Appendix 2. Derivation of the coefficients of thermal
expansion and compressibility for use in FEFLOW 5°
(Magri 2004)

In this appendix the coefficients of thermal expansion and compressibility appearing in the
equation of state for the fluid density (Eq. (1.40 Appendix 1) will be derived for a wide range
of pressure and temperature Pg,, < P <100 MPaand 0<T <350°C.

This is of big use for modelling heat transfer in geothermal reservoir such as the NEGB where
high temperature and pressure are involved in the simulations. Indeed in thermohaline
problems, the fluid density p' varies with pressure p, temperature T and concentration of

various components C°® (where C° stands for the C®*’s of all components present in the fluid)

according to relations called equations of state:

pf :pf(T’plCe) (21)
From Eq.(2.1) it follows that:
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with:
S coefficient of thermal expansion at constant pressure and concentration,

y . coefficient of compressibility of the fluid at constant temperature and concentration,

a®: introduces the effect of a density change due to the concentration of a e-component at
constant temperature and pressure.

If, in certain ranges of p, T and C, the coefficients B, y and «° are constants or can be

approximated as such for a given fluid, the equation of state (Eq.1) takes on the specific form

p'=pg exp| =BT =To)+y(p-po)+ . a(C°-Cy) |

n - € e e 2.6
< o (1-BT -T)+7(p-p)+ T & (C*-C) 20
with
- 1 op'
F= Py T | 2.7)
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= Lo
/Oof oc* T.p (2:9)

where p' = p/ when T =T,,p=p, and C*=C,° that is when T, p and C° are respectively
equal to the reference temperature Ty, reference pressure po and reference concentration C,°.

Eq.(2.6) states that the density p' can be approximated by a linear form.

In FEFLOW® 5 the following EOS for fluid density is implemented:

(24

c.—c,© ‘Co)] (2.10)

S

pf ::00f {1_5(1— —To)+

with ,E defined in Eq.(2.7) and a, defined in Eq.(2.9), is normalized by the saturation

concentration of the solute at saturation, Cs.
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It is important to notice that the EOS for the fluid density coded in the present version
of FEFLOW® 5 (Eq.10) is valid only in a range of 0-100°C. Moreover it does not take in
account the coefficient of compressibility ; and only one component can be considered in
the effect of a density change due to its concentration. The following empirical relationship
is given for a

_ f _ f
a= p (Cs)f pO

P4 (2.11)

While the above linear approximation for a is normally sufficient for the most practical
needs, wide ranges of pressure and temperature require variable thermal fluid expansion £
Eq.(2.7) and fluid compressibility 7 Eq.(2.8) within the state equation of density Eq.(2.10).

Figure 1 shows the well-known pressure-temperature diagram of water. The phase of
interest is the liquid phase in a range of 0-350 °C for the temperature and less or equal than
100 Mpa for the pressure. Therefore the area of study in the pressure-temperature diagram is

region 1, bounded by p,, < p<100MPa and 0<T <350°C, where pg, is the saturation

pressure of water.
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Fig 1. Pressure-temperature diagram of water. Our domain of interest is region 1, which boundaries are
p, <p<100MPaand 0<T <350°C
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The first step for calculating the coefficients of thermal expansion and compressibility is to
derive a polynomial fitting which accurately reproduces the fresh water density as a function
of pressure and temperature. For this purpose, the industrial standard 1APWS-IF97 data
(Bernhard Spang 1997; Wagner 2000) have been fitted by use of Surfer 8°.

The following expression provides a good approximation with an accuracy of 0.5% for p'

in region 1 (figure 1).

p"(T,p)=a(p)+b(p)T +c(p)T* +d(p)T°*+e(p)T*+ f(P)T*+g(p)T® in [kg/m’ ]

0<T <350 and pg, < p<100
where

a(p)=a,+a,p+a,p’ (2.12)
b(p) =b, +b,p+b,p’

g(p) =g, +9,p+09,p°

with temperature T in °C and the pressure p in kPa. The coefficients of the derived

polynomial fitting are:

ao |9.99792877961606E+02 do [4.60380647957350E-05 Qo [-7.39221950969522E-13
ar 5.07605113140940E-04 d; |-5.61299059722121E-10 0: | 1.42790422913922E-17
a, |-5.28425478164183E-10 d, [1.80924436489400E-15 g, |-7.13130230531541E-23
b, | 5.13864847162196E-02 g |[-2.26651454175013E-07
b, |-3.61991396354483E-06 e; |3.36874416675978E-12
b, | 7.97204102509724E-12 e; [-1.30352149261326E-17
Co |-7.53557031774437E-03 fo |6.14889851856743E-10
C1 6.32712093275576E-08 f,  [-1.06165223196756E-14
c, |-1.66203631393248E-13 f, |4.75014903737416E-20

Table 2-1. Coefficients of the polynomial surface fitting of freshwater density ' (p,T) inregion 1 as expressed

in Eq.(6)

The coefficients have been derived for freshwater conditions, so the surface given by
Eq.(2.12) is related to a reference concentration Cy=0. Fig.2 illustrates the fresh water

density p as a function of pressure and temperature in region 1.
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Pressure kPa

Temperature °C

Figure 2 Fresh water density p' as a function of pressure and temperature in region 1. For pictorial clarity, p" is
The reference fluid density p, can be derived by introducing in Eq.(2.12) the reference

temperature T and the reference pressure po leading to:

set to zero outside region 1.

a(po)|, +b(Poll, To+C(Po)le, To” +d (po)l, To’ +e(po)l, To'

(To,Co> Po)

f
0

yo)

(2.13)

+f(po)

¢ To + 9Pl T2’

0 °C as the reference

For instance, taking the atmospheric pressure (po=100 kPa) and T,

pressure and temperature respectively, from Eq.(2.13) and Eq.(2.12) it follows:

(2.14)

998.8396 [g/l]

2
8y + 8,0, + 8,0, =

a(po) =

(To, Co» Po)

f
0

Yo,

The goal is to find the thermally variable fluid density #(p,T) and the variable fluid

compressibility 7 (p,T) of the fluid density function
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p =p |1+ 7(T,p) (p-p)— B(T.p) (T-T,) (2.15)

variable expansion variable expansion

in order to implement them in FEFLOW® 5. No effects from concentration of a component
are taken in account in the fluid density since these are already included in FEFLOW as
shown in Eq.(2.10)

Let’s consider a Taylor series expansion for the fluid density o' (T, p)around To and pg

where a 6" order approximation is used for the temperature T and a 2" order approximation

is used for the pressure dependence, viz.,
1
p*(T,p):pf(To,po)+(pf)<1'°)\ ,pO(T—To>+5(pf)‘2'°’\ L (T=To)
ST -T (o) ] =T (e (T -Ty

1
S0 (=T +(p- )| (0] + (pf Y (T -T+

1 f\(2,) 1,3) 3 1 f\(4,1) 4
S (T=To) 42 (p) o T-T 452N =T+ (544

1 f(51) 5 f\(6,1) 6 2 1 £1(0,2)
5P, T-To) +5(p) [ =T |+ (P =R S ()] +

1 1 1
SO T =T+ (e (T =Ty’ +E(pf)<3'2>\T (T-To)’+

1

1
- f\(4,2) _ 4 £1(5,2) _ 5
(P2 | (T=To)' + o ()] (T-To)+

(6,2) T \6
- i 7T

1440

where

_d"p'(T.p)
T OT'op! (2.17)

Ty Po

(p")")

By utilizing Eq.(2.12), the above derivatives (EQ.(2.17)) can be calculated at po and Ty
leading to the following equation:
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P (T,p)=a,+ pyd, + p,ca, + Ty (b, + by + Py°h,) + T,2(C, + PoC, + Py°C,) + T3 (d, + pod, + p,od,) + pof
T, (B + Poy + Py 8y) + T (o + po fy + Po” ) + T,2(9p + Po0; + Py 0,) + }
(T -To)*(Go + PoGy + P’ Ga) + (T =To)* (fo + Py fy+ Ps” f, + 6Ty (Gp + Doy + Py’0,) ) +
(T-To)" (& + Do’y + Py €, + 5Ty (o + Py fy + Py £,) +15T7(Gy + PoGy + Po°0,) ) +
(T -To)° (dg + Pod; + Py, + 4T (€ + Py + Py 8,) + 10T (f + Py fy + Py° F,) + 20T, (0, + PoGy + Po°G,) ) +
(T-T,)° (c0 + PoC, + PyC, + 3Ty (dy + pd, + py°d,) +6T,7 (6, + Po&, + P o6y) +10T3(f, + p, f, + P2 f,) +
15T,*(go + Pols + Py°0,) ) +
(T -TO)(b0 + oy + o0, + 2T, (Cy + PoCy + Py C,) +3T,7(dy + pod, + pyod,) + 4T, (6, + Pty + Po€,) +
BT," (fo+ o fy + Po” F,) + 6T, (g + Poly + P°9,)) +
(p-Po) (2, + T, +T°C, + T°d, + Ty'e, + T, £, + 100, + (T -T,)°0, + (T - T,)*(f, + 6T,0,) +
(T-T,)"(e, +5T,f, +15T,%g,) + (T - T,)°(d, + 4T,e, +10T,* f, + 20T,°g,) +
(T -T,)°(c, +3T,d, + 6T,%e, +10T,* f, + 15T, *g,) +
(T -Ty)(b, +2T,c, +3T,’d, + 4T %, + 5T, f, + 6T,°g,) ) +
(p- po)[a1 +2pga, + Ty (b, +2pb,) + T2(C, +2p,C,) + T,2(d, + 2pyd,) + Ty (6, + 2pye,) +
T (f,+2p, f,) + 1,29, +2Po9,) + (T - To)°(9, +2py0,) + (T -T)° (£, +2p, f, + 6T, (9, +2p,9,) ) +
(T -T,)" (e + 2pye, + 5T,(F, + 2, ,) +15T,2(g, + 2p,0,)) + (2.18)
(T -To)°(dy +2pod, + 4T, (e, +2pge,) + 10T, (f, + 2, £,) + 20T, (g, + 2p,0,) ) +
(T -T,)? (€, +2pC, + 3T, (d, + 2 pyd,) + 6T, (e, +2pye,) +10T,°(f, +2p, f,) + 15T, (9, + 2p,0,) ) +
(T -To) (b +2pob, + 2T, (C, + 2p,C,) + 3T, (d, +2pd,) + 4T, (€, + 2 pye,) +
BT (f,+2p, f,) + 6T°(0, +2p,05) |

Comparing the above equation with the EOS for the fluid density Eq.(2.15) the expression
for the coefficient of thermal expansion and the coefficient of compressibility are obtained,
Viz.

BT.p)=— =

[(T 'To)s(go + P9, + p02g2)+ (T 'To)A(fo + Py f1 + po2 fz + 6To(go + pog1 + pozgz))+

o

(T -To) (0 + o + Po’€, + 5Ty (fy + Py fy + Py £,) + 15Ty (gy + Po0y + Py°0,) ) +

(T -To)? (do + Pod + Po’d, + 4Ty (€, + Poy + Py°€,) +10T*(fo + Py fy + y” f,) + 20T,(gy + Poly + Py°0,) ) + (2.19)

(T -To)((:0 + PoC, + Py C, + 3T, (dy + Pod, + po°d,) +6T,2 (6, + e, + Py €,) + 10T 13 (fy + p, fL + py° ) +
15T,*(go + Pos + Py’ 05)) +

(bo + Poby, + Py, + 2Ty (Cy + PoC, + Py C,) + 3T, 2 (dy + pod, + pyod,) + 4T3 (6, + Po€, + Py 6,) +

5T*(fo + o fy+ P’ f,) + 6T,°(ds + Po0; + P'0,))

and
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7(T.p) =p—1;{( P- o) (8, + Tob, + Ty, + Ty, + Tp'e, + T, f, + 100, + (T - Ty)° g, + (T - T,)°(f, + 6T,g,) +
(T -T,)"(e, +5T,f, +15T,%g,) + (T - T,)%(d, + 4Te, + 10T, *f, + 20T °g,) +
(T -T,)?*(c, +3T,d, +6T,%e, +10T,* f, + 15T, *g,) +
(T -To)(b, + 2T,C, + 3T °d, + 4T %, +5T,'f, + 6T,°0,) ) +
[a,+2pg, +To(by +2pgh,) + Ty (G, + 2peC,) + T, (dy + 2ped,) + Ty (€, + 2 pge, ) + (2.20)
T (f,+2p, f,) + T’ (9, + 2P,9,) + (T - To)°(9, + 2Po0,) + (T - Ty)° (f, +2p, f, + 6T, (9, +2py9,) ) +
(T -To)" (&, +2pge, +5To(f, +2p, f,) +15T,2(g, +2p,0,) ) +
(T -To)* (d, +2pgd, +4T, (8 +2pge,) + 10Ty (f, +2p, f,) + 20T, °(9, + 2p,0,) ) +
(T-T,)? (c1 +2p,C, +3T,(d, +2p,d,) +6T,7 (e, + 2p,e,) +10T,°(f, + 2p, f,) +15T,*(g, + 2 pogz))+
(T -To) (by + 2o, + 2T, (¢, +2p,C,) + 3Ty (d, +2pod,) + 4T, (e, + 2o, ) +
5T, (f, +2p, 1) + 6T,°(0, +2p,8,)) |}

f
with #° computed from Eq.(2.14) and the coefficients(a,,b, ,c,.d, e, f,, Oy )01, @re given
in Table 2-1.
These two expressions can be implemented in FEFLOW by the use of the interface manager

(IFM) as shown in Appendix 3.
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