
Appendix 4. Rayleigh stability criteria 
 

Brief historical overview of double-diffusive convection (DDC) 

 

Convective flows are driven by density variations within fluid. DDC is mentioned when the 

density variations are caused by two factors which have different rates of diffusion. The 

archetypal example is heat and dissolved salt in water often referred to as thermohaline 

convection.  

First expererimental investigations on convective currents and stability were carried out in 

viscous liquids by Jevons (1857), Rayleigh (1883) and Ekman (1906) over the period 1856-

1906. These pioneers of convection motions generally investigated the stability of stratified 

fluid layers with density either increasing or decreasing by means of different observational 

scenarios.  

As shown in the schematic picture in Fig.1, we can distinguish two main groups of 

instability:  

 A diffusive regime favoring oscillatory instability (Fig.1A), where the destabilizing 

potential results from the component with larger diffusivity (i.e., colder at the top, warmer 

at the bottom) while the concentration gradient is stabilizing (i.e., fresher at the top, saltier 

at the bottom). 

 A finger regime favoring monotonic instability (Fig.1B), where the driving destabilizing 

forces are caused by the more slowly diffusing component (i.e., saltier at the top, fresher at 

the bottom) while the temperature gradient is stable (warmer at the top, colder at the 

bottom). 

  

 
Fig.1:Temperature (T) and concentration (C) profile for two different DDC regimes: (A) diffusive regime, 

(B) finger regime. From Nield and Bejan 1999 
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From these stability studies, in 1916 Lord Rayleigh provided a criterion to predict the 

occurrence of instability in an adverse linear temperature gradient in a fluid layer (Rayleigh 

1916). Such condition is described by a dimensionless number named in his honor, the 

Rayleigh number. 

Nevertheless, DDC was “rediscovered” and understood only in 1960 as an 

oceanographic curiosity by Stommel (1956) and Stern (1960). Stern studied the long fingers 

of rising and sinking water which are produced when hot salty water lies over cold fresh 

water. A blob of hot salty water which finds itself surrounded by cold water rapidly loses its 

heat while retaining its salt due to the very different rates of diffusion of heat and salt (the first 

diffusing much more faster than the latter). Consequently, the salty blob loses part of its heat 

while it keeps more or less the same salt concentration hence becoming denser than the 

surrounding fluid. This tends to make the blob sink further, drawing down more hot salty 

water from above which gives rise to sinking fingers of salty fluid. At the same time, the 

surrounding fluid gains heat from these descending fingers and in turn it becomes lighter and 

moves upward. Eventually, the region becomes filled with fingers of salty and fresh water 

protruding in alternating downwards and upwards directions. 

 In the late 1960s, DDC has been demonstrated to be also possible in porous media (Bird et 

al. 1958; Nield 1968; Nield 1991). Since then a multitude of stability analysis based on 

laboratory experiments were carried out on saturated porous media with vertical gradients of 

temperature and salinity (Trevisan and Bejan 1987; Qin et al. 1995; Cooper et al. 1997; Tan et 

al. 2003; Kubitschek and Weidman 2003). Owing to the presence of the solid matrix, the 

theory of convective motions in porous media introduces essential differences from the one in 

viscous fluids. For example, according to the term of heat accumulation in equation (2.55), 

the contribution due to thermal absorption by the solid grains is taken into account, a feature 

totally absent in thermohaline convection in viscous fluids. The solid grains play a primary 

role on the dynamic of mass transport as already seen in the paragraph 2.5 dedicated to 

hydrodynamic dispersion. In addition, from equation (2.49) it results that advection is 

governed by Darcy’s law rather than by the Navier-Stokes equations applicable for viscous 

flow. Darcy’s law introduces a new fundamental parameter, the hydraulic permeability, 

characterizing unequivocally the porous media in which the flow takes place and controls its 

velocity. The equation of motion expressed in the form of (2.50) shows further that the flow is 

caused by two driving force: one resulting from piezometric head differences and the other 

resulting form a buoyancy force.  
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Convection stability 

 

Here the convection stability criteria is derived for a porous media in diffusive regime, i.e. 

where heat and salt are respectively the destabilizing and stabilizing buoyancy forces, such as 

in the case of a infinite horizontal porous layer heated from below. This problem, also known 

as the Horton-Rogers-Lapwood problem (Horton and Rogers 1945), was studied in its double-

diffusive generalization by Nield (Nield 1968). Since there are two sources of buoyancy (heat 

and dissolved salt), there are two Rayleigh numbers that characterize the convection 

processes: the thermal Rayleigh number Ra  and the solutal Rayleigh number DRa . From a 

dimensional analysis of the governing balance equations in paragraph 2.5 the following 

definition of Rayleigh number for solutes and thermal energy are given (Nield and Bejan 

1999): 
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where is the hydraulic conductivity as defined in Eq.(2.51) K α  introduces the effect of a 

density change due to the concentration the solute at temperature and pressure β is the 

coefficient of thermal expansion at constant pressure and concentration, λ is the coefficient of 

thermal conductivity,  is the concentration variation, C∆ T∆  is the temperature variation, d is 

a characteristic length of the porous media (e.g., the layer thickness), is the coefficient of 

molecular diffusion. 

D

 

The solutal and thermal Rayleigh numbers are related by: 

 

 DRa N Le Ra= ⋅ ⋅  (4.3) 

where the dimensionless numbers in connection with heat and mass transport are: 
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N is called the buoyancy ratio (or Turner number) and Le is the Lewis number. 

The Rayleigh numbers as expressed in equation (4.1) and (4.2) are the ratio of driving forces 

of buoyancy and gravitation to the dissipative mechanisms of viscous drag and heat 

conduction ( Ra ), and hydrodynamic dispersion ( DRa ).  

 In the diffusive regime considered here, Ra  promotes convection while DRa  inhibits 

it. If the top and bottom surface of the porous layer are impermeable, isothermal and 

isosolutal (C  constant) boundary conditions, a criteria for the onset of  DDC is summarized 

as follows (Nield 1991, Diersch and Kolditz 2002 and Trevisan and Bejan 1987): 

 

 The monotonic instability (or stationary convection) boundary is a straight line defined 

by 24D cRa Ra Ra π+ = = , where cRa is the critical Rayleigh number.  

 The region delimited by 24DRa Ra π+ < is a stable regime characterized by pure 

conduction and no convection. The portion of this region for which 

, where 24 (1 )DRa Ra πΦ + > +Φ
Le
R

Φ ≡ , corresponds to oscillatory instability. The 

boundary lines delimiting stationary convection and oscillatory convection intersects at 
24

1
Ra π Φ

=
Φ −

 , 
24
1DRa π

=
Φ −

. In Fig.2 is illustrated the case where 2Φ =  

 In a range between  steady state convective cells develop as two-

dimensional rolls rotating in clockwise or counter-clockwise direction. A second 

critical Rayleigh number is identified as an upper limit. 

24 240-300Raπ < <

2 240-300cRa =

 For Ra> cRa 2 the convection regime is unstable and characterized by a transition to an 

oscillatory and transient convection behaviour.  
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Fig.2 Stability and instability domains for DDC in a horizontal porous layer with identical set of boundary 

conditions for . Modified from Nield and Bejan 1999 2Φ =

 

 As mentioned by Nield and Bejan (1999), when two settings of boundary conditions are 

identical thermal and solutal effects are additive otherwise the two effects won’t be additive. 

In the latter, “the coupling between them will be less than perfect and one can expect that the 

monotonic instability boundary will be concave toward the origin”. Critical values of cRa for  

various combinations of boundary conditions are given in Table.1. 

 
 
 
 
 
 
 
 
 
 
 
 

 

Boundary Key: K = ∞ impermeable;  K = 0 constant pressure 
L = ∞ constant temperature; L = 0 constant heat flux 

Subscript: l = lower; u = upper 
Kl Ku Ll Lu cRa  

∞ ∞ ∞ ∞ 24 39.5π  
∞ ∞ 0 0 27.1 
∞ ∞ 0 0 12 
∞ 0 ∞ ∞ 27.1 
∞ 0 0 ∞ 17.65 
∞ 0 ∞ 0 2 9.9π  
∞ 0 0 0 3 
0 0 ∞ ∞ 12 
0 0 ∞ 0 3 
0 0 0 0 0 

Table 1 Values of the critical Rayleigh number cRa for different set of boundary conditions from Nield 1991 
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