nonlinear dependency. However, to estimate MI, one
has to estimate the probability density functions from a finite sample of n data points

which is a nontrivial task.

There are several algorithms to estimate MI. For discrete data, the density functions
can be estimated by simply counting the events. But gene expression data, which is the
main data for inferring gene networks, are continuous. For continuous data the most

popular strategies are based on a discretized model.

Estimation of MI is easier when the underlying distribution of variables are known. For
example, under the assumption of Gaussian data, MI can be calculated as a function of

covariance matrices:

MI(X,Y) = ;log’O|(§()X'!g;()}()|

where C' is the covariance matrix of variables, and |C] is the determinant of matrix C.

If X and Y are univariate with correlation coefficient r, then

1
MI(X,Y) = —5 log(l - r2).

Similarly, the CMI between X and Y given Z is a function of the partial correlation p
between X and Y given Z:

1
CMI(X,Y|Z) =~ log(1 — p?)

If the underlying distribution of data is unknown, the estimation of MI is more com-
plicated. The naive histogram-based method partitions the data into b bins and ap-
proximates the probabilities by the frequencies of occurrence in the bins. There are
different methods for binning. The so called ”equal width method” partitions the data
into bins of equal size, resulting in different number of data points in each bin. This
method suffers from a systematic error that overestimates the MI as a result of finite-

size effects. A more sophisticated binning method, called "equal frequency”, uses an



Chapter 2. Review of statistical models 13

adaptive partitioning, where the bin size depends on the density of data points such
that the marginal distributions are uniform. It has been shown that this method is su-
perior to equal width method but at the cost of increasing the computation time. There
are several other computationally demanding methods to estimate MI which is beyond
the scope of the thesis [7, 8]. The choice of the estimator or the parameters for MI
may influence the estimations considerably. Therefore, finding an accurate and stable
estimation of MI from finite continuous data is an active field of research. More details
about the influence of the choice of estimators of MI on the network inference problem

can be found in [7].

2.1.3 Distance correlation and partial distance correlation

Distance correlation has emerged recently [9, 10] as a measure of association strength
between random variables with the important property that it is equal to zero if and
only if the random variables are statistically independent. Furthermore, it is defined for
X and Y in arbitrary and not necessarily equal dimensions, rather than for univariate

quantities.

Distance covariance between two variables X and Y is defined as the distance between
the joint characteristic function ¢xy and the product of its marginal characteristic
functions ¢x and ¢x in a special weighted space. If X € RP and Y € RY the distance

covariance dcov(z,y) is the non-negative square root of:

deov (X, Y) = ||oxy (t,5) — dx (t) oy (s)|2,

- /RP-HJ ’(Z)X’Y(t’ S) - ¢X (t)¢Y(S)’2w(t, S)dt ds

where

w(t,s) = (Cpcq|t|gly+p|3|;+q)7

14d
w2

P59’

Cq =

and I'(.) is gamma function. Distance correlation is the standardized version of dcov(X,Y)

and defined as the non-negative square root of

2(X,Y
deor?(X,Y) = deov’(X, V) .
Vdeov (X, X)dcov2(Y,Y)

where deov?(X, X)dcov?(Y,Y) > 0 and otherwise is equal to zero.
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The empirical distance correlation for two random variables X and Y with given n iid
samples can be calculated very easily. First, Euclidean distance matrices are calculated
as (aij) = (|Xi; — X;|) and (bij) = (|Y; —Y;|). Then the transformed distance matrices A
and B are obtained from the Euclidean distance matrices by subtracting the row/column

means and adding the grand mean:

Aij =ajj —a; —a;+a

— 1 n — 1 n — 1 n
where a;, = 5> 1 ik, G5 = D gy akj and @; = -5 Zi,j:l a;j. The analogous
definition is used for B. These transformed distance matrices are called double centered

distance matrices.

The sample distance covariance is then defined as the square root of

1 &~ oz
dCOU%(X,Y) = ﬁ Z AijBZ'j
1,7=1

and sample distance correlation dcor as the square root of

2
deor?(X,Y) = deovy (X, V) )
V/dcov2 (X, X)dcovZ(Y,Y)

For distributions with finite first moments the distance correlation takes values on [0, 1]
and R = 0 if and only if X and Y are independent. In the bivariate normal case
deov(X,Y) < |ecov(X,Y)|,with equality when |cov(X,Y)| =1

Recently, Szkely et al. [11] introduced a method to compute partial distance correlation.
Partial distance correlation (analogous with partial correlation) controls for the effect of
other variables in the systems on the association between two variables. Therefore, it

can detect direct nonlinear interactions in multivariate analysis.

Since the squared distance covariance is not an inner product in the usual linear space,
Szkely et al. introduce a new Hilbert space where the squared distance covariance is the
inner product. They first define a new transformed matrix called U/-centered matrix.
The (i,)th entry of a U-centered matrix A for a n x n symmetric matrix A = (a; )

(n > 2) with zero diagonal is defined as:

A _ ai7j - ﬁ Z’ln:l ai,l - ﬁ Z’Z:l ak’j + (nfl)l(TLfQ) ZZ,Z:I ak’l le # j
0 ifi—j
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If A and B are the Euclidean distance matrices of n iid samples (z;,v;) ¢ = 1,...,n of

two random vectors X and Y,

L~ 1 - .
(A.B) = 73)ZAZ-J.B¢,J-

is an unbiased estimator of squared population distance covariance [11].

They define a new Hilbert space H,, = {A|A € S} (n > 4) where S,, is the linear span
of all n x n distance matrices of samples {z1, z2, .., 7, } in a Euclidean space RP. They
also define the inner product for each pair of elements C' = (C; ;) and D = (D; ;) in the
linear span of H,, as

1
D)=—2"Ci;.D;,

With this definition of inner product in Hilbert space H,,, they use a projection operator
to define partial distance covariance and partial distance correlation for random vectors
in Euclidean spaces. Let A, B and C be elements of H,, corresponding to random

samples x, y and z from vectors X, Y and Z, respectively. Further, consider

_ 5 (BO):
P.(y)=B (é‘é)B

denote the orthogonal projections of A(x) and B(z) onto (C(x))*, respectively. The

sample partial distance covariance (pdCov) is defined as:

pdCov(x,y|z) =(P,.(x).P,.(y))
1

=——— > (Pr(2)ij(P,r(y))ij

n(n —3) ; J

The partial distance correlation is defined as cosine of the angle 6 between the vectors
P, (z) and P,1(y) in the Hilbert space H,:

z

pdCor(x,y|z) = cosh

_ (P.i(2).P.L(y)) .
S Pa@Paw @R

and otherwise it is equal to zero.
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2.1.4 Heller, Heller and Gorfine (HHG) measure

Heller et al. [12] also proposed recently a test of independence between two multivari-
ate random variables X and Y. The test is based on the pairwise distances between
the sample values within X and Y respectively. i.e {dx(z;,z;)|i,7 € {1,...,n}} and
{dy (yi,y;)|i, 7 € {1,...,n}} where d(.,.) is the norm distance between two sample points.

As stated by the authors, the motivation of the test is that if X and Y are not indepen-
dent and have a continuous joint density distribution then there exists a point (zg, yo)
in the sample space of (X,Y") and radii R, and R, around zy and yo respectively, such
that f(x,y) # f(z)f(y) in the Cartesian product of balls around (zg,yo). Lets assume
that we know the point (x0,yo) and the radii R, and R,. Further, consider the two
dichotomous random variable I{d(z¢, X) < R,} and I{d(yo,Y) < Ry}, where I(.) is
the indicator function. The table 2.1 shows the observed cross-classification of these two

random variables for the n independent observations of (zx,yr) k = 1,...,n where

n
An(i,5) = > I{d(zo, xx) < R M {d(yo, yx) < Ry}
k=1
and Ao, Asy, Ao defined similarly. Let A,,, A, m = 1,2 be the sums of the rows
or columns, respectively. Then the Pearson’s chi-square test statistic or the likelihood

ratio test statistic for contingency tables can quantify evidence against independence.

Hd(yo,.) < Ry} | I{d(yo,.) > Ry}
H{d(zo,.) < Ry} Ay Aqg Ay
Hd(xo,.) > R} Aay A Ay
A.l A.Q n

TABLE 2.1: The cross-classification of I{d(x¢,X) < R,} and I{d(yo,Y) < R,}.

Since the point (g, y0) and the radii R, and R, are not known, each sample point (z;, y;)
in turn plays the role of (x¢,yo) and for every sample point (x;,y;) j # i, R, and R,
are defined as d(x;,x;) and d(y;, y;) respectively. Therefore, for each point (z;,y;),j # i
they define two random variables I{d(z;, X) < d(x;,x;)} and I{d(y;,Y) < d(vi,y;)}
and obtain a 2 x 2 table of cross-classification of these two random variables for the
remaining n—2 points as shown in table 2.2. Here, A11(i, ) = > 51 s 2 I{d(@i, 21) <
d(ws, x5) }{d(yi, yx) < d(yi,y5)} and A1a(i, j), A2i(j), A22(i,j) defined similarly, and

A (i,5), Am(i,7), m = 1,2 are the sum of the row or column, respectively.

To test the independence between two random variables X and Y, they defined the

following statistic which aggregates the evidence against independence from all obtained
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Hd(yi, ) < d(yi, y5)} | H{d(i,-) > d(yi,y5)}
Hd(xi,.) < d(zi,7;)} A11(4,5) A12(4,4) Ar(3, )
I{d(zi,.) > d(xs,24)} Ao (4, 7) A (i, 7) Ay (i,7)
Aa(i, ) Aa(i, J) n—2

TABLE 2.2: The cross-classification of I{d(z;, X) < d(z;,z;)} and I{d(y;,Y) <

2 x 2 tables :
n n
T=> > S(j)
i=1 j=1,j#i
where

(n — 2){A12(i, ) A12(4,§) — A11(4, §) Aa(i, 1)}
Al(Zvj)A2(27])A1(27])A2(Z)j)

is the Pearson’s chi square statistic for the 2 x 2 contingency table corresponding to

(x4,9i). Note for i and j with 0 in at least one of the margins they set S(i,j) = 0.

2.1.5 Maximal Information Coefficient

The Maximal Information Coefficient (MIC) is another recently proposed measure of
association between variables[13]. Reshef et al. designed MIC with the goal of satisfying
two properties: generality and equitability. Generality means that the measure should be
able to capture any kind of association (with sufficient sample size). Equability means to

assign similar scores to equally noisy relationships independent of the association type.

The rational behind MIC is that if there is a relationship between two random variables
X and Y, then a grid that partitions the data in the scatter plot of X and Y can
encapsulate this relationship. Thus, for each possible grids of size m-by-n (mxn < N6,
where N is the number of samples) the largest possible mutual information MI(X,Y) is
computed. Then this value is normalized between 0 and 1 by dividing by the maximum
achievable value for the grid of size m by n which is log(min(m,n)). The normalization
step ensures a fair comparison between grids of different dimensions. The MIC is then
defined as the maximum of the normalized mutual information values obtained from

grids of different dimensions:

MI(X,Y)
max ,
mxn<B log(min(m,n))

MIC(X,Y) =

where B is the the maximal resolution (N?6). Tt is important to note that to find the
maximum a heuristic approach has been used, since trying all possible binning schemes

that satisfy n, x n, < NO6 ig computationally infeasible even for small N.
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Although the power (ability) of this method to identify known and novel relationships
has been shown by applying it to various data in the original paper, some criticism
was raised about the performance of MIC after the publication. In a comment [14],
Simon and Tibshirani questioned the power of MIC by showing simulation results for
different types of relationships demonstrating that MIC has lower power than DCOR
for most relationships. In another comment [14] Gorfine et al. argued that the claim
that non-equitable methods are less practical for data exploration is not true and both
DCOR and their own HHG method are more powerful than the test based on MIC. In
a recent paper[15], it has been proved that no non-trivial coefficient can exactly satisfy
the equitability property as defined by Reshef et al. Recently, Reshef et al. addressed
some criticisms and at the moment the debate about MIC and equitability is very
active. Without going through all the debate which is beyond the scope of this thesis,
we consider MIC in our analysis for the sake of comparison. However, in the context of
multivariate analysis the drawback of MIC is that it is not clear how to extend it to the

conditional case (in analogy to the partial correlation for correlation).

2.2 Relevance networks

Relevance networks or co-expression networks are a simple method to associate genes
together. They look into all pairs of genes and associate those that have similar expres-
sion profiles throughout a set of different conditions and link them by an edge in the

graph. This similarity score can be any association measures.

Although relevance networks are computationally efficient, in terms of identifying direct
regulatory interactions they are not efficient since marginal independence alone cannot
distinguish between direct or indirect associations. Therefore, they associate genes that

only interact indirectly through one or more other genes.

In relevance networks, there are some methods to prune the reconstructed network of
such false positives i.e. indirect interactions. The first method called ARACNE (Algo-
rithm for the Reconstruction of Accurate Cellular Networks)[16] uses mutual information
as association measurement and then prune the inferred network of false positives based
on the so-called Data Processing Inequality (DPI). DPI states that if two variables X
and X» interact through a third variable X3 and there is no alternative path from X;
to Xs, then:
MI(X1,X2) <min(MI(Xy,X3), MI(X3,X>))
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Therefore, after computing pairwise mutual information, ARACNE evaluates intercon-
nected triplets of variables and removes the link with the smallest associated mutual

information.

Another extension to the relevance networks algorithm is the Context Likelihood of
Relatedness (CLR) method [17]. It originally uses mutual information but in principle
can be used for any association measure. Once association measures s;; have been
assigned for each pair of variables, a CLR score is derived, related to the empirical

distribution of association scores s.

P p— . 2 P p— . 2
clr.score = \/<S” MZ) + (SU MJ)
oi o

where y1; and o; (resp. pj and o) are the mean and standard deviation of the association

scores between X; (resp. X;) and all other variables.

MRNET is also an extension of the relevance networks [18]. It uses the minimum re-
dundancy, maximum relevance (MRMR) feature selection criterion. MRNET originally
was based on mutual information but in principle it can be used for any association
measure. In MRNET each variable in turn plays the role of the target variable X and
in a forward selection strategy the variable X; with highest association score with the
target is selected. At every subsequent step the variable with the highest association
score with the target and, at the same time with the lowest average score with the
already selected variables S is selected. In other words, the variable which maximizes
s; = score(X;, X7) — ﬁ > ues Score(Xj, Xi) will be added to the currently selected
variables. In a final step, the score for each pair of variables X; and X; is computed by

taking the maximum between s; and s;.

2.3 Graphical models

Graphical models are representations of multivariate probabilistic models, where the
conditional (in)dependencies between the random variables are expressed via a graph.
Nodes of the graph correspond to random variables (genes) and the absence of edges
between nodes represent conditional independencies between variables. There are two
major classes of graphical models: namely, undirected graphical models, also known as
Markov networks, where the edges of the graph have no direction, and directed graphical
models, also known as Bayesian networks, where the edges have specific directions that

could have causal interpretation under some assumptions.
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Graphical models have gained much attention in the context of GRN inference due to
their ability to distinguish between direct and indirect interaction. Since they use the
conditional independence concept, they can eliminate indirect interactions among genes.
This is very important since pairs of genes do not interact independently of all other
genes and more or less all genes will be directly or indirectly dependent. However, it
is not trivial to learn GMs from high dimensional small n, large p gene expression data

and a wide variety of algorithms have been suggested to tackle this problem.

2.3.1 Gaussian graphical models

Gaussian graphical models (GGMs) are undirected graphical models that identify the
conditional independence relations among the nodes under the assumption of a mul-
tivariate Gaussian distribution of the data. With this assumption, GGMs assess the
conditional independencies among variables by terms of full-order (i.e. by conditioning
on all other variables) partial correlation coefficients. The pairs of variables with zero
partial correlation correspond to conditional independencies between the variables (they
are independent of each other given the rest of the variables in the graph) and are re-
moved from the graph. Therefore, the edge set of a GGM is defined by non-zero partial

correlations.

To learn GGMs from the data, one should estimate the concentration matrix or equiv-
alently the set of all full-order partial correlations from data. In practice, the sample
concentration matrix is first computed and edges corresponding to significantly small
values, indicating zero partial correlation, are removed from the graph. However, the
sample concentration matrix requires the sample covariance matrix to be positive def-
inite which only holds with probability one if and only if the number of variables is
lower than the number of samples. This is problematic in the context of GRNs infer-
ence, where the number of genes are much higher than the number of samples. Inferring
Gaussian graphical models (GGMs) in this issue, called "small n, large p” setting, is an

ill-posed problem and different approaches have been suggested to cope with it.

2.3.1.1 Estimation of partial correlation in the n >> p case

Different methods have been proposed to estimate the covariance matrix for data sets
with high number of variables and low number of samples. The most straightforward
method is the pseudoinverse approach. The pseudoinverse is the generalization of the
inverse matrix and can be obtained by using singular value decomposition (SVD). Let
A =UDVT be the SVD decomposition of the rectangular real matrix A, where U and

V (VT means V transposed) are orthogonal and D is a diagonal matrix whose entries
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are zero except for the singular values which appear on the diagonal. In numerical
computation, singular values smaller than a tolerance are also taken to be zero. Then

the pseudoinverse, also known as Moore-Penrose or generalized inverse is obtained as:

At =vDtuT

where DT is the pseudo inverse of D obtained by taking the reciprocal of non-zero

singular values and then transposing the matrix.

Another way to circumvent the problem is to use limited-order partial correlation instead
of full partial correlation [19]. A more sophisticated approach to overcome this issue is to
introduce regularization to infer robust estimators of the covariance matrix. Specifically,
the shrinkage techniques which combine two estimators into an overall better estimator.
While there are many shrinkage methods, we use the approach suggested by Schifer et
al.[2].

2.3.2 Bayesian Networks

A BN is a graphical representation for probabilistic relationships among a set of random
variables V' = { X1, ..., X;,}. The first component of a BN is its structure G, represented
by a directed acyclic graph (DAG). A DAG is a graph containing only directed edges
and no cycles, and the skeleton of a DAG is the DAG itself where directionality has
been removed. Nodes correspond to the random variables in V' and edges encode con-
ditional dependencies over V. The second component of a BN is a set of distributions
{P;(X;|parents(X;,G))} that are respectively conditioned on the parents of X; in G,
where a parent of X; is a node X; such that the edge X; — X; is in G. Together, G
and {P;} define a joint probability distribution P over V as :

P(le 7Xn) = HPZ(XZ|parents(XZ,G))

This follows from the conditional Markov assumption which states that each variable is

independent of its non-descendants when conditioned on its parents.

A BN structure G entails a set of conditional independence relations that can be read
from the G by the d-separation criterion. That is, if two variables X and Y are d-
separated by a set Z, denoted as X 1 Y|Z, then X 1 Y|Z. Formally, two variables X

and Y in a BN are d-separated given variable Z, if one of the following conditions holds:

e For all paths between X and Y, Z is a non-collider.



Chapter 2. Review of statistical models 22

e 7/ is a collider and neither Z nor any of its descendent is observed.

A triplet of variables X — Z < Y, where X and Y are not connected is called v-structure
and the center node Z is called collider. A DAG G and a probability distribution P
generated by G are reciprocally faithful if and only if the independence relationships
among the variables in V' with respect to P are exactly those entailed by G by means of
the d-separation criterion. The faithful assumption in BNs implies that there is an edge
between nodes X; and X in the skeleton of DAG G if and only if for all Y € V\{X;, X;},
X; and X; are conditionally dependent given Y.

The application of BNs to reconstruct GRNs was pioneered by [3] and then became one
of the most popular methods in this field. The main advantage of BNs is that edges are

directed. However, this does not come free but at high computational cost.

It is also important to note that even with infinitely many samples, we can just learn the
equivalence class of BNs. A class of BNs is called Markov equivalent if they represent
the same statement of conditional independence and therefore they are statistically
undistinguishable. Two graphs belong to the same equivalence class if and only if they
have the same skeleton and the same set of v-structures. In the context of GRNs,
this means that if we relate two genes in the graph it may not be clear which one
is the regulator and which one is the target. This can be done just with perturbation
experiments. An equivalence class of BNs can be represented by partially directed acyclic
graph (PDAG), a DAG containing both directed and undirected edges with the same

skeleton and the same set of v-structures as the DAGs in the equivalence class.

2.3.2.1 BNs structure learning

Learning methods to reconstruct the structure of BNs mostly fall into two categories:
score-based methods and constraint-based methods [20, 21]. Score-based methods search
the space of all possible DAGs to identify the network which maximizes a score indicat-
ing how well the DAG matches the given data. Constraint-based methods involve the
repeated use of CI (conditional independence) tests. Both approaches have their own
advantages and disadvantages. While score-based methods are favored when dealing
with small dimensional data sets, their high computational cost made them intractable
for large network. Constraint based methods are relatively fast but they are unstable
which means that an error early on in the algorithm can cause many errors in the output
i.e. the final graph. Recently, a new class called hybrid method has been suggested with
the idea of combining the aforementioned methods to get the best of both [22].
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Constraint-based methods Constraint-based methods involve the repeated use of
CI tests to obtain the conditional independence relationships and use them as constraints
to construct a PDAG representative of a BN equivalence class. Under the assumption
of faithfulness, if there is no S C V\{X,Y} such that X L Y|S) holds true, there is
an edge between X and Y. The naive algorithm decides on the presence of an edge by
conditioning on all possible S. However, the naive approach scales poorly and becomes
infeasible for large networks due to the super exponential growth of the number of tests

with respect to the number of nodes.

Since it is enough to find one S that X L Y|S to remove the edge between X and Y, a
more efficient way is to perform the CI tests such that skip unnecessary tests. Starting
with low order tests and then proceeding to higher order tests is one reasonable way.
In addition, if there exist such a S that X 1 Y|S, then there should be a S’ which
X 1 Y|]S" and all the variables in S’ are adjacent to X or Y (or both). So to decide
on the presence of an edges between X and Y, we only need to condition on variables
which are still connected to X and Y and not those in different parts of the graph. This
is the rational behind the PC algorithm [21] which we explain in more detail in section

2.3.3.

After finding the skeleton of the BN, direction will be assigned to the edges by using
the identified separating sets. The first step to orient the edges is to identify potential
v-structures in the graph. Therefore, for each pair X and Y with a common neighbor Z,
the chain X — Z —Y will be oriented into the v-structure X — Z «+ Y if Z € Sxy. The
next step is to try to orient as many undirected edges as possible in the resulting PDAG
following some rules. The first rule aims at avoiding the addition of new v-structures.
Thus, orient X — Z to X — Z in patterns such as X — 7 — Y and X and Y are not
adjacent. The second rule tries to avoid making cycles in the graph and orient all the
edges that could potentially lead to a cycle. It is possible that the final result is PDAG

with some undirected edges which can be oriented randomly.

Constraint-based methods are relatively fast and deterministic with a well defined stop-
ping criterion. The main drawback of constraint-based algorithms is their poor robust-
ness as they rely on an arbitrary significance level to test for independence. This means
that small changes of the input i.e. single errors in the independence tests may lead to

a large effects on the output of the algorithm i.e. the structure of the BN.

Score-based methods Score-based methods aim to find the network which optimizes
a score among all possible networks. The score indicates how well the model can explain
the data. Due to the very high number of possible network structures, exhaustive search

to find the optimal network is not possible and therefore most existing learning methods
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use standard heuristic search techniques with no guarantee to find a globally optimal

solution.

There are several scoring functions. The simplest score is the likelihood of DAG G and

a set of conditional probabilities 6 after observing D:
L(G,6: D)= P(D|G,0)

Then one searches for the DAG G that maximizes the likelihood score. The likelihood
score takes higher values for more complex structures with higher number of edges and
therefore it is hard to compare networks with different number of edges. The standard
solution for this is to penalize the likelihood according to model complexity. The Akaike
Information Criterion (AIC) and the Bayesian information criterion (BIC) are both
based on this idea and penalize the maximal likelihood of the model with respect to the
number of model parameters. A more popular score is the Bayesian score which allows
to include prior knowledge. It evaluates the posterior probability of DAG G given data
v P(DIG)P(@)

P(GID) = e
The term p(D) is an average of data likelihoods over all possible models which can
be neglected for relative model scoring. The p(D|G) is the marginal likelihood and
equals the full model likelihood averaged over all parameters of the local probability

distributions, that is,

P(D|G) = /6 P(D|G,0)P(0]G)d6

p(G) is the prior on the structure of the network. This prior knowledge can be obtained
from any source including, for example, a domain expert who can specify edges that
are likely or not likely to be present in the network and other databases. However, one
should transform these knowledge of known interaction into prior distributions that can

be used in Bayesian framework.

Hybrid methods The third class of methods for learning the structure of BNs is a
combination of constraint-based and score-based methods with the aim of overcoming
their shortcomings while at the same time taking advantage of their strengths. The
general idea is to find the skeleton based on a constraint-based method and use that as

constraint on the DAGs considered in score-based methods.
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2.3.3 PC algorithm

The PC algorithm is a constraint-based method which reduces the number of CI tests
by avoiding unnecessary tests. The original PC algorithm consists of two main steps:
building the skeleton of the graph and determining the orientation of the edges. In the
remainder of this thesis, we will consider the skeleton only, and PC will stand for the
first part of the original PC algorithm. The step for assigning direction for the edges in
PC is explained in section 2.3.2.1.

PC takes as input a set of variables V' and an ordering order(V) over V, and returns
the skeleton of the graph G. Algorithm 1 shows PC in pseudo code. It starts with a
complete undirected graph, where all the nodes in V' are connected to one another, and
edges are then removed iteratively based on Cls. For every ordered pair of adjacent
nodes (Xj;, X;), all CIs X; L X;|S where S is a subset of all nodes adjacent to X; are
computed in order to find a set S* such that (X; L X;|S*) holds true.

Y is at first the empty set (zero-order test), then each variable Xy in turn following
order(V) (first-order test), then all possible pairs of potentials variables (X4, X.) fol-
lowing order(V') (second-order test) and so on, until a S* is identified or all possible
conditions have been exhausted. If a S* is found, then the edge between X; and Xj is
deleted. As the algorithm proceeds, the number of adjacent nodes decreases, and fewer
and fewer tests are needed. Assuming a faithful distribution to G and perfect CI tests,

PC correctly infers the skeleton of G [21], regardless of order(V).

2.4 Bootstrapping and bagging

Ensemble methods are methods to improve the stability and accuracy of learning algo-
rithms by building some base models that are different from one another. There are two
possibilities to create diversity in base models. First approach, called ”heterogeneous
ensemble method” applies different methods on the same data set. Second approach,
called ”homogeneous ensemble method”, uses the same method but on some perturbed
data sets obtained from the original data (most commonly by using bootstrapping).

Both methods have been applied for network reconstruction[23].

Bagging (Bootstrap Aggregating) [24] is a homogeneous ensemble learning. Briefly, it
draws multiple bootstrap data sets from the original data set using bootstrap. Each of
these data sets is used to construct a base model. These are then aggregated into a final

result.
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Algorithm 1 PC
Require: a vertex set V, an ordering order(V'), exact conditional independencies

1: form the complete undirected graph G’ over V
2:l=-1;,G=G";

3: repeat

4: l=1+1

5 repeat

6: following order(V'), select a pair (Xj;, X;) of adjacent nodes in G such that
adi(G, )\{j}] = |

T repeat

8: following order(V'), choose Y C adj(G,i)\{j} such that |[Y| =1

9: if (X; L X;|9) is true then

10: delete the edge (X;, X;)

11: denote the new graph G

12: end if

13: until the edge (Xj, X;) is deleted or all Y C adj(G,7)\{j} such that |Y| =1

have been exhausted
14:  until all pairs (X;, X;) of adjacent nodes in G such that |adj(G,7)\{j}| > [ have
been tested for conditional independence
15: until for each pair (X;, X;) of adjacent nodes in G, |adj(G,i)\{j}| <
16: return G

The bootstrap is a method to estimate the distribution of an estimator and as a result to
derive several quantities of interest such as the estimator’s variance and bias. It creates
a bootstrap data set from the original data set of size n, by performing n multinomial
trials where, in each trial, it draws one of the n samples. As a result, some of the
original samples will not be added to the bootstrap data while others will be selected

one or several times. In other words, bootstrap is a sampling method with replacement.

In bagging, M bootstrap data sets, which are created from the original data, are likely
to to induce some differences among the base models while leaving their performances
reasonably good. However, it is important to note that bagging is more useful when the
base model learning algorithm is unstable, i.e., when small changes in the input data
lead to large changes in the result returned by the algorithm. This is because stable
methods tend to return similar result in spite of the differences among the bootstrap
data sets. As a result, the ensemble returns the same result as almost all of its base
models with no improvement over them. In the case of unstable methods, the ensemble

is likely to perform better than the base models.

In the context of network reconstruction and specially GRNs reconstruction, we can use
bagging and obtain an ensemble of networks. The frequency of the interactions (edges)
in the ensemble of networks can be used as a proxy for the confidence of the interactions.

Interactions that are present in nearly all networks are most likely real interactions while
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interactions that are missing in nearly all networks are most likely absent in the real

network.



Chapter 3

Comparison of different methods

for network reconstruction

In this chapter, we assess the performance of different methods that we described in
Chapter 2, namely relevance networks (with different association measures) and graph-
ical models. While relevance networks are just based on the concept of independence,
the more sophisticated graphical models try to find the direct interactions based on the
concept of conditional independence. We investigate the effect of the number of samples
as well as the effect of the noise in the data on the performance of the methods. This
can help us to learn more about their performance in ”p >> n” situation and when the

data is noisy, as is typical for gene expression data.

3.1 Simulation of data

3.1.1 Gaussian data

Although gene expression data are not necessary multivariate Gaussian, many methods
for inferring GRNs from expression data make such an assumption. Under this assump-
tion, we can assess the performance of these methods under a controlled experiment by
simulating Gaussian data. This allows us to learn the strengths of the methods as well

as their pitfalls.

In order to simulate Gaussian data, we first generate a random DAG G. In the next step,
a positive definite matrix from the skeleton of G is generated which then can be used
as a covariance matrix for a multivariate Gaussian data. The inverse of this covariance

matrix contains zeroes at the missing edges of the given graph G. With this covariance

28
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matrix we can simulate Gaussian data with arbitrary means by using the R package

mvtnorm.

3.1.2 Non Gaussian data

Since gene expression data need not follow a multivariate Gaussian, to assess the perfor-
mance of the methods in a controlled but a more realistic situation we also simulate non
Gaussian data. Similar to Gaussian data, first a random DAG is generated as well as
a random covariance matrix from its skeleton. Then we generate multivariate Gaussian
data from this covariance matrix. In the next step, we transform the Gaussian data
using the cumulative Gaussian distribution into uniform distribution. Now, by using in-
verse transform method we can transform the uniform distribution to the distribution of
our interest. The Inverse transform method states that if F~! is the inverse cumulative
distribution function (CDF) of any distribution then applying F~! to a uniform random
variable over the interval (0,1) (U(0, 1)) results in a random variable whose distribution

is exactly F'.

For example, assume X and Y have bivariate Gaussian distribution with a non zero
correlation. Let ® be the CDF of Gaussian distribution, then v = ®(x) and v = ®(y)
have marginal uniform distributions, but are still correlated. If F~! and G~! are the
inverse CDF of any two distribution, then @ = F~!(u) and b = G~!(v) are two correlated
variables with distribution F' and G respectively. In this thesis, we use Beta and Gamma

distributions.

In reality and especially in biological data, the data contains noise. Therefore, when

needed in the simulation we also add Gaussian noise € ~ N(0,0?) to the data.

3.1.3 DREAM Challenge data

The DREAM (Dialogue for Reverse Engineering Assessments and Methods) challenge
is an annual reverse engineering competition with the aim of fair comparison of network
inference methods[23, 25, 26]. Participants are asked to generate a network structure
for each data set with a confidence score for each edge. In this thesis, we use the data
sets provided by the DREAM challenge, editions DREAM3, DREAM4 and DREAMS5.
Each of these editions proposed several data sets varying in size, but also in number and
type of variables. Participants were asked to generate a network structure for each data
set with a confidence score for each edge. They also provide gold standard network for

each data set for the evaluation of the methods.
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3.2 Validation

To evaluate the performance of any network inference method, we need to know the true
network or the gold standard (GS) to compare the inferred network with. Having the
GS, we can quantify the correctly identified edges or true positives (TPs), the correctly
missed edges or true negatives (TNs), the incorrectly identified edges or false positives

(FPs) and the missed detection or false negatives (FNs).

With these values in hand, we can compute different quality measures for the inferred
network including precision, recall, false positive rate and Fj-score (see below). While
recall (sensitivity or true positive rate) is the fraction of inferred true edges among all

true edges, the precision is the fraction of inferred true edges among all inferred edges:

TP
Recall = ——
U= TPYFEN
Precias TP
recitsion = ———.
TP+ FP

False positive rate (FPR) is also defined as the fraction of falsely identified edges out of

all nonexistent edges:
FP

FPR= ————.
hr FP+ TN

The Fi-score is defined as the harmonic mean of precision and recall:

recision X recall
=27

precision + recall’

The performance of network reconstruction algorithms can be depicted graphically by
receiver operator characteristic (ROC) curve which plots FPR versus the recall and
precision-recall (PR) curve which plots recall versus precision. The area under the ROC
curve noted AUROC and the area under the PR curve noted AUPR are indicators of

how good is an inferred network and is used to assess the performance of the algorithm.

One can build the ROC and PR curves by varying the parameter responsible for the
sparsity of the network. However, to build smooth ROC and PR curves, the algorithm
can provide as output a ranking of the edges by defining a score for each edge in the
network. This allows us to avoid setting a threshold to decide on an edge between
correspondence nodes by sorting the edges based on their scores and on growing the

network starting from the highest score down to the lowest one.
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3.3 Relevance networks with different association measure-

ments

In this section, we evaluate the performance of the relevance networks in finding the
association between random variables in different scenarios. First, we assess the perfor-
mance in the ”well-behaved” case n >> p, when we have many samples compared to the
number of variables. Then we investigate the effect of number of samples and noise on
the performance of the methods separately for Gaussian and non Gaussian data. Note
that non Gaussian data is obtained from Gaussian data with transformation that we

explained in section 2.1.

3.3.1 Performance of relevance methods with different number of sam-

ples

In this section, we assess the effect of the number of samples on the performance of rele-
vance networks with different association measurements. We simulate different number
of samples of Gaussian and non Gaussian data from a network with 50 nodes. For each
association measurement we also applied the CLR and MRNET methods to reduce the
number of false positives (indirect interactions). As mentioned before, to avoid setting
a threshold to decide on an edge between correspondence nodes we sort the edges based
on their scores (in absolute values) and on growing the network starting from the highest

score down to the lowest one.

Figures 3.1 and 3.2 show the ROC curve and PR curve for different association measures
in the well behaved case (n >> p) with 1000 samples of Gaussian data. Similarly, figures
A.1 and A.2 in Appendix A show the results for non Gaussian case. The results show
that all the association measurements are comparable in the case n >> p and when there
is no noise. In addition, PR curves indicate that for each association measurements, CLR
and MRNET methods improve the result by removing some of the indirect interactions
(false positives). In addition, the performance of the methods in Gaussian case versus

non Gaussian case are comparable.

Figures 3.3 and 3.4 show the effect of the number of samples on the performance of
relevance networks with different association measures in terms of AUPR and AUROC
on Gaussian data. Figures 3.5 and 3.6 show the same results for non Gaussian data.
Clearly, for each association measure the fewer the number of samples, the worse the

performance.
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The AUPR results indicate that when the number of sample is much less than the
number of nodes (10 and 20 samples for 50 variables) the CLR and MRNET methods

are comparable to the simple relevance networks.

3.3.2 Effect of the noise on the performance of relevance methods

In this section, we assess the effect of the noise on the performance of relevance networks
with different association measurements. We simulate 1000 samples of Gaussian data
and non Gaussian data separately from a network with 50 edges and then add Gaussian
noise € ~ N(0,0?%) with different amount of variance o2. Figures 3.7 and 3.8 show the
effect of noise on the performance of relevance networks in terms of AUPR and AUROC.

Figures 3.9 and 3.10 show similar results for non Gaussian data.

Clearly, for each association measurement the higher the amount of noise, the worse the

performance. However, MIC seems to be more sensitive to the noise.

3.3.3 Performance of relevance methods on DREAM challenge data

In this section we compare the performance of relevance networks with different associ-
ation measures on the DREAM Challenge data. Figures 3.11 and 3.12 show the ROC
and PR curves for DREAM3 (50 nodes and 100 nodes) and DREAM4 (10 nodes and
100 nodes), respectively.

The results show that correlation and dcor have the best performance while MIC has

the worst performance. In fact, MIC is not better than random classification.

3.4 Graphical models

In this section, we evaluate the performance of graphical Gaussian models and compare
the result of pseudo-inverse and shrinkage methods (see section 2.3 ) in different sce-
narios. First, we compare the performance of the methods in the ”well-behaved” case
n >> p when we have many samples compared to the number of nodes. Then we in-
vestigate the effect of number of samples and noise on the performance of the methods

separately for Gaussian and non Gaussian data.



Chapter 2. Comparison of different methods 33

3.4.1 Performance of graphical Gaussian model with different number

of samples

In this section, we assess the effect of the number of samples on the performance of
graphical Gaussian models. We simulate different number of samples of Gaussian and
non Gaussian data from a network with 50 nodes. In the well behaved case (n >> p)
with 1000 samples and no noise both methods work almost perfectly with AUROC and
AUPR values close to 1 (see figures A.3 and A.4 in the appendix A ).

Figures 3.13 and 3.14 show the effect of the number of samples on the performance
of pseudo-inverse and regularized methods on Gaussian data and non Gaussian data,
respectively. Clearly, for both method the fewer the number of samples, the worse the
performance. However, when the number of samples is low the regularized method has

a better performance, as expected.

3.4.2 Effect of noise on the performance of graphical Gaussian model

In this section, we assess the effect of the noise on the performance of graphical Gaussian
models. We simulate 1000 samples of Gaussian data and non Gaussian data separately
from a network with 50 edges and then add Gaussian noise € N(0,0?) with different
amount of variance o2. Figures 3.15 and 3.16 show the effect of noise on the AUPR
and the AUROC for pseudo-inverse and regularized methods on Gaussian data and non
Gaussian data respectively. The results show that when we have reasonable amount of
samples (in this case 1000 samples for 50 variables) the noise does not have a strong

impact on the results.

3.5 Conclusion

In this chapter, we assess the performance of relevance networks (with different associ-
ation measures) and graphical models in different aspects. We used Gaussian and non
Gaussian simulated data as well as data provided by the DREAM challenge. We investi-
gate the effect of the number of samples as well as the effect of noise on the performance
of the methods. The results show that in the well behaved case of having many samples
and no noise all methods have a good performance. However, their performance decrease
significantly in case of not having many samples and/or in facing high amount of noise,
the typical case for gene expression data. This indicates that information in the gene

expression data is not enough to decipher the complex interactions between genes.
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In the context of relevance networks, we compared the performance for different asso-
ciation measures. Among all association measures, correlation and distance correlation
had the best performance while the MIC had the worst performance. In addition, for
DREAM challenge data distance correlation performs well above other nonlinear asso-
ciations. In the context of GGMs, in case of not having many samples the regularized

method had a better performance compared to the pseudo inverse method, as expected.
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FIGURE 3.1: Performance of relevance networks on Gaussian data. The data
consist of 1000 samples simulated from a network with 50 nodes. The left subplots
show the ROC curve, while the right subplots show the PR curve.
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FiGURrE 3.3: Effect of the number of samples on the performance of relevance
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network with 50 nodes. The left subplots show the AUROC, while the right subplots
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then Gaussian noise with different amount of variance o2 is added. The left subplots
show the AUROC, while the right subplots show the AUPRC.
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Reconstruction of gene networks
using prior knowledge: PriorPC

Algorithm

4.1 Introduction

GRN reconstruction from expression data is a challenging problem, not only because it
suffers from high dimensionality and low sample size, as the number of genes is generally
much larger than the biological samples, but also because biological measurements are
extremely noisy. Exploiting other sources of knowledge is one reasonable way to address
these issues. Recent advances in biology provide various data sources such as ChIP-
seq data, pathway data and sequence data, each of which can shed more light on the
cellular processes underlying GRNs. For instance ChIP-seq data can reveal potential
target genes for transcription factors (TFs). Each of these sources is of course limited
and noisy, and only gives a partial picture of gene regulation. However, taken together,
they can help build a more robust description of the regulatory mechanisms, and reduce
the effects of noise and sparsity in expression data. These pieces of information can be
included in the process of GRN reconstruction in the form of prior knowledge, i.e. a
subjective (but non-arbitrary) belief about how the network should look like. Hence,
the use of prior information in network inference is a growing trend in computational

biology [27-30].

Prior knowledge can be applied by discarding edges that are a priori unwanted, and
enforcing edges that are a priori wanted. However we do not always have this level of
confidence, particularly in biology where associations are difficult to establish. Another

way is to set a prior to 1 when an edge is wanted, and to 0 when an edge is undesirable.

49
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However not all sources of prior knowledge are reliable, and when combining several,
there may be inconsistencies to resolve, so potential errors should be accounted for and
uncertainty modeled. In addition, not all of the edges have the same level of confidence.
For instance when using ChIP-seq data, not all potential target genes for a specific TF
have the same probability to be functional. In this case, the binding affinity of TF
to TF binding sites is a proper proxy for functionality which can be converted into a
probability. We believe that soft priors, which represent the probability of existence of

an edge, are better suited for our application.

Prior information about gene interactions in GRNs is typically converted into a prior
knowledge matrix B, in which each entry b;; represents the confidence about the exis-
tence of an interaction between two nodes X; and X [28], where nodes represent genes.
Entries in B range from 0 to 1, where 0 stands for the strongest belief in the absence
of an edge and 1 for the strongest belief in the existence of an edge. If no information
about the edge between X; and X is available, b;; is set to 0.5. How to include this
prior matrix into the reconstruction process depends of course on the algorithm used to
construct the GRN.

One of the most popular tools to model GRNs is Bayesian networks (BNs) and most
algorithms that allow prior knowledge fall into the class of BNs. Indeed BNs can include
prior information very naturally via a prior distribution over network structures. For
instance Imoto et al. [27] define a prior distribution on network structures as a Gibbs
distribution in which the prior knowledge is encoded via an energy function. Werhli et
al. [28] have extended their work to integrate multiple sources of prior knowledge and for
each source express the energy function as the absolute difference between the network
structure and prior knowledge matrix. However, these algorithms are not applicable for
large networks because of their complexity. Some other methods fall into the class of
regularized regression where regularization is applied to regression methods to infer a

limited number of edges, thereby favoring important ones [29].

The PC algorithm [21] (see section 2.3.3) is a popular constraint-based method which
drastically reduces the number of Conditional independence (CI) tests by avoiding un-
necessary ones, thereby allowing the reconstruction of larger networks. In fact, it has
been shown [31] that PC scales well for sparse graphs and that, in the case where the
number of nodes is much larger than the sample size, it is asymptotically consistent
for finding the skeleton of a DAG, assuming the data follows a multivariate Gaussian
distribution. However, by nature, the performance of PC relies heavily on the accuracy
of its inner CI tests, which is not guaranteed in the presence of limited sample size and
noisy data. If erroneous decisions are made, the output of PC depends on the order in

which the variables are given.
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In this work, we exploit the order dependency of PC to our advantage. We modify
the original algorithm to include prior knowledge by favoring unwanted edges for early
testing, and holding wanted edges out for late testing. The resulting algorithm is referred
to as PriorPC. Prior knowledge is particularly advantageous when the quality of the CI
tests is questionable, for example as mentioned above when data is high-dimensional

and few samples are available, as is typical for gene regulatory networks.

Following Greenfield et al. [29], our method PriorPC is evaluated on one dataset contain-
ing Bacillus subtilis expression data [32], and two datasets from the DREAM challenge,
and for the F. coli and B. subtilis datasets only the nodes that are linked to at least one
other node in the gold standard are considered for evaluation. We compare our result
to a recently published work [29] where they modify regression methods to incorporate

the prior knowledge.

4.2 Methods

We explained the PC algorithm , or PC, in section 2.3.3. Although in PC algorithm
ordering order(V') over the set of variables V' determines in which order the Cls should
be tested, it has no effect on the output if the CI tests are always correct. The standard
choice, used in most implementations, is then the lexicographical ordering. In practice
however, CI tests must be performed on the available dataset, containing a limited

number of samples for all the nodes in V.

The use of small-sample-sized and noisy datasets (such as biological datasets) in CI
tests can induce many false positives and false negatives. Moreover, in the presence of
imperfect CI tests, the output of PC also depends on the significance level 5, which
allows to tune the sparsity of the resulting network but also increases the potential for
errors. Because of these inevitable mistakes, edges may be wrongly removed or kept,
thereby changing the adjacency structure and affecting the edges that are considered for
deletion and the CI tests that are further performed. Therefore, the output of PC does
depend on order(V'), particularly when the number of nodes is large. This dependency
has a cascading effect that can lead to a drastically different skeleton, rendering PC
unstable. We use this weakness to our advantage and modify the ordering to include

prior knowledge or/and data-based knowledge.

The distribution of the variables is assumed to be a multivariate Gaussian, so Cls can
be inferred by testing for zero partial correlation [33]. Let cor(X;, X;|Y’) be the sample
partial correlation between X; and X; given a set Y C V\{Xj;, X;}, obtained from any

method including regression, inversion of part of the covariance matrix or recursion,
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1 1 4 cor(X;, X;|Y)
an Z( i J| ) 2 08 <1 — COI"(Xian|Y)

pothesis Hg : cor(X;, X;|Y) = 0 is then rejected against the two-sided alternative H4 :
cor(X;, X;|Y) # 0 at significance level 3 if |2(X;, X;|Y)| /n — [Y]| -3 > &1 (1 - g ,
where ® denotes the cumulative distribution function of a standard normal distribution
[31]. In other word, PC uses the condition |2(X;, X;|Y)| v/n — [Y]| =3 <t to decide

whether (X; L X;|Y) holds true where t = &1 (1 - g) In this work we used the

method developed in [2] to estimate the partial correlation since the expression data is

) the Fischer’s z-transform. The null hy-

high dimension low sample data.

The worst-case complexity of PC is O(|V|™%°), where mazo is the maximum order
reached in the algorithm. If we denote ¢ the maximum number of neighbors of a node
in G, then mazo € {q¢ — 1,¢} [21]. Assuming sparsity, we can set the maximum order
to the expected average degree of the network. We will use ¢ = 5 for every algorithm

presented in the thesis as GRNs are sparse networks.

4.2.1 PriorPC

PriorPC uses order(V) to inject information into the learning process. It first defines
a confidence score for each edge representing the initial belief about existence of the
edge. If we know a priori that some edges do not exist in the network, removing them
in the early stages of the algorithm leads to more reliable neighborhoods and to a better
set of CI tests in the rest of the algorithm. Similarly if we know a priori that some
edges ought to be part of the network, keeping them as long as possible can lead to
different neighborhoods and therefore to a different resulting skeleton. PriorPC uses
confidence score to rearrange the CI tests such that edges which are less likely to be
a real interaction are considered for CI testing first, while edges with a high belief to
belong to the network are subjected to CI testing last. Note that, under the assumption

of perfect CI tests, the outputs of PC and PriorPC concur.

4.2.1.1 Including prior knowledge

We introduce a confidence score for each edge indicating the initial belief of existence of
the edge which can be simply the prior associated with the edge. However, we do not
have prior for all edges and sometimes the prior is not correct and we need the support
of data for the edge as well. We define data score d;; as the normalized multiplication
of two z-scores resulting from the deviation of the correlation cor(X;, X;) from the

two distributions of correlations cor(Xj,.) and cor(Xj,.). If C denotes the absolute
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correlation matrix, the unnormalized score is obtained as:

Cij — 1
Tj

Cij — i
0

>< ‘

61‘]’:‘

where p; and o; (resp. pu; and o) are the mean and standard deviation of the correlation
values between X; (resp. X;) and all other variables. This is similar to the CLR score

(see section 2.2) [17]. The data score is then obtained as:

d — i :‘Cz‘j—m X‘Cz‘j—ﬂj
T Veiiye;  1Ci— il 1Chj —

For the data score to be high, the observed correlation between X; and X; must be far
from the average correlation involving X; and from the average correlation involving X;.

We now define the confidence score s;; of an edge X; — X; as:
SijZOJXbZ’j—l-(l—OJ)XdZ'j

where 0 < o < 1, b;; is the prior associated with the edge and is directly read from
the prior matrix B, and d;; is a data-based score. While b;; encodes our belief in the
existence of the edge, d;; indicates how well the edge is supported by the data. To have
a high confidence score, an edge must be supported by the prior or the data. Which

source matters most depends on a.

4.2.1.2 Discarding the worst edges

Edges are ranked by decreasing confidence score s;;. All edges after the top Ng ~ 3x|E]|,
where |E| is the number of expected edges, are discarded. This number stems from the
idea that the network should be sparse, and from the three tier structure of the algorithm
developed in the next section. This bold step replaces the zero-order CI tests in PC.
Indeed, the zero-order CI tests can also be seen as a deletion step where edges are ordered
by decreasing marginal correlation rather than confidence score, and deleted one by one
until the CI test reaches the desired threshold. This step is also comparable to a high

penalty on the number of edges.

4.2.1.3 3-tier structure

After discarding the worst edges, the remaining Np edges are divided into three cate-

gories. We convert PC into a 3-tier algorithm, where in each tier a specific category of
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edges is tested for CIs. We consider the top % of NE edges to be strong candidates, the
bottom % to be weak candidates, and the remaining % to be average candidates. While
PC runs all zero-order CI tests for all edges, then proceeds with the first-order CI tests
and so on, PriorPC performs all CI tests of order 1 to 5 for all weak candidates first,

then for average candidates, and finally for strong candidates.

If the confidence score of a candidate edge and the subsequent group in which it falls is a
good indicator, 3-tier PC can remove more false edges, and faster. For instance, if there
is a false edge X; — X; for which (X; L X,|Y = Y1,Y3) holds true, PC must perform
several unnecessary first-order and second-order CI tests before getting to the relevant
one. This is not only computationally expensive but also undesirable, because these
unnecessary CI tests can cause multiple errors and lead to strong effects as discussed
previously. Instead PriorPC removes the worst candidates at the very beginning, and
the weak candidates earlier than the other candidates. This also leads to a more reliable

neighborhood and CI tests when assessing strong candidates.

4.2.2 Bagging and edge ranking

PC and PriorPC do not naturally provide any score for the edges and therefore do
not allow for ranking of the edges. To remedy that issue, we have chosen to apply
bagging (see 2.4) and to post-rank the edges by their frequency of appearance. If K-fold
bagging is applied to PC for example, K networks are obtained, and an edge can appear
any number of times between 0 and K. This number is used to create a ranking a
posteriori of the edges and to produce the ROC and PR curves. A consensus network
can then be built by choosing a threshold and selecting the top edges only. Apart from
the ranking, this step also has the advantage to produce more reliable results, as the

consensus network contains less noise, regardless of the algorithm used.

We set K to 20 for all experiments. One could use the confidence score of edges to break
the ties, however we rank them lexicographically. Note that, to produce a network in the
first place, a threshold for the CI tests is required. As detailed in 4.3.8, this threshold
was fixed to 0.1 for all experiments and optimized neither for PriorPC nor for each data

set.

4.2.3 Synthetic prior knowledge

For each experiment and for each dataset, the prior information matrix B is simulated
from the gold standard network available depending on the needs. To assign a true prior

to an edge X; — X, we check the existence of that edge in the gold standard network.
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If the edge is present, the prior b;; is randomly sampled from (0.5, 1], otherwise b;; is
randomly sampled from [0,0.5). To assign a non-informative prior to X; — X, b; is set
to 0.5.

4.3 Results

4.3.1 Datasets

For the evaluation of the PriorPC, we used three different datasets. Two of them are
from DREAM challenge. In the following, we explain the three datasets in more detail.
Note, each dataset contains both time-series data and steady state data and we only use
the steady state data. We used the gold standard of each data set to synthesize prior
knowledge.

e A synthetic dataset from the DREAM4 competition [23, 25, 26]. The data consists
of 100 genes where any gene can be a regulator. The gold standard contains 176

interactions. The normalization was done by the DREAM organizers.

e A real dataset from the DREAMS5 competition [23]. The data includes a com-
pendium of microarray experiments measuring the expression levels of 4,511 F.
coli genes (344 of which are known transcription factors) under 805 different ex-
perimental conditions. Normalization was done using RMA [34]. DREAMS5 chal-
lenge also provides a gold standard consisting of 2,066 established gene regulatory

interactions.

e A set of 269 expression measurements of B.subtilis genes in response to a variety
of conditions [32]. Greenfield et al. [29] normalized the data and compilated the
overlapping probes into intensities and we used the data provided by them. The
gold standard comes from SubtiWiki [35, 36] which is repository of information

for B.subtilis contains 2422 interactions.

Note that PC is not feasible for large networks with a small threshold for the CI tests
and we compare PriorPC to PC-lite. PC-lite is a variation of PC that removes edges
with low correlation and keeps the N edges with the highest correlation instead of doing
zero-order tests (the step of discarding the worst edges of PriorPC), and then applies
PC to these edges only. As it is shown in 4.3.2 and 4.3.8 , PC-lite always outperforms
PC. We set Ng to 600, 7000, 7000 for DREAMA4, E. coli and B.subtilis respectively.
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4.3.2 From PC to PriorPC

In this section, the results of the various steps taken between PC and PriorPC in order
to see the effect of each step. Note that, in this section, bagging was not used because

it would take too long for PC.

e The first step is to rank the edges based on their correlation and to use this ordering
instead of the lexicographic ordering in PC. We refer to this algorithm as OPC
(ordered PC).

e The second step is to remove edges with low correlation and keep the Ng edges
with the highest correlation instead of doing zeroth-order tests, and apply PC to
these edges only. We refer to this algorithm as PC-lite.

e Finally, we refer to the combination of OPC and PC-lite as OPC-lite.

In this experiment, the prior matrix B contains only true priors, i.e. priors sampled in

(0.5, 1] for present interactions and in [0,0.5) for absent interactions.

PC, OPC, PC-lite, OPC-lite and PriorPC with @ = 0 and a = 0.25 were applied to
the three datasets, all using the same threshold for the CI tests. Table 4.1 compares
the number of true positives (TP), the number of false positives (FP) and the F1 scores
obtained for each algorithm for a CI threshold of 0.1. The results show that the most
effective steps are to discard the worst edges at the very beginning and to include prior

knowledge.

The difference between PC and OPC lies strictly in how edges are ordered: by lexi-
cographical order or correlation. Results are comparable on DREAM4 data, but OPC
clearly wins for two datasets (E. coli and B.subtilis). Similarly, the difference between
PC-lite, OPC-lite and PriorPC with a = 0 lies (mostly but not strictly as PriorPC
also has a tier-structure) in how edges are ordered: by lexicographical order, marginal
correlation or data score d;;. Results are comparable, with an advantage for PriorPC

with o« = 0 on B.subtilis data.

The difference between PC and PC-lite, or between OPC and OPC-lite, lies strictly in
the removal of the worst edges at the very beginning. The results are much better for

PC-lite compared to PC, and for OPC-lite compared to OPC, in all three datasets.

The difference between PriorPC with o = 0 and PriorPC with o = 0.25 lies strictly
in the use of prior knowledge (only with a coefficient of 0.25). Although PriorPC with
a = 0 was already consistently better than PC, OPC, PC-lite and OPC-lite, the results

are further greatly improved with a = 0.25, on all three datasets.
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This section suggests that PriorPC wins on two aspects: the removal of the worst edges
as a first step, and the use of prior knowledge. The first aspect is a nice result: it
allows for faster processing and for larger networks, and clearly not at the expense of
the accuracy. In fact removing these edges even helps the algorithm perform better
tests. The second aspect shows that our inclusion of prior knowledge helps greatly, even

when given a low weight.

DREAM4 E. coli B.subtilis
TP | FP F1 TP FP F1 TP FpP F1
PC 86 | 678 | 0.18 | 314 | 5592 | 0.07 | 592 | 6725 | 0.12
PC-lite 80 | 206 | 0.35 | 127 | 369 | 0.09 | 361 | 1154 | 0.18
opPC 86 | 676 | 0.18 | 284 | 4534 | 0.08 | 561 | 5602 | 0.13

OPC-lite 79 | 208 | 0.34 | 126 | 366 | 0.09 | 342 | 1056 | 0.17

PHotPC 1 54 | 222 | 035 | 146 | 469 | 0.11 | 397 | 1199 | 0.19
PriotPC 1 100 | 188 | 0.43 | 194 | 232 | 0.15 | 492 | 810 | 0.26

TABLE 4.1: From PC to PriorPC. Effect of all the various steps between PC and

PriorPC. None of the methods were subjected to bagging. For PriorPC, all edges have

a true prior. Two steps make a critical difference: using prior knowledge to rank the
edges, and discarding straight away the worst edges.

4.3.3 Effect of the parameter o

The value of a determines the degree of influence of the prior knowledge in the ranking
of the edges. While @ = 1 means ranking the edges using prior knowledge only, o = 0
means using data only. Figure 4.1 shows the performance of PriorPC for different values
of . In this experiment, the prior matrix B contains only true priors, i.e. priors sampled

in (0.5, 1] for present interactions and in [0,0.5) for absent interactions.

PriorPC performs well above PC-lite, even though priors were simply sampled between
[0,0.5) or (0.5,1]. Increasing the value of « leads to a better performance. This indicates
that not all of the edges are well supported by the data and therefore increasing the
effect of the prior improves the algorithm. This also emphasizes the value of integrating

prior knowledge where data is sparse and noisy.

Note that PriorPC with a = 1 does not perform perfectly. Indeed, the prior is used to
reorder the CI tests, but it has no effect on the CI tests themselves. Therefore, it is not

possible to reconstruct the real network unless data supports it.
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F1GURE 4.1: Performance of PriorPC against a. The left subplot shows AUPRC,

while the right subplot shows the AUROC. PC-lite is plotted with triangles, while

PriorPC is plotted with circles. The different colors represent the different datasets. For

PriorPC, all edges have a true prior. PriorPC outperforms PC-lite and its performance
increases with a.

4.3.4 Effect of the amount of prior knowledge

In order to assess the effect of the prior on the resulting network, the algorithm was
given different amounts of prior knowledge. Initially, 5% of the edges were randomly
selected and assigned a true prior as stated in section 4.2.3. For all other edges, the
prior was set to 0.5. The percentage of the edges with a true prior was then gradually

increased until it reached 100%. Figure 4.2 shows the results for o = 1.

Here again, PriorPC performs well above PC-lite, even though priors were simply sam-
pled between [0,0.5) or (0.5,1]. For each dataset, the more prior is included, the better

the network can be recovered. This indicates that PriorPC is consistent.

4.3.5 Effect of the prior knowledge on the edges without prior

The prior, even if it is incomplete and only concerns a few edges, may influence the
complete network. We refer to the edges that do not have a prior as neutral edges. To
assess the influence of the prior on neutral edges, 5% of the edges were randomly sampled
and assigned a true prior. This experiment was repeated for increasing percentages, until

80% edges were selected. The results were then compared with PC-lite but this time
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FIGURE 4.2: Performance of PriorPC against the percentage of edges with a

prior. The left subplot shows the AUPRC, while the right subplot shows the AUROC.

PC-lite is plotted with triangles, while PriorPC is plotted with circles. The different col-

ors represent the different datasets. PriorPC outperforms PC-lite and its performance
increases with the percentage of edges with a true prior.

separately for the neutral edges and for the edges with prior. Figure 4.3 shows the

results for a = 1.

The results show that for real data, parts of the network which are not subjected to the
prior do not suffer from the prior. For DREAM4 data, using a high amount of prior
leads to a performance decrease on the neutral edges, it is unclear why. The rest of the

time, the performance is just as good as that of PC-lite.

4.3.6 Robustness to erroneous priors

Biological prior knowledge can come from different sources including ChIP-seq data,
protein-protein interaction data and literature, which can all contain false information.

Methods for integrating prior knowledge should therefore be robust to errors.

In order to assess the robustness of the algorithms to erroneous prior information, a
true prior was assigned to all edges, and Gaussian noise was added (towards 0 for true
edges, towards 1 for non-edges), with various standard deviations o. Clearly, the effect
of the amount of noise (¢) depends on the value of a. Figure 4.4 shows the effect of
noise on the AUPRC and the AUROC for different values of . The results indicate

that PriorPC is robust to reasonable amounts of noise. Clearly, the higher the amount
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FIGURE 4.3: Comparison between PC-lite and PriorPC on neutral edges.

Neutral edges are edges which are not subjected to prior knowledge. The left subplot

shows the AUPRC, while the right subplot shows the AUROC. The x-axis shows the

performance of PC-lite, the y-axis the performance of PriorPC. Each datapoint corre-

sponds to a different amount of edges with a true prior from 5% to 80%. For PriorPC,

«a = 1. Results are comparable, overall neutral edges are not negatively affected by the
prior.

of noise, the worse the performance. Naturally, the results are less sensitive to noise for
smaller values of «, which should be taken into account when choosing this parameter.

Indeed, when « is small, PriorPC is still better than PC.

In addition, we followed the experimental set up given in [29] to assess the robustness
of the algorithms to erroneous prior information. 50% of the true edges were randomly
selected and assigned a random prior higher than 0.5. Then m edges from the remaining
edges in the prior matrix were selected and their corresponding true prior values were
flipped so that b;; = 1 — b;; to introduce errors. Figure 4.5 shows the AUPRC and
AUROC results for different ratio of true priors to false priors.

The results indicate that PriorPC is robust to reasonable amounts of error. Clearly, the
higher the percentage of false priors, the worse the performance. Naturally, the results
are less sensitive to errors for smaller values of «, which should be taken into account

when choosing this parameter. Indeed, when « is small, PriorPC is still better than PC.
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4.3.7 Comparison of PriorPC to MEN and BBSR

Recently published work [29] suggests two methods to use prior knowledge. The first
method called MEN (Modified Elastic NET) is a modification of Elastic Net where prior
knowledge is expressed as a modifier of the [1 constraint incurred on each single regres-
sion coefficient. This leads to less shrinkage on the regression coefficient corresponding

to a putative regulation.

The second method called BBSR (Bayesian best subset regression) is based on Bayesian
regression with a modification of Zellner’s g prior. In this framework the prior on the
regression coefficients follows a multivariate Gaussian distribution centered at an initial
guess with the empirical covariance matrix that is scaled by a chosen factor g, where g
encodes the belief about the initial guess. They extend the original formulation of g and
define a vector with one entry per predictor to allow for different levels of confidence for
different entries in the initial guess. They use a criterion based on Bayesian Information
Criterion (BIC) to select the final model. For both methods, bootstrapping is applied

in order to provide a final ranking of the edges.

BBSR and MEN take as input both steady state data and time series data and the
output is a matrix with confidence level for directed edges. For a fair comparison we
just take the skeleton and assign the highest confidence of corresponding directed edges

to undirected edge.

The prior used in BBSR and MEN is not probabilistic, instead it is a hard score stating
the strength of belief in the presence of an edge, with 1 for belief and 0 for no belief (no
belief in the sense of no opinion, which is similar to a probability of 0.5). The score 1 is
assigned to the edges found in the gold standard network only. The rest of the edges are
assigned the score 0. The two methods are compared with their respective core methods
and with state-of-the-art algorithms which do not contain any prior information. In each

case, the inclusion of prior knowledge improves the accuracy of the inferred network.

We compare PriorPC to these two methods. Tables 4.2 and 4.3 show the AUPRC and
AUROC results, respectively, from MEN and BBSR for different (default) parameters
corresponding to the low and high use of prior as well as the results of PriorPC for two
different values of . For the sake of comparison, we followed Greenfield et al. [29]: 50%

of the true interactions in the gold standard network are selected and assigned a true
prior (1 for MEN and BBSR, a random probability in (0.5, 1] for PriorPC).

The results show that on average PriorPC performs as well as BBSR and MEN even
without the use of time-series (T'S) data and merely using soft prior. Note that none

of PriorPC’s parameters were tuned. PriorPC is also fast and one bootstrap takes 1:08,
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DREAM4 | E. coli | B.subtilis | Using TS
MEN _low 0.48 0.201 0.218 yes
MEN _high 0.571 0.347 0.369 yes
BBSR_low 0.44 0.196 0.269 yes
BBSR_high 0.519 0.359 0.394 yes
PriorPC (a = 1) 0.328 0.413 0.392 no
PriorPC (a = 0.75) 0.341 0.336 0.303 no

TABLE 4.2: Comparison of MEN, BBSR and PriorPC in terms of AUPRC.
For all three methods, 50% of the edges present in the gold standard network were ran-
domly selected and assigned a true prior (1 for MEN and BBSR, a random probability
in (0.5, 1] for PriorPC). For PriorPC, « is given in brackets. MEN and BBSR also use
time-series(TS) data. Results are comparable across the three algorithms.

DREAM4 | E. coli | B.subtilis | Using TS
MEN _low 0.908 0.768 0.828 yes
MEN _high 0.912 0.776 0.842 yes
BBSR _low 0.872 0.675 0.791 yes
BBSR_high 0.86 0.719 0.793 yes
PriorPC (aa =1) 0.887 0.753 0.835 no
PriorPC (a = 0.75) 0.885 0.71 0.801 no

TABLE 4.3: Comparison of MEN, BBSR and PriorPC in terms of AUROC.
For all three methods, 50% of the edges present in the gold standard network were ran-
domly selected and assigned a true prior (1 for MEN and BBSR, a random probability
in (0.5, 1] for PriorPC). For PriorPC, « is given in brackets. MEN and BBSR also use
time-series(TS) data. Results are comparable across the three algorithms.

39:34, 6:01 minutes for DREAM4, E. coli and B. subtilis respectively, when a = 1
(3.1GHz Intel Core).

4.3.8 Threshold for conditional independence test

Both PC and PriorPC require a threshold ¢ for the CI tests. Since we apply bagging and
use the frequency of occurrence to rank the edges, we choose t relatively small to have
a graph contains a large number of edges. In this way, we keep more edges to compete
during the bagging. However, the threshold should not be too small which leads to

computational singularity and require a lot of time or simply not be feasible.

In order to see the effect of the threshold ¢, we apply PC, PC-lite and PriorPC (with
different values of « for incorporation of prior knowledge) for a variety of thresholds.
Figure 4.6 shows the ROC curve and PR curve for Dream4 data, when we change the
threshold ¢, t € {0.001,0.01,0.1,0.5,1,2}. The result shows that PC-lite and PriorPC

with any value of o outperform the PC and this improvement is not the effect of bagging.
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We did not tune the parameter t for each data set and set the parameter to 0.1 for all

datasets.

4.4 Conclusion

We presented PriorPC, a variation of the PC algorithm which takes advantage of the
dependency of PC to the order in which variables are presented. This dependency is
due to sparse and noisy data which affects negatively the performance of the CI tests.
The larger the number of variables, the more impact the order has. This flaw is here
exploited to integrate prior knowledge by rearranging the CI tests in order to favor less

probable edges for early testing and to keep more likely edges for late testing.

PriorPC uses soft priors which assign to edges a probability of existence, rather than
hard priors which give edges an existence state. We believe soft priors are more desirable
as they can summarize the level of uncertainty the source associates with the edge, and

the level of uncertainty associated with source itself.

PriorPC is evaluated on three different datasets. Although parameters are never tuned at
any point of the experiments, PriorPC produces a significant improvement in structural
accuracy over PC for every dataset at hand. This improvement consistently increases
with the amount of prior. Moreover, in the presence of partial prior knowledge, the part

of the network that has no prior is not badly affected by the partial prior.

The robustness of the algorithm to noise in the prior matrix, which is not avoidable
in the context of biological data, was tested. The results show that in the presence
of noisy priors, PriorPC still performs better than PC up to a level of noise of 0.15.
This transition level depends on how strong the dependency to prior knowledge is, i.e.
how high « is. Similarly, if priors are flipped (i.e. false) rather than noisy, PriorPC
performs better up to a ratio of true priors to false priors between 1:5 and 1:10. Again
this ratio depends on «. In practice, if the reliability of the available prior knowledge is

questionable, it is advisable to use a smaller value for a.

PriorPC is fast and scales well while most Bayesian network reconstruction methods
which use prior knowledge are not feasible for large networks. These methods are mostly
in the class of score-based methods and usually involve Markov-Chain-Monte-Carlo al-

gorithm which is computationally expensive.
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Chapter 5

Partial distance correlation and
its application in gene network

reconstruction

5.1 Introduction

Recognizing direct relationships between variables is a substantial task in many problems
including GRN inference. Although methods such as partial correlation and conditional
mutual information (see section 2.1) are capable of finding direct interactions, the former
is not able to find nonlinear relationships and estimation of the latter from continuous
finite data is not trivial. Therefore, there is considerable interest in developing a method

capable of detecting direct nonlinear relationships.

The recently proposed association measure, distance correlation (dcor) [9, 10] , is able
to find nonlinear relationships. In addition, unlike mutual information, obtaining the
empirical dcor is quite simple which makes it more appropriate than mutual information
for the application on real data. In the context of inferring GRNs, one could use dcor
as an association score in relevance networks as shown in the work by Guo et al. [37].
However, as we explained in section 2.2 relevance networks also associate variables that
interact indirectly through one or more other variables and consequently they contain
numerous indirect relationships. Although Guo et al. used CLR and MRNET methods
to reduce the number of indirect interactions, a more proper method should take ad-
vantage of the concept of conditional independence analogous to partial correlation and

conditional mutual information.

67
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Recently, the authors of dcor introduced an approach to compute partial distance corre-
lation (pdcor), the generalization of dcor which controls for the effect of other variables
on the association between two variables in multivariate analysis. As we explained in
Chapter 2, the definition is based on an unbiased distance covariance statistic using
new distance matrices named U-centered matrices. Even though they show that the
statement of 7 pdcor(X,Y; Z) = 0 if and only if X and Y are conditionally independent
given Z” does not hold true generally by providing numerical examples, it can be still
beneficial to use pdcor for the purpose of network reconstruction. Especially in the non
Gaussian case, where zero partial correlation is not equivalent to conditional indepen-
dence, partial distance correlation which captures nonlinear associations can be more

useful.

In this chapter, we suggest another approach to estimate partial distance correlation
based on double centered matrices (mpdc). In this approach, we consider the squared
distance correlation as an inner product in the Hilbert space of double centered matrices.
Szekely et al. opposed this approach, stating that the difference of double centered
distance matrices typically is not a double centered distance matrix of any sample, and
therefore the projections do not have any interpretations. This was the reason that
they defined an alternate type of centering, namely /-centered matrices. In the Hilbert
space of U-centered matrices, the U-centered distance covariance is the inner product.
Furthermore, in this Hilbert space, all linear combinations, and in particular projections

are U-centered matrices.

We used pdcor and mpdc as an independence measure in the graphical models in analogy
with partial correlation in Gaussian graphical models. We used simulated data and
DREAM challenge data to assess the performance of these methods. We also compared
their performance with the performance of relevance networks with dcor and cor as the
association measures as well as graphical Gaussian models. Finally, we test the new

measure in the context of the PC algorithm.

5.2 Methods

5.2.1 Partial distance correlation

As we explained in section 2.1.3, the distance covariance and distance correlation statis-
tics are functions of the double centered distance matrices of the samples. The double
centered distance matrix A for the variable X with n iid samples {x1, z2,...,x,} is ob-

tained from the matrix of Euclidean distance (a;;) = (|z; — z;|) by subtracting the
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row/column means and adding the grand mean. As a result, all rows and columns in

the double centered matrix A sum to zero.

Let fl, B and C be the double centered distance matrices corresponding to variables
X,Y and Z obtained from n iid samples. Further, consider V; = (A_l,Ag,...,An),
Vg = (3_1,32,...,3n) and Vg = (é_l,é_g,...,éﬂ) be the vector versions of double
centered distance matrices A, B and C respectively. Then the distance correlation
between X and Y is defined as:

n

A

1 A
dCOU,?l(X,Y) = ﬁ AijBij
1,j=1

)

which we can rewrite as:

deovi(X,Y) = cov(Vy, V)

Therefore the form of the sample distance correlation offers an approach to compute the
sample partial distance correlation by using partial correlation. Simply by regressing
V; and Vj to Vs, we can obtain residuals r, and r, and then we can define the sample

partial distance correlation as:

mpdc(X,Y|Z) = cor(rg,ry)

More formally, we can define an inner product in the Hilbert space of the double centered

matrices as:

PZL (a;) =A- (C’C’)A
’ 5 (BO),
P,.(y)=B (C‘.C’)B

Then the sample partial distance covariance and correlation are defined as:
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mpdcov(z,y|z) =(Py.(X).Pyi(Y))

_ % 3 Py (X))ig (Pya (V)i
%

mpde(X, ¥12) = (L i (1P ()] £ 0,

5.2.2 Partial distance correlation as the independence measure in graph-

ical models

One can use the partial distance correlation as the independence measure in the graphical
models. In analogy with Gaussian graphical models, where independence relationships
are assessed based on the full-order partial correlation, we can define full-order partial
distance correlation models. However, in these models there is no assumption on the

underlying distribution of the data.

A problem with full conditional models is that it is hard to reliably estimate them
when the number of samples is smaller than the number of variables, for example when
working with gene expression data. One way to cope with this issue is to use algorithms
which use lower order conditional independence tests like PC algorithm. Models which
are based on low-order conditional independence correct for the influence of some and

not all the remaining variables.

The PC algorithm does not provide a score for the edges. As stated in section 4.2.2, one
way to remedy this issue is to use bagging. However, since dcor is computed based on
the distance matrices, bootstrapping is not an appropriate choice. Therefore, instead
of using bootstrapping to build perturbed data, we use a single data set with different

thresholds for the independence decisions (see section 2.4).

5.3 Results

5.3.1 Comparison of partial distance correlation with partial correla-

tion

In this section, we compare the performance of partial distance correlation obtained

from our methods (mpdc) to the one suggested by Szekely et al. (pdcor) as well as
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to correlation and partial correlation. In the case of Gaussian data, the performance
of partial distance correlation should be as good as partial correlation in order to be
a proper substitution for partial correlation. Therefore, we simulate 300 samples of
Gaussian data from networks with 10 and 50 nodes as described in section 3.1 and add

Gaussian noise. We then evaluate the performance of different methods on the data.

Figure 5.1 shows the ROC and PR curves for different methods. The result indicates that
mpdc performs better than pdcor. In addition, it is comparable to partial correlation

on Gaussian data which is an important issue.
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FIGURE 5.1: Performance on simulated Gaussian data. The left subplots show
ROC curves, while the right subplots show PR curves.
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5.3.2 Effect of the number of samples on the performance

In this section, we assess the effect of the number of samples on the performance of the
full-order pdcor models (both mpdc and pdcor) with relevance networks using cor and
dcor as association measures. We simulate a different number of samples of Gaussian
data from networks with 10 and 50 nodes. Figure 5.2 shows the ROC and PR curves

for different methods.

The results show that the performance of mpdc and pdcor are almost comparable except
in the case where there are very few samples, where pdcor performs slightly better. In
addition, in this case pcor and cor based methods also perform slightly better than both
pdcor and mpdc. It is important to note that we used the regularized method for the

estimation of pcor which was developed to cope with the p >> n situation.

5.3.3 Comparison of methods in the presence of different amount of

noise

In this section, we compare the performance of the full-order partial distance correlation
models (both mpdc and pdcor) with relevance networks using cor and dcor as the as-
sociation measures. We simulate 500 and 300 samples of Gaussian data from networks
with 10 and 50 nodes, respectively. Then we add Gaussian noise ¢ ~ N(0,0?) with
different amount of variance 0. Figure 5.3 shows the effect of noise on the AUPRC and
the AUROC for different methods.

Clearly, for each method the higher the amount of noise, the worse the performance.
While mpdc performs slightly better than pdcor in the presence of a low amount of noise,
the performance is comparable for high amount of noise. Furthermore, for small amount
of noise the performance of mpdc and pcor are comparable, while for high amount of

noise pcor performs better.

5.3.4 Performance comparison on DREAM challenge data

In this section, we compared the performance of different methods on DREAM challenge
data. Figures 5.4 and 5.5 show the ROC and PR curves for DREAMS3 (10 nodes, 50 nodes
and 100 nodes) and DREAM4 (10 nodes and 100 nodes) data sets, respectively. The
results show that mpdc performs well above pdcor on all data sets. Yet, in comparison
to pcor, both methods perform comparable for DREAM3 data sets with 50 and 100
nodes. For DREAM4 data sets, mpdc shows a better performance in the case of 10

nodes while pcor performs better in the case of 100 nodes.
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FiGure 5.2: Effect of the number of samples on the performance. The left
subplots show the AUROC reults, while the right subplots show the AUPR results.

In the case of the DREAMS3 data set with 10 nodes, while partial correlation performs
better than pdcor, the pcor values are almost all zero as shown in Figure 5.6. As a
result, it is hard to build the network from this score as almost all or none of the edges

will appear in the network.

5.3.5 Performance of PC algorithm with pcor and pdcor as the inde-

pendence tests

In this section, we assess the performance of the PC algorithm which uses mpdc as an
independence test (PC-mpdc) and full-order mpdc methods. We simulate 50 Gaussian
samples from a network with 50 nodes. Figure 5.7 shows the ROC and PR curves. The
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FiGUrE 5.3: Effect of noise on the performance. The left subplots show the
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result shows that the pefomance of both methods are comparable although PC-mpdc

improves the result slightly compared to the full-order model.

5.4 Discussion

In this chapter, we introduced a new approach called mpdc that can be used to estimate
sample partial distance correlation in a different way than the method proposed by the
authors of dcor, which we call pdcor. Partial distance correlation is the generalization
of dcor which controls for the effect of other variables in the system on the association

between two variables (analogous to the partial correlation). Therefore, partial distance
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correlation can detect direct nonlinear interactions which is an important task in the
GRN inference.

The performance of full-order pdcor and mpdc are evaluated on simulated data and
DREAM challenge data and compared with the performance of relevance networks with
dcor and cor as the association measure as well as graphical Gaussian models (full-order
pcor). The results show that mpdc performs better than pdcor in all cases, although
pdcor is mathematically better founded. The reason for this is not clear for us yet. In
addition, mpdc performs better than dcor in terms of PR curves, indicating that mpdc

is capable of removing the indirect interactions.

For the simulated Gaussian data, the performance of pcor and mpdc are comparable
in most cases. However, in the cases with very high amount of noise and/or very few
samples pcor performs slightly better than mpdc. It is important to note that mpdc is
not designed for these cases in contrast to the regularized method which we used for the
estimation of pdcor. For the DREAM challenge data, the performance of mpdc and pcor
are comparable in general although there are some cases where one of them performs
better. Therefore, more analysis is needed to confidently determine which method is

better for GRN inference.

In the case of not having many samples, we also assess the performance of mpdc in
the context of the PC algorithm (PC-mpdc). The result shows that PC-mpdc performs
slightly better than the full-order model. In PC-mpdc, the scores of the edges are
obtained from an ensemble method by varying the threshold to decide for independence
relationships. It is important to note that since the result of the PC depends on these
thresholds, this ensemble approach could underestimate the performance of the PC

algorithm.



Chapter 5. Partial distance correlation and GRN reconstruction

76

RECALL

RECALL

RECALL

S) 0 00000000000000000000000000000888 o
S + S o—o—o—o—A—A—A—A—T
|\ a TXXXXXXXXXXXX . ° ._—-T—‘T
@ © e | s +
S 400 XXX S L 3 o 1 |
| | [ __e—*
o | &
a0 3 o 1
o || I - o s 3
o X 3 x 9 o g PS
I | 3 3
T() TXXXXX 8 8/
< — [ —
s To Txxx cor oS ’I‘ cor
X X
. XXX XX —A—  pcor X % */ﬁé(/ cor
| | X x §/g/¥ x—
N4 xxx —+—  dcor ~ — ——
. X —%—  pdcor —%— pdcor
o | —— mpdc o —— mpdc
o XxXx -
o o
T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
FPR RECALL

(A) 10 nodes

1.0

PRECISION
0.6 0.8

0.4

0.2
1

0.0

0.0 0.2 0.4 0.6 0.8 1.0
FPR RECALL

(B) 50 nodes

1.0

0.6 0.8

PRECISION
0.4

0.2

0.0

T T
0.0 0.2 0.4 0.6 0.8 1.0
FPR RECALL

(¢) 100 nodes

FIGURE 5.4: Performance on DREAMS3 challenge data. The left subplots show
the ROC curve, while the right subplots show the PR curve.



Chapter 5. Partial distance correlation and GRN reconstruction

77

RECALL
0.4

RECALL

1.0

0.8

0.6

0.2

0.0

FIGURE 5.5: Performance
the ROC curve,

QOO0 0000000000080S

?o ?Iltttllltto
TTO+++++T&+++++
TooTooo Ttht-
°°°T++ T T
T+7.+++ TTAAATAA
Too ?AAATAA T
?TTAAAAoooo Txx
TTA )I(XXXX cor
T& Txxx —A— pcor
' e —— dcor
T —%—  pdcor
& XX
| —— mpdc
XX
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
FPR

PRECISION
0.4

1.0

0.8

0.6

0.2

0.0

*O—o—6—06—0—9O

(A) 10 nodes

FPR

PRECISION
0.4

1.0

0.8

0.6

0.2

0.0

L 4
&
" | —+
| | l
R
P &'
it i
A i’/_/
x s A =$—8—
N —e—% cor
x I/:’:/x 8/§§%/§; =
G R PP
* ——  dcor
—%— pdcor
—— mpdc
T T T
0.2 0.4 0.6 0.8 1.0
RECALL

(B) 100 nodes

0.2

T
0.4

T
0.6
RECALL

0.8 1.0

on DREAM4 challenge data. The left subplots show
while the right subplots show the PR curve.



Chapter 5. Partial distance correlation and GRN reconstruction 78

RECALL

0.4

40 -

name

2 mpdc
(7]
S peor
°

pdcor

' ' ' ' '
-0.2 0.0 0.2 0.4 0.6
score

FIGURE 5.6: Distribution of pcor and pdcor scores for DREAM3 with 10
nodes.)

— Ji | esesses
A AABO0S 00840
0087 80000000 o
nb 0

> 503

0.8
|
0.8

0.6
1
PRECISION
0.4 0.6
1 1
<]
&
d’

0.2
0.2

—— PC-mpdc —— PC-mp
mpdc

0.0
|
0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
FPR RECALL

FI1GURE 5.7: Performance comparison of the PCmpdc with full-order mpdec.
The left subplots show the AUROC results, while the right subplots show AUPR result.



Chapter 6

Summary

One of the grand challenge of systems biology is to decipher the interactions among genes
which is known as GRN reconstruction. Among all biological data, gene expression data
obtained via measuring the abundances of mRNAs in the cell is the most widely available
data used for this purpose. The ”small n, large p” data setting of gene expression
coupled with high amounts of noise in the data render the inference of GRNs from gene
expression data a challenging task. Moreover, most methods of GRN inference rely on
the assumption that regulatory interactions are linear, while in reality this is usually not

the case. In this thesis, we propose methods to tackle these problems.

We started the thesis by describing models based on the concept of (conditional) inde-
pendence in Chapter 2, namely relevance networks and graphical models. The objective
of this kind of modeling is to find the (in)dependence structure among genes by means of
(conditional) independence tests that we introduced. Relevance networks consider only
the association between two genes and ignore the effect of other genes on the relationship
between them. As a result they cannot distinguish between direct and indirect relation-
ships. More sophisticated methods, such as graphical models address this issue by using
the conditional independence concept and try to explain the association between genes

by the presence of other genes and as a result to find the direct interactions.

In Chapter 3, we investigate the performance of models introduced in Chapter 2 for
gene network reconstruction in different aspects. We used Gaussian and non Gaussian
simulated data as well as data provided by the DREAM challenge. This helped us
to learn more about the strengths and weaknesses of different methods. The results
demonstrate that in the well behaved case of having many samples and no noise all
methods are comparable. Although correlation and distance correlation perform better
than other association measures in case of not having many samples and/or in facing

high amount of noise, their performance also decreased significantly compared to the
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well behaved case. This led us to the conclusion that information of gene expression
data is not enough to decipher the complex interactions among genes and therefore
exploiting other sources of knowledge is indispensable. Our development of PriorPC, an
algorithm which also uses prior knowledge for reconstructing GRNs was motivated upon
these grounds. In addition, distance correlation (dcor) performs well among nonlinear
association measures but like other association measures is not able to detect direct
interactions. This presented us with the motivation to generalize distance correlation
for multivariate analysis with the ability to account for the effect of other variables (in

analogy with partial correlation).

In Chapter 4, we present PriorPC, a variation of the PC algorithm that uses the prior
knowledge in the form of soft prior which assign to edges a probability of existence.
PriorPC takes advantage of the flaw of the PC algorithm, namely its dependency on
the the order in which variables are presented to integrate prior knowledge. PriorPC
modifies the PC algorithm by favoring unwanted edges for early testing, and holding
wanted edges back for late testing. Prior knowledge is particularly advantageous when
the quality of the CI tests is questionable, like the case when data is high-dimensional
and few samples are available (the typical form of gene expression data). PriorPC
produces a significant improvement in structural accuracy over PC for every dataset at
hand. This improvement consistently increases with the amount of prior. Moreover,
in the presence of partial prior knowledge, the region of the network that has no prior
is not badly affected by the partial prior. PriorPC is fast and scales well while most
Bayesian network reconstruction methods which use prior knowledge are not feasible for
large networks. This is an important issue in with the application to biological data
since in reality we are dealing with thousands genes. It is also robust to noise in the

prior, which is not avoidable in the context of biological data.

In this thesis, we used synthetic priors. It would be interesting to see how performance
changes when using real priors. Prior knowledge can be obtained from different sources
including experimental data like ChIP-seq data and even information derived from rel-
evant literature. All theses sources of information can be included in a prior knowledge

matrix representing the aggregated belief about gene interactions.

In Chapter 5, we address the problem of finding direct nonlinear association between
variables by proposing a new way to compute the partial distance correlation (mpdc).
Most of methods for inferring GRNs are not able to find direct nonlinear relationships
and therefore detecting direct nonlinear relationships is an important task which can
improve the accuracy of the inferred networks. Distance correlation is a new association
measure with the ability to detect nonlinear association. The advantage of this measure

over mutual information, the classical way of finding nonlinear association, is that there
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is a simple way to estimate it from data. However, for the purpose of GRN inference
it is important to find the direct interactions among genes. Although the authors of
distance correlation proposed a way to compute partial distance correlation (pdcor), we
show that in the context of network reconstruction our approach performs better than

their method.

Based on the observations from the analysis done in Chapter 5, mpdc performs better
than pdcor, even though the pdcor is well defined with mathematical background. The
reason is not clear for us yet. In addition, we compared the performance of mpdc
with performance of a regularized method for estimation of partial correlation which
has designed to cope with p >> n situation. Therefore, the new challenge is to find a

similar approach for partial distance correlation in case of p >> n.
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FicURE A.1: Performance of relevance networks on non Gaussian data. The
data consist of 1000 samples simulated from a network with 50 nodes. The left subplots
show the ROC curve, while the right subplots show the PR curve.
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Appendix B

Zusammenfassung

Die Rekonstruktion von Gennetzwerken (” Gene Regulatory Networks”, GRNs) aus Gen-
expressionsdaten ist eine anspruchsvolle Problemstellung, deren Losung wichtig ist fiir
das Verstandnis der komplexen Regulationsmechanismen in der Zelle. Erschwert wird
die Aufgabe einerseits durch die hohe Anzahl von Genen, deren Interaktionen man aus
wenigen Experimenten schiatzen mochte, und andererseits durch die fehlerbehafteten
Messwerte der Genexpression. In der vorliegenden Arbeit wird zuerst untersucht, welche
Auswirkungen die Anzahl der Experimente sowie die Starke des Rauschens auf die Ergeb-
nisse der statistischen Auswertung hat. Es zeigt sich, dass eine zu geringe Anzahl von
Experimenten bei allen Methoden zu wesentlich schlechteren Ergebnissen fiihrt. Ebenso

flihrt hoheres Rauschen in den Daten bei allen Methoden zu schlechteren Ergebnissen.

Ein naheliegender Ausweg liegt in der Nutzung zusétzlicher Informationen (” prior knowl-
edge”), um die Rekonstruktion des Gennetzwerkes zu unterstiitzen und so die Prob-
leme mit Datenmenge oder —qualitdt wenigstens teilweise zu kompensieren. Wir en-
twickeln hierzu den PriorPC-Algorithmus, ein neues Verfahren, das auf dem bekannten
PC-Algorithmus zur Rekonstruktion eines Netzwerkes basiert. Obwohl weit verbreitet,
ist iiber den PC-Algorithmus bekannt, dass die Qualitdt der Resultate von der Rei-
henfolge, in der die Eingabedaten abgearbeitet werden, abhéngt. PriorPC verwandelt
diesen Nachteil in eine Starke, indem in die Reihenfolge der Abarbeitung das verfiighare

Vorwissen einfliefit. Wir zeigen hier an simulierten sowie an echten Daten, dass der
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PriorPC-Algorithmus mit Vorwissen Netzwerke besser rekonstruieren kann als der ein-
fache PC-Algorithmus. PriorPC ist aulerdem schnell und auch fiir grofie Probleme, wie

echte experimentelle Datenséatze, einsetzbar.

Eine weitere Herausforderung der Netzwerkrekonstruktion besteht in der Aufdeckung
(direkter) nicht-linearer Beziehungen zwischen Genen. Vor Kurzem wurde das neue As-
soziationsmafl der Distanzkorrelation eingefiihrt, welches eine leistungsfihige Methode
zur Identifikation nicht-linearer Zusammenhénge darstellt. In der vorliegenden Arbeit
schlagen wir mit der partiellen Distanzkorrelation eine Verallgemeinerung dieser Meth-
ode vor, welche fiir Einfliilsse anderer Variablen korrigiert und so nicht-lineare Zusam-

menhénge findet sowie direkte von indirekten Beziehungen unterscheidet.
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