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Summary

While early studies that investigated the processes underlying normal reading and how 

these are affected by words with strong affective connotations focused on differences 

concerning varying degrees of positivity or negativity, the affective word processing 

literature more recently evolved from this rather simple way of thinking. More elaborated 

theories of human emotion and more complex research designs have been used to 

understand affective word processing. The results, however, are still inconclusive.

The present work introduces a novel perspective into affective word processing, 

suggesting that emotions are not (only) characterized on a two-dimensional affective 

space comprising valence and arousal, but are best explained in terms of functionally 

discrete emotions. Several experiments were conducted, providing evidence that a) 

subjects can differentiate at least five discrete emotions when rating words, b) words that 

are controlled for valence and arousal still affect lexical decision response times and error 

rates when manipulated on specific discrete emotions, and c) that these effects are stable 

and comparable across at least German and English language. In a second step, two 

experiments with words orthogonally manipulated on discrete emotions (i.e. happiness) 

and on the valence dimension (i.e. positivity) at the same time show that both variables 

independently affect word processing variance on the behavioral and the 

neurophysiological level. Happiness effects on the N100 EEG component preceded 

positivity effects, which were visible on the N400 and the late positive complex. Moreover, 

an fMRI study documented that the happiness manipulation recruits the right amygdala 

and the cerebellum, while the processing of positivity related words relies on medial and 

inferior frontal regions.

Taken together, these results suggest that affective word processing is much more 

complex than initially thought. The effects are in line with predictions of the hierarchical 

emotion model proposed by Panksepp (1998), however, which is used to discuss the 

future of affective word processing and to make further predictions for additional research.
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Zusammenfassung

Während sich frühe Studien zu Prozessen des normalen Lesens und dem Effekt 

emotional eingefärbter Worte hauptsächlich auf die Unterscheidung verschieden starker 

positiver und negativer Konnotationen beschränkten, hat sich die affektive 

Wortverarbeitung in den letzten Jahren zunehmend von dieser simplen Sichtweise 

entfernt. Ausgearbeitete Emotionstheorien und komplexe Studiendesigns wurden 

eingesetzt, um den Einfluss emotionaler Information aufs Lesen zu verstehen. Die 

Ergebnisse sind allerdings unschlüssig.

Die vorliegende Arbeit führt deshalb eine neue Perspektive ein: Emotionen sind nicht 

(nur) durch einen zweidimensionalen affektiven Raum bestehend aus Valenz und Arousal 

charakterisiert, sondern können als funktional diskrete Emotionen beschrieben werden. 

Verschiedene Experimente wurde durchgeführt, deren Ergebnisse nahelegen, dass a) 

Versuchspersonen problemlos mindestens fünf verschiedene diskrete Emotionen bei 

Wortkategorisierungen unterscheiden können, b) Wörter, die sich bezüglich Valenz und 

Arousal nicht unterscheiden, die aber hinsichtlich diskreter Emotionen manipuliert sind, 

noch immer die Verarbeitungsgeschwindigkeit und Fehlerfreiheit bei einer lexikalischen 

Entscheidungsaufgabe beeinflussen und dass c) diese Effekte stabil und vergleichbar für 

mindestens die Deutsche und Englische Sprache sind. In zwei weiteren Experimenten 

wurde anhand orthogonal manipulierter Wörter gezeigt, dass sowohl diskrete Emotionen 

(Freude) als auch affektive Dimensionen (Positivität) unabhängige Effekte auf Verhaltens- 

und neurophysiologische Daten zeigen. Erstere beeinflussten die N100 EEG Komponente, 

letztere sind erst auf der nachfolgenden N400 und dem late positive complex nachweisbar. 

Zudem zeigte eine fMRT Studie, dass die Freude-Manipulation Aktivität in der rechten 

Amygdala und im Kleinhirn moduliert, während Positivitäts-Effekte auf Aktivität in medialen 

und inferioren frontalen Strukturen beruhen.

Zusammengefasst scheint die affektive Wortverarbeitung komplexer als ursprünglich 

angenommen. Die Effekte sind jedoch im Einklang mit dem hierarchischen 

Emotionsmodell von Panksepp (1998), welches in der abschließenden Diskussion 

zugrunde gelegt und dessen spezifische Vorhersagen besprochen werden.
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Introduction to Affective Word Processing
Chapter 01

From a scientific point of view, the ability to read and understand written words is one 

of the most important and complex cognitive skills in modern societies. Newspapers, print 

ads, street signs, text messages and the internet, which have become our constant 

companion thanks to modern mobile technology, all rely on written words to guide us 

through our every day lives. Only few hundred milliseconds are necessary from the first 

fixation on a given word to its full mental representation (Hauk, Davis, Ford, Pulvermüller & 

Marslen-Wilson, 2006; Pylkkänen & Marantz, 2003; Sereno & Rayner, 2003), which is why 

we often forget that even the highly automated identification of a single word in a line of 

text relies on the complicated convergence of sensory, orthographic, phonological, 

morphological, semantic and syntactical information. Therefore when being interested in 

the functional processes underlying reading performance, a reductionist approach seems 

necessary.

A common way to reduce complexity in reading research is to focus on small 

meaningful text units, that is single words. Most empirical studies that investigate reading 

hence rely on one of four single word identification tasks, that is naming, where subjects 

have to read out loud a presented word (Coltheart, Rastle, Perry, Langdon & Ziegler, 

2001), progressive demasking, where masked words are presented and the mask is slowly 

removed until the subjects are able to identify the word (Dufau, Stevens & Grainger, 2008), 

silent reading, where subjects read single words without behavioral response while their 

electroencephalogram (EEG) is recorded (Herbert, Junghofer & Kissler, 2008), and, finally, 

the lexical decision task (LDT, Grainger & Jacobs, 1996). The LDT, where subjects have to 

decide whether a presented letter string is a word or an orthographically illegal nonword, 

has become the standard paradigm in the visual word recognition literature, with more 

than 57 variables known by now to significantly affect lexical decision response times 

(LDRT, Graf, Nagler & Jacobs, 2005). Word length and word frequency, for example, the 

two most important independent variables, together account for most of the overall LDRT 

variance (New, Ferrand, Pallier & Brysbaert, 2006).

Being one of the most used tasks in cognitive psychology, several computational 
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models have been proposed to explain the processes underlying successful lexical 

decisions (Coltheart, Curtis, Atkins & Haller, 1993; Coltheart et al., 2001; Grainger & 

Jacobs, 1996; Jacobs, Graf & Kinder, 2003). Most of these models focus on cognitive 

processes alone, however, thereby neglecting or at least ignoring the well documented 

effects of affective content – with the extended multiple read-out model (MROMe, see 

chapter 5 in Kuchinke, 2007) being one of the few notable exceptions. Nested upon its 

predecessor (Grainger & Jacobs, 1996), the MROMe is a localist connectionist 

computational model that consists of four interconnected levels: a feature level, a letter 

level and a word level representing the mental lexicon, all of which are already 

incorporated in the non-affective initial version of the MROM, complemented by an early 

affective evaluation mechanism. The processing of emotional words is then best described 

as follows: When the activation of the lower levels reaches the word level, activating a 

word unit associated with affective information there, this single unit activation is being 

enhanced by the affective evaluation mechanism, which in turn leads to the prediction of 

faster word recognition for emotionally valenced but not neutral words.

The MROMe's affective evaluation mechanism is explicitly based on the automatic 

evaluation hypothesis (Anderson & Phelps, 2001; Bargh, 1992; Murphy & Zajonc, 1993; 

Windmann, Daum & Günturkün, 2002), which assumes that affective information is 

processed with minimal stimulus input at early stages of perception. Numerous studies 

have contrasted words having a positive connotation (e.g. “LIEBE”, engl.: “LOVE”) with 

neutral words (e.g. “BAUM”, engl.: “TREE”) and found faster and more accurate 

processing for the former. To date, facilitated processing of positive words is the best 

replicated effect in affective word recognition, known for English (Citron, 2011; Holtgraves 

& Felton, 2011; Kousta, Vinson & Vigliocco, 2009; Larsen, Mercer, Balota & Strube, 2008; 

Scott, O'Donnell, Leuthold & Sereno, 2009; Scott, O'Donnell & Sereno, 2014; Siegle, 

Granholm, Ingram & Matt, 2001; Yap & Seow, 2014), Spanish (Carretié et al., 2008; 

Hinojosa, Méndez-Bértolo & Pozo, 2010), and German words alike (Briesemeister, 

Kuchinke & Jacobs, 2012; Hofmann, Kuchinke, Tamm, Võ & Jacobs, 2009; Kanske & 

Kotz, 2007; Kissler & Koessler, 2010; Kuchinke et al., 2005; Palazova, Mantwill, Sommer 

& Schacht, 2011; Recio, Conrad, Hansen & Jacobs, 2014; Schacht & Sommer, 2009a; 

2009b). Moreover, the effect seems to be independent of word frequency (Kuchinke, Võ, 

Hofmann & Jacobs, 2007; Scott et al., 2009). Negatively valenced words, which represent 

the other extreme end of emotional valence, have also been found to be processed faster 
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and more accurate than neutral words in the past (Eviatar & Zaidel, 1991; Kanske & Kotz, 

2007; Kousta et al., 2009; Kuchinke et al., 2007; Palazova et al., 2011; Schacht & 

Sommer, 2009a; 2009b; Scott et al., 2009), suggesting that facilitated processing is not 

limited to positivity. All these data are in support of the automatic evaluation hypothesis 

and the MROMe - but there are also contradictory results.

Several experimental studies using the LDT report slower LDRTs for negative words 

when compared to both, positive (Bayer, Sommer & Schacht, 2011; Estes & Verges, 2008) 

and especially to neutral stimuli (Algom, Chajut & Lev, 2004; Briesemeister et al., 2012; 

Carretié et al., 2008; Citron, 2011; Estes & Adelman, 2008a; Larsen et al., 2008). These 

results have been replicated numerous times, especially in studies using large corpora that 

promise more reliability than experiments with limited item sets and small sample sizes 

(Estes & Adelman, 2008a; Larsen et al., 2008). This is a serious challenge for the 

automatic evaluation hypothesis, the most widely accepted explanation being that it is 

crucial for survival to quickly detect and evaluate stimuli that might have undesirable 

consequences. Negative words therefore automatically capture our attention to a greater 

extend than neutral or positive words, even in cases when the attentional resources are 

needed elsewhere (Wentura, Rothermund, Bak, 2003). This so called automatic vigilance 

hypothesis (Pratto & John, 1991) suggests that the quick and automatic evaluation of 

negative stimuli leads to a withdrawal of attention from the actual task demands, that is the 

lexical decision, and thus to prolonged response times caused by a deeper processing of 

the (negative) word itself. Obviously, the automatic evaluation hypothesis and the 

automatic vigilance hypothesis are contradictory, and neither hypothesis can account for 

the entire spectrum of published results. Thus, by the time this research project started in 

2009, the mostly data driven approach dominating the affective word processing literature 

was step by step complemented by a more theory driven approach.

Several recent studies suggest that it is not the affective meaning of a word that 

interferes with the lexical processing, but that the actual visual word form itself can 

become a conditioned emotional stimulus that affects the word recognition process (Bayer, 

Sommer & Schacht, 2012; Beckes, Coan & Morris, 2013; Fritsch & Kuchinke, 2013, see 

also Barrett, Lindquist & Gendron, 2007 for an introduction to the contextual learning 

hypothesis). Fritsch and Kuchinke (2013), for example, demonstrated that meaningless 

letter strings that have previously been paired with emotionally arousing pictures several 

times in an affective conditioning paradigm elicit event-related potential (ERP) effects that 
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are comparable to known effects elicited by affective words. Other work suggests that the 

evolutionary young process of reading might have been built upon already existing 

affective neural structures, which now causes a neural re-use (Ponz, Montant, Liegeois-

Chauvel, Silva, Braun, Jacobs & Ziegler, 2013a; see also Anderson, 2010). While it is not 

within the scope the present work to investigate the appropriateness of the contextual 

learning and the neural re-use hypotheses, both frameworks agree that affective word 

processing might actually be functionally and causally linked to emotion processing brain 

structures. If this is true, affective word processing would be a suitable experimental 

paradigm to test theories of human emotion – and by doing so, explain the existing 

contradictory results.

Testing Emotion Theories with Affective Word Recognition

While initial affective word recognition research contrasted “emotional” with “neutral” 

words or “positive” with “negative” words, thus applying a very limited concept of affective 

information, even the most simple current emotion models suggest that human affect1 is 

best described with a multi-dimensional space. Most commonly, it is assumed that two 

independent dimensions underlie affective processing (e.g. Bradley & Lang, 2000; Russell, 

2003): emotional valence and arousal. Emotional valence refers to the hedonic value of 

the stimulus, ranging from a positive to a negative pole with a neutral midpoint or range. 

Earlier affective word processing research mostly focused exclusively on this dimension, 

presenting the mixed results introduced above. Emotional arousal, the second affective 

dimension, is meant to index the excitement or intensity of the emotion, ranging from low 

to high arousing or sometimes from calming to exciting. Arousal is assumed to be 

orthogonal to emotional valence, but when subjects are asked to judge valence and 

arousal of one and the same stimulus, often a U-shaped relationship with extremely 

valenced stimuli also being more arousing than neutral stimuli is observed, which is 

especially prominent at the negative end of the valence scale (Bradley & Lang, 1999; 

Redondo, Fraga, Padrón & Comesana 2007; Schmidtke, Schröder, Jacobs & Conrad, 

2014; Soares, Comesana, Pinheiro, Simõnes & Frade, 2012; Võ, Conrad, Kuchinke, 

Urton, Hofmann & Jacobs, 2009). It is thus likely that manipulations on the valence 

dimension are confounded with differences in arousal whenever arousal has not been 
1 While the words “emotion” and “affect” are sometimes used to relate to different functional aspects – 

emotion most often being used to describe a psycho-physiological process while affect only relates to the 
consciously perceived feeling – both terms are used interchangeably within the present manuscript.

14



explicitly controlled.

The simple two-dimensional model of human emotion was the first theoretical 

framework that has been tested within the LDT. Hofmann et al. (2009) pioneered in 

experimentally manipulating valence and arousal independently and simultaneously in a 

comparison of low arousing positive, low arousing negative, high arousing negative and 

low arousing neutral words. Their results reconcile data supporting the automatic vigilance 

and the automatic evaluation hypotheses, showing that low arousing positive and high 

arousing negative words are both processed faster than low arousing neutral words, while 

low arousing negative words are processed much slower than all other categories. 

Interestingly, Hofmann et al. (2009) additionally documented a specific timing for these 

effects, with arousal affecting the early N1 component of the ERP at about 100ms after 

stimulus onset, which is also known to be sensitive to the affective conditioning of 

nonwords (Fritsch & Kuchinke, 2013). Building upon Hofmann et al.'s (2009) initial work, 

several subsequent studies focused on the specific contributions of valence and arousal, 

as well as their interaction. Bayer et al. (2011), for example, reported two independent 

main effects: a slowdown in word recognition speed for negative (when compared to 

positive) words and a speed-up caused by increased levels of arousal. These results 

nicely replicated Hofmann et al. (2009). Further support comes from multiple regression 

analyses on large volume databases, so called mega-studies. For example Larsen et al. 

(2008) used data on more than 1,000 words provided by the English Lexicon Project (ELP, 

see Balota et al., 2007) and the Affective Norms for English Words list (ANEW, see 

Bradley & Lang, 1999) to document facilitative processing for arousal and several highly 

significant one-, two- and three-way-interactions with valence. These results indicate very 

complex valence-arousal-interdependencies (see Figure 2 in Larsen et al., 2008), which 

can be summarized to broadly indicate facilitative processing for increasing levels of 

arousal and increasing levels of positivity, however.

Although the affective word processing literature seemed to converge in its results 

since the additional consideration of affective arousal, the conclusions from Larsen et al. 

(2008) were challenged from different groups using comparable methods almost 

immediately after publication. Estes & Adelman (2008a) also relied on the ELP and the 

ANEW norms but showed that the LDRT variance between positive and negative words is 

much greater than within each (emotional) category, which they interpret as support for the 

automatic vigilance hypothesis, given that negative words were processed much slower 
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than positive words. Arousal, in their study, did not interact with valence at all. Kousta et al. 

(2009) added to the discussion by showing that an increased number of neutral words and 

thus an overall more balanced stimulus set reveals no effect of arousal at all, but rather a 

generally facilitative effect of emotional valence irrespective of the emotional category. 

Based on almost 1,500 words, these results again support the automatic evaluation 

hypothesis. Finally, Recio et al. (2014) further analyzed the nature of valence-arousal 

interactions in an orthogonal 3 (positive, neutral, negative) x 3 (low, medium, high arousal) 

experimental design. Independent main effects were reported, mainly driven by facilitated 

processing for positive and high arousal words, but with a very different effect structure 

depending on the specific valence-arousal interaction. Low arousal words, for example, 

were processed as would be expected according to the  automatic vigilance hypothesis, 

while processing speed for positive, negative and neutral words did not differ in the high 

arousal condition. Moreover, negative words seemed to be more affected by arousal than 

positive words. Based on these studies, it can be concluded that a simple two-dimensional 

emotion model without additional assumptions does not reliably explain known affective 

word processing effects.

Given these inconsistent effects documented in the literature, recent research focused 

on alternative theoretical models that might account for LDT effects. Based on a 

framework by Robinson and colleagues (Robinson, Storbeck, Meier & Kirkeby, 2004), for 

example, the so called approach-withdrawal hypothesis has been applied to affective word 

recognition research, mainly because it directly addresses the critical valence-arousal-

interaction. The core assumption of this model is that stimuli with positive valence elicit 

approach-related motivational response tendencies, while stimuli with negative valence 

elicit withdrawal-related behavior, while similarly opposing motivational tendencies are also 

seen at the arousal dimension: Low arousal is assumed to be associated with approach 

behavior and high arousal is assumed to elicit withdrawal (also Davidson, 1998). Robinson 

et al. (2004) proposed that motivational approach and withdrawal tendencies are initiated 

independently and thus need to be integrated in the process of stimulus evaluation, which 

is already well studied in other research fields (for a review, see Briesemeister, Tamm, 

Heine & Jacobs, 2013). Based on Robinson et al.'s (2004) work, it was recently 

hypothesized that for low arousing positive and high arousing negative words, the 

approach and withdrawal tendencies are congruent, which leads to overall facilitated 

processing and thus relatively fast LDT responses, given that no additional processing 
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steps are necessary (Citron, 2011). In case of high arousing positive and low arousing 

negative words, however, the divergent motivational tendencies cause a cognitive conflict 

and the difficulties of solving this conflict by integrating both motivational tendencies is 

proposed to result in slower LDRTs.

The approach-withdrawal hypothesis accounts for most affective LDT effects 

discussed so far (exceptions: Bayer et al., 2011; Kousta et al., 2009, Recio et al., 2014): It 

explains, why Hofmann et al. (2009) found high arousing negative words (i.e. avoidance 

eliciting stimuli) to be processed faster than neutral words, while low arousing negative 

words (i.e. conflict eliciting stimuli) where processed slower than neutral words and thus 

accounts for the heterogeneity of results in studies using negatively valenced words 

(Algom et al., 2004; Carretié et al., 2008; Kanske & Kotz, 2007; Kuchinke et al., 2007; 

Schacht & Sommer, 2009a; 2009b; Scott et al., 2009). It also explains why low arousing 

positive words (i.e. approach eliciting stimuli) were processed faster than neutral words in 

Hofmann et al. (2009) and almost all published affective lexical decision studies. Most 

important, however, the approach-withdrawal hypothesis predicts that high arousing 

positive words should be processed slower than low arousing positive words, which was 

never found and never explicitly tested in previous studies but addressed in a series of 

recent LDT experiments. Citron, Weekes & Ferstl (2013) presented first marginal evidence 

in an ERP study, showing that words that elicit conflicting approach-withdrawal motivations 

(high arousing positive and low arousing negative words) tend to be processed slower and 

tend to elicit a smaller sustained slow positivity around 700-1,000 ms after stimulus onset 

than words with congruent orientations. Neither effect did actually reach significance (both 

0.1 > p  > 0.05), but in a more recent replication focusing solely on behavioral LDT effects, 

both effects were significant (Citron, Weekes & Ferstl, 2014). A final replication attempt 

(Citron, Gray, Critchley, Weekes & Ferstl, 2014) using functional magnetic resonance 

imaging (fMRI) as additional source of information reports no interaction effects on LDRTs 

but on word recognition accuracy, where words in conditions with congruent approach-

withdrawal motivations were processed more accurate than words in conditions assumed 

to elicit a conflict. Again, this was in line with the approach-withdrawal hypothesis. The 

effect was accompanied by a significant interaction within the blood-oxygen level 

dependent (BOLD) signal recorded from the right insula, extending to the superior 

temporal gyrus, which the authors interpret as an indicator for the implicit integration of 

cognitive stimulus evaluation with conflicting approach-withdrawal tendencies.
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But even though the approach-withdrawal hypothesis can superficially account for 

most published behavioral affective word recognition effects, the results are far from being 

stable (Citron, 2011) and some data are impossible to reconcile with the approach-

withdrawal framework. Bayer et al. (2011), for example, reported facilitated, not slowed 

processing for high arousal positive words, and mega-studies by Kousta et al. (2009) and 

Vinson, Ponari and Vigliocco (2014) argued that the role of arousal might be 

overestimated. Recio et al. (2014) additionally showed a strong asymmetry in arousal 

effects, documenting that arousal affects negatively valenced words stronger than positive 

words. Thus, even though the approach-withdrawal hypothesis is in accordance with much 

of the LDRT data, some effects are still surprising.

A Different Perspective: Discrete Emotion Categories

Most affective word recognition research uses manipulations along valence and/or 

arousal dimensions. But even when focusing on those alone, still some affective word 

recognition studies report that their results actually are better described when assuming 

affective categories. Estes and Adelman (2008a), for example, argue that the LDRT 

variances vary stronger between positive and negative words than within each valence 

category, which they interpret as indicator for categorical processes. A recent study by 

Scott et al. (2014) further supports this interpretation, showing a frequency*valence 

interaction for negative words when the affective manipulation is implicit to the task 

requirements, but no such interaction when it is explicit. Given that effects for positive 

words remained stable irrespective of the task instructions, the authors suggest that 

positive and negative word processing might rely on distinct systems rather than a single 

affective dimension, which is also in line with the valence specific arousal asymmetries 

from Recio et al. (2014) discussed above.

In fact, the dimensional approach, assuming that all human emotions can be described 

with a limited number of affective dimensions such as valence and arousal, has repeatedly 

been challenged by discrete emotions theories. These theories assume the existence of 

discrete, evolutionary derived emotion categories, with each discrete emotion being 

characterized by distinct behavioral responses (e.g. Izard, 1990), psychophysiological 

markers (e.g. Christie & Friedman, 2004) and patterns of neuronal activation (e.g. Vytal & 

Hamann, 2010). Given the close relationship between language and emotion (Barrett et 
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al., 2007), especially in some discrete emotion theories (Panksepp, 2008), leaving 

dimensional emotion theories behind to investigate the effects of specific emotion 

categories on affective word recognition seems like a logical next step. Parrott, Zeichner 

and Evces (2005), for example, used the LDT to compare the performance of subjects 

high and low in trait anger on anger-related, happiness-related, sadness-related and 

neutral words. While no differences were observed for subjects that scored low on the trait 

anger scale, subjects with high trait anger showed enhanced processing of anger-related 

words when compared to any other condition. Moreover, happiness related words were 

processed faster than neutral stimuli. A second study used a similar approach to 

investigate the influence of experienced disgust on information processing in high versus 

low contamination phobic subjects (Armstrong, Divack, David, Simmons, Benning & 

Olatunji, 2009). A LDT with happiness-related, disgust-related, threat-related and neutral 

words revealed a main effect of emotion category, with disgust words being processed 

slower than any other condition. While this effect was independent of the mood 

manipulation, Silva, Montant, Ponz and Ziegler (2012) replicated Armstrong et al.'s (2009) 

disgust effect, showing that the crucial between-subject variable is not contamination-

phobia but disgust sensitivity. Participants scoring high on a standardized disgust 

sensitivity scale revealed inhibited processing of disgust related words, while participants 

scoring low on that scale processed disgust words even faster than neutral control words. 

Neither valence, arousal or empathy accounted for these effects, showing that they are 

indeed disgust and thus (discrete) emotion specific. A follow-up study by the same group 

furthermore suggests that this disgust specificity might relate to the anterior insula cortex, 

which is known to be involved in general disgust processing (Wicker, Keysers, Plailly, 

Royet, Gallese & Rizzolatti, 2003) and is likely to play a role in the processing of disgust 

words as well (Ponz et al., 2013a).

Using Affective Word Recognition to Test Discrete Emotion 
and Affective Dimension Models

While the existing affective word recognition literature, as reviewed above, documents 

that a) affective information does affect word recognition speed and that b) the LDT can be 

used to test specific predictions from different theories of emotion, actual direct 

comparisons of different emotion theories using lexical stimuli remain sparse (e.g. Vinson 
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et al., 2014). The present project is meant to fill this gap. In a series of experiments, the 

predictive power of the discrete emotion framework was contrasted with the predictions of 

affective dimension conceptions.

In a first step, as described in detail in chapter 02, normative data on five different 

discrete emotions for almost 2,000 words was collected. These then served as stimulus 

material for the subsequent experiments, as also described in the following chapters. 

Following the mega study approach as described in Estes and Adelman (2008a) and 

Larsen et al. (2008), multiple regression analyses on data provided by the ELP were used 

to directly compare the predictive power of discrete emotion variables with the predictive 

power of valence, arousal and their interactions. The results, derived from a re-analysis of 

data from the native English sample, were then compared with data collected from a 

German sample. These studies are described in chapter 03.

The chapters 04 and 05, finally, built upon and extend the previous chapters by 

incorporating discrete emotion and affective dimension manipulations in a single 

orthogonal design, additionally adding EEG (chapter 04) and fMRI (chapter 05) to 

additionally record the associated brain activity. The inclusion of additional dependent 

variables seemed necessary, given that LDRT sometimes are not sensitive enough to 

detect differences in the underlying processes. Moreover, even though several affective 

word processing studies agree that valence effects precede those of arousal in the ERP 

(Bayer et al., 2012; Recio et al., 2014), the results are inconsistent (e.g. Hofmann et al., 

2009; see Citron, 2012 for a review). The same is true for previous neuroimaging results. 

Table 1.1 gives an overview of results from three fMRI studies that used the LDT to 

investigate the neural correlates of affective word processing. Even though very different 

stimulus materials and experimental settings were used in these studies, it seems 

plausible to assume that at least some consistent results should be expected, given that all 

three experiments were using manipulations alongside the valence and arousal 

dimensions.

Unfortunately, there is no consistent overlap in the activation found for positive versus 

neutral or negative versus neutral words, as is obvious from Table 1.1:
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Table 1.1: Direct comparison of fMRI results from studies using the affective LDT

Brain structure Kuchinke et al., 2005 Nakic et al., 2006 Citron et al., 2014

R inferior frontal g. neg > neu

L posterior cingulate g. neu > neg
pos > neg

neg > neu

L fusiform + parahippocampal g. neu > neg

L parahippocampal g. neu > neg HA pos > LA pos
HA pos > HA neg

L anterior cingulate g. neu > neg
pos > neg

R superior + medial frontal g. neu > neg

R superior + middle temporal g. neu > neg HA pos > HA neg

R medial frontal g. neu > neg

R posterior cingulate g. neu > neg

R hippocampus neu > neg
pos > neg

L orbitofrontal g. pos > neu

L middle temporal g. pos > neu neg > neu

R middle temporal g. neg > neu

R superior + middle temporal g. pos > neu HA pos + LA neg 
> LA pos + HA neg

R superior frontal g. pos > neu

R middle frontal g. neu > pos

R anterior cingulate g. pos > neg neg > neu

L amygdala neg > neu

R amygdala neg > neu

R superior occipital g. pos > neu
neg > neu

R precuneus neg > neu

R insula HA pos + LA neg 
> LA pos + HA neg

HA pos > LA pos

L posterior insula HA pos + LA neg 
> LA pos + HA neg

HA pos > LA pos

L superior temporal g. HA pos > LA pos

R Pulvinar LA neg > HA neg

Note: pos = positive, neu = neutral, neg = negative, HA = high arousal, LA = low arousal

Again, these data clearly demonstrate that no simple explanation is sufficient to explain 

the diversity in documented LDT effects, neither on a behavioral nor on a psycho-

physiological level. The present project thus takes a different approach, introducing a 
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systematic discrete emotion framework into the affective word processing literature2.

The Panksepp-Jakobson hypothesis

A second reason to justify this change in perspective comes from the Panksepp-

Jakobson hypothesis introduced initially by Jacobs et al. (2014). In simple words, the 

Panksepp-Jakobson hypothesis states that evolution had no time to develop neural 

networks that specifically underlie art perception, yet alone structures for affective 

processes in reading. The aesthetic reading process as described by Jakobson and Halle 

(1969) therefore must be directly linked to the affective networks shared among all 

mammalian species as investigated by Panksepp (2008). Hence the name.

While the exact functional and neuroanatomical link between emotion and language 

remains unknown, different papers have provided initial evidence for its existence. In a 

nicely written review, Newman (2007) summarizes the neural structures underlying the 

universal infant vocalization of crying, which can be understood as a very early form of 

primitive, non-symbolic language. He points out the importance of limbic and subcortical 

brain structures known from emotion research, such as the amygdala and the 

periaqueductual gray, and he also notes that higher order frontal and prefrontal structures 

discussed to encode affective valence (e.g. the orbitofrontal cortex, see Wilson-

Mendenhall, Barrett, & Barsalou, 2013) are not involved. This is also in line with Panksepp 

(2008), who argues that language evolved from affective networks and affective 

vocalizations through a prosodic-affective bridge. Of course, the way from a separation cry 

to the highly abstract written language representation used in affective word processing 

experiments is a long one. Still, the connection is there.

Shanahan (2008), for example, suggests that external events that trigger emotional 

responses also form internal representations of the event, which “then begin to take on 

“meaning”” (p. 13) and “begin to take on a life of its own, such that the emotional 

experience eventually becomes reified” (p. 13). This reification then provides the basis for 

later symbolism in the sense that “these images […] become themselves means for 

perceiving and interpreting the environment” (Shanahan, p. 13).

Taken together, and this is one of the implications from the Panksepp-Jakobson 

hypothesis, studies which consider emotion and language from an evolutionary/animal 

2 Please note: Given that the studies described in chapters 02 to 05, some of the information presented 
there is repetitive and thus redundant. This is, however, necessary, given that the present dissertation 
was written as a cumulative dissertation.
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research perspective mostly agree that emotions must be operationalized in functionally 

discrete categories. Affective word processing research on human subjects, however, still 

focuses almost exclusively on the effects of affective dimensions. The present work aims 

to broaden the perspective, suggesting that a) discrete emotions are suited to describe 

affective word processing, and that b) an emotion model derived from animal research 

(e.g. Panksepp, 1998) can help to understand the neuronal processes underlying affective 

word processing.
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Discrete Emotion Norms for Nouns
Chapter 02

This chapter has previously been published as:

Briesemeister, B. B., Kuchinke, L. & Jacobs, A.M. (2011a). Discrete emotion norms  

for nouns: Berlin affective word list (DENN-BAWL). Behavior Research Methods,  

43, 441-448. DOI: 10.3758/s13428-011-0059-y

Abstract

The Berlin Affective Word List (BAWL, Võ, Jacobs, & Conrad, 2006) and the BAWL-R 

(Võ et al., 2009) are two commonly used lists to investigate affective properties of German 

words. The two dimensional valence and arousal model of affect underlying the BAWL is 

traditionally contrasted with models describing affect in discrete emotional categories, 

which, however, are not currently incorporated in the BAWL. In order to allow future 

studies to investigate affective processing from both perspectives, or to directly compare 

them, the present study collected data assigning nouns taken from the BAWL-R to discrete 

emotion intensities, which in turn allows the assignment to discrete emotion categories. It 

presents Discrete Emotion Norms for Nouns –  Berlin Affective Word List (DENN-BAWL). 

Using these ratings and the psycholinguistic indexes from the BAWL-R, the DENN-BAWL 

allows researchers to design experiments using highly controlled and reliable word 

material. Data have been archived at http://www.fu-berlin.de/allgpsy/DENN-BAWL.

24

https://dx.doi.org/10.3758/s13428-011-0059-y


Introduction

Many studies investigating human emotion rely on tasks that require verbal stimulus 

material. Prominent examples are the emotional Stroop (Dresler, Mériau, Heekeren & van 

der Meer, 2009; Phaf & Kan, 2007; Thomas, Johnstone & Gonsalvez, 2007), recognition 

memory test (Grider & Malmberg, 2008; Võ et al. 2008; Zimmermann & Kelley, 2010), the 

LDT (Kuchinke et al., 2007; Schacht & Sommer, 2009a; Scott et al., 2009), naming (Estes 

& Adelman, 2008a; Simpson, Snyder, Gusnard & Raichle, 2001), verb generation (e.g. 

Simpson et al., 2001), or word-stem completion (Danion, Kauffmann-Muller, Grangé, 

Zimmermann & Greth, 1995). However, because numerous variables are known to 

influence visual word processing (Graf et al., 2005), well controlled and reliable emotion 

inducing stimulus material is necessary in order to produce interpretable effects. In most 

cases, researchers depend on published norm lists, providing reproducible stimulus 

characteristics.

Studies using English, for example, most often use the ANEW (Bradley & Lang, 1999). 

ANEW provides norms for 1,034 nouns, verbs and adjectives, characterized among the 

three affective dimensions of valence -indicating the positivity or negativity of a stimulus, 

arousal -indicating the excitement, and dominance -indicating the feeling of being in 

control versus being controlled (Osgood, Suci & Tannenbaum, 1957). All three dimensions 

have proven to strongly influence human behavior (e.g. Hess, Adams & Kleck, 2005; 

Larsen et al., 2008; Thomas & Hasher, 2006) and their neural correlates have been 

examined in several imaging studies (e.g., Anders, Eippert, Weiskopf & Veit, 2008; Lewis, 

Critchley, Rotshtein & Dolan, 2007; Nielen et al. 2009; Steinmetz & Kensinger, 2009). This 

three-dimensional affective space model has been reduced to a two-dimensional model in 

most research lately, relying solely on valence and arousal dimensions (Bradley & Lang, 

2000; Russell, 2003).

Affective dimensions are only one way to conceptualize emotion, however. To allow for 

a more complete view of the matter, supplemental material for the ANEW was recently 

published. Stevenson, Mikels and James (2007a) implemented discrete emotion norms for 

happiness, anger, fear, disgust and sadness into the ANEW database based on classic 

discrete emotion models as originally suggested by Charles Darwin (1872). Discrete 

emotions are a second major approach to conceptualize the affective space. Recent brain 

stimulation studies in animals demonstrated emotion specific behavioral responses to 
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stimulation of predefined brain regions, thereby supporting the discrete emotion approach 

(e.g., Panksepp, 1998, 2006a). Discrete emotion effects have mainly been shown in 

emotion recognition from facial expressions (Campbell & Burke, 2009; Elfenbein, Beaupré, 

Lévesque & Hess, 2007; Seidel, Habel, Kirschner, Gur & Derntl, 2010) or static pictures 

(see Mikels et al., 2005). Some word processing studies document LDRT effects as well 

(Armstrong et al., 2009; Parrott et al., 2005). These latter studies, however, did not use 

published discrete emotion norms and concentrated on contamination-phobic subjects 

(Armstrong et al., 2009) and on subjects with high trait anger (Parrott et al., 2005). Thus, 

further experimental investigations are needed using combined approaches given that 

both discrete emotion and dimensional theories share a great overlap in explanational 

value (Reisenzein, 1994).

Because of ANEW’s success, norm lists for emotional words have been collected in 

non English speaking countries as well. Prominent examples are the Spanish adaption of 

ANEW (Redondo et al., 2007), the Finish and British English word list (Eilola & Havelka, 

2010), and the Berlin Affective Word List (BAWL, see Võ et al., 2006) which was recently 

revised (BAWL-R, see Võ et al., 2009) and now contains norms on the dimensions valence 

and arousal for more than 2,900 German words including nouns (2,107), verbs (504), and 

adjectives (291).  Norms for discrete emotions, however, which would allow for a broader 

focus on emotional word processing in non-English speaking populations, are not yet 

available in any other language. 

Following Stevenson et al. (2007a), this study meant to provide researchers with a list 

of reliable discrete emotion norms for German nouns, hereafter referred to as the DENN-

BAWL. In a first step, the exact same discrete emotion categories to supplement the 

ANEW, namely happiness, anger, fear, disgust and sadness, were collected to supplement 

the BAWL.

Brain stimulation studies, which have identified the neurobiological systems eliciting 

these emotions (namely the PLAY system, the RAGE system, the FEAR system, the 

DISGUST system and the PANIC system, see Panksepp, 1998, 2006a; Toronchuk & Ellis, 

2007a, 2007b), provide strong evidence that at least some discrete emotions are not 

culture specific (Ekman & Friesen, 1971; Wierzbicka, 1986), but are found universally, 

even in different mammalian species. Thus, it is believed that the DENN-BAWL would not 

only allow investigations with German speaking subjects, but may also trigger broader, 

cross-cultural comparisons, given that norms are available in two languages and given the 
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likely universal neurobiological basis of the discrete emotion effects.

In a second step, this study aimed at demonstrating that the discrete emotion ratings 

collected with a German speaking population actually could account for substantial 

variance in behavioral measures of single word processing. The LDT was chosen for this 

purpose since it is the only verbal stimuli based task that has been shown to be affected 

by both emotional dimensions (e.g. Kuchinke et al., 2007; Schacht & Sommer, 2009a; 

Scott et al., 2009) and by discrete emotions alike (Armstrong et al., 2009; Parrott et al., 

2005). 

When subjects are asked to indicate via button press whether a presented letter string 

is a correct word (e.g. “TAXI”) or a nonword (e.g. “TAFI”), positive and highly arousing 

negative stimuli are known to facilitate processing, while low arousing negative stimuli are 

processed slower than matched neutral words (Hofmann et al., 2009). Concerning discrete 

emotions, happiness (representing positive valence) and fear dimensions (representing 

negative valence) were chosen for the LDT. 

When comparing LDRTs and ERR to words rated as highly happiness related 

(highHap condition) with those to words not rated as highly happiness related (lowHap 

condition), words in the highHap condition were expected to be processed faster than 

words in the lowHap condition, based on previous findings for dimensional emotion studies 

(Kuchinke et al., 2007; Schacht & Sommer, 2009a; Scott et al., 2009). Similarly, the 

processing of words rated as highly related to fear (high fear condition) were compared 

with the processing of words rated as not highly related to fear (low fear condition). 

Concerning this manipulation, a precise prediction seems difficult considering that 

investigations of discrete emotion intensities are rare (Reisenzein, 1994) and inconclusive.

 Finding any effect of either fear or happiness intensities on either LDRT or ERR when 

the stimulus material is controlled for mean valence and arousal norms would document 

that the collected discrete emotion norms could capture variance that is not captured by 

the standard scales of valence and arousal alone. Moreover, it would encourage further 

investigation of discrete emotion effects using the DENN-BAWL.
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Rating Methods

Participants

A total of 79 native German subjects (53 female; mean age = 24.3, S.D. = 6.2, range = 

18 to 61) recruited via email lists, a notice posted on campus, and in experimental 

psychology classes at the Freie Universität Berlin participated in this study. They were 

offered either course credit or five Euros for participation. Some subjects participated 

voluntarily without recompense.

Material and Procedure

In order to collect discrete emotion norms, all 1,958 nouns with 4-8 letters length from 

the BAWL-R (Võ et al., 2009) were selected and subdivided into nine lists containing 200 

items and one list containing 158 items. Ratings were collected via an internet-based html 

script running on a public server provided by the Freie Universität Berlin (for a discussion 

on internet experiments, see Birnbaum & Reips, 2005). 

Subjects were first instructed to carefully read the presented word and then indicate on 

five independent 5-point Likert scales the intensity of the elicited feelings of happiness, 

anger, fear, sadness and disgust (1 = low intensity, 5 = strong intensity). Each word was 

presented individually in black uppercase letters (font type Times New Roman, font size 

18) on white background. Subjects were able to individually decide when to advance to the 

next trial by clicking on a button. Word order was randomized for each subject. 

Participants were explicitly allowed to rate more than one of the ten different stimulus lists, 

resulting in an average of  2.7 lists rated per subject (S.D. = 2.7, range 1-10). Online 

ratings were then averaged offline per item and per discrete emotion category using JMP 

software (version 7, SAS Institute Inc., Cary, NC). Each word received ratings from at least 

20 different subjects.

Rating Results

The stimulus list resulting from the rating procedure including the averaged ratings, the 

respective standard deviations and an assignment of single words to specific discrete 

emotion categories can be downloaded at http://www.fu-berlin.de/allgpsy/DENN-BAWL. 

Altogether, 1,104 words received a higher rating in happiness than in any other discrete 

emotion variable, and thus were labeled as happiness related words in the list (e.g. 

“SONNE”, engl. “SUN”; see column “BasicEmoCat liberal”). Using the same logic, 384 
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words were labeled as anger related words (e.g. “ZORN”, engl. “RAGE”), 261 words were 

fear related (e.g. “LAWINE”, engl. “AVALANCHE”), 125 words received the highest rating 

in disgust (e.g. “SCHLEIM”, engl. “SLIME”) and 43 words were classified as sadness 

related (e.g. “ABSCHIED”, engl. “PARTING”). Additionally, a more conservative 

classification criterion was applied, assigning words to a specific discrete emotion category 

only in cases where the averaged rating in one discrete emotion was more than one 

standard deviation higher than in any other discrete emotion (see column “BasicEmoCat 

conservative”).

Table 2.1: Correlational analyses for discrete emotions, valence (Val) and arousal 
(Arou), including descriptive statistics

Hap Ang Sad Fea Dis Val Arou Mean SD Range

Happiness 1 .839 -.338 2.05 0.83 1–4.48
Anger -.517 1 -.718 .587 1.65 0.63 1–4.30
Sadness -.270 0.56 1 -.498 .451 1.38 0.44 1–3.90
Fear -.417 .617 .699 1 -.636 .679 1.61 0.60 1–3.84
Disgust -.333 .356 .305 .395 1 -.445 .298 1.38 0.47 1–4.10

Note: Maximum range is 1 – 5. Val and Arou were taken from the BAWL-R. All correlations 
were significant at the 0.01 level (2-tailed). Hap = happiness, Sad = sadness, Fea = fear, 
Dis = disgust

Correlational analyses with the discrete emotion ratings and the valence and arousal 

scores taken from the BAWL-R revealed a highly significant positive relationship between 

happiness ratings and valence, as well as between the four negative discrete emotions 

and arousal. A negative correlation was found between happiness and arousal, happiness 

and the other discrete emotion variables, and between the negative discrete emotions and 

valence. Correlations and some descriptive statistics describing the rating data can be 

found in Table 2.1.
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Lexical Decision Task Methods

Participants

An additional 20 native German subjects (14 female; 18 right handed; mean age = 

24.4, S.D. = 4.0, range = 19 to 36) recruited at the Freie Universität Berlin participated in 

this study. Some of them received course credit for participation, others participated 

without recompense.

Materials

Stimulus material consisted of 175 nouns taken from the ratings described above and 

an equal number of nonwords, as described below. Within the word set, five conditions 

(high and lowHap, neutral, high and low fear) were constructed, each containing 35 items 

of 4-6 letters in length. Neutral words had valence ratings lying between -0.5 and +0.5 

according to the BAWL-R. Negative words (high and low fear conditions) had a valence 

rating below -1 and positive words (highHap and lowHap conditions) a valence rating 

above 1. All three valence conditions were matched on number of letters, syllables, 

phonemes, orthographical neighbors, frequency and averaged bigram frequency using an 

ANOVA (p > 0.1). Estimates were taken from the BAWL-R.

Table 2.2: Mean stimulus characteristics

Val Arou Imag Length Phon Syl Freq N BIG

high fear -1.71 3.72 4.16 5.03 4.51 1.74 28.48 2.46 185,383
low fear -1.64 3.63 3.89 5.17 4.66 1.83 20.14 2.09 208,153
neutral 0.07 2.32 4.42 5.26 4.71 1.94 21.94 2.46 172,792
highHap 1.31 2.28 5.06 5.03 4.54 1.77 43.45 2.49 211,117
lowHap 1.25 2.23 4.89 5.14 4.66 1.83 44.17 3.09 223,337

Note: Emotional valence (Val), arousal (Arou), length, phoneme (Phon), syllable (Syl), 
frequency (Freq), orthographical neighborhood size (N) and bigram frequency (BIG) 
statistics were taken from the BAWL-R.

Positive and negative categories were split in non-overlapping halves. High fear 

condition stimuli had a fear score above 2.6 (mean fear = 2.92) and were matched to low 

fear stimuli (fear score below 2.6, mean = 2.16) on valence, arousal, happiness, sadness, 

anger, disgust, frequency, imageability, bigram frequency, number of letters, syllables, 

phonemes and orthographical neighbors using a t-test (all t < 1, all p > 0.3). Both 
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conditions significantly differed in fear (t(63.6) = -12.588, p < 0.001). HighHap stimuli had 

happiness scores above 2.6 (mean happiness = 3.24) and were matched to lowHap 

stimuli (happiness score below 2.6, mean = 2.19) on valence, arousal, fear, sadness, 

anger, disgust, frequency, imageability, bigram frequency, number of letters, syllables, 

phonemes and orthographical neighbors using a t-test (all t < 1, all p > 0.3). Both 

conditions significantly differed in happiness (t(59.7) > -14.315, p < 0.001). Discrete 

emotion ratings were taken from the online rating described above; all other estimates 

were taken from the BAWL-R. An overview of the stimulus characteristics is given in Table 

2.2.

Nonwords were created by taking an additional 175 words of 4-6 letters length from 

the BAWL-R and replacing one or two letters, vowels with vowels and consonants with 

consonants, thus creating pronounceable but meaningless letter strings. They did not differ 

from words in length and number of syllables in a t-test (all t < 1, all p > 0.3).

Procedure

Participants sat in a quiet room in front of a 15 inch laptop screen. They were 

instructed to decide as fast and as accurately as possible whether they were presented a 

correct German word or a nonword. Decisions were made using left and right index 

fingers, lying on the respective SHIFT buttons. The button-to-response assignment was 

counterbalanced across subjects. After nine practice trials, not belonging to the stimulus 

set and therefore excluded from any analysis, the experimenter left the room provided that 

subjects did not have further questions.

Stimuli were presented by Presentation 9.9 software (Neurobehavioral Systems Inc., 

Canada) in randomized trial order in the center of the screen, using black uppercase 

letters (font type “Arial”, size 24, ~ 0.57° vertical visual angle) on a blank white screen. 

Each trial began with a fixation cross (+) presented for 500ms in the center of the screen, 

followed by the stimulus (500ms) at the exact same position and another fixation cross, 

presented until the button press. Then, the next trial began.

Data preparation

Error-free mean LDRTs were calculated for each condition and each participant. Trials 

with responses faster or slower than the individual mean LDRT ±2 S.D. were excluded as 

outliers (5.5%). For error analyses, behavioral errors were summed up per participant and 

condition. One subject was excluded from all analyses, having committed 38% behavioral 
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errors. The remaining subjects committed 6.5% errors on average. All analyses were 

computed using SPSS software (version 13.0, SPSS Ins., USA) at an a-priori significance 

level of 0.05.

Lexical Decision Task Results

The results are summarized in Figure 2.1. A repeated measures ANOVA over all five 

conditions (high fear, low fear, neutral, highHap, lowHap) revealed a significant main effect 

in LDRTs [F(4,72) = 3.766, p = 0.008, partial eta squared = 0.173]. Planned pairwise 

comparisons using matched pairs t-tests revealed faster responses to words in the 

highHap condition (mean = 681 ms, SD = 142 ms) when compared to the lowHap 

condition (mean = 699 ms, SD = 145 ms; t(18) = -2.272, p = 0.036), to neutral words 

(mean = 707 ms, SD = 137 ms; t(18) = -3.248, p = 0.004) and to both fear conditions (high 

fear: mean = 702 ms, SD = 141 ms; t(18) = -3.989, p = 0.001; low fear: mean = 699 ms, 

SD = 132 ms; t(18) = -3.015, p = 0.007). High and low fear conditions, however, did not 

differ from each other or from neutral words in LDRT (p > 0.05).

Analyzing the ERR, a repeated measures ANOVA over all five conditions (high fear, 

low fear, neutral, highHap, lowHap) also revealed a significant main effect [F(72,15) = 

7.444, p < 0.001, partial eta squared = 0.293]. Planned pairwise comparisons using 

matched pairs t-tests revealed more errors in the low fear condition (mean ERR = 3.6, SD 

= 2.1) when compared to the high fear condition (mean ERR = 2.3, SD = 1.7; t(18) = 

4.301, p < 0.001), to the lowHap condition (mean ERR = 2.2, SD = 2.2; t(18) = 3.369, p = 

0.003), and to the highHap condition (mean ERR = 1.5, SD = 1.4; t(18) = 5.128, p < 

0.001). Additionally, neutral words (mean ERR = 3.2, SD = 1.6) were processed with fewer 

errors than high fear (t(18) = 2.178, p = 0.043), highHap (t(18) = 3.580, p = 0.002), and 

lowHap words (t(18) = 2.109, p = 0.049).
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Discussion

A lot of research on emotions has been done using lexical stimuli in the past, relying 

on the two- or three-dimensional affective space model (e.g. Bradley & Lang, 2000; 

Russell, 2003) and the norms provided by the ANEW (Bradley & Lang, 1999) or the BAWL 

(Võ et al, 2006). In order to investigate discrete emotion effects on single word processing, 

however, researchers had to collect 

stimulus data on their own, since discrete 

emotion norms were not available 

(Armstrong et al., 2009; Parrott et al., 

2005). This changed with the publication of 

supplementing norms for ANEW 

(Stevenson et al., 2007a). Unlike 

dimensional norms, which are also 

available in Spanish (Redondo et al., 

2007), Finish and British English (Eilola & 

Havelka, 2010) and German (Võ et al., 

2006, 2009), currently discrete emotion 

norms are only available in English. The 

purpose of the present study was to amend 

this by providing discrete emotion norms to 

German nouns. Moreover, a LDT was used 

to document the usefulness of the 

collected norms and to experimentally 

investigate the influence of different fear 

and happiness intensities on LDRT and 

ERR. 

The complete DENN-BAWL, containing 

almost 2,000 German nouns of 4-8 letters length, can be downloaded from http://www.fu-

berlin.de/allgpsy/DENN-BAWL. Descriptive statistics and bivariate correlations between 

the discrete emotion norms for happiness, anger, fear, disgust and sadness are presented 

in Table 2.1. The bivariate correlations between the discrete emotion norms and valence 

resp. arousal norms taken from the BAWL-R replicate previous findings by Stevenson et 

al. (2007a). Interestingly, the present data further reveal a negative correlation between 
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of the figure) and mean sum of errors for the 
lexical decision task. Error bars indicate the 
respective standard errors.



German happiness and arousal norms, which was not observed for English norms. 

Whether this finding is related to increased statistical power in the present study due to an 

increased stimulus set or whether it reflects crosscultural differences in emotional 

language processing (e.g. Redondo et al., 2007) could not be answered from the current 

results but reveals an interesting question that should be addressed in future studies.

In addition to providing discrete emotion norms, the present study also demonstrates 

that discrete emotion variables account for significant variance in human LDT 

performance. Investigating the effects of happiness and fear intensity, both, LDRT and 

ERR were affected (see Figure 2.1), despite the fact that the stimulus material was 

controlled for the emotional valence and arousal as given by the BAWL-R norms (see 

Table 2.2). Specifically, highHap stimuli were correctly recognized significantly faster than 

words in any other condition including lowHap words, which differed from highHap stimuli 

only in their mean happiness score. This acceleration in lexical processing occurs when 

stimuli are manipulated on positive valence (Kuchinke et al., 2007; Schacht & Sommer, 

2009a; Scott et al., 2009), which, in this study, was controlled between highHap and 

lowHap stimuli. Thus, facilitated processing is related to happiness even beyond the 

normative measures of positive valence.

The second manipulation concerning fear intensity did not affect LDRT, but was found 

to affect ERR in contrast to the initial hypotheses. Negative valence per se has been 

reported to either facilitate lexical decisions (e.g. Nakic, Smith, Busis, Vythilingam & Blair, 

2006), or when controlled for arousal measures, to slow down LDRTs. In the present study, 

high and low fear stimuli were controlled for both valence and arousal measures which 

may explain the missing effect in the LDRTs. However, an effect in the errors was still 

observed.

Possibly, the rather moderate manipulation on fear intensities may have also 

contributed to this effect. High fear and low fear conditions, although non overlapping, 

differed in fear intensity only 0.72 points. Future studies are needed to investigate whether 

the reported relationship between fear intensity and LDRT is mediated by arousal, as 

indicated by this study.

Despite the missing LDRT effect, fear intensity variation significantly influenced lexical 

decision accuracy. Subjects committed significantly fewer errors when presented with 

words in the high fear condition than when presented with the low fear condition words. 

Just as with the happiness intensity effect, this difference in ERR indicates that discrete 
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emotion intensities influence single word processing beyond the previously discussed 

effects of the dimensional affective space accounts. Previous papers proposed that 

emotion related effects in single word processing are caused by automatic evaluation 

(Murphy & Zajonc, 1993; Pratto & John, 1991), interfering with the actual task. Additionally, 

language is thought to be of special importance, since it is supposed to serve as a context 

for emotion perception (Barrett, Lindquist & Gendron, 2007). The ERR effect for fear 

intensity manipulations and even more the LDRT effect for happiness intensity 

manipulations presented in this study are in line with the automatic evaluation approaches 

(Murphy & Zajonc, 1993; Pratto & John, 1991), documenting that discrete emotions, just 

like affective space dimensions, affect lexical processing even when the affective 

information is irrelevant for the processing of the task. Accordingly, contextual learning 

proposed by Barrett et al. (2007) seems to be more emotion specific than previously 

considered in the word processing literature, where dimensional theories are dominating. 

Finally, since these results were achieved despite the control for valence and arousal 

variables, this study documents the additional predictive power of discrete emotions, and 

in particular the DENN-BAWL norms, over and above emotional dimensions as suggested 

by Stevenson et al. (2011).

Future Uses

The DENN-BAWL was collected to allow for a broader perspective when investigating 

emotion effects with verbal stimuli in the German language. Thanks to the BAWL and the 

BAWL-R, main effects of valence and arousal on word processing as well as their 

interactions are well documented (Hofmann et al., 2009; Kuchinke et al., 2007), and some 

of their associated electrophysiological and neuroanatomical correlates have been 

investigated (Hofmann et al., 2009; Kuchinke et al., 2005). As can be seen from the 

present study, the two-dimensional approach may be challenged when investigating 

discrete emotion categories.

In providing the DENN-BAWL to other researchers in the field, it is hoped that discrete 

emotions will be investigated systematically to increase knowledge of discrete emotion 

effects in single word processing. Still, several questions remain unanswered. Do fear 

related responses, which from an evolutionary perspective should lead to withdrawal 

behavior, behaviorally differ from anger related responses? Are happiness and sadness 

indeed antagonistic emotions as folk theory suggests? The supplements for ANEW and 

the DENN-BAWL enable researchers to investigate such questions, and they allow the 
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transfer of knowledge to other cognitive domains such as recognition memory.

In addition to questions focusing on discrete emotions alone, combined studies are 

possible investigating the potential interdependencies of both dimensional and discrete 

emotion approaches. How do discrete emotion intensities affect LDT performance when 

valence and arousal are controlled? This study provides the first evidence in favor of 

discrete emotion effects for happiness and fear, which leads to speculation about similar 

emotion specific effects for anger, disgust or sadness, as well as interactions between 

them. 

The DENN-BAWL hopefully helps to answer at least some of these questions and to 

successfully stimulate further research on emotion. 
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Discrete Emotion Effects
Chapter 03

This chapter has previously been published as:

Briesemeister, B. B., Kuchinke, L. & Jacobs, A.M. (2011b). Discrete emotion effects  

on lexical decision response times. PLoS ONE, 6(8): e23743. DOI:  

10.1371/journal.pone.0023743

Abstract

Our knowledge about affective processes, especially concerning effects on cognitive 

demands like word processing, is increasing steadily. Several studies consistently 

document valence and arousal effects, and although there is some debate on possible 

interactions and different notions of valence, broad agreement on a two dimensional model 

of affective space has been achieved. Alternative models like the discrete emotion theory 

have received little interest in word recognition research so far. Using backward elimination 

and multiple regression analyses, we show that five discrete emotions (i.e., happiness, 

disgust, fear, anger and sadness) explain as much variance as two published dimensional 

models assuming continuous or categorical valence, with the variables happiness, disgust 

and fear significantly contributing to this account. Moreover, these effects even persist in 

an experiment with discrete emotion conditions when the stimuli are controlled for 

emotional valence and arousal levels. We interpret this result as evidence for discrete 

emotion effects in visual word recognition that cannot be explained by the two dimensional 

affective space account.
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Experiment 1

Introduction

Single word recognition, that is the mechanisms of identifying the meaning of a written 

or spoken word, is standardly investigated by means of the LDT, where participants judge 

the lexical status of a presented letter string on whether it is a correct word (e.g. 'PAPER'), 

or not (pseudo- or nonwords, e.g. 'PAPET'). Given that cognitive and affective processes 

highly interact, it is not surprising that psycholinguistic research revealed effects of 

affective variables in word recognition by manipulating the emotionality of the presented 

words (Hofmann et al., 2009; Kanske & Kotz, 2007; Kousta et al., 2009; Kuchinke et al., 

2005, 2007; Larsen et al., 2008; Nakic et al., 2006; Schacht & Sommer, 2009a; Scott et al., 

2009). These experimental manipulations are often operationalized along the two 

dimensions of the affective space, namely emotional valence, which indicates whether a 

stimulus is positive or negative, and emotional arousal, which describes the emotional 

intensity associated with the stimulus that can be linked to physiological activation (Bradley 

& Lang, 1999, 2000; Russell, 2003; Wundt, 1896).

Both, effects of emotional valence and arousal on word processing are well 

documented. While positive valence is known to facilitate lexical processing in the LDT 

(Kanske & Kotz, 2007; Kuchinke et al., 2005, 2007; Schacht & Sommer, 2009a; Scott et 

al., 2009), a facilitatory effect for negatively valenced words is observed only at high levels 

of emotional arousal (Hofmann et al., 2009; Kanske & Kotz, 2007; Larsen et al., 2008; 

Nakic et al., 2006). At low arousal levels, negative stimuli are sometimes processed even 

slower than comparable neutral words (Hofmann et al., 2009; Larsen et al., 2008).

Concerning the valence effects, two theoretically distinct explanations dominate the 

literature on  emotional word recognition. A first explanation is based on the view that 

emotions emerge from two underlying motivational systems, appetitive and aversive 

(Kousta et al., 2009; Lang, 1995; Lang, Bradley & Cuthbert, 1990). According to this view, 

highly valenced stimuli lead to faster approach or avoidance responses than less valenced 

stimuli and therefore to differences in processing speed. Valence is considered a 

continuous dimension in these approaches, with a stepless transition from the positive to 

the negative pole and a neutral midpoint. Estes and Adelman (2008a, 2008b), in contrast, 

derived their categorical valence conception from the automatic vigilance (Pratto & John, 

1991) and automatic affective evaluation (Murphy & Zajonc, 1993) models, which state 
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that all stimuli are evaluated automatically on their affective value as either being positive 

(appetitive) or negative (aversive). In this conception, emotional stimuli vary more between 

the affective categories than within (Estes & Adelman, 2008b). According to Estes and 

Adelman a further differentiation within the positive category and within the negative 

category is not reasonable. Both theories are supported by experimental evidence (for 

continuous valence, see Kousta et a., 2009; Larsen et al., 2008; for categorical valence, 

see Estes & Adelman, 2008a, 2008b; Etcoff & Magee, 1992; Laukka, 2005; Young, 

Rowland, Calder & Etcoff, 1997). 

As a consequence, Estes and Adelman correctly predict that response times in visual 

word recognition vary with emotional categories, but not as a function of emotional 

intensity within the positive or negative category (Estes & Adelman, 2008a, 2008b). 

Moreover, they are able to show that their model explains a comparable amount of 

variance as the continuous model (Larsen et al., 2008) in a multiple regression analysis on 

lexical decision performance data, while being more parsimonious in terms of the models' 

explanatory value due to five fewer explanatory variables. Still, criticism was raised 

regarding the appropriateness of the database used in Estes & Adelman (2008a, 2008b). 

Kousta et al. (2009) discussed that the valence norms in Estes & Adelman are not 

normally distributed which might bias the results of the regression analyses reported 

therein, and that the amount of neutral words was underrepresented in this study. 

Accordingly, relying on a larger corpus with more neutral stimuli Kousta et al. (2009) again 

found evidence in support of the continuous valence conception (but didn't directly contrast 

the two accounts).

Models relying on emotional valence and arousal are the most dominant models in the 

literature on emotional processing, but they are not without alternatives. From an 

evolutionary view, it is often assumed that human emotions are categorized in terms of 

discrete emotions (Darwin, 1872; Ekman, 1992; Ekman, Friesen & Ellsworth, 1972; 

Panksepp, 1998). Unlike the continuous valence model, discrete emotion theories suggest 

discrete emotion categories. And unlike the categorical valence model, it is suggested that 

both, positive and negative valence category are further differentiated. At least five 

different discrete emotion categories – happiness, sadness, anger, fear, disgust – can be 

identified from facial or vocal expression. This ability to discriminate biologically significant 

expressions is discussed as an inborn ability and has been shown to generalize across 

different human cultures. Besides their origin in biological markers, discrete emotions are 
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also elicited by other types of ecological valid stimuli, such as film clips (Hewig et al., 2005; 

Kreibig, Wilhelm, Roth & Gross, 2007), complex pictures (Britton et al., 2006) and verbal 

descriptions (Burnett, Bird, Moll, Frith & Blakemore, 2009; Barrett et al., 2007; Reisenzein, 

1994). 

An evolutionary explanation is not plausible for these stimulus types, but contextual 

learning has been suggested as a key process in linking such stimulus material to discrete 

emotions (Barrett et al., 2007). Emotion categories acquired during childhood may 

facilitate the perception of discrete emotions in different circumstances, a mechanism that 

is most probably moderated by the use of language (Barrett et al., 2007) which itself is 

known to be closely linked to phylogenetically old brain systems responsible for emotional 

processes (Panksepp, 2008). Accordingly, it seems plausible to assume that single word 

stimuli are also linked to discrete emotion categories. First evidence already documents 

that discrete emotion data affect lexical decision performance in clinical (Armstrong et al., 

2009; Parrott et al., 2005) and non-clinical populations (Briesemeister et al., 2011a).

The present study was designed to further examine the role of discrete emotion 

categories in visual word recognition and to contrast these data with the predictions of 

continuous and categorical models of the affective space. In the first step, an automatic 

selection procedure was computed to reveal the best predicting affective variables for 

LDRTs derived from a large corpus of lexical decision data. These were then validated 

using multiple regression analyses in a second step. Analyses were computed using the 

ANEW database (Bradley & Lang, 1999) and the ANEW discrete emotion extension by 

Stevenson et al. (2007a) to predict normative lexical decision human performance data 

provided by the ELP (Balota et al., 2007). The ANEW contains normative valence and 

arousal rating data for more than 1000 English words, which has been extended to also 

account for normative discrete emotion rating data for happy, anger, sad, fear and disgust 

discrete emotion categories by Stevenson et al. (2007a). The ELP was chosen as the 

dependent variable because it contains lexical decision performances from more than 800 

subjects on more than 40.000 words. This data was collected across six universities, and 

has become a standard tool for the investigation of lexical processing (Estes & Adelman, 

2008a, 2008b; Larsen et al., 2008), thus allowing for a maximum reproducibility. The 

results of our analyses suggest that discrete emotion information has a comparable or 

even enhanced explanatory value as the continuous and the categorical model. To further 

verify these results on independent data and to overcome the problems of the ANEW 
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database (Kousta et al., 2009), a final lexical decision experiment comprising a factorial 

variation of discrete emotion content while controlling for effects of valence and arousal 

was conducted to replicate the multiple regression results.

Backward elimination

Automatic selection procedures are a good possibility to statistically explore which 

predictors explain most variance in a dependent variable (for details, see Agresti & Finlay, 

1997). Reisenzein (1994) documented a close relationship between discrete emotion 

labels and the dimensional affective space model by showing that discrete emotion words 

show stable patterns across different intensities along the valence-arousal dimensions. 

Thus, all three models, the continuous valence model, the categorical valence model and 

the discrete emotion model, are likely to share considerable variance, which can cause the 

problem of multicollinearity. Automatic selection procedures in multiple regression 

analyses avoid multicollinearity, and help to identify the variables that individually account 

for a significant amount of variance.

Searching for the most promising predictors, we presented affective variables from all 

three models to the automatic selection procedure, together with other psycholinguistic 

predictors known to affect lexical decisions (e.g., stimulus length and frequency, see (Graf 

et al., 2005; Kousta et al., 2009; Larsen et al., 2008), using the average lexical decision 

times taken from the ELP as the dependent variable. Because of the very univocal 

literature, valence and arousal were expected to explain reliable variance in the human 

performance data. Finding discrete emotion variables among the selected variables would, 

however, strongly support the hypothesis of discrete emotion influences on single word 

processing.

Materials and Methods

To obtain a data set for the subsequent regression analyses, we followed the 

procedure described by Estes and Adelman (2008a, 2008b) and Larsen et al. (2008). 

Stimulus data from ANEW (Bradley et al., 1999) was merged with LDRTs collected from 

the ELP (Balota et al., 2007). The ELP has collected the performance data in a 

standardized lexical decision implementation: 40,481 words and 40,481 nonwords were 

presented to 816 native English subjects in uppercase QBASIC font letters. Each trial 

began with the presentation of three asterisks for 250 ms, followed by a 50 ms tone and a 
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blank screen for 250 ms. Stimuli remained on screen until button press or for 4 seconds, 

whichever occurred first. The next trial started after a fixed inter-stimulus-interval of 1,000 

ms, and behavioral errors were reported back to the subject.

In addition to the ELP and ANEW data, we added English discrete emotion norms to 

the data set, collected and published by Stevenson et al. (2007a) for the ANEW. This 

resulted in a list of 1.023 words. A total of 14 variables was used for backward elimination, 

namely the psycholinguistic variables logarithm of HAL frequency (Lund & Burgess, 1996), 

stimulus length (New et al., 2006), orthographic neighborhood size (Andrews, 1997; 

Grainger & Jacobs, 1996; Holcomb, Grainger & O'Rourke, 2002), syllables, mean bigram 

frequency (Hofmann, Stenneken, Conrad & Jacobs, 2007), plus the following affective 

variables: The continuous model variables' continuous valence, arousal and their first-

order interaction, the categorical model variable categorical valence, with ANEW valence 

greater than 5 assigned to positive and ANEW valence smaller than 5 assigned to 

negative category (definition taken from Estes & Adelman, 2008a; the word 'TAXI', having 

ANEW valence of 5, was excluded, leaving 1022 words for analysis), and the discrete 

emotion variables happiness, anger, fear, disgust and sadness (Stevenson et al., 2007a). 

All variables were centered, and entered in a second step into a multiple regression 

analysis, using RT as the dependent variable. A backward elimination procedure was 

applied using SPSS software (version 13.0, SPSS Inc., USA), with standard p-to-leave of 

0.1. 

Results

An overview of the selection results including the estimated betas is given in Table 3.1. 

Six variables survived the backward elimination procedure, among them the three discrete 

emotions variables happiness, fear and disgust. No other affective variable survived. The 

valence*arousal interaction was eliminated as first affective predictor at second position, 

categorical valence as last (see Table 3.1). As expected, frequency and length were the 

best predictors.
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Table 3.1: Backward elimination results

Step Variable beta t-value p-value

1. removal bigram frequency -0.002 -0.067 0.947

2. removal valence*arousal -0.003 -0.106 0.915

3. removal anger -0.007 -0.148 0.880

4. removal sadness -0.014 -0.305 0.760

5. removal arousal -0.026 -0.888 0.375

6. removal N 0.031 1.082 0.280

7. removal dimensional valence 0.084 1.087 0.200

8. removal categorical valence -0.055 -1.138 0.188

9. final model log HAL frequency -0.469 -18.791 < 0.001

length 0.261 7.565 < 0.001

syllables 0.131 3.950 < 0.001

happiness -0.091 -2.983 0.003

disgust 0.089 2.948 0.003

fear -0.083 -2.721 0.007

Note: N = orthographic neighborhood size

Experiment 2

The automatic selection results show a consistent picture in favor of a discrete emotion 

explanation of lexical decision times. Neither continuous valence, as expected according 

to Larsen et al. (2008) or Kousta et al. (2009) for example, nor categorical valence as 

expected according to Estes and Adelman (2008a, 2008b), nor emotional arousal or the 

valence*arousal interaction were identified as predictive affective variables, but three out 

of five discrete emotion variables, suggesting that happiness, fear and disgust explain 

significant variance in human RTs. This analysis clearly documents that discrete emotions 

predict word processing performance in healthy subjects (Briesemeister et al., 2011a).

Still, these results should be interpreted with caution. Automatic selection procedures 

select the variables that individually account for most variance, but they do not necessarily 

identify the best theoretically reasonable model. A final conclusion concerning the 

predictive power of the three emotion models discussed above is not possible on the basis 

of this analysis alone. In fact, it is quite likely that dimensional models, which claim to 

account for the entire affective space (Reisenzein, 1994), perform much better than a 

model including only a limited number of discrete emotions, each of which is by definition 
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limited in explanatory value.

To directly compare the predictive power of the continuous valence model as published 

by Larsen et al. (2008) and the categorical model published by Estes and Adelman 

(2008a) with a model including five discrete emotions (i.e.,  happiness, anger, fear, disgust 

and sadness), a multiple regression analysis was conducted. Again, best overall 

performance would be expected from the categorical model (Estes & Adelman, 2008a, 

2008b) or the continuous model (Kousta et al., 2009; Larsen et al., 2008), considering the 

literature. Given the automatic selection results and the behavioral relevance of discrete 

emotions, however, we expected the discrete emotion model to perform at least 

comparably well.

Materials and Methods

Again, the ELP, the ANEW and the discrete emotion data from Stevenson et al. 

(2007a) were merged. All three models were used to predict standardized LDRTs with 

centered variables, following Larsen et al. (2008). As suggested in Larsen et al. (2008), the 

continuous model contained the predictors length, log HAL frequency, orthographic 

neighborhood size, syllables, valence, arousal, squared valence, valence by arousal 

interaction, cubed valence, squared valence by arousal interaction and cubed valence by 

arousal interaction. The categorical model, following Estes and Adelman (2008a), 

predicted LDRTs with the variables length, log HAL frequency, orthographic neighborhood 

size, syllables, arousal and categorical valence. Contextual diversity was included, which 

however does not significantly affect overall performance of the regression model as 

published by Estes and Adelman (2008a). Finally, in the discrete emotion model, length, 

log HAL frequency, orthographic neighborhood size, syllables, and the five discrete 

emotion variables happiness, anger, fear, disgust and sadness were used to predict 

LDRTs. Except for the affective variables, all three regressions used the same predictors. 

Although the original continuous model from Larsen et al. (2008) did not contain syllables 

as predictor, it was added in this analysis to ease interpretation of the results. Linear 

multiple regressions were calculated using SPSS software, level of significance was set to 

0.05.
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Results

The continuous regression model altogether accounted for 59.0% of the variance 

(adjusted R square), with length, log HAL frequency, syllables, valence, valence by arousal 

interaction, cubed valence and cubed valence by arousal interaction as significant 

predictors. Overall model performance differs from Larsen et al. (2008) because we did not 

use hierarchical regression analysis, which overestimates predictive power. The 

categorical regression model explained a total of 58.7% variance (adjusted R square) with 

length, log HAL frequency, syllables, categorical valence and arousal as significant 

predictors. The discrete emotion model, finally, with significant predictors length, log HAL 

frequency, syllables, happiness, fear and disgust, accounted for 59.6% variance in LDRTs 

(adjusted R square). All three models are summarized in Table 3.2.

45



Table 3.2: Comparison of three affective regression models

Variable Categorical model Continuous model Discrete emotion model

beta t-value p-value beta t-value p-value beta t-value p-value

Log HAL -0.505 -21.477 < 0.001 -0.501 -21.408 < 0.001 -0.482 -20.423 < 0.001

Length 0.294 8.308 < 0.001 0.301 8.525 < 0.001 0.316 8.983 < 0.001

Syllables 0.131 4.129 < 0.001 0.125 3.961 < 0.001 0.131 4.160 < 0.001

N 0.041 1.475 0.140 0.043 1.555 0.120 0.045 1.661 0.1

Val (cat) -0.101 -4.650 < 0.001

arous -0.046 -2.207 0.028 -0.009 -0.250 0.802

Val (con) -0.201 -3.820 < 0.001

Val*arous 0.197 3.496 < 0.001

Val² -0.028 -1.079 0.281

Val²*arous -0.020 -0.581 0.561

Val³ 0.127 2.156 0.031

Val³*arous -0.190 -3.066 0.002

Happiness -0.114 -3.818 < 0.001

Disgust 0.137 4.542 < 0.001

Fear -0.075 -2.018 0.044

Sadness -0.025 -0.658 0.511

Anger -0.046 -1.185 0.236

Adj. R² 0.587 0.590 0.596

Note: Log HAL = logarithm of HAL frequency, N = orthographical neighborhood size, Val 
(cat) = categorical valence, Val (con)/Val = continuous valence, arous = arousal

Discussion

Three affective variables signaling the amount of happiness, fear and disgust 

significantly predict lexical decision LDRTs according to the automatic selection procedure. 

When comparing the overall performance of a regression model with five discrete emotion 

variables with those of categorical and continuous models discussed in the literature 

(Estes & Adelman, 2008a; Larsen et al., 2008), all three perform more or less equally well. 

This is not trivial, since dimensional models often claim to account for the entire affective 

space, while discrete emotions, by definition, are more specific (Izard, 2007). The multiple 

regression analysis, however, documents that five discrete emotions explain just as much 

(or even slightly more) variance as both, the dimensional and the categorical model.

The overall LDRT pattern known from the experimental visual word recognition 
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literature was replicated (Hofmann et al., 2009; Kuchinke et al., 2005, 2007; Nakic et al., 

2006). Positive valence is consistently accompanied by faster LDRTs, whereas negative 

words show indifferent results with sometimes increased and sometimes decreased 

LDRTs as compared to neutral words (Hofmann et al., 2009; Kuchinke et al., 2007). 

According to the above regression analyses, negative betas for valence and arousal 

indicate that the dimensional and the categorical model both predict that positive stimuli 

are processed faster than negative stimuli and that high arousal facilitates processing. The 

dimensional and the categorical model only differ in their expectations for within valence 

effects, which is discussed excellently and in great detail in Estes and Adelman (2008b).

Concerning discrete emotions, the regression model predicts faster LDRTs with 

increasing values of happiness and fear, and slower LDRTs when disgust levels increase. 

Happiness related words (i.e., positive words) are predicted to elicit faster LDRTs, whereas 

negative words would show indifferent results depending on the proportion of fear and 

disgust-related words in the stimulus set. Following the predictions of the discrete emotion 

model, the proportions of the different negatively valenced discrete emotion words in a 

given data set explain the indifferent results regarding negative words. So far, the two 

dimensional affective space models and the discrete emotion model basically predict the 

LDRT pattern. Considering the bivariate relationships between the valence and arousal 

norms from the ANEW database and the discrete emotion norms, there is an interesting 

and crucial difference between the models, however. According to Stevenson, Mikels and 

James (2007b) and as visible in Figure 3.1, all discrete emotion variables are positively 

related to emotional arousal, even disgust. Higher levels of disgust are therefore related 

not only to higher negativity, but also to higher arousal (see Figure 3.1 and Stevenson et 

al., 2007b). This can explain why arousal did not account for a significant proportion of 

LDRT variance under the discrete emotion model. Moreover it challenges the two 

dimensional approaches which both predict that highly arousing negative stimuli are 

processed faster instead of being processed more slowly, as expected from the discrete 

emotion models' regression data. 
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Figure 3.1: The relationship between the five discrete 
emotion variables happiness, anger, sadness, fear and 
disgust and the two affective space variables valence 
(left column) and arousal (right column).



Experiment 3

In order to directly test the predictions of the regression model on discrete emotions, 

an additional experiment was designed. Following the above analyses one would expect 

faster LDRTs to both happiness and fear-related words and slower responses to disgust-

related words in a LDT. Since the backward elimination regression did not reveal effects of 

valence or arousal, we predict that discrete emotion effects are still observed even when 

the stimulus material is controlled for levels of valence and arousal (according to the 

dimensional affective space model). Five stimulus conditions were created containing 

words which, according to the discrete emotion model, are related to either happiness, 

disgust, fear, anger, or no other discrete emotion (i.e., neutral). The neutral condition 

consisted of words that show overall low levels of discrete emotion intensities. Sadness 

was not included as a further condition in the experiment because the German database 

that provides the discrete emotion norms does not contain sufficient sadness related 

stimuli to fulfill the high matching standards used in this study. Still, based on the 

regressions analyses presented above one would not have predicted sadness related 

effects on the lexical decision performance data. Across all conditions, arousal was 

carefully controlled, and as an additional constraint, the three negative conditions did not 

differ in valence. Both the dimensional and the categorical model predict a valence effect 

with faster responses to happiness related words, intermediate responses to neutral and 

slowest responses to negative words (at intermediate levels of arousal). Since all three 

negative discrete emotion conditions have similar levels of valence and arousal, the 

dimensional models would not predict LDRT differences between them. In contrast, we 

expected to find strong discrete emotion influences on word processing. Following the 

direction of the respective beta values from the regression analysis, we predict to observe 

slowed-down processing of disgust-related and speeded processing of happiness related 

words, with LDRTs to anger and fear-related words lying in between. Even between the 

latter two discrete emotion conditions a slight processing advantage for fear-related words 

could be predicted based on differences in the respective betas in Table 3.2.
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Materials and Methods

Ethics

The authors took care that this study was conducted in accordance with the 

declaration of Helsinki and under the ethical guidelines of the German science foundation, 

although the study was not presented to and therefore not approved by any ethical 

committee or institutional board. Since the lexical decision paradigm is a standard 

paradigm in psycholinguistic research that involves no harm to the subjects, collects no 

personally critical information and has a long history in psycholinguistic research, a 

specific approval for this study was considered not necessary by the authors. All subjects 

were informed prior to their inclusion in the study on their right to decline to participate and 

to abort the experiment without consequences, and they were informed about the goals of 

the study. All participants gave their informed consent verbally prior to their inclusion. 

Written consent was not considered to be necessary by the authors since verbal consent 

already is a legal contract according to the German law. The authors alone are responsible 

for any decision concerning the ethics of this study.

Participants

A total of 21 native German subjects (19 female; 19 right handed, 1 reporting to be 

ambidextrous; mean age = 25.4, S.D. = 6.6, range = 19 to 42), recruited at the Freie 

Universität Berlin, participated in this study. Some of them received course credit for 

participation, others participated without recompense.

Materials

Stimulus material consisted of 125 nouns taken from the DENN-BAWL (Briesemeister 

et al., 2011a) and an equal number of nonwords. Within the word set, five conditions 

(happiness, neutral, fear, anger, disgust) were constructed, each containing 25 items of 4-

6 letters length. Words defined as being neutral for this study had valence ratings lying 

between -0.5 and +0.5 according to the BAWL-R (Võ et al., 2009) and low discrete 

emotion intensities (mean discrete emotion ratings below 2.25). 'Positive' words had a 

valence rating above 1 and their happiness rating was higher than their respective rating in 

any other discrete emotion category. 'Negative' words, finally, had a valence rating below 

-1. Words in disgust condition had higher disgust than fear, sadness or anger values, 

equivalent relations were used to define fear and anger conditions.
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All five conditions were matched on arousal [mean arousal (and SD) for happiness = 

3.4 (0.5); for fear = 3.4 (0.4); for anger = 3.4 (0.6); for disgust = 3.2 (0.4); for neutral = 3.3 

(0.4)] as well as their number of letters, syllables, phonemes and orthographical neighbors, 

their frequency, their imageability and their averaged bigram frequency using an ANOVA (F 

< 1). Additionally, the three negative basic emotion conditions were matched on valence 

[mean valence (and SD) for anger = -1.5 (0.4); for fear = -1.6 (0.4); for disgust = -1.6 (0.4), 

F < 1; mean valence (and SD) for happiness = 1.9 (0.5); for neutral = 0.0 (0.3)]. Estimates 

were taken from the BAWL-R.

Nonwords were created by selecting an additional 125 words of 4-6 letters length from 

the BAWL-R and replacing one or two letters, vowels with vowels and consonants with 

consonants, thus creating pronounceable but meaningless letter strings. They did not differ 

from words in length and number of syllables in a t-test (t < 1).

Procedure and data preparation

Participants were seated in a quiet room in front of a 15 in. laptop screen. They were 

instructed to decide as fast and as accurate as possible whether a presented letter string 

is a correct German word or a nonword. The decision was made using left and right index 

finger, lying on the SHIFT buttons. The button-to-response assignment was 

counterbalanced across subjects. After nine practice trials not part of the stimulus set and 

therefore excluded from any analysis, the experimenter left the room, provided that 

subjects did not have further questions.

Stimuli were presented by Presentation 9.9 software (Neurobehavioral Systems Inc., 

Canada) in randomized order in the center of the screen, written in black uppercase letters 

(font type “Arial”, size 24) on a blank white screen. Each trial began with a fixation cross 

(+) presented for 500ms in the center of the screen, replaced by the stimulus (500ms) and 

another fixation cross, presented until button press.

For analyses, error-free mean LDRTs were calculated for each condition and each 

participant. Outliers (3.7%), defined as responses faster or slower than the individual mean 

RT ±2 S.D., were excluded from analysis. For error analyses, behavioral errors were 

summed up per participant and condition. Subjects committed 7.5% errors on average. 

One subject was excluded having committed more than 20% behavioral errors. All 

analyses were computed using SPSS software at an a-priori significance level of 0.05.
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Results

A repeated measures ANOVA over all five conditions (happiness, neutral, fear, anger, 

disgust) revealed a significant discrete emotion effect in LDRTs [F(4,16) = 9.072, p < 

0.001]. Planned pairwise comparisons using matched pairs t-tests revealed faster 

responses to happiness related words (mean = 682.6 ms, S.D. = 128.4 ms) when 

compared to neutral words (mean = 702.0 ms, S.D. = 118.0 ms; t(18) = 2.625, p = 0.017). 

Correct recognition of disgust-related words (mean = 737.4 ms, S.D. = 129.9 ms) took 

significantly longer than recognizing fear (mean = 714.6 ms, S.D. = 130.4 ms; t(18) = 

-2.349, p = 0.030) or anger related stimuli (mean = 710.9 ms, S.D. = 127.8 ms; t(18) = 

-2.272, p = 0.035). All three negative conditions yielded in slower LDRTs than happiness 

related words (happiness vs. disgust: t(18) = 5.280, p < 0.001; vs. fear: t(18) = 3.973, p = 

0.001; vs. anger: t(18) = 3.242, p = 0.004), but unlike disgust, neither fear nor anger 

related words differed from neutral stimuli (neutral vs. disgust: t(18) = -3.795, p = 0.001). 

These results are also depicted in Figure 3.2.
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Analysing the error rates (ERR), a repeated measures ANOVA over all five conditions 

(happiness, neutral, fear, anger, disgust) revealed a significant effect [F(4,15) = 19.970, p 

53

Figure 3.2: Mean response times in ms (upper part) and summed error 
rates (lower part) for the lexical decision task. Error bars represent one 
standard deviation.



< 0.001]. Planned pairwise comparisons using matched pairs t-tests revealed more errors 

while recognizing disgust-related words (mean sum of errors = 3.6, S.D. = 1.6) than in any 

other condition (disgust vs. neutral: t(18) = 4.487, p < 0.001; vs. fear: t(18) = 3.012, p = 

0.007; vs. anger: t(18) = 5.811, p < 0.001; vs. happiness: t(18) = 7.520, p < 0.001). Fear-

related stimuli (mean sum of errors = 2.6, S.D. = 1.5) lead to more errors than anger 

related (mean sum of errors = 1.2, S.D. = 1.1; t(18) = 4.762, p < 0.001), happiness related 

(mean sum of errors = 0.8, S.D. = 0.9; t(18) = 6.514, p < 0.001) and neutral stimuli (mean 

sum of errors = 1.8, S.D. = 2.0; t(18) = 2.212, p = 0.040). Happiness and neutral condition 

differed significantly (t(18) = -2.730, p = 0.013).

Discussion

Discrete emotion conditions significantly affect subjects LDRTs and error data in visual 

word recognition even when the stimuli are controlled for their levels of arousal and 

valence (the latter within the 'negative' conditions). As such, the present study supports a 

discrete emotion model in visual word recognition that incorporates an explanatory value 

which is superior to the standard two-dimensional affective space model or the categorical 

valence model. The LDT results resemble the predictions made following the above 

regression analyses. In an automatic selection procedure, the three discrete emotion 

categories happiness, fear and disgust were selected as the only affective variables 

predicting word recognition performance. Neither valence nor arousal explained additional 

variance. A subsequent linear multiple regression confirmed these predictors, extended by 

the observation that such a discrete emotion model behaves comparably well and 

accounts for just as much variance as a dimensional valence-arousal model (Kousta et al., 

2009; Larsen et al., 2008) or a categorical model (Estes & Adelman, 2008a, 2008b). 

Following the criticisms of Kousta et al. (2009) in response to Estes and Adelman 

(2008a), the final experimental study used German nouns rated for valence, arousal and 

five discrete emotions to overcome the methodological problems associated with the 

ANEW data. A processing advantage of happiness related words and a slowed processing 

of disgust-related words compared with neutral words was observed. Fear-related words 

could not be differentiated from neutral words in terms of their LDRTs and also did not 

show the predicted processing advantage compared with anger-related words. But looking 

at the error data, it seems that the participants showed a (not predicted) trade-off, when 
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fear-related words led to more errors compared to the neutral and the anger conditions. 

Probably, this speed-accuracy trade-off could be attributed to differences in the lexical 

decision paradigm employed here as compared with that of the ELP (e.g., shorter inter-trial 

intervals, no feedback, shorter stimulus presentation duration), but this explanation needs 

to be further examined in subsequent studies.

Overall, these results have two immediate implications: First, given the data we were 

not able to replicate the observed processing advantage of both positive and negative 

words, as proposed by Kousta et al. (2009). In contrast, our data correspond to earlier 

findings, showing that processing of negative words is slowed when emotional and neutral 

words are controlled for their level of arousal (Estes & Adelman, 2008a, 2008b; Hofmann 

et al., 2009), which is best explained by a non-linear relationship between negative 

valence, arousal and LDRTs (see Figure 2 in Larsen et al., 2008). Only high arousal words 

show the proposed processing advantage, whereas negative valence itself seems to slow 

LDRTs. As such, our data support automatic evaluation approaches (Estes & Adelman, 

2008a, 2008b; Murphy & Zajonc, 1993; Pratto & John, 1991) that propose a fast 

processing of stimulus' valence. The contribution of arousal to this process, however, is not 

clear yet, although first neurophysiological studies indicate that words' arousal may alter 

early lexico-semantic processing independent of affective evaluation (Herbert et al., 2008; 

Hofmann et al., 2009; Kissler, Herbert, Winkler & Junghofer, 2009).

Secondly and most important, valence and arousal are not sufficient to explain 

subjects' word recognition performance within negatively valenced words. A simple 

positive-negative evaluation does not explain the processing differences within negative 

words with slowed LDRTs and higher ERR for disgust-related words, nor does it account 

for the relatively slowed processing and decreased ERR for fear-related words. Thus, 

neither a continuous valence arousal model of affective space (Kousta et al., 2009; Larsen 

et al., 2008) nor a categorical valence model (Estes & Adelman, 2008a) can explain the 

performance effects within these negative word categories. Additional knowledge of 

discrete emotion category membership is required to explain the performance differences. 

Although the processing of negative words is slowed in general, different processes seem 

to distinguish disgust, fear and anger related words. Disgust words are processed slowest, 

thus seem to attract most processing resources according to the automatic evaluation 

hypothesis (Murphy & Zajonc, 1993; Pratto & John, 1991). In contrast, fear-related words 

show a relative processing facilitation, indicated by faster and more accurate responding 
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as compared with disgust-related words. In general, we propose contextual learning as 

suggested by Barrett et al. (2007) and as described in the introduction to explain these 

effects. The contextual learning hypothesis refers to the assumption that discrete emotion 

categories acquired during early childhood may facilitate the perception of discrete 

emotions in different circumstances and that the perception itself is moderated by the use 

of language (see also Barrett et al., 2007 for a discussion of the tight link between emotion 

and language). The data presented here suggests that contextual learning is indeed 

specific for discrete emotions and less powerfull for the learning of dimensional or bi-modal 

models.

In sum, with the highly concordant data from different analyses performed in different 

languages we present strong evidence for the existence of a discrete emotion specificity in 

visual word recognition. These results can be taken as an indication that the dimensional 

models or bi-modal categorical models of affective space are underdetermined in 

explaining human performance in visual word recognition (Lewis et al., 2007). The results 

presented here complement a previous study by Stevenson et al. (2011), which examined 

explicit evaluative judgments of emotionally and sexually arousing words on 11 affective 

variables: the three affective dimensions, five discrete emotion categories and three 

additional rating of sexual categories. Based on a data-driven factor analysis approach, 

four independent factors were identified that account for most of the variance in the 

subjective ratings. Three out of these four factors represent the discrete emotions 

happiness, disgust, and a basic aversive category (covering both fear and sadness), the 

fourth factor representing a sexual category. Affective dimensions, in contrast, did not 

explain much variance in the subjective ratings. Thus, the present results together with the 

Stevenson et al. (2011) study demonstrate the appropriateness of discrete emotion 

categories in explaining affective rating behavior, and furthermore, with the lexical decision 

data presented above we are able to show that discrete emotion effects can also be 

observed in visual word recognition, where the processing of the emotional content is 

incidental to the task requirements. Of note here is that Stevenson et al. (2011) observed 

sex differences in their rating data, a question that could not be addressed with the present 

study because of an unbalanced proportion of female and male participants. It remains for 

future studies to investigate whether sex related differences can be observed within 

discrete emotion effects on the LDT.
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Implications for future studies.

While the overall performance of dimensional models is comparable to that of a 

discrete emotion model, we show that a two dimensional perspective - regardless of the 

specific valence conception (Estes & Adelman, 2008a, 2008b; Kousta et al., 2009; Larsen 

et al., 2008) - fails to correctly predict discrete emotion effects for negative words in visual 

word recognition. Still, this paper is no more than a first glimpse on discrete emotion 

effects on word processing, leading to several implications for future studies. First of all, it 

would be interesting to see which further discrete emotion variables affect word 

processing. While sadness ratings are already available in English and in German 

(Briesemeister et al., 2011a; Stevenson et al., 2007), further discrete emotions have been 

suggested in the literature (i.e., surprise, Ekman, 1992; Izard, 1977; Panksepp, 1998). 

Furthermore, discrete emotion effects in single word processing should not be specific 

to lexical decision but generalize to other word recognition tasks. If contextual learning is 

the basis of the discrete emotion effects discussed here, we would predict similar effects in 

naming and recognition memory performance for single words. Studies in the context of 

discrete emotion influences on attention (e.g., in the emotional Stroop task, see Thomas et 

al., 2007) may be of special interest, too. Shifted attention is commonly used to 

denominate effects of negative valence in word processing (e.g. Windmann et al., 2002), 

and different attention demands across the discrete emotion categories could bridge word 

processing and the underlying neural systems for discrete emotions.
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Discrete Information Effects First, Continuous 

Later?
Chapter 04

This chapter has previously been published as3:

Briesemeister, B. B., Kuchinke, L. & Jacobs, A.M. (2014a). Emotion word  

recognition: Discrete information first, continuous later? Brain Research, 1564(20),  

62-71. DOI: 10.1016/j.brainres.2014.03.045

Abstract

Manipulations of either discrete emotions (e.g. happiness) or affective dimensions (e.g. 

positivity) have a long tradition in emotion research, but interactive effects have never 

been studied, based on the assumption that the two underlying theories are incompatible. 

Recent theorizing suggests, however, that the human brain relies on two affective 

processing systems, one working on the basis of discrete emotion categories, and the 

other working along affective dimensions. Presenting participants with an orthogonal 

manipulation of happiness and positivity in a lexical decision task, the present study meant 

to test the appropriateness of this assumption in emotion word recognition. Behavioral and 

electroencephalographic data revealed independent effects for both variables, with 

happiness affecting the early visual N1 component, while positivity affected an N400-like 

component and the late positive complex. These results are interpreted as evidence for a 

sequential processing of affective information, with discrete emotions being the basis for 

later dimensional appraisal processes.

3 In the published paper, the order of the different sections differs from the order chosen here, where a 
more conventional sequence with the methods section following directly after the introduction was 
chosen.
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Introduction

Two main conceptions have been proposed to best describe human emotions, each 

being in accordance with convincing empirical data. On the one hand, a class of theories 

assumes that emotions are processed along a limited number of affective dimensions 

(Russell, 2003; Wundt, 1896). The 'core affect' theory (Barrett & Bliss-Moreau, 2009; 

Russell, 2003; 2005; 2009), for example, assumes that emotions are “grounded in 

continuous and fluctuating affective states described as pleasant or unpleasant, with some 

level of arousal” within the core of the body (cf. Wilson-Mendenhall et al., 2013, p. 1). 

Within this class of theories, two affective dimensions, i.e. valence (ranging from a 

pleasant to an unpleasant pole) and arousal underlie human emotional experiences and 

evaluations, which is well in line with many empirical findings (Barrett & Bliss-Moreau, 

2009; Russell, 2003). Discrete emotion theories, on the other hand, assume a limited set 

of functionally distinct emotion categories (Darwin, 1872; Ekman, 1992; Panksepp, 1998), 

which is primarily supported by studies that compared affective responses across different 

cultures (Elfenbein, 2013) and species (Panksepp, 1998). The existence of discrete 

emotions like fear, anger, disgust, sadness, and happiness is widely accepted, even 

though less consensus is reached regarding further emotions (like pride) or a common 

definition.

Even though discrete emotion models and dimensional models of affective space have 

traditionally been proposed as opposing viewpoints, several more recent models seek to 

integrate both conceptions in a single theoretical framework (Panksepp, 2008; Russell, 

2005). The core affect theory mentioned above, for example, explicitly distinguishes 

between the two-dimensional core affect, which is seen as the first order state underlying 

continuous fluctuations in emotional life, and second order emotional meta-experiences 

that are derived from it (Russell, 2005). Discrete emotions, in this view, “are complex 

Gestalts that typically include simpler, more primitive feelings of Core Affect” (cf. Russell, 

2005, p. 27), i.e. they depend on and are derived from the core affect. An alternative 

unifying framework is provided by Panksepp (2008), whose model is based on 

neurophysiological and neuroanatomical evidence for discrete emotional states in the 

mammalian brain (Panksepp, 1998). Panksepp assumes that discrete emotions are 

genetically ingrained basal processes that originate in subcortical circuits, such as the 

periaqueductal gray (PAG), while affective dimensions depend on neocortical circuits such 

as the dorsolateral prefrontal cortex. In the neocortex, discrete emotions are adapted to 
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and shaped by sociocultural demands, with one important function being to “cluster [the 

formally discrete emotions] into constellations of positive and negative affect” (cf. 

Panksepp, 2006b, p. 22). Following this view, affective dimensions are clearly derived from 

more basal discrete emotions, which is the exact opposite sequence when compared to 

the core affect model. Moreover, Panksepp explicitly emphasizes that three (temporally 

succeeding) levels-of-analysis must be distinguished: (a) a primary process-level where 

discrete emotions arise from subcortical processes, (b) a secondary process-level where 

emotions from the first process-level are transformed into conditioned responses based on 

classical and instrumental conditioning (e.g. fear-conditioning in LeDoux, 2000) and (c) a 

tertiary process-level that represents interactions of the previous levels with higher-order, 

neocortical cognitive processing (Panksepp & Watt, 2011).

The most obvious discrepancies between these two unifying frameworks relate to the 

different time frames of emotion processing, which is why temporally more fine-grained 

analyses have been asked for (Barrett & Wager, 2006). According to Russell (2005; 2009), 

discrete emotions are derived from fluctuating states best described in terms of affective 

dimensions, which implies a succession with temporal priority for the dimensional core 

affect. The hierarchical model suggested by Panksepp (2008), in contrast, predicts a 

temporal order of processing where discrete emotions based at first and second level 

precede a third one related to affective dimensions. To test these opposing predictions, we 

employed an ERP study of emotion effects in word recognition using a LDT.

Previous research on visual word processing using the ERP methodology documents 

that EEG recordings provide an excellent measure to investigate the temporal dynamics of 

implicit affective processing as triggered by the LDT (for a review, see Citron, 2012). 

Different temporally early and late ERP components have been identified to reveal effects 

related to emotional processing. The N1 component, peaking around 100ms, is sensitive 

to differences in early attentional resource allocation for positive versus negative stimulus 

categories (words: Hofmann et al., 2009; pictures: Foti, Hajcak & Dien, 2009). Such early 

effects are visible before the stimulus is analyzed in full detail, and, in case of emotional 

words, have been shown to result from conditional learning (Fritsch & Kuchinke, 2013) as 

it would be expected by secondary level processes (Panksepp & Watt, 2011). Similarly, a 

negative deflection peaking between 200-300ms is visible in word recognition tasks 

around the time frame of word identification (early posterior negativity, EPN; Citron, 2012), 

modulated by implicit and automatic processing of affective information irrespective of its 
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polarity (e.g., Kissler et al., 2009; pictures: Foti et al., 2009). Later components that reflect 

emotional processing like the N400 and the LPC (late positive complex, around 500-

800ms) are discussed to indicate higher-order evaluative processes (words: Kanske & 

Kotz, 2007; pictures: Foti et al., 2009), in accordance with the description of Panksepp's 

tertiary process-level.

While there is a history of dimensional emotion effects in word recognition (Citron, 

2012), recent work suggests that word processing is also affected by discrete emotion 

information when the material is controlled for dimensional emotion effects (Briesemeister 

et al., 2011a, 2011b; see also Ponz et al., 2013a; Silva et al., 2012). With an orthogonal 

manipulation, it should thus be possible to examine temporal differences of dimensional 

and discrete emotion processing and their role in differentiating words from nonwords. 

Based on Panksepp's model of hierarchical emotion processing (Panksepp, 2006a) we 

predicted that (conditioned) discrete emotion information affects early ERP components 

(N1, EPN), whereas dimensional emotion information affects later ERP components 

(N400, LPC) as these address post-lexical cognitive evaluations at the tertiary process-

level in neocortex (Panksepp & Watt, 2011). The reverse result-pattern would be 

supported by the core affect theory (Wilson-Mendenhall et al., 2013).

Experimental Procedure

Stimulus material

The stimulus material consisted of 120 German 4-to-8-letter nouns and an equal 

number of nonwords. A 2(happiness)*2(positivity) within-subject design was employed, 

with 30 items per condition. Happiness norms were derived from the DENN-BAWL 

database (Briesemeister et al., 2011b) and valence norms from the BAWL-R (Võ et al., 

2009). Words with happiness ratings below 2.6 on a 5-point Likert scale were classified as 

weakly related to happiness (lowHap), words with happiness greater than 2.6 as highHap. 

Words with valence ratings between -0.7 and 0.7 were classified as neutral (neu), and 

words with valence ratings between 1 and 3 as positive (pos). This resulted in four 

orthogonal conditions with uncorrelated happiness and valence scores throughout the 

entire stimulus set (r=0.09). LowHap+neu (e.g. “HUHN”, engl. “CHICKEN”; happiness=2.3, 

positivity=0.5), lowHap+pos (e.g. “PRIVILEG”, engl. “PRIVILEGE”; happiness=2.4, 

positivity=1.3), highHap+neu (e.g. “SATIRE”, engl. “SATIRE”; happiness=2.9, 
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positivity=0.5) and highHap+pos conditions (e.g. “EKSTASE”, engl. “ECSTASY”; 

happiness=2.9, positivity=1.4) were controlled for their average level of arousal, 

imageability, (log-)frequency per million, bigram frequency, orthographic neighborhood 

size, frequency of orthographic neighbors, frequency of higher frequent orthographic 

neighbors, as well as their mean number of letters, syllables, phonemes and higher 

frequency orthographic neighbors using ANOVAs (all F's < 1). Where possible, highhap 

words were chosen to actually elicit a good feeling, while positive words described 

generally desirable things. To ensure the orthogonality of the manipulation, the means of 

all the control variables were also matched for the highHap versus lowHap, and for the neu 

versus pos contrasts as verified by means of pairwise t-tests (all t's < 1). These stimulus 

characteristics are summarized in Table 1. Pronounceable but meaningless nonwords 

were constructed by changing one letter from 120 words that were not part of the stimulus 

set, matched to the words on number of letters and syllables (t's < 1). 

Pilot study participants

Before the EEG study, a behavioral pilot study was run. Twenty-three participants (18 

female) were recruited at the Ruhr-University Bochum. All reported having a dominant right 

hand, normal or corrected-to-normal vision, German as their first language, no current 

medication affecting the central nervous system and no reading disorders. Their mean age 

was 26 years (SD=5, range 19 to 38). One participant aborted the experiment and was 

thus excluded from all analyses.

EEG study participants

For the EEG study, nineteen participants (13 female) were recruited at the Free 

University Berlin. All reported having a dominant right hand, normal or corrected-to-normal 

vision, German as their first language, no current medication affecting the central nervous 

system and no reading disorders. Their mean age was 26 years (SD=5, range 20 to 42). 

One participant was excluded from all analyses because of overall noisy data (ERR >15%, 

noisy ERPs).

Ethics

The study was approved by the local ethics committee. All experiments were 

conducted in accordance with the principles expressed in the Declaration of Helsinki. 

Informed consent was obtained from all participants.
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Procedure

The pilot and the EEG study used the exact same stimulus material and followed the 

same procedures, except for the EEG preparation described below. The experiment 

started with nine training trials that were not part of the stimulus set to familiarize the 

participants with the task. Each trial began with the foveal presentation of a fixation cross 

(+) for 500ms, followed by the stimulus (500ms) at the same position. If the response (left 

CTRL = nonword, right CTRL = word) was not given within the stimulus duration, the 

stimulus was replaced by a fixation cross (1000ms), resulting in a maximum trial duration 

of 2000ms. Between trials, a fixation cross (jittered 0-500ms) served as inter-stimulus 

interval. All stimuli were presented in randomized order in black uppercase Arial 24 font 

(~0.56° vertical visual angle) on a light gray background, controlled by Presentation 14.9 

software (Neurobehavioral Systems Inc., Canada). Participants were instructed to respond 

as fast and as correct as possible.

For the EEG study, data was collected in a session comprised of three different 

experiments. The LDT was always the last experiment of the session, with none of the 

previous experiments being related to lexical or emotional processing. Continuous EEG 

data were recorded by 27 active electrodes (actiCap system, Brain Products, Germany) 

attached to a 32-channel amplifier (Brainamp, Brain Products, Germany, sampling rate 

500 Hz). They were placed according to the international 10–20 system at the positions 

FP1, FP2, F3, F4, F7, F8, FC1, FC2, FC5, FC6, Fz, CP1, CP2, CP5, CP6, P3, P4, P7, P8, 

Pz, C3, C4, Cz, T7, T8, O1 and O2 and referenced to the right mastoid (with an additional 

electrode being placed on the left mastoid for later re-referencing). Four electrodes were 

placed above and below the right eye and on the outer canthus of each eye to record the 

eye movements. The impedances were kept below 18 kΩ for all electrodes. 

Data preparation

Mean LDRTs were calculated for each condition and each participant after exclusion of 

nonresponders, behavioral errors and outliers, defined as responses outside 2 SD of the 

individual mean LDRT. ERRs were calculated as summed errors per condition and 

participant. 

EEG raw data were filtered (0.1-30 Hz, 50 Hz notch filter) and corrected for artifacts, 

drifts and amplifier blocking via visual inspection using BrainVision Analyzer software 

(BrainProducts, Germany). Blinks and eye movements were removed using independent 
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component analysis, and remaining artifacts defined as amplitudes greater than 60µV or 

smaller than -60µV were excluded using an automatic detection procedure after re-

referencing to averaged mastoids. The remaining data (~93 of 120 trials per subject) were 

segmented relative to the stimulus onset (200 to 800ms), with all stimuli excluded from 

behavioral analysis being excluded from EEG analysis as well. Finally, baseline corrected 

(-200 to 0ms) averages were calculated per participant and per condition.

Based on visual inspection of the ERPs and in accordance with the literature, four 

components were exported for further analysis of emotion related effects. Based on 

Hofmann et al. (2009), who report an emotion related modulation of the N1 at 100ms (see 

also Fritsch & Kuchinke, 2013), an automatic peak detection procedure was used to 

identify the individual global negative deflection peak in the time window between 70 and 

130ms. The time window surrounding the individual peaks ±20ms was exported and 

averaged for analysis. Topographies suggested a bilateral fronto-central effect, thus the 

electrodes Fp1, F7, F3, FC5 and FC1, as well as Fp2, F8, F4, FC6 and FC2 were 

clustered together. For the analysis of the EPN, the data was re-referenced to the average 

of all electrodes. Then, the individual global negative deflection peak in the time window 

between 200 and 330ms was identified. Given that the EPN is characterized as a broad 

negative deflection, the individual peaks ±40ms were exported and averaged for two 

occipito-temporal clusters including the electrodes O1, P3, P7, and T7, as well as O2, P4, 

P8, and T8 (Kissler et al., 2009).

Visual inspection of the grand averages revealed a small N400-like negative deflection 

(380-440ms) and averaged amplitudes over this time window were exported for analysis. 

Following Kanske and Kotz (2007), electrodes were summarized in four clusters: anterior-

left (Fp1, F7, F3, FC5, FC1), anterior-right (Fp2, F8, F4, FC6, FC2), posterior-left (CP5, 

CP1, P7, P3, O1) and posterior-right (CP6, CP2, P8, P4, O2). A similar approach was 

chosen for the analysis of the LPC in the 600-800ms interval. Based its centro-parietal 

distribution (Citron, 2012), a cluster comprising the electrodes P3, P4, Pz, CP1, CP2, Cz, 

C3, and C4 was used for LPC analyses.

In addition to the emotion related differences, a word versus nonword contrast was 

calculated to allow for a better interpretation of the results and their relation to semantic 

processing. Visual inspection of the ERPs revealed greater, slightly right-lateralized 

negativity for nonwords between 380 and 700ms peaking around 400ms, which is well in 

line with the N400 literature (Braun et al., 2006; Briesemeister et al., 2009; Holcomb et al., 

64



2002). Based on Braun et al. (2006) and Holcomb et al. (2002), who both report a stimulus 

type main effect for the words versus nonwords contrast on the entire scalp, the same four 

electrode clusters as for the N400-like analysis described above were used.

Finally, a correlation analysis was conducted for each ERP component that revealed a 

significant emotion effect. For each participant and each electrode cluster the happiness 

contrast (highHap–lowHap) and the positivity contrast (pos–neu) was correlated with the 

net LDRT emotion effects, calculated as LDRT(highHap)–LDRT(lowHap), and LDRT(pos)–

LDRT(neu), respectively (see Silva et al., 2012 for a detailed description). All analyses 

were computed using SPSS 13.0 (SPSS Inc., USA) at an a-priori significance level of 0.05.

Results

Pilot study

A repeated measures ANOVA for LDRTs yielded significant main effects of happiness 

(F(1,21)=11.995, p=0.002, η2=0.364) and positivity (F(1,21)=5.206, p=0.033, η2=0.199), 

but no significant interaction (F(1,21)=2.270, p=0.147, η2=0.098). Words highly rated on 

happiness (highHap) were processed faster (M=623ms, SD=97ms) than words weakly 

related to happiness (lowHap; M=643ms, SD=109ms). Neutral words (neu; M=627ms, 

SD=101ms) were processed faster than positive words (pos; M=640ms, SD=105ms). 

Planned pairwise comparisons revealed three significant effects, that is slower responses 

for lowHap+pos words (M=654ms, SD=111ms) when compared with lowHap+neu 

(M=633ms, SD=108ms; t(21)=-3.266, p=0.004), with highHap+pos (M=625ms, 

SD=100ms; t(21)=-4.373, p<0.001), and with highHap+neu words (M=622ms, SD=98; 

t(21)=-3.562, p=0.002).

In the ERR analysis a significant main effect of positivity with fewer errors for neutral 

words (neu: M=3.0, SD=1.8; pos: M=4.1, SD=2.6; F(1,21)=5.570, p=0.028, η2=0.210) and 

a significant happiness*positivity interaction (F(1,21)=11.307, p=0.003, η2=0.350) were 

observed. The main effect of happiness did not reach significance (F(1,21)=1.184, 

p=0.289, η2=0.053). Paired comparisons revealed smaller ER for lowHap+neu (M=2.6, 

SD=1.8) than for highHap+neu (M=3.4, SD=2.0; t(21)=2.667, p=0.014), as well as greater 

ER for lowHap+pos (M=4.7, SD=3.1) than for highHap+neu (t(21)=-2.450, p=0.023), for 

highHap+pos (M=3.4, SD=2.6; t(21)=-2.668, p=0.014) and for lowHap+neu words (t(21)=-

3.856, p=0.001).
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In summary, participants responded faster to neutral than to positive and faster to 

highHap than to lowHap words. This was accompanied by fewer errors to neutral than to 

positive words, as well as fewer errors for lowHap than for highHap within the neutral 

words and more errors for lowHap than for highHap within the positive words.

Behavioral results EEG study

The repeated measures ANOVA for LDRTs yielded a significant main effect of positivity 

(neu: M=617ms, SD=74ms; pos: M=625ms, SD=77ms; F(1,17)=4.629, p=0.046, 

η2=0.214), but no main effect of happiness (F(1,17)=0.890, p=0.359, η2=0.050). The 

happiness*positivity interaction reached significance (F(1,17)=5.287, p=0.034, η2=0.237). 

Pairwise comparisons revealed greater LDRTs for lowHap+pos (M=636ms, SD=91ms) 

than for lowHap+neu (M=612ms, SD=75ms; t(17)=2.919, p=0.010), as well as a trend 

indicating greater LDRTs for lowHap+pos than for highHap+pos (M=614ms, SD=70ms; 

t(17)=1.847, p=0.082) and for highHap+neu (M=621ms, SD=76; t(17)=1.652, p=0.117).

The ERR analysis revealed a significant main effect of positivity (neu: M=1.9, SD=1.4; 

pos: M=3.0, SD=2.1; F(1,17)=4.674, p=0.045, η2=0.216), but no main effect of happiness 

(F(1,17)=0.418, p=0.526, η2=0.024) and no interaction (F(1,17)=0.797, p=0.384, 

η2=0.045). In summary, participants responded faster and more accurately to neutral than 

to positive words. Moreover, a trend for faster processing of highHap words when 

compared to positive lowHap words was observed.

ERPs

The ERPs are depicted in Figures 4.1 and 4.2. A repeated measures ANOVA for the 

N1 comprising the within subject factors happiness (highHap/lowHap), positivity (neu/pos) 

and laterality (left/right) revealed a significant main effect of happiness (F(1,17)=6.612, 

p=0.020, η2=0.280), indicating an enhanced bilateral N1 amplitude for highHap (M=-1.3 

microV, SD=1.1) versus lowHap words (M=-0.8microV, SD=1.3microV), but no main effect 

(F(1,17)=0.091, p=0.767, η2=0.005) or interactions related to positivity (hap*pos: 

F(1,17)=0.117, p=0.736, η2=0.007).
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The repeated measures ANOVA for the EPN revealed no significant main effects for 

positivity (F(1,17)=0.008, p=0.931, η2<0.001) or happiness (F(1,17)=0.492, p=0.493, 

η2=0.028) and no significant interactions (hap*pos: F(1,17)<0.001, p=0.995, η2<0.001).
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Figure 4.1: Event-related potentials for all four conditions. Overview over six scalp 
electrodes, including the topographies for the early happiness effect



A repeated measures ANOVA of the N400-like negative deflection including the within 

subject factors happiness, positivity, laterality and anteriocity (anterior/posterior) revealed 

no main effects of positivity (F(1,17)=2.763, p=0.115, η2=0.140) or happiness 

(F(1,17)=0.033, p=0.858, η2=0.002). Happiness and positivity did not interact 

(F(1,17)=0.960, p=0.341, η2=0.053), but the positivity*laterality interaction reached 

significance (F(1,17)=5.314, p=0.034, η2=0.238, see Figure 4.2). Follow-up analyses for 

each cluster separately revealed trends towards positivity effects in the left anterior (neu: 

M=1.8microV, SD=3.6microV; pos: 1.1microV; SD=3.8microV; F(1,17)=3.853, p=0.066) 

and posterior cluster (neu: M=1.9microV, SD=3.8microV; pos: 1.3microV; SD=3.6microV; 

F(1,17)=4.214, p=0.056), indicating greater negativity for positive words in left hemispheric 

clusters. Also for the LPC, a significant main effect of positivity (F(1,17)=7.319, p=0.015, 
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Figure 4.2: N400-like and LPC effects for positivity. Event-related potentials from four 
scalp electrodes, inslucing the topographies for the N400-like and LPC effects



η2=0.301) but no main effect of happiness (F(1,17)=0.087, p=0.771, η2=0.005) and no 

interaction (F(1,17)=0.325, p=0.576, η2=0.019) were observed, indicating a more positive-

going LPC for positive (7.1microV; SD=3.0microV) than for neutral words (M=6.1microV, 

SD=3.0microV). In summary, a greater bilateral anterior N1 component for highHap in 

comparison to lowHap words, as well as a greater left hemispheric N400-like deflection 

and a greater LPC for positive in comparison to neutral words were observed, but not 

interactions between happiness and positivity.

To analyze the effect of stimulus type, a repeated measures ANOVA over the N400 

time window (380-700ms) comprising the within subject factors word type, laterality and 

anteriocity was calculated. It revealed a main effect of word type (F(1,17)=6.303, p=0.022, 

η2=0.270) driven by generally greater N400 amplitudes for nonwords (M=2.9microV, 

SD=2.7) than for words (M=3.8microV, SD=2.6; see Figure 4.3). The interactions of 

stimulus type with anteriocity (F(1,17)=5.374, p=0.033, η2=0.240) and laterality 

(F(1,17)=7.538, p=0.014, η2=0.307) as well as the triple interaction (F(1,17)=37.673, 

p<0.001, η2=0.689) were also found to be significant. Follow-up analyses for each cluster 

separately revealed significant differences in right hemispheric anterior (words: 

M=3.0microV, SD=3.2microV; nonwords: 1.8microV; SD=3.3microV; t(1,17)=3.335, 

p=0.004) and posterior clusters (words: M=4.5microV, SD=2.4microV; nonwords: 

3.4microV; SD=2.4microV; t(1,17)=2.862, p=0.011) as well as posterior left electrode 

clusters (words: M=5.2microV, SD=2.8microV; nonwords: 4.0microV; SD=2.8microV; 

t(1,17)=2.946, p=0.009).
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Correlation analyses
Correlating the net LDRT effects with the emotion effects for the N1 (correlations 

ranging from r(16)=-0.221 to r(16)=0.249, p-values between 0.304 and 0.765) and the LPC 

component (for happiness: r(16)=-0.206, p=0.411; for positivity: r(16)=-0.253, p=0.312) 

revealed no significant correlations. In case of the N400-like negative deflection, the right 

anterior electrode cluster comprising Fp2, F8, F4, FC6, and FC2 was negatively correlated 

with the individual net LDRT effect for positivity (r(16)=-0.544, p=0.020). Since the N400-

like component is a negative ERP deflection, the negative correlation indicates a stronger 

N400-like negativity with increasing LDRT differences between positive and neutral words. 
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Figure 4.3: N400 effect for the word versus nonword contrast. Event-related potentials from 
four scalp electrodes, including the topographies for the stimulus type N400 effect



No other significant correlations between any N400-like cluster and positivity (correlations 

ranging from r(16)=-0.081 to r(16)=-0.386, p-values between 0.113 and 0.750) or 

happiness (correlations ranging from r(16)=-0.021 to r(16)=-0.395, p-values between 0.105 

and 0.935) were observed.

Discussion

The present study examined predictions of Panksepp's hierarchy of emotion 

processing levels in word recognition. Based on the view that affective dimensions are the 

result of neocortical processing circuits which rely on preceding emotional processing, the 
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Figure 4.4: Overview of the most important effects. Upper left: Lexical decision response 
times (LDRT) for the pilot study. Upper right: LDRT for the EEG study. Lower left: Main 
effect of happiness on the N1 ERP component. Lower right: Main effect of positivity on the 
late positive complex.



hypothesis was derived that discrete emotion effects are visible earlier in the processing 

stream compared to dimensional emotion effects. The ERP data clearly support this notion 

by revealing discrete emotion effects occurring earlier than the dimensional effects when 

orthogonally manipulated, and in particular in a time window (70-130ms) that has 

previously been shown to be affected by conditioned emotional effects in visual word 

recognition (Fritsch & Kuchinke, 2013).

In detail, main effects of dimensional 

positivity were found in the behavioral 

analyses of both experiments, indicated by 

slower processing of positive than neutral 

words across both discrete emotion 

happiness conditions. An additional main 

effect of happiness was observed in the 

pilot study, driven by significantly faster 

processing of highHap words, which was 

replicated as a tendency in the pairwise 

comparisons in the ERP study. These 

effects together cannot be explained by either a discrete or a dimensional emotion model 

alone based on the orthogonal manipulation of both factors, showing the necessity of 

combined approaches in emotional evaluation (Panksepp, 2008; Russell, 2005). The 

facilitative happiness effects replicate previous discrete emotion findings (Briesemeister et 

al., 2011a, 2011b), while for the dimensional contrast facilitative and not inhibitory 

processing of positive words would have been expected based on the literature (Hofmann 

et al., 2009; Kanske & Kotz, 2007). So far, inhibitory LDRT effects are best documented for 

negative words (Briesemeister, Kuchinke, Jacobs, 2011b; Hofmann et al., 2009), which is 

explained by a need of more elaborated processing for potentially threatening and thus 

subjectively significant information. The explanation for the slow-down of positive 

compared to neutral word processing might follow comparable lines: When the material is 

controlled for discrete emotion measures that facilitate lexical decisions, the information 

conveyed by positive words at low levels of discrete emotion information require additional 

tertiary-level semantic (N400, LPC) evaluation and integration processes. Following 

Panksepp (2008), the processing of affective dimension information follows that of discrete 

emotion information (see discussion below) and thus relies on the availability of discrete 
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Figure 4.5: Correlation between the net 
positivity effect and the N400-like effect.



emotion signals (see the correlation of the two variables in Briesemeister et al., 2011b). A 

positive connotation like that of lowHap+pos words that gains no support from available 

discrete emotion signals therefore would demand additional evaluation, leading to the 

slower response times in both, the pilot and the ERP study. Of note is that based on the 

present data it seems likely that previous facilitatory effects in dimensional examinations of 

positive words are biased by the (sub-)category of facilitative happiness-related 

information.

More importantly, the ERP analyses clearly support the predicted sequential effects, 

with a main effect of the discrete emotion happiness on the early N1 preceding the effects 

of dimensional positivity on later post-lexical ERP components (N400, LPC). Early 

emotional ERP effects around 100ms in word recognition are discussed to index initial 

attentional resource allocation to quickly process potentially meaningful information 

(Citron, 2012). The word has not been fully identified at this processing stage, as also 

indexed by the later N400 effect in a word versus nonword contrast, leading to the 

suggestion that the activation spreads along conditioned emotionally charged lexico-

semantic associations (Fritsch & Kuchinke, 2013). As the early N1 effect is only visible for 

the discrete emotion category, this speaks for a conditioned response based on discrete 

emotion information as predicted by Panksepp's secondary process-level. A similar effect 

is not visible for words high or low in positivity, a result that is difficult to explain in terms of 

the core affect theory. The core affect theory assumes that discrete emotion information is 

categorized by controlled processing from bodily valence-arousal states to constitute 

human experiences (Wilson-Mendenhall et al., 2013), and hence should not precede 

dimensional effects. Moreover, valence and arousal are controlled for in the happiness 

contrast (see Table 4.1), and an explicit processing account is unlikely at this very early 

processing stage.
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Table 4.1: Stimulus characteristics

lowHap
+neu

lowHap
+pos

highHap
+neu

highHap
+pos

F-value p-value

Log frequency 2.3 (2.1) 1.8 (1.9) 1.8 (1.4) 2.2 (1.7) 0.747 0.526
Letters 6.1 (1.4) 6.2 (1.2) 6.1 (1.4) 5.9 (1.2) 0.358 0.783
Syllables 2.0 (0.7) 2.1 (0.5) 2.1 (0.8) 2.0 (0.6) 0.287 0.834
Phonemes 5.4 (1.3) 5.7 (1.3) 5.4 (1.4) 5.3 (1.2) 0.721 0.541
Arousal 2.4 (0.3) 2.5 (0.6) 2.6 (0.6) 2.5 (0.8) 0.572 0.634
Imageability 4.7 (1.3) 4.6 (1.5) 4.9 (1.4) 4.9 (1.5) 0.256 0.857
Bigram frequency 182953 (129198) 224222 (166890) 196547 (158145) 164361 (133714) 0.871 0.458
Ortho. neighbors (N) 1.7 (1.9) 2.2 (3.4) 2.2 (3.6) 1.2 (2.2) 0.915 0.436
Frequency of N 116.8 (317.7) 210.6 (568.6) 161.2 (463.2) 127.9 (524.7) 0.233 0.873
Higher frequent N (HN) 0.5 (1.4) 0.6 (1.2) 0.9 (1.6) 0.4 (1.3) 0.537 0.658
Frequency of HN 82.4 (295.0) 192.6 (533.7) 157.7 (456.2) 115.4 (505.7) 0.333 0.801

In contrast, later controlled processing at a time assumed to follow lexical access 

shows a predicted effect of the dimensional emotion variable. Both, the N400 component, 

which is known to require at least a minimum of lexico-semantic processing and is shown 

to differentiate words from nonwords in the present study, and, to a greater extent, the LPC 

as being indicative of higher-order neocortical evaluative processes (Citron, 2012) reveal 

this influence. The temporal sequence of these effects is consistent with the assumption 

that dimensional emotion information is derived from available discrete emotion 

information from lower-level subcortical processing through interactions with higher-order 

neocortical semantic processing (Panksepp & Watt, 2011). It should be noted that in 

emotion word recognition often smaller N400 amplitudes are reported for emotional 

compared to neutral words (Citron, 2012; Kanske & Kotz, 2007), whereas greater N400 

amplitudes to emotionally arousing words embedded in sentences have been documented 

(Holt, Lynn & Kuperberg, 2009). With the greater N400 amplitudes to positive words 

derived from the dimensional approach, these results mirror that of the behavioral data 

and lead to the observed correlation between the positivity related N400 and LDRT effects 

over right-anterior electrodes. Thus, although no positivity related N400 effect was 

observed in the right anterior cluster, a strong relationship with the behavioral data is 

visible. This discrepancy seems related to a reversal of the N400 positivity effect (see 

Figure 4.5). In accordance with the significant correlation, some studies indicate that 

bilateral frontal electrodes explain response time variability in cognitively demanding tasks. 

For example, Gerson, Parra and Sajda (2005) report that response times variability is 

closely related to activity differences measured over bilateral frontal electrodes. Of note is 

that in the present study a similar negative N400-LDRT correlation is visible over the 
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anterior-left cluster, though not significant (r(16)=-0.386, p=0.113).

Nonetheless, the majority of the results indicate an extended initial semantic analysis 

at post-lexical processing stages (Holt et al., 2009) for positive versus neutral words, which 

is further supported by the N400 effect for nonwords, which starts at the exact same point 

in time. Behavioral and electrophysiological indicators agree in the fact that the processing 

of positive words and its integration in the lexico-semantic task context is slowed-down, 

once the stimulus material is controlled for happiness. The LPC findings complement the 

N400 results. Enhanced LPC amplitudes to positive words are often reported in emotional 

word recognition (e.g. Citron, 2012) and commonly agreed to reveal post-lexical controlled 

evaluations as would be predicted, both by a psychological construction approach and by 

Panksepps tertiary process-levels.

As it was not possible to manipulate positive and negative dimensional and discrete 

emotional words within one stimulus set, we decided to focus on positive valence and 

happiness in the present study. Thus, it remains to be tested whether the reported results 

also extend to the processing of negatively valenced stimulus material. Both, the core 

affect theory and the Panksepp (2008) model assume that sequential processing does not 

differ between positive and negative emotions, and the data presented by LeDoux (2000) 

suggest sequential processes for fear conditioning as well. We thus hypothesize that a 

manipulation of negativity and disgust, for example (Briesemeister et al., 2011b; Ponz et 

al., 2013a; Silva et al., 2012), would lead to comparable results.

Since the hierarchical model remains mute with respect to the second major affective 

dimension, affective arousal, the stimulus set used in the present study was controlled for 

its influence. Previous research highlights, however, that the N1 and other early ERP 

components are sensitive to arousal manipulations (Hofmann et al., 2009; Scott et al., 

2009), which raises the question of the relationship between discrete emotions and 

arousal. Initial studies comparing the predictive power of both models for visual word 

processing indicate that they account for merely the same variance, with slight advantages 

for discrete emotions, suggesting that arousal should have no effect beyond a discrete 

emotion manipulation (Briesemeister et al., 2011b; Briesemeister, Hofmann, Kuchinke & 

Jacobs, 2012). Taken together with the rigorously controlled stimulus material (see Table 

4.1), we are confident that the present results indeed document the impact of happiness, 

not arousal. Future research should however investigate possible interactions of discrete 

emotions (i.e. happiness) and arousal, thereby explicitly addressing their role in early 
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(Hofmann et al., 2009) and late processing stages (Olofsson, Nordin, Sequeira & Polich, 

2008).

In summary, the present study found clear evidence in support of Panksepp's 

hierarchy of emotion processing levels in both behavioral and electrophysiological word 

recognition data. The effects reported here, in particular the observed behavioral 

interactions between the discrete and the dimensional affective information in the stimulus 

set and the specific sequentiality of the ERPs, cannot easily be explained in terms of the 

traditional discrete emotion or affective dimension theories alone. We believe that unifying 

frameworks like Panksepp’s hierarchy of emotion processing are promising starting points 

to bridge the gap between these theories – that still denote the need for further 

experimental examinations of the dynamics and the interactions predicted by current 

models describing emotional effects within and beyond visual word recognition research.
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Dissociation of Happiness and Positivity
Chapter 05

A slightly different version of this chapter has previously been published as:

Briesemeister, B. B., Kuchinke, L., Jacobs, A.M. & Braun, M. (2014b). Emotions in  

reading: Dissociation of happiness and positivity. Cognitive, Affective, and 

Behavioral Neuroscience, DOI: 10.3758/s13415-014-0327-2

Abstract

The hierarchical emotion model proposed by Panksepp (1998) predicts that affective 

processing relies on three functionally and neuroanatomically distinct levels: engaging 

subcortical networks (primary level), the limbic system (secondary level), and the 

neocortex (tertiary level). The present fMRI study manipulated happiness and positivity 

assumed to rely on secondary and tertiary level processes, respectively, to test these 

assumptions in a word recognition task. In accordance with the model predictions, 

evidence for a double-dissociation was found in the brain activation pattern: Secondary 

level processes engaged parts of the limbic system, specifically right hemispheric 

amygdala. Tertiary level processes, in contrast, relied predominantly on frontal neocortical 

structures such as the left inferior frontal and medial frontal gyri. These results are 

interpreted as support for Panksepps model and as an indicator of a semantic foundation 

of affective dimensions.
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Introduction

Even though considerable recent research on human affective processing relies on 

neuroimaging and electrophysiological evidence (Fritsch & Kuchinke, 2013; Satpute et al., 

2013; Wilson-Mendenhall et al., 2013), most theories do not explicitly specify how and 

where exactly emotions are represented within the human brain (Lindquist, Wager, Kober, 

Bliss-Moreau & Barrett, 2012). One of only few notable exceptions is the hierarchical 

emotion theory proposed by Panksepp (1998, 2012), which generalizes evidence derived 

from electrical stimulation studies in animals to all mammalian species and thus allows for 

neuroanatomically precise predictions. For example, Panksepp (2007a) was among the 

first to suggest that the traditionally opposing concepts of discrete emotions, which 

describe emotions as a limited set of functionally distinct categories, and affective 

dimensions, which describe emotions as fluctuating states within two- or more dimensional 

spaces, are not alternatives, but refer to different affective processing levels within a 

neuroanatomically distinguishable three-level hierarchy. At the primary process-level, 

seven distinct emotional systems can be inferred from animal research. SEEKING, RAGE, 

LUST, PLAY, FEAR, PANIC and CARE are considered to be hardwired, unconditioned 

emotion processes that originate in emotion specific subcortical circuits within the 

periaqueductal gray (PAG) and the lower limbic system meant to provide fixed-action 

patterns that “allow organisms to face key environmental challenges with little need for 

individual learning” (cf. Panksepp, 2012, p.7). Satpute et al. (2013) recently demonstrated 

that the PAG, a core structure within the FEAR network known to be responsible for 

freezing and flight behavior in animals, is also involved in the processing of highly aversive 

images in humans. However, it is very difficult to non-invasively study unconditioned 

primary process-level emotions in humans, given that the involved structures are often 

very small (~10x6x3mm or approximately six standard voxels in case of the PAG) and 

adjacent to the cerebral aqueduct, which can cause magnetic inhomogeneities (Panksepp, 

2012; Satpute et al., 2013). This is why researchers typically rely on secondary process-

level conditioned affective processes. Affective conditioning (e.g., fear conditioning, 

LeDoux, 2000) relies on the pairing of unconditioned affective stimuli (primary process-

level emotions) and the resulting unconditioned response to previously neutral stimuli. In 

case of word recognition, for example, Fritsch and Kuchinke (2013) demonstrated that the 

pairing of meaningless letter strings (pseudowords) with highly aversive images results in 

a conditioned ERP effect on the N1 component (~100ms) which strongly resembles early 
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ERP effects known from implicit affective word processing (Citron, 2012, see Bayer et al., 

2012 for a more detailed discussion on early ERP effects and conditioning). According to 

Panksepp, tertiary process-level emotions, finally, rely on phylogenetically younger 

neocortical prefrontal brain structures and reflect higher order categorization, 

reorganization, and appraisal processes. Discrete emotions are shaped by sociocultural 

demands and clustered “into constellations of positive and negative affect“ (cf. Panksepp, 

2006b, p. 22). Following this hierarchical theory of emotion, affective dimensions are 

derived from more basal discrete emotions, which requires more complex empirical tests.

Wilson-Mendenhall et al. (2013) asked their participants to immerse themselves in 

written scenarios meant to induce feelings of fear, happiness, and sadness and then to 

judge the resulting affective experience, while recording the associated brain activity with 

fMRI. The scenarios were constructed to elicit both positive and negative feelings for each 

discrete emotion category, i.e. they were “describing the pleasant fear of thrill seeking, the 

pleasant sadness of nostalgia, and the unpleasant happiness of unshared success “ 

(Wilson-Mendenhall et al., 2013, p.948) as well as prototypical happiness, fear, and 

sadness scenarios. Discrete emotions and affective dimensions were thus manipulated 

within one single experiment. The analyses revealed that participants’ subjective valence 

judgments were correlated with activity in the orbitofrontal cortex (see also Lewis et al., 

2007) both within and across discrete emotion categories, while arousal judgments 

correlated with activity within the left amygdala. Wilson-Mendenhall et al. (2013) discuss 

these findings as evidence for a two-dimensional core affect, i.e. valence and arousal, 

underlying all affective experiences. Following the assumptions of the hierarchical emotion 

theory, however, valence judgments that correlate with orbitofrontal activations rely on 

higher-order evaluations and thus processing at the cortico-frontal tertiary process-level 

(Panksepp, 2007a). The amygdala, in contrast, is assumed to be a primary process-level 

structure, but with amygdala subregions discussed to be involved in different emotion 

systems (see Table 1 in Panksepp, 2001; also Wilson-Mendenhall et al., 2013). Of note is 

that amygdala is also often found active during fear conditioning (e.g. Duvarci, Popa & 

Paré, 2011; Maren, Phan & Liberzon, 2013; Phillips & LeDoux, 1992), thus it is also likely 

to be active in secondary process-level conditioned responses.

Recent evidence supporting the hierarchical emotion theory comes from an ERP study, 

where participants were presented with affective words in a LDT (Briesemeister, Kuchinke 

& Jacobs, 2014a). Word lists ‘high’ or ‘low’ in normative discrete emotion measures of 
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happiness, and ‘neutral’ or ‘positive’ on the valence dimension (positivity) were 

orthogonally manipulated. This allowed to study the temporal signature of secondary 

(happiness) and tertiary (positivity) process-level brain responses. The happiness 

manipulation affected the very early N1 component around 100ms after stimulus onset, 

which is known to be sensitive to affective conditioning (Fritsch & Kuchinke, 2013). The 

positivity manipulation, in contrast, affected the late N400 component and the late positive 

complex (LPC), both of which are discussed to reflect explicit affective evaluation following 

word identification (Citron, 2012). No interaction between positivity and happiness was 

observed. These brain-electrical data thus strongly support Panksepp’s theory, given that 

happiness words assumed to primarily activate the secondary process-level affect an ERP 

component that precedes those affected by positivity words, which are assumed to 

primarily activate the tertiary process-level. Moreover, the processes that are discussed to 

underlie these specific ERP components, that is initial attentional resource allocation (N1), 

prolonged lexico-semantic processing (N400), and especially higher-order evaluation 

(LPC, see Citron, 2012), are also well in line with the model, given that Panksepp (2012) 

locates affective driven cognitive processes (N400, LPC) at the tertiary process-level.

An alternative, complementary approach for differentiating between secondary and 

tertiary process-levels is to focus on the involved brain structures rather than the temporal 

dynamics, in particular as Panksepp (1998; 2012) makes very precise neuroanatomic 

predictions. This is the goal of the present study which means to replicate and extend the 

results of Briesemeister et al. (2014a), using fMRI instead of ERPs. Based on Panksepp’s 

hierarchical emotion theory, we derived the following hypotheses:

Recent studies suggest that the processing of single affective words relies on emotion 

networks in the brain, such as the anterior and posterior cingulate cortex, the medial 

temporal lobe including hippocampus and parahippocampal gyrus, the amygdala, and the 

orbitofrontal cortex (Citron, 2012; Herbert et al., 2009; Kuchinke et al., 2005; Lewis et al., 

2007; Nakic et al., 2006; Ponz et al., 2013a; Schlochtermeier et al., 2013). Work by Ponz 

et al. (2013a), for example, has shown that the insula cortex, which is strongly related to 

disgust processing (Wicker et al., 2003), is also involved in reading disgust related words. 

The authors interpreted this finding in terms of neural re-use (Anderson, 2010; Herbert et 

al., 2009), suggesting that phylogenetically younger processes such as reading rely at 

least partially on already existing old emotion processing regions, e.g., the limbic system 

(see also Bohrn et al., 2012; Jacobs, 2011; 2014). An fMRI replication of Briesemeister et 
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al.’s ERP results (2014) is thus expected to reveal distinct activations within emotion-

processing networks: secondary process-level emotions should rely on limbic brain 

structures, while tertiary process-level emotions should engage prefrontal brain regions. 

Previous work has already shown that discrete emotion words explain specific variance 

during lexical processing even when the stimulus material is controlled with respect to 

affective dimensions (Briesemeister et al., 2011b; 2014a; Silva et al., 2012; Weigand et al., 

2013a), indicating separable underlying processes. Assuming that discrete emotion words 

indeed induce conditioned responses that mainly access the secondary process-level, a 

happiness manipulation as described in Briesemeister et al. (2014a) should, according to 

Panksepp (2001, Table 2), relate to the PLAY system. The primary process-level circuitry 

underlying PLAY consists of the parafascicular and posterior thalamic nuclei, the 

somatosensory cortex, the hippocampus, and the dorsal PAG (Panksepp, 1998; 2001), but 

as already mentioned, Panksepp (2012) and Satpute et al. (2013) agree that the primary 

process-level is difficult to access using fMRI. Moreover, it is unknown to what extent the 

primary process-level is accessed by conditioned affective stimuli, e.g. emotional words. 

The secondary process-level, in contrast, which can be accessed during word recognition 

tasks and the use of (conditioned) discrete emotion words, is not necessarily specific for a 

single primary process-level emotion, but predicted to rely on activation of the cerebellum, 

the temporal lobe, the amygdala, the lateral hypothalamus, as well as the cingulate cortex 

in the context of PLAY (see Panksepp, 1998, p. 291). Thus, greater activity within this 

PLAY network was expected for words high in happiness compared to words low in 

happiness. As regards the processing of valence along the positivity dimension (e.g., 

Briesemeister et al., 2012), which is expected to primarily access the tertiary process-level 

within the hierarchical emotion theory, greater activation with increasing positivity was 

expected to be observed in higher-order neocortical brain regions such as the orbitofrontal 

and medial frontal cortices (Lewis et al., 2007; Panksepp, 2007a; Schlochtermeier et al., 

2013).

Methods

Participants

A total of twenty right-handed native German speakers (8 male, mean age = 23, SD = 

2.7, range 19-35) were recruited at the Freie Universität Berlin. They had normal or 
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corrected-to-normal vision and reported no known neurological condition or psychiatric 

illness. Prior to the experiment, participants gave written informed consent in accordance 

with guidelines set by the Charité ethics committee at Freie Universität Berlin. Participants 

were compensated with 15 EUR for participation.

Stimuli

Following Briesemeister et al. (2014a), 120 German 4-to-8-letter nouns and an equal 

number of nonwords were presented in a 2(happiness)*2(positivity) within-subject design 

with 30 items per cell. In order to investigate the specific contribution of discrete emotions 

and affective dimensions to affective word recognition, the present study relied on two 

published affective norm databases, the BAWL-R (Võ et al., 2009) and its discrete emotion 

extension, the DENN-BAWL (Briesemeister et al., 2011a). The BAWL-R provides rating-

based affective norms for affective valence (7-point Likert scale, ranging from negative [-3] 

to positive [3]) and arousal (5-point Likert scale, ranging from low [1] to high arousing [5]) 

for almost 3,000 German words. Given that positivity judgments and BAWL-R’s valence 

ratings are highly correlated (Briesemeister et al., 2012), words with BAWL-R scores 

between -0.7 and 0.7 were defined as being neu and words with valence scores above 1 

were defined as being pos, thus covering the entire positivity spectrum. DENN-BAWL 

norms were used to additionally classify words as either being strongly related to 

happiness or not, with lowHap words having DENN-BAWL happiness scores below 2.6 

and highHap words having scores above 2.6. The rational behind that was that the DENN-

BAWL norms indicate the extent to which a single word is related to one of five specific 

discrete emotion categories, with high scores indicating a strong relation. The stimuli were 

selected aiming at a maximum manipulation of both variables. The resulting four 

orthogonal conditions (lowHap+neu, e.g. “HUHN”, engl. “CHICKEN; lowHap+pos, e.g. 

“PRIVILEG”, engl. “PRIVILEGE”; highHap+neu, e.g. “SATIRE”, engl. “SATIRE”; 

highHap+pos, e.g. “EKSTASE”, engl. “ECSTASY”) showed uncorrelated happiness and 

valence scores (r=0.09), indicating that lowHap+pos words are perceived as being positive 

but not related to the discrete emotion happiness, that highHap+neu words are related to 

happiness but not perceived as being positive, and so on. For statistical details about the 

stimulus set see Table 5.1. Mean levels of arousal, imageability, (log-)frequency per 

million, bigram frequency, orthographic neighborhood size, frequency of orthographic 

neighbors, frequency of higher frequent orthographic neighbors, and the mean number of 

letters, syllables, phonemes and higher frequency orthographic neighbors were controlled 
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using ANOVAs (all F's < 1, see Table 5.1). Moreover, all control variables were matched for 

the highHap versus lowHap and for the neu versus pos contrasts as verified by means of 

pairwise t-tests (all t's < 1). A list containing all words can be found in the supplementary 

materials. The 120 pronounceable but meaningless nonwords, matched to the words on 

number of letters and syllables (t's < 1), were taken from Briesemeister et al., (2014) as 

well. In addition, 30 filler items in form of five pound signs ('#####') were included, meant 

to increase the signal-to-noise ratio of the fMRI paradigm.
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Table 5.1: Descriptive statistics for the stimulus set and the behavioral responses

lowHap+neu lowHap+pos highHap+neu highHap+pos F-value p-value

Happiness 2.3 (0.2) 2.4 (0.1) 2.9 (0.2) 2.9 (0.2) 74.760 < 0.001
Positivity 0.5 (0.2) 1.3 (0.2) 0.5 (0.2) 1.4 (0.2) 142.052 < 0.001
Log frequency 2.3 (2.1) 1.8 (1.9) 1.8 (1.4) 2.2 (1.7) 0.747 0.526
Letters 6.1 (1.4) 6.2 (1.2) 6.1 (1.4) 5.9 (1.2) 0.358 0.783
Syllables 2.0 (0.7) 2.1 (0.5) 2.1 (0.8) 2.0 (0.6) 0.287 0.834
Phonemes 5.5 (1.3) 5.7 (1.3) 5.4 (1.4) 5.3 (1.2) 0.721 0.541
Arousal 2.4 (0.3) 2.5 (0.6) 2.6 (0.6) 2.5 (0.8) 0.572 0.634
Imageability 4.7 (1.3) 4.6 (1.5) 4.9 (1.4) 4.9 (1.5) 0.256 0.857
Bigram frequency 182953 (129198) 224222 (166890) 196547 (158145) 164361 (133714) 0.871 0.458
Ortho. neighbors (N) 1.7 (1.9) 2.2 (3.4) 1.2 (2.2) 1.2 (2.2) 0.915 0.436
Frequency of N 116.8 (317.7) 210.6 (568.6) 161.2 (463.2) 127.9 (524.7) 0.233 0.873
Higher frequent N (HN) 0.5 (1.4) 0.6 (1.2) 0.9 (1.6) 0.4 (1.3) 0.537 0.658
Frequency of HN 82.4 (295.0) 192.6 (533.7) 157.7 (456.2) 115.4 (505.7) 0.333 0.801

Response times 719 (64) 765 (76) 719 (63) 741 (61)
Error rates 1.2(1.5) 1.6(1.4) 0.9(1.0) 1.3(1.2)

lowHap highHap NEU POS

Response times 742(85) 730(74) 719(61) 753(65)
Error rates 1.4(1.3) 1.1(0.9) 1(0.8) 1.4(0.9)

Stimulus characteristics, including experimental and control variables of the stimulus set, 
as well as mean response times and error rates.

Procedure

While inside the scanner, participants received written instructions to decide as fast 

and accurate as possible via button press whether they were presented with a correct 

German word (index finger) or a nonword (middle finger). Moreover, they were instructed 

to not press any button when presented with fillers. Ten practice trials (4 words, 4 

nonwords, 2 fillers) that were not part of the stimulus set described above were used to 

familiarize the participants with the task prior to the actual experiment.

Stimuli were presented in an event-related design via goggles using presentation 

software (Neurobehavioral Systems, Inc.), which also recorded response times and 

accuracy data. Each trial began with the presentation of a fixation cross (+) in the center of 

the screen, which was presented for 2500ms on average (jitter: 2000-3000ms), followed 

by the stimulus (1500ms) at the exact same position. Stimuli were fully randomized without 

constraints for each subject individually and presented in white uppercase Arial letters on 

black background, font size 50. Responses were given through a button box held in the 

right hand. The start of the first trial was controlled by an external pulse from the scanner. 
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Finally, a 5min anatomical T1 scan was recorded after completion of the lexical decision 

task.

MRI data acquisition

Neuroimaging was performed at the Dahlem Institute for Neuroimaging of Emotion 

using a 3T Siemens (Erlangen, Germany) Trim Trio MRI scanner equipped with a 12-

channel head coil. Earplugs and headphones were used to attenuate scanner noise and 

form fitting cushions were meant to prevent the participants head movements. Functional 

imaging was done in a single run with 545 whole-brain T2*weighted echoplanar images 

(EPI) recorded in ascending interleaved order (TR: 2000ms, TE: 30ms, 70° Flip Angle 

(FA), 37 slices, matrix: 64x64, field of view (FOV): 192mm, 3x3x3mm voxel size, no gap). 

High resolution T1*weighted anatomic reference images were acquired as a set of 176 

continuous sagittal slices (TR: 1900ms, TE: 2.52ms, 9° FA, matrix: 256x256, FOV: 

256mm, 1x1x1mm voxels).

Data preparation

Mean LDRTs were calculated for each condition and participant after exclusion of 

nonresponders, behavioral errors and outliers, which were defined as responses faster 

than 300ms or slower than 1500ms. ERRs were calculated as summed errors per 

condition and participant. Statistical analyses were computed using ANOVAs as 

implemented in SPSS 13.0 (SPSS Inc., USA) at an a-priori significance level of 0.05.

Neuroimaging raw data were preprocessed and analyzed using SPM 8 (Available: 

http://www.fil.ion.ucl.ac.uk/spm/, Accessed: 2012 February 27). The images were slice 

time corrected, realigned to the mean volume, unwarped, normalized to the standard EPI 

template provided by the Montreal Neurological Institute (MNI) with 3x3x3mm voxel sizes 

and then smoothed with an 8mm (FWHM) Gaussian kernel. For statistical analyses, an 

event-related General Linear Model (GLM) analysis time-locked to the stimulus onset was 

used. On the first level, seven predictors were included as regressors in the design and 

convolved with the canonical hemodynamic response function (HRF): The four word 

categories lowHap+neu, lowHap+pos, highHap+neu, and highHap+pos words, nonwords, 

fillers and trials excluded from behavioral analyses (i.e. non-responders, errors and 

outliers as defined above). On the second level, participants were treated as random 

effects and the four word categories were included in a 2 (happiness) x 2 (positivity) 

flexible factorial ANOVA. Main effects of positivity and happiness were analyzed with F-
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tests to test for main effects and possible interactions. Follow-up one-tailed t-tests were 

used to estimate the direction of the effects. To correct for multiple comparisons, peak 

voxel (p < 0.001) and cluster size thresholds (k > 17) were used, following an a-priori 

Monte Carlo simulation procedure proposed by Slotnick et al. (2003). To estimate the 

appropriate cluster threshold, 10,000 simulations were run with the corrected p value set at 

p < 0.05 in the whole brain analyses and a FWHM of 12. Only activation clusters that 

survived these thresholds (p > 0.001, k > 17) are reported.
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Results

Behavioral results

A 2 (happiness) x 2 (positivity) repeated measures ANOVA revealed a significant main 

effect of positivity which was driven by faster responses for neu than for pos words 

(detailed descriptive statistics are presented in Table 5.1, inference statistics in Table 5.2). 

Moreover, the happiness*positivity interaction approached significance (p = 0.053, see 

Table 5.2). Planned pairwise comparisons between all conditions were calculated and 

revealed faster processing for neu words than for pos words within both, the lowHap and 

the highHap condition. In addition, highHap words were processed faster than lowHap 

words within the pos condition but not for neu words. These results are also depicted in 

Figure 5.1.
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Figure 5.1: Behavioral lexical decision performance. Depicted are the mean lexical 
decision response times (LDRT) in ms and the mean summed error rates per condition. 
Error bars indicate one standard deviation.



Table 5.2: Inference statistics for the behavioral and fMRI data

Effect F/t-value p-value η²-value

LDRT

Main effect positivity 47.504 <0.001 0.714

   Neu < Pos 6.868 <0.001

Happiness*positivity interaction 4.258 0.053 0.183

   lowHap+neu < lowHap+pos 6.297 <0.001

   highHap+neu < highHap+pos 2.844 0.010

   highHap+pos < lowHap+pos 2.200 0.040

ERR

Main effect positivity 6.538 0.019 0.256

   neu > pos 2.557 0.019

Anatomical location L/R BA MNI coordinates Voxel T score

x y z

Main effect of positivity

pos > neu

   Medial frontal gyrus L 8 -3 26 43 112 5.59

   Inferior frontal gyrus L -45 35 10 101 5.15

   Inferior frontal gyrus R 47 42 26 -8 24 4.12

neu > pos

   Precuneus R 7 9 -58 40 74 4.46

   Superior temporal gyrus R 41 51 -19 7 48 4.27

   Superior temporal gyrus L 42 -63 -28 7 18 3.76

Main effect of happiness

lowHap > highHap

   Cerebellum R/L 6 -70 -38 71 4.95

R/L -3 -58 -14 85 4.72

   Middle occipital gyrus L -51 -76 -5 33 4.78

   Amygdala R 21 2 -11 28 4.52

Anatomical locations for significant main effects of positivity and happiness at p < 0.001, 
corrected for cluster size (>17).

ERR (4% behavioral errors within the word material) were analyzed using a repeated 

measures ANOVA comprising the 2 x 2 within-subject factors happiness and positivity. A 

main effect of positivity was observed, based on fewer errors for neu than for pos words 

(see Table 5.2). No further effects reached significance. Given that ERR follow a binominal 

distribution (correct/incorrect), however, therefore violating several fundamental 

assumptions (see Jaeger, 2008), an additional mixed effects logistic regression was 
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calculated using JMP Pro 11 (SAS Institute Inc., USA). Adding subjects and items as 

random effects to the model, the fixed effects (positivity, happiness, and their interaction) 

did not explain any variance. Thus, the ERR effect for positivity found in the ANOVA is not 

interpreted.

Neuroimaging results

A 2 (happiness) x 2 (positivity) flexible factorial ANOVA on the neuroimaging data 

revealed significant main effects for both factors, but no significant interaction between 

those. The happiness manipulation showed significant activation differences within the 

right amygdala, the cerebellum and the left middle occipital gyrus (BA 19). Follow-up one-

tailed t-tests revealed that all these activation 

differences were related to increased 

differences for lowHap compared to highHap 

words. The effects and the corresponding 

effect sizes plotted as percentage signal 

change within the peak voxel are depicted in 

Figure 5.2 using the SPM toolbox rfxplot 

(Gläscher, 2009).

The positivity manipulation affected 

activity within the precuneus (BA 7), mostly 

the left medial frontal gyrus (BA 8), the right 

superior temporal gyrus (BA 41) and two 

regions within the left inferior frontal gyrus. 

Direct contrasts between neu and pos words 

revealed increased activation differences for 

pos words within the medial frontal and the 

inferior frontal gyri. The reverse contrast revealed activation differences within the superior 

temporal gyrus and the precuneus, as also depicted in Figure 5.3. It should be noted that 

in the one-tailed contrasts, the inferior frontal gyrus effect for pos words and the superior 

temporal gyrus effect for neu words were significant in both hemispheres.
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Figure 5.2: fMRI results for the happiness 
contrast (highHap versus lowHap). Depicted 
are structures that revealed significant 
differences for the happiness contrasts. 
Significant areas are labelled. The blue cross 
indicates the voxel that was used to extract the 
mean activation depicted in the bar chart.



Discussion

The present study examined the three-leveled emotion processing hierarchy proposed 

by Panksepp (2012) and its applicability to affective word processing studies. Specifically, 

two hypotheses were being tested. Based on the neural re-use hypothesis (Anderson, 

2010; Herbert et al., 2009) and the assumption that affectively conditioned stimuli like 

words access the secondary process-level within Panksepp’s theory, we expected emotion 

networks like the anterior and posterior cingulate cortex, the medial temporal lobe 

including hippocampus and parahippocampal gyrus, the amygdala, and the orbitofrontal 

cortex to be involved in affective word recognition (Citron, 2012; Herbert et al., 2009; Lewis 

et al., 2007; Nakic et al., 2006; Ponz et al., 2013a; Schlochtermeier et al., 2013), despite 

the fact that the affective information is incidental to the task requirements (Kuchinke et al., 

2005). In line with these predictions and replicating results by Nakic et al. (2006), the 

amygdala was found to be engaged during implicit affective processing in the present 

study.

Referring to Kuchinke et al. (2005), Nakic et al. (2006) discuss amygdala activity 

during emotion word recognition in relation to behavioral performance. According to these 

authors, amygdala activation indicates emotional salience and serves as input for regions 
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Figure 5.3: fMRI results for the positivity contrast (pos versus neu). Depicted are structures 
that revealed significant differences for the positivity contrasts, separated by direction. 
Significant areas are labelled. The blue cross indicates the voxel that was used to extract the 
mean activation depicted in the bar chart.



that are relevant for the behavioral response, such as the medial orbito-frontal gyrus and 

the anterior cingulate cortex, which in turn facilitate the behavioral lexical decision 

response. This interpretation is based on a significant correlation between amygdala and 

anterior cingulate cortex activity in conditions which show enhanced word processing 

speed, namely for negative words in Nakic et al. (2009), and the absence of comparable 

effects when no facilitated processing is observed (e.g., for negative words in Kuchinke et 

al., 2005). The present results additionally contribute to this discussion about the role of 

the amygdala in affective word processing: As predicted by Nakic et al. (2009), affective 

information does not per se affect the amygdala, indicated by the absence of activation 

differences for the positivity contrast. Instead, amygdala activation was observed for the 

happiness contrast, which showed no behavioral main effect on LDRTs or ERRs and thus 

contradicts Nakic et al.’s (2009) assumptions. Given the theoretical framework of the 

present study, we interpret these results as suggesting that an explanation for activation 

differences within the amygdala, at least in the present study, must be related to the 

differentiation of discrete emotions versus affective dimensions.

Several recent studies show that manipulations along discrete emotion categories 

affect different word processing variance than manipulations along affective dimensions 

(Briesemeister et al., 2011a; 2011b; 2014a; Silva et al., 2012; Weigand et al., 2013a), 

suggesting that implicit processing of happiness and positivity reveals dissociable 

underlying networks. The results of Briesemeister et al. (2014a) already supported this 

hypothesis: An early N1 effect discussed to index early attentional resource allocation to 

affectively conditioned wordforms (Bayer et al., 2012) was found to separate high from low 

happiness words, while positivity affected the N400 and the LPC. Both components are 

associated with explicit affective evaluation. No interactions were observed. ERP studies 

are an excellent way to investigate such temporal sequences, and the results directly 

supported the hierarchical emotion model, but they are not suited to specify the 

neuroanatomical networks in a fine grained resolution. Panksepp (2012), however, makes 

precise neuroanatomical predictions, tested and supported in the present study by finding 

evidence for two non-overlapping networks that underlie the processing of happiness and 

positivity related words. Activity differences were observed within the amygdala, the 

cerebellum and the left middle occipital gyrus (see Table 5.2) when happiness words were 

processed. Most of these structures are part of Panksepp’s (2012) secondary process-

level network, supposed to underlie the processing of conditioned PLAY (and thus 
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happiness) responses. Together with the happiness related N1 effect described in 

Briesemeister et al. (2014a), these results support a fundamental role of discrete emotions 

during (implicit) affective processing. The positivity manipulation, in contrast, revealed 

differences within structures strongly associated within the so-called reading network 

underlying semantic processing, i.e. within the superior temporal gyrus, the precuneus, 

and the medial and inferior frontal gyri (Binder & Desai, 2011; Binder, Desai, Graves & 

Conant, 2009; Kuchinke et al., 2005). According to Panksepp, the tertiary process-level 

“requires expansive neocortical tissues that permit lingustic-symbolic transformation” 

(Panksepp, 2005, p. 32), which can explain activation differences related to semantic 

processing for positive words. Again, these results extend Briesemeister et al.'s (2014a) 

finding of positivity related N400 and LPC effects discussed to represent semantic 

evaluation and integration processes (e.g., Kutas & Federmeier, 2011). Late ERP effects 

and neocortical reading network activity indicate that at least a minimum of lexico-semantic 

integration is about to happen when processing affective dimensions like positivity, given 

that secondary process-level discrete emotion differences are controlled. In line with this 

interpretation, the present study found positive words to be recognized significantly slower 

than neutral words, which is rather untypical (Briesemeister et al., 2012; Kuchinke et al., 

2005) but replicates Briesemeister et al.s data (2014a). We interpret this effect as an index 

of increased processing demands when affective properties (secondary process-level) are 

controlled during implicit affect-based semantic categorization (tertiary process-level), 

which is most pronounced in the lowHap+pos condition (see Figure 5.1).

Replicating Briesemeister et al.’s finding (2014a), again no interaction between 

happiness and positivity was observed in the neuroimaging data. Even though the power 

in the present study might have been too low to detect interactive effects, the absence of 

an interaction is well in line with previous reports of independent proportions of variance 

explained by discrete emotion and affective dimension manipulations (Briesemeister et al., 

2011a; 2011b; 2014a; Silva et al., 2012; Weigand et al., 2013a), and predicted by the 

hierarchical model (Panksepp, 2012). To the best of our knowledge, the present work is 

the first neuroimaging study trying to disentangle discrete emotion and affective dimension 

influences in word recognition. Previous studies focused exclusively on the contribution of 

affective dimensions such as valence (Kuchinke et al., 2005; Maddock, Garrett & 

Buonocore, 2003; Nakic et al., 2006) and their interaction with arousal (Citron et al., 2014), 

revealing activation differences within affective as well as within semantic reading 
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networks. Kuchinke et al. (2005), for example, found positive words to engage the superior 

frontal and orbito-frontal gyri and negative words to engage the inferior frontal gyrus, which 

is in line with and in the same direction as the present tertiary process-level positivity 

effects in frontal regions. These results were interpreted as indexing explicit emotional 

memory functions. Additional activation differences when contrasting positive with neutral 

words were observed within the hippocampus, which is a secondary process-level 

structure in Panksepp’s theory and was interpreted as indexing memory-emotion 

interactions by Kuchinke et al. (2005). Citron et al. (2014) report emotion related activation 

differences during lexical decisions within the cerebellum and the parahippocampus, both 

of which are part of the secondary process-level limbic pathways involved in cortical 

control of emotion. Further valence*arousal interaction effects were found within the 

superior temporal gyrus, which relates to the present positivity results and which the 

authors interpret as responsible for the decoding of affective content from visual 

information (Citron et al., 2014). They however also note that the superior temporal gyrus 

predominantly “is associated with semantic/conceptual categorisation as well as 

comprehension of coherent, comprehensible text” (Citron et al., 2014, p. 87), two functions 

explicitly associated with the tertiary process-level as predicted to underlie the processing 

of positive words in the present study. Studies like these caused Panksepp (2012) to ask 

for a clearer distinction of different affective processing levels to avoid causal 

misattributions, and the overall results presented here seem to support his view.

There are, however, also some unexpected effects. Both, the present study and its 

predecessor (Briesemeister et al., 2014a) show clearly independent effects of positivity 

and happiness in the neurophysiological data, while on a behavioral level a 

happiness*positivity interaction was observed. The hierarchical emotion model is a 

neurophysiological model of emotion and motivation, which is why precise predictions 

concerning more subtle behavioral effects, especially in the context of visual word 

recognition tests, are outside its scope. Even most word recognition and reading models 

do not consider affective influences, the extended multiple read-out model and the 

neurocognitive poetics models being notable exceptions (MROMe; Kuchinke, 2007; 

Jacobs, 2011; 2014; cf. also Hofmann & Jacobs, 2014). The MROMe predicts that 

affective information facilitates LDRTs at a pre-lexical level (see also Kissler & Herbert, 

2013, for first empirical evidence), although it does not make a distinction between discrete 

emotions and affective dimensions, and therefore cannot account for possible interactions. 
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Moreover, the MROMe is not a neurophysiological model. Neural correlates are 

considered, but the focus is explicitly on processes of visual word recognition. The present 

results suggest that a combination and integration of behavioral and neurophysiological 

data is necessary to fully understand affective processing and visual word recognition 

alike, given that neurophysiologically separated structures can lead to interactive effects 

on the behavioral level. We assume that the different effect structure is caused by different 

time windows underlying behavioral and neurophysiological effects, but future theorizing 

should incorporate both levels of analysis to account for the existing complexities.

Despite their different foci, the MROMe and the hierarchical emotion model agree on 

the importance of the amygdala for affective processing (see also Siegle, Steinhauer, 

Thase, Stenger & Carter, 2002). It is well known that lesions within this structure can 

severely impair implicit affective processing (Anderson & Phelps, 2001), but its functional 

role is still a matter of debate. While the meta-analysis published by Sergerie, Chochol and 

Armony (2008) focuses on the amygdalae's role in affective processing, highlighting its 

sensibility for positive and negative stimuli alike, Pessoa and Adolphs (2010) argue that it 

is not affective content per se but biological significance that engages the amgydalae. In 

line with these hypotheses, previous affective word processing studies have found 

increased amygdala activity for both, negative (e.g. Nakic et al., 2006) and positive words 

(Schlochtermeier et al., 2013). The present data suggest an effect in the opposite 

direction, however, i.e. increased right amygdala activation for lowHap when compared 

with highHap words (see Figure 5.2). Whether this indicates that participants implicitly 

based their lexical decisions on highly emotional connotations of the stimulus material, 

which would make lowHap words unexpected and thus salient (Wright et al., 2001), can 

only be speculated. Given that the amgydala is known to engage in top-down influences to 

modulate (Pessoa & Adolphs, 2010) and enhance the detection of task relevant stimuli 

(Anderson & Phelps, 2001), this could explain why no LDRTs differences were found 

between lowHap and highHap words. Since Panksepp focuses his research on primary 

level-process emotions, he provides no detailed information on the amygdala’s functional 

role. In any case, our finding of increased amygdala activity for lowHap words is not 

predicted by the hierarchical emotion model.

It should also be noted that this work is based on positive word stimuli alone, which is 

a limiting factor in several ways. First of all, the hierarchical emotion model suggests 

altogether seven primary process-level emotions (i.e. the positive emotions PLAY, LUST, 
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CARE, SEEKING and the negative emotions RAGE, PANIC, and FEAR). The present 

results so far relate to the PLAY system alone, but it would be interesting to see whether 

the three-leveled processing hierarchy, which is supposed to equally underlie all seven 

systems, applies for negative emotion words or words related to a different positive 

primary emotional system (e.g. LUST) as well. Such a replication attempt could provide 

evidence for a generalizability of the present findings.

Second and related to the focus on the positive end of the valence scale, it is possible 

that lowHap and neutral words were not perceived as being neutral/lowHap, but as slightly 

negative relative to the positive/highHap words. Recent research shows that even 

everyday “neutral” objects can readily be categorized into positive and negative groups 

when strong affective anchors are absent (Bar & Neta, 2007; Lebrecht, Bar, Barrett & Tarr, 

2012). This suggests that the human brain calculates affective values not only depending 

on the presented stimulus, but also depending on earlier experiences and context (see 

also Barrett & Bar, 2009). The study by Bar & Neta (2007), for example, presented 

subjects with different everyday neutral objects, showing stronger activation within the 

amygdala and precuneus for disliked sharp versus liked curved contours. Knowing that the 

amygdala activation observed for lowHap words in the present study is discussed to be a 

crucial hub within the emotion processing network sensitive to highly affective information 

(Siegle et al. 2002) and knowing that the precuneus activation observed for neutral words 

in the present study has previously been associated with self-referential processing and 

episodic memory (Cavanna & Trimble, 2006, mainly triggered by negative stimuli, Blood, 

Zatorre, Bermudez & Evans, 1999), the focus on positive emotions in the present study 

might have caused neutral/lowHap words to be processed in brain regions associated with 

negative affect. 

Third, Panksepp’s (2012) theory is an emotion theory, not a theory of affective word 

recognition. Word material was used in the present study because several recent studies 

suggest that words are an appropriate material to test complex affective relationships 

(Briesemeister et al., 2011b; 2014a; Silva et al., 2012; Weigand et al., 2013a), but the 

predictions tested here also apply to pictures, sounds or any other emotionally valenced 

stimulus. Keeping these limitations in mind and awaiting further research, we would like to 

propose that these first results provide initial support for Panksepp’s (2012) assumption of 

a dissociable affective processing hierarchy, with happiness words engaging mostly 

secondary process-level networks and positivity words relying on the semantic networks 
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expected within the tertiary process-level. 
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General Discussion
Chapter 06

Since this research project started roughly five years ago, the strategic and theory 

driven investigation of affective word processing has made considerable progress – and 

the present manuscript means to further contribute to this development. Within this last 

half century, the initially dominating view that two affective dimensions, namely emotional 

valence and arousal (Barrett & Bliss-Moreau, 2009; Russell, 2003; 2005; 2009; Wundt, 

1896), can account for the majority of emotion related effects in implicit and explicit word 

processing tasks has been challenged again and again. At least two arguments, both 

based on independent lines of research, can be put forward against the affective 

dimension view: Effects relying on affective dimension manipulations are not very stable, 

and other theoretical conceptions have proven to account for overall more affective word 

processing variance.

I will now discuss both arguments in detail, before I highlight how the present 

manuscript contributes to the present state of research.

Several attempts to replicate the Hofmann et al. (2009) study, which to the best of my 

knowledge was the first to experimentally document that the LDRT effect for emotionally 

negative words critically depends on a words level of affective arousal, with high arousing 

negative words being processed significantly faster than low arousing negative words, 

have failed. The multiple regression analyses published by Larsen et al. (2008) yet support 

the Hofmann et al. (2009) study, reporting several high level valence and arousal 

interactions, but a study published by Estes and Adelman (2008b), which relies on the 

exact same data as Larsen et al. (2008), convincingly argued for a categorical effect of 

valence that is independent of arousal. Kousta et al. (2009) reported no effect of arousal 

when valence was held constant and no emotion related response inhibition at all, which 

they explained with a sampling bias in the Estes and Adelman (2008b) and the Larsen et 

al. (2008) studies, given that both included only few neutral words in their analyses. Citron 

et al. (2014) found faster processing for low arousal positive than for high arousing positive 

words, which is opposed to Bayer et al. (2011), who reported the exact opposite pattern, 

and which is also contradicted by Recio et al. (2014), who reported no arousal effects for 
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positive words at all. Kuperman, Estes, Brysbaert and Warriner (2014), finally, did the 

probably most exhaustive analysis of valence and arousal effects in lexical decision and 

naming tasks to date, found a linear main effect of valence that accounted for about 2% of 

the overall LDT variance and an inhibitory effect of affective arousal. This, again, 

contradicts almost all previous reports (e.g. Bayer et al., 2011; Larsen et al., 2008; Recio 

et al., 2014), given that arousal is normally documented to be a facilitating variable. The 

overall pattern of results when focusing on only two affective dimensions (valence, 

arousal) is thus very inconsistent and therefore not very convincing.

A second strong argument suggesting a limited focus of affective dimensions comes 

from the discrete emotion perspective. To the best of my knowledge, Parrott et al. (2005) 

pioneered in manipulating discrete emotions in affective word recognition research, 

reporting that participants who scored high on a trait anger scale were faster to detect 

anger related words than participants who scored low on a trait anger scale. No such 

effects were reported for sadness related words, which indicates that negative valence 

alone is not sufficient to explain the effect. Armstrong et al.'s (2009) investigation of 

processing differences for high and low contamination phobic participants are 

inconclusive, but a recent study by Silva et al. (2012) clearly documented the linear 

influence of disgust sensitivity on LDRT for disgust related words, by showing that highly 

disgust sensitive subjects needed longer to correctly identify disgust words than to identify 

neutral words while this effect was reversed for disgust insensitive subjects. Moreover, 

these effects were neither explained by subjectively experienced valence or arousal, nor 

by trait empathy used to measure general responsiveness to emotional material.

The initial discrete emotion studies reviewed above relied on behavioral responses 

alone.  More recent work, however, also began to consider neurophysiological data to test 

the emotion specificity, which is central to the discrete emotion view. Ponz et al. (2013a), 

for example, showed that early ERP effects for disgust related words are most likely 

originating in the anterior insula cortex, which is known to be critically involved in the 

experience of disgust (Wicker et al., 2003). Weigand et al. (2013b) used repetitive 

transcranial magnetic stimulation (rTMS) over the right dorsolateral prefrontal cortex to 

inhibit the neural processes underlying an affective working memory task. They found 

increased accuracy for fear related but not anger related words, which can be interpreted 

as first evidence for an emotion specific causal involvement of the right dorsolateral 

prefrontal cortex in affective working memory tasks. Given that subjects rated fear related 
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words as more negative than anger related words in their study, differences in perceived 

negative valence and thus within the affective dimension framework might also account for 

the Weigand et al. (2013b) effects. An additional rTMS study focusing on the specific 

contribution of left versus right dorsolateral prefrontal cortex eliminated this alternative 

explanation, however. Using a comparable stimulus set, Weigand et al. (2013a) showed 

that rTMS stimulation of the left versus right dorsolateral prefrontal cortex affected affective 

working memory performance for fear related words, but neither for neutral nor anger 

related words. This time, fear and anger related words were perceived as equally negative 

and equally arousing, according to the participants ratings.

The last five years have provided quite some evidence in support of the discrete 

emotion view when participants are asked to process affective words. The research 

presented in this manuscript replicated this work and further extends it in critical ways. 

Specifically, from my perspective, at least four major conclusions can be drawn from the 

studies presented in chapters 02 to 05, which I will now discuss in greater detail.

Conclusion 1: Discrete Emotions Affect LDT Variance even 
when Affective Dimensions are Controlled

The experiments done by Weigand et al. (2013a, 2013b) already provided initial 

evidence, and together with the LDT results described in chapter 02 and chapter 03 (see 

also Briesemeister et al., 2012), these studies on discrete emotions in affective word 

processing suggest that manipulations on discrete emotion variables affect different word 

processing variances than manipulations along affective dimensions. Moreover, discrete 

emotion effects while affective dimensions are kept constant can be documented not only 

using manipulations that affect different discrete emotion categories (see chapter 03), but 

also when only a single discrete emotion is manipulated (see chapter 02).

As discussed in detail in chapter 03, words that have strong affective connotations 

related to specific discrete emotions seem to affect the word recognition process in 

emotion specific ways, even when they do not differ in valence and arousal. Disgust 

words, for example, are not only processed slower than neutral words, which has been 

replicated several times by now (Armstrong et al., 2009; Briesemeister et al., 2012; Ponz 

et al., 2013a; Silva et al., 2012) but could also be explained within an affective dimension 

framework, given that neutral words are naturally less negative and less arousing than 
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disgust words. The lexical decision study presented in chapter 02, however, also showed 

that disgust words are processes slower than arousal-controlled fear and anger words. 

This result additionally challenges the approach-avoidance explanation introduced by 

Citron (2011; see also Citron et al., 2013, 2014), assuming that both, disgust and fear 

words relate to avoidance motivation but demonstrably still differ in processing speed.

Assuming that the processing of affective words relies in one way or the other on the 

activation of emotion processing networks, as has been suggested (Barrett et al., 2007; 

Panksepp, 2008) and documented several times (Citron et al., 2014; Nakic et al., 2006; 

Ponz et al., 2013a), it should not be surprising that words related to different discrete 

emotions require different processing times. It is the core assumption of the discrete 

emotion view that different discrete emotions are functionally distinct (Ekman, 1992; 

Panksepp, 1998; Wundt, 1896). It is surprising, however, that a discrete emotion 

manipulation also affects LDRTs when valence and arousal are held constant while the 

manipulation is done within a single discrete emotion category, as described in detail in 

chapter 02. The finding that highHap words are processed faster than lowHap words even 

when they are equally positive and equally arousing can, in my opinion, be interpreted in at 

least two ways:

First, it is possible that discrete emotion norms are better suited than affective 

dimension norms (Eilola & Havelka, 2010; Redondo et al., 2007, Võ et al., 2006, 2009; 

Warriner, Kuperman & Brysbaert, 2013) to capture the variance that is manipulated within 

affective word recognition tasks because the discrete emotion view might be more suitable 

to explain the current effects than the affective dimension view. This is a pretty obvious 

and theoretically fundamental explanation, and although it was considered in chapter 02, it 

is challenged by the alternative second hypothesis, which suggests that discrete emotions 

and affective dimensions are related, but to a certain degree independent conceptions. As 

Wilson-Mendenhall et al. (2013, p. 948) already pointed out, discrete emotions are not 

always prototypical. There is the “pleasant fear of thrill seeking, the pleasant sadness of 

nostalgia, and the unpleasant happiness of unshared success”. Happiness is not always 

perceived positively, and not all positive emotions are labeled “happiness”. The data 

presented in chapters 04 and 05 strongly supports this latter view, as will be discussed in 

more detail in the following “Conclusion 3” paragraph.

In sum, the data presented in this manuscript documents that discrete emotion 

manipulations affect LDRTs and ERRs even when affective dimensions can not be held 
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responsible. This conclusion alone should hopefully trigger further word processing 

research using discrete emotions, even more so when also considering the next 

conclusion.

Conclusion 2: Discrete Emotion Effects are Comparable in 
Different Languages

As already pointed out in the introduction to this thesis, affective word processing is 

investigated all over the world. Valence and arousal effects are well documented for 

German (Hofmann et al., 2009; Kanske & Kotz, 2007; Kissler & Koessler, 2010; Kuchinke 

et al., 2005; Palazova et al., 2011; Recio et al., 2014; Schacht & Sommer, 2009a; 2009b), 

English (Citron, 2011; Holtgraves & Felton, 2011; Kousta et al., 2009; Larsen et al., 2008; 

Scott et al., 2009, 2014;  Siegle et al., 2001; Yap & Seow, 2014), Spanish (Carretié et al., 

2008; Hinojosa et al., 2010), and French languages (Mohr et al., 2005; Naccache et al., 

2005; Stip, Lecours, Chertkow, Elie & O'Connor, 1994), and soon affective norms will be 

available for Polish language as well (Riegel et al., 2014). There is no reason why similarly 

comparable results in different languages should not be expected for the discrete emotion 

view as well.

In fact, again assuming that discrete emotion word processing relies on affective 

networks (Ponz et al., 2013a; Briesemeister et al., 2014b), it is a crucial assumption of 

many discrete emotion theories that discrete emotion systems do not differ across human 

cultures (Ekman & Friesen, 1971) or even mammalian species (Panksepp, 1998). It is thus 

not surprising that discrete emotion effects on affective word recognition have been 

documented in English (Armstrong et al., 2009; Briesemeister et al., 2011b; 2012; Parrott 

et al., 2005), German (Briesemeister et al., 2011a; 2011b; 2014a; 2014b) and French alike 

(Silva et al., 2012; Ponz et al., 2013a). Moreover, the directions of these effects seem to 

be relatively stable across languages. Armstrong et al. (2009) were the first to indicate that 

disgust words seem to require more processing time than neutral words, using an English 

stimulus set. This effect was then replicated by Briesemeister et al. (2011b as described in 

chapter 03) in German and by a group of French scientists, who not only replicated the 

effect but also highlighted its underlying neurophysiological processes (Ponz et al., 2013a) 

and its relation to personal traits such as disgust sensitivity and empathy (Silva et al., 

2012). While enhanced processing for positive words is the best replicated effect in the 
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affective dimension view on word recognition tasks (see chapter 01), generally inhibitory 

but sensitivity dependent processing of disgust words is the best replicated effect within 

the discrete emotion view.

Language comparisons for discrete emotions other than disgust are done less 

frequently, but are for example documented in chapter 03. Here, a lexical decision 

experiment with German words revealed slower and less accurate processing of disgust 

words when compared with fear words, which are processed less accurate than anger 

related words. A comparable response pattern was also observed in a multiple regression 

analysis on English data from the ELP (Balota et al., 2007). Happiness words, which are 

the primary focus of the present research (chapters 02, 04 and 05), are also known to be 

processed faster than neutral words in both, German (Briesemeister et al., 2011a; 2014a; 

2014b) and English (Briesemeister et al., 2011b; Parrott et a., 2005). Taken together, these 

data indicate that words related to specific discrete emotions indeed produce comparable 

effects irrespective of the language at hand – even though the data basis is, of course, 

much smaller than for the affective dimension perspective.

Conclusion 3: Discrete Emotions and Affective Dimensions 
are Complementary

The probably most surprising and most important result within this thesis is based on 

the data described in chapters 04 and 05. Traditionally, the discrete emotion perspective 

and the affective dimension perspective were seen as opposing views on the same 

research subject, (human) emotions that is. Several studies provided evidence for or 

against the one or the other (Reisenzein, 1994; Vytal & Hamann, 2010; Wilson-

Mendenhall et al., 2013), leading to long discussions about the appropriateness of both 

theoretical positions (e.g. Barrett, 2006; Barrett et al., 2007; Izard, 2007; Ortony & Turner, 

1990; Panksepp, 2007a; Scarantino & Griffiths, 2011).

The basic problem with most studies that contrast the two perspectives probably is that 

experiments like for example those described in chapter 02 and chapter 03 were designed 

to actually select a “winner”. Experimental designs are chosen to test the discrete emotion 

perspective versus the affective dimension perspective, given that they were and still are 

considered as opposing frameworks. Maybe, a more nuanced and more data driven 

theorizing as well as the acceptance of convincing evidence of both sides (e.g. Satpute et 

102



al., 2013; Wilson-Mendenhall et al., 2013) will lead to the idea that both perspectives could 

actually be combined within a single emotion theory (e.g. Panksepp, 2012; Russell, 2005). 

The use of neurophysiological variables and methods, which has become standard in 

emotion research over the years, might also have contributed to this theoretical evolution. 

Wilson-Mendenhall et al. (2013), for example, found convincing evidence that activity 

within the orbitofrontal cortex correlated with subjective valence judgements independent 

of whether the stimulus valence was manipulated within a single or between different 

discrete emotion categories, while at the same time the study from Satpute et al. (2013), 

coming at least in parts from the same group of researchers, presented convincing 

evidence that discrete emotion specific brain structures found in animal research 

(Panksepp, 1998; 2012) show comparably emotion specific effects in humans.

To the best of my knowledge, the experiments described in detail in chapters 04 and 

05 are the very first affective word processing experiments that manipulated discrete 

emotions and affective dimensions at the same time. Based on the previous studies which 

reported that discrete emotion manipulations affect LDRTs and ERRs even when variables 

like valence and arousal are held constant (see chapters 02 and 03, but also Weigand et 

al., 2013a; 2013b), the finding of facilitated processing for happiness words should not be 

surprising. It has not been shown until now, however, that affective dimensions like 

positivity (Briesemeister et al., 2012) also affect word processing when discrete emotion 

variables are controlled, which suggests that discrete emotion and affective dimension 

variables describe possibly overlapping but also largely independent variances. Discrete 

emotions and affective dimensions are hence complementary, not opposing.

Further support for this interpretation comes from the neurophysiological data 

presented in chapters 04 and 05, where again no interactions between happiness and 

positivity were found. The early N1 effect evident for highHap versus lowHap words, for 

example, precedes any positivity related effect. Temporo-spatially, it also strongly 

resembles the N1 effect found by Fritsch & Kuchinke (2013), who used an affective 

conditioning paradigm where nonwords were paired with emotionally arousing pictures to 

investigate the functional meaning of affective word recognition ERP effects. These results 

were interpreted as evidence that discrete emotion effects like those for happiness words 

rely on affective conditioning. Effects for affective dimensions such as positivity, in 

contrast, modulated the N400 and the LPC, two components that are traditionally 

associated with higher order, often semantic processing (Foti et al., 2009; Kanske & Kotz, 
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2007; Kutas & Federmeier, 2011). This is well in line with Panksepps (2012) hierarchical 

theory, which is why further neuroanatomical predictions were tested – and confirmed – in 

the study described in chapter 05. Here, the happiness manipulation affected activity 

within the limbic system, namely the right amygdala, which according to Panksepp (1998) 

is a critical hub within the secondary process-level. Positivity words, in contrast, mainly 

modulate activity within the inferior frontal gyri, which are part of the tertiary process-level. 

Based on these data, the hierarchical model proposed by Panksepp (1998; 2012) seems 

to be the best candidate to explain the documented LDT effects, which indicates that the 

model also applies to affective word processing.

Having introduced the Panksepp (2012) model as a possible new point of reference for 

affective word processing and having shown empirically that the model can explain 

variance that is assumed to be error variance otherwise, the next step would be to look 

into the literature and search for further already existing but independent evidence for 

specific model predictions. Westbury, Keith, Briesemeister, Hofmann & Jacobs (in press), 

for example, showed that the co-occurence between a given word and words used as 

discrete emotion labels in emotion theories can be used to predict human valence 

judgements. This means that a word is perceived as more positive the more often it co-

occurs with the word “PLAY”, for example. This finding nicely illustrates the two principles 

tested in the experiments described in chapter 04 and 05, namely affective conditioning as 

underlying the secondary process-level and evaluative judgements as underlying the 

tertiary process-level. Westbury et al. (in press) demonstrated that affective word 

processing effects, which normally rely on human affect rating data (Briesemeister et al.; 

2011a; 2012; Eilola & Havelka, 2010; Redondo et al., 2007, Stevensen et al., 2007a; Võ et 

al., 2006, 2009; Warriner, Kuperman & Brysbaert, 2013), can be simulated using not 

human ratings but co-occurence similarities to words that label discrete emotion 

categories. Given that co-occurences are a measure for association strength between 

words and thus – in a way – one possible operationalization of affective conditioning, this 

result is well in line with the secondary process-level in Panksepps (2012) hierarchical 

model. Moreover, the idea that human valence and arousal judgements (i.e. affective 

dimensions) can be predicted based on the words co-occurence to discrete emotion labels 

strongly resembles the tertiary process-level function, where secondary process-level 

emotions are being clustered into broader categories. This is a line of research where I 

expect rapid progress within the next couple of years, given that a) affective conditioning 
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has been identified as a core principle underlying affective word processing effects (Barrett 

et al., 2007; Fritsch & Kuchinke, 2013), b) many language related effects rely on co-

occurences (Hofmann & Jacobs, 2014; Westbury et al., 2013), and c) conditioned 

responses can be operationalized in many different ways. Another example comes from 

Kuchinke, Krause, Fritsch & Briesemeister (2014), who showed that early ERP effects for 

affective words depend on the subjects familiarity with the word font. Words written in 

novel, unfamiliar fonts, that is word forms that have not been associated with emotionally 

arousing context before and thus might require additional cognitive effort to be 

semantically decoded, showed no early ERP effects on the P1 or N1 components, but a 

significant effect on the late positive potential (LPP). Familiar word forms, in contrast, 

additionally affected the P1 component, which might indicate that later semantically driven 

emotion effects on the tertiary process-level do not depend on familiarity and learning as 

strongly as the secondary process-level does. This, again, is predicted by Panksepp's 

hierarchical model (1998; 2012).

Further support can be expected when focusing on the diversity of emotional systems 

implemented by Panksepp (2012). The data presented within this manuscript mostly relies 

on positive happiness-related words and thus the PLAY system. The model suggests, 

however, the existence of altogether seven emotion systems, namely PLAY, LUST, CARE, 

SEEKING, RAGE, FEAR and PANIC. All of these emotion systems should affect affective 

word processing in different ways.

The study described in chapter 03 already provides initial evidence that anger words, 

which should be related to the RAGE system, are processed differently than fear words, 

even though a more detailed focus on the neurophysiological processes would be 

necessary to make more reliable statement. The same holds true for sadness related 

words (see chapter 03 and Briesemeister et al., 2012), which can probably be assigned to 

the PANIC system. LUST, CARE and SEEKING, however, have bot been implemented in 

any of the experiments within this thesis but are predicted to affect word processing within 

the hierarchical emotion framework presented here. This prediction is supported in a 

recent study by Stevenson et al. (2011), which suggested that an emotion category that 

considers sexually connoted words (i.e. words related to the LUST system) would help to 

explain otherwise unaccounted variance. In a factor analysis on different human word 

rating data, four major underlying factors could be identified. These were labeled “happy”, 

“disgusting”, “basic aversive” and “sexual”, the latter factor being totally independent of all 
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other discrete emotion or affective dimension variables at hand. Based on their analyses, 

Stevenson et al. (2011, p. 59) conclude that “the addition of sexually specific emotions to 

basic emotion theories is justified and needed to account fully for emotional responses”. 

Moreover, valence and arousal ratings were not predictive of any of the four factors, 

supporting the model prediction that tertiary level-process affective dimensions rely upon 

secondary level-process conditioned discrete emotions (Westbury et al., in press), while 

inferences in the reverse direction are not informative. The Stevenson et al. (2011) data 

directly supports the conclusion that discrete emotions and affective dimensions are 

complementary and best combined in a temporo-spatially hierarchical model as suggested 

by Panksepp (2012).

The only finding presented so far that seems to be inconsistent with Panksepp's (2012) 

hierarchical model is the now often replicated inhibitory effect for disgust related words 

(chapter 03, Briesemeister et al., 2012; Briesemeister, Montant, Ziegler, Braun & Jacobs, 

2013; Ponz et al., 2013a; Silva et al., 2012), given that disgust is not considered in 

Panksepps (2012) hierarchical model and given that disgust is not related to any of the 

seven emotion systems described in Panksepp (1998). In fact, there is a long debate on 

whether or not disgust should be considered one of the primary process-level emotional 

systems. Most of the criteria that Panksepp uses to define a primary process-level emotion 

system also apply to disgust (Toronchuk & Ellis, 2007a), the neuronal structures underlying 

disgust, namely the anterior insula cortices, have been identified (Wicker et al., 2003) and 

it is very likely that they are causally involvement in disgust processing (e.g. Ponz et al., 

2013b). Toronchuk and Ellis (2007a; 2007b) thus initially suggested that disgust should be 

considered the eighth primary emotion system within the hierarchical model, which was 

disagreed by Panksepp (2007b). In his words, “disgust is clearly a basic 

sensory/interoceptive affect […], and a socially constructed moral emotion […], but 

perhaps it is a category error to classify disgust as a basic emotion” (Panksepp, 2007b, p. 

1819, highlights as in the original reference). In their response, Toronchuk and Ellis 

(2007b, p. 1829) clarify that their proposal of DISGUST should not be misunderstood as a 

“distaste system”, but as a multisensory antagonist to the unspecific SEEKING system 

proposed by Panksepp (1998). This nicely mirrors the functional interdependence of the 

PANIC/CARE systems as proposed by Panksepp (1998) and resembles the functional 

architecture proposed within the Zurich model of social motivation by Norbert Bischof 

(1989, see also Schönbrodt, Unkelbach & Spinathm 2009 for a short English introduction). 
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Here, tedium of a familiar social object is functionally contrasted with curiosity for new 

social objects, which strongly resembles the functional architecture proposed to underlie 

the DISGUST/SEEKING dichotomy as suggested by Toronchuk & Ellis (2007a; 2007b).

In sum, the application of the hierarchical emotion model (Panksepp, 1998; 2012) 

seems to be well suited to explain why discrete emotions and affective dimensions 

independently affect affective word processing, and it additionally predicts previously 

unexpected effects for new emotion categories (e.g. LUST, see Stevenson et al., 2011). 

More research is needed to  clarify the functional role of disgust within the hierarchical 

emotion model framework, but I am confident that future research using the affective word 

processing paradigm will further contribute to this discussion, which brings me to the final 

conclusion of this thesis.

Conclusion 4: Affective Word Recognition is Suited to Test 
Theories of Emotion

Within this manuscript, I initially introduced affective word processing as a branch of 

science that searched for emotion related effects rather than focusing on testable emotion 

theories (see chapter 01). It seemed like these early days were focused more on 

explaining variance within standard reading paradigms rather than aiming at a deeper 

understanding of how affective networks and reading networks might interact. Since these 

initial studies, much has changed, however.

The present manuscript is part of a richer literature which uses affective word 

processing paradigms such as the LDT to test specific hypotheses derived from published 

theories of emotion. It is therefore following the tradition of Larsen et al. (2008) and 

Hofmann et al. (2009), who documented that affective valence should be complemented 

by emotional arousal based on dimensional theories like the Core Affect model (Russell, 

2003; 2005). Following the evaluative space model (Cacioppo & Berntson, 1994; Norman 

et al., 2011), lexical decision data from Briesemeister et al. (2012) suggests that positivity 

and negativity are not the endpoints of a bipolar valence scale but independent 

dimensions that under certain circumstances affect word recognition in different ways. 

Citron (2011) introduced the approach and avoidance framework from Davidson (1998) 

into the affective word recognition literature and showed that stimulus conditions with 

conflicting approach and avoidance motivations, that is high arousing positive and low 
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arousing negative words, are indeed processed slower than conditions with congruent 

motivational tendencies (Citron et al., 2013; 2014).

The present work, finally, demonstrates that the discrete emotion perspective can 

additionally add to the affective word processing literature (chapters 02 and 03) and that 

the hierarchical emotion model proposed by Panksepp (1998; 2012) can predict and 

explain independent effects for discrete emotions and affective dimensions that are not 

being accounted for by any other emotion theory I know. Together with its predecessors, 

the present work thus demonstrates that affective word processing is suited to test 

between different theories of emotion and establishes the LDT as a standard paradigm in 

emotion research (e.g. Briesemeister et al., 2011a; 2011b; 2012; 2014a; 2014b; Citron, 

2011; Citron et al., 2013; 2014). Even though the exact relationship between language and 

emotion remains a matter of debate, with contextual learning (Barrett et al., 2007, 

supported by Fritsch & Kuchinke, 2013; Kuchinke et al., 2014; Silva et al., 2012) and 

neural re-use (Anderson et al., 2010, supported by Ponz et al., 2013a) being discussed as 

possible explanations, future emotion research will likely reveal further information.

Initial evidence already points at a causal involvement of emotion structures in 

affective word processing (Ponz et al., 2013b).

Limitations and Future Directions

I will conclude this manuscript with a discussion of some limitations, as well as with 

some perspectives and suggestions for future research that should extend the present 

work and challenge some of my conclusions. First of all, the hypothesis that affective 

processing relies on a three leveled hierarchy, which has been demonstrated with positive, 

happiness-related words in chapters 04 and 05, should of course be replicated with 

positive words related to different primary process-level emotions, such as LUST 

(Stevenson et al., 2011), and with negative words. As already mentioned in chapter 05, the 

basic hierarchical structure with a primary, a secondary and a tertiary process-level should 

be observable irrespective of the emotion category that is being tested – and also 

independently of the affective stimulus material at hand, that is. Importantly, these studies 

would require the application of EEG or even fMRI measurements to ensure that LDRT 

differences are related to the respective processing level, based on the predictions in 

Panksepp (1998).
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A more complex analysis of the EEG and fMRI data presented in chapters 04 and 05 

would additionally allow to investigate the functional connections and interactions 

suggested by the hierarchical emotion model. Dynamic causal modeling as implemented 

in SPM, for example, would allow to test for correlations between secondary and tertiary 

process-level structures and therefore contribute to the functional understanding. These 

analyses, in fact, would already be possible based on the existing data and might help to 

identify the language-emotion link proposed by the Panksepp-Jakobson hypothesis 

(Jacobs et al., 2014).

Future studies should, secondly, of course be based on reliable stimulus norms. While 

norms for valence and arousal are available in numerous languages by now (Eilola & 

Havelka, 2010; Redondo et al., 2007, Riegel et al., 2014; Võ et al., 2006, 2009; Warriner et 

al., 2013), providing good tools for this line of research, norms for discrete emotions 

(Briesemeister et al., 2011a; Stevenson et al., 2007a) are so far published only for German 

and English. Although being confident that this will change in the near future, considering 

that discrete emotion effects are also published with French words, for example (Ponz et 

al., 2013a; Silva et al., 2012), and knowing that a Polish version of the DENN-BAWL is 

already in preparation (Wierzba et al., in prep.), I would also suggest to consider norm lists 

that are based on the seven primary process-level emotions PLAY, CARE, LUST, 

SEEKING, RAGE, FEAR and PANIC (Panksepp, 1998). If the affective word processing 

literature will continue to test and confirm the hypotheses from the hierarchical emotion 

model, more reliable stimulus material well be required than is currently available – even 

though co-occurence models might help to objectively quantify the affective value by then 

(Thagard & Schröder, 2014) without being dependent on subjective human ratings 

(Westbury et al., in press).

This brings me to my final outlook, namely the role of co-occurences in affective word 

processing. As already indicated above, co-occurence statistics are a measure of how 

often a given word occurs in the context of a second word, which is interpreted as an index 

for the semantic association of the two (Hofmann & Jacobs, 2014). Assuming that a single 

word like “joy” or “disgust” can be used as a prototype, as a label for an emotionally and 

thus functionally distinct context (Thagard & Schröder, 2014), then the co-occurence 

distance from that word to a theoretically grounded emotion word should indicate whether 

this word is emotionally charged or not. As demonstrated by Westbury et al. (in press), co-

occurence measures indeed seem to predict human affective rating data and therefore 
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might also account for affective word processing effects. Based on the assumptions of the 

hierarchical emotion model, affective co-occurence statistics could be interpreted as an 

index for the secondary process-level association strength between a given word and a 

primary process-level emotion system, which means that co-occurences to discrete 

emotion words, especially to those that are prototypical for the seven emotions systems, 

should predict early ERP effects and activation within upper limbic secondary process-

level structures (Panksepp, 1998), such as the amygdala (see chapter 05). Moreover, 

using co-occurence based affective statistics to generate broader valence and arousal 

dimensions, as also demonstrated by Westbury et al. (in press), should affect later lexico-

semantic ERP components such as the N400 and frontal and prefrontal brain structures 

such as the inferior frontal cortex (see chapter 06, but also Hofmann & Jacobs, 2014).
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