
Appendix 1.  Fluid, heat and mass transport equations in 
porous media 
 

 

1.1. Formulation of the problem of heat and mass transfer in 

a porous medium (macroscopic level) 
 

This appendix gives a mathematical description of the problem of heat and mass transfer in a 

porous medium. The core of the mathematical modeling is defined by the fundamental 

physical principles of: 

• Mass conservation of the fluid 

• Mass conservation of the solute 

• Conservation of the linear momentum of the fluid 

• Energy conservation 

In the continuum approach, mass, motion and energy-related quantities can be defined in a 

’microscopic’ (local) volume element for which balance laws are postulated. Mass, linear 

momentum and energy represent extensive properties, i.e. quantities which are additive over 

volumes of the continuum. On the other hand, intensive properties concern densities of these 

extensive properties being independent of the balance volume. 

In principle, given the initial and boundary conditions, the transport problem in a porous 

medium can be solved at the continuum (microscopic) level. However, this approach is not 

feasible in practice because at that level it is not possible to describe the configuration of the 

surface that bounds the considered phase (i.e., the solid surface bounding the considered fluid 

phase filling the void space) except in simple cases such as a medium composed of straight 

capillary tubes. Moreover constitutive equations require coefficients that can only be 

determined experimentally and that obviously can’t be measured at a microscopic level in real 

system. 

In order to circumvent these difficulties, the transport problem is lifted from microscopic 

level to a macroscopic one, i.e. a coarser level of averaging is reached (upscaling or 

macroscopization). This is still a continuum approach but on a higher level at which quantities 

can be measured and problem boundaries can be identified. As a consequence, the real porous 

medium domain is regarded as a conceptual model in which each phase is assumed to behave 
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as a continuum filling the entire domain. At every point within these continua, values are 

assigned for the variables and parameters involved, and they are averaged over a 

Representative Elementary Volume (REV). To allow the passage from the microscopic to the 

macroscopic level, parameters such as porosityφ , tortuosity, permeability k , dispersivity D , 

etc. have to be introduced. The numerical value of these coefficients must be determined 

experimentally or in the field. These coefficients are related to the chosen model of the 

considered problem but for convention are referred to the porous medium. 

At this stage, an important remark on the appropriate size of REV has to be made: since 

the macroscopic parameters have the meaning of average values over a REV centered in the 

point where the parameter is measured, the latter will be useful only if the measuring device 

also averages over the same REV scale. That is, a strong relationship exists between the REV 

size of a porous medium and the measuring instrument. Moreover, referring to fractured 

media, the concept of a REV can be impractical or even invalid as in the case where fractures 

create a non-leaching network (Georgiadis 1991).  

To obtain the macroscopic balance equations, some averaging rules (closure) to the 

corresponding microscopic equations must be applied. The averaging method has been 

developed over 30 years with majors contributions from Bear and Bachmat (1990), 

Hassanizadeh and Gray (1979a, 1979b, 1980, 1986a, 1986b). Here the problem of heat and 

mass transfer in porous medium will be directly formulated as a set of  average equations in 

the dependent average variables *, , , , , ,f f sC p Tρ µ V T . In this context, a single-phase fluid that 

occupies the entire void space of a porous medium, is considered. In the equations, fluid and 

solid phase will be labeled with f and  s subscript, respectively. Fluid is a binary system (for 

instance, water and a non-reactive solute which concentration is denoted by C) with molecular 

diffusion . All fluxes are expressed per unit of area. diffD

 

Equation 1: Mass conservation of the fluid. 
 

 
*

+div( ) 0f ft
φρ ρ

φ

∂
=

∂
=

q

q V
 (1.1) 

 

where φ  is the porosity of the porous medium,  is the Darcy (or volumetric flux density 

velocity) signifying the specific discharge of the fluid,  is also often referred to as pore 

q
*V
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velocity. 

 Usually the mass conservation balance is implemented in the simulations codes in a 

different form that can be obtained by developing the derivatives in (1.1):  

f

ft
ρ

φ ρ∂
∂
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Simplifications yield to: 

 0S +div( )
t
f

Bous esq

p
Q sin

∂
=

∂
q  (1.2) 

where: 

( )sinBous esq
C TQ C T
t t

α β γ ϕ φ α β∂ ∂⎛= − ⋅ − + − −⎜
⎞
⎟∂ ∂⎝ ⎠

q grad grad grad  is a term resulting form 

the developed derivatives of (1.1) which incorporates mass-dependent and temperature 

dependent compression effects. 

0 (1 )S φγ φ= + − ϒ  is the specific storage coefficient or medium storativity which physically 

represents the volume of water released (or added to) from storage in the aquifer per unit 

volume of aquifer and per unit decline (or rise) of head, ϒ being the bulk compressibility. 

 

Equation 2: Mass conservation of the solute.  
 

 (*+div( ) div( ) div ( ))f C
C C
t CC Qφ ρ∂

+ − =
∂ dispq j D grad  (1.3) 

CQ  is a mass supply. 

Three different kind of fluxes are involved: is an advective flux, Cq *j is a diffusive flux 

and a dispersive flux. As a phenomenological law, dispersive flux is regarded as 

a diffusion-like process, hence it depends on a concentration gradient. is the tensor of 

mechanical dispersion which physical meaning is explained in the next paragraph. 

( )disp CD grad

dispD

The advective flux represents the quantity of mass advected by the pore velocity per unit 

area of the porous medium. 

*V

*j  expresses the flux of the solute at macroscopic level.  
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 * ( )C Cφ= − diffj D grad  (1.4) 

 

Here diffD is a tensor and is called coefficient of molecular diffusion in a (saturated) porous 

medium. 

By substituting (1.4) in (1.3): 

 

 ( ) ( )+div div ( )f C
C C C
t

Qφ ρ∂
−

∂
q Dgrad =  (1.5) 

where 

 φ= +disp diffD D D  (1.6) 

is the tensor of hydrodynamic dispersion. This coefficient includes the effects of both 

mechanical dispersion and molecular diffusion. 

Hydrodynamic dispersion is a phenomena that arises whenever a solute carried by a fluid 

flows through a porous medium. For instance, if a uniform flow in a 2D porous medium is 

considered, experience shows that as flow takes place the solute gradually spreads occupying 

a portion of the flow domain both in the direction of the uniform flow (referred to as 

longitudinal) and also in its normal direction (transversal). The observed spreading (at 

macroscopic level) results from two inseparable processes occurring at microscopic level: the 

mechanical dispersion and the molecular diffusion. The two basics factor that produce 

mechanical dispersion are the flow itself and the presence of the pore system through which 

flow takes place: because of the shape of the interconnected pore space, a close group of 

tracer particles will spread throughout the flow domain primarily in the longitudinal direction. 

Essentially, dispersive flux of the mass solute expresses the rate at  which mass is transported 

because of the velocity variations in the void space of the REV. Very little spreading in a 

direction transversal to the flow can be produced by velocity variations only. Therefore, an 

additional flux referred to as molecular diffusion takes place in the pore space. In 

hydrodynamic context, molecular diffusion cannot be separated from mechanical dispersion 

although molecular diffusion can take place alone also in absence of motion. Its effect on the 

overall dispersion is more significant at low velocities while at high velocities it can be 

negligible. A parameter that allows us to estimate which process is dominant in hydrodynamic 

dispersion is the Peclet number defined as 

 
*

DPe
L

=
diff

V
D

 (1.7) 
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where  is a characteristic length. The Peclet number is the ratio between rate of transport by 

convection to the rate of transport by molecular diffusion. 

L

If  then diffusion will control the flow otherwise if the flow is advective-

dominated 

DPe 1<< DPe 1>>

 

Equation 3: Conservation of linear momentum of the fluid (equation of motion). 
 

 (*

0

( )f f
f

f pµ ρ
φµ

= − −
kV )grad g  (1.8) 

where is the tensor of permeability. k

Equation of motion can be rewritten in terms of the piezometric head 
0

f

f

p
z

g
ϕ

ρ
= +  

The differentiation of this relation yields to ( )0( ) ( ) 1f fp gρ ϕ= −grad grad , hence: 

 0 0

0 0

 ( )  (f f f f

f f

g
f fµ µ

0

0

)f

f

ρ ρ ρ ρ ρ
ϕ ϕ

µ ρ ρ
− −

= − + = − +
k

q grad K grad  (1.9) 

where  

 0

0

f

f

gρ
µ

=
k

Κ  (1.10) 

is the hydraulic conductivity tensor related to the reference fluid density 0 fρ . Eq. (1.9) is the 

extension of Darcy’s  experimental law to a 3D anisotropic media.  

The term 

 0

( , , )
f

f

f
C Tµ

µ
µ ϕ

=  

 (1.11) 

is the viscosity function which takes into account the viscosity effects due to temperature and 

concentration variations.  

0 fρ  in Eq. (1.9) and 0 fµ  in Eq.(1.11) are both related to the reference conditions for the 

hydraulic head 0ϕ , the concentration and the temperature0C 0 fT .  

0

0

f

f

fρ ρ
ρ
−

represents the buoyancy term and can be easily derived from of the EOS for fρ . 
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Equation 4: Energy conservation of the fluid and solid. 
 

 ( ) ( )*+div( ) div( ) div ( )T T
f f f f f f f f fc T c T T Q

t
φρ ρ∂

+ − =
∂

disp
fq j λ grad  (1.12) 

In the averaging  the term (rate of internal energy production due to surface force) 

has been neglected. 

*div( )σ V

fc is the fluid heat capacity and fT is the fluid temperature. 

 *
 ( )T
f fTφ= − cond

fj λ grad  (1.13) 

cond
fλ  tensor of heat conduction of the fluid occupying the void space of a porous medium. 

( )fT− disp
fλ grad  expressed the dispersive heat flux resulting from fluctuations in *  and fTV in 

the pore space. is referred to as tensor of thermal dispersion and conceptually can be 

considered similar to the mechanical dispersion tensor seen in (1.3) 

disp
fλ

 

The macroscopic heat balance equation for the solid phase is: 

 ( ) *(1 ) div( )T T
s s s s sc T Q

t
φ ρ∂

− + =
∂

j  (1.14) 

where T
sQ is a heat supply, sc is the solid heat capacity , sT is the solid temperature and 

 *
 (1 ) ( )T
s sTφ= − − cond

sj λ grad  (1.15) 

is the conductive heat flux in the solid. cond
sλ  is named tensor of thermal conductivity of the 

solid porous matrix. 

 

Because solid grains are relatively small and fluid velocity in the void space is small, solid 

and liquid phase can be considered in thermal equilibrium, i.e.  f sT T T= = . Therefore 

summing equation (1.12) and (1.14) the heat equation balance for a porous medium as a 

whole can be obtained. 

 ( )(1 ) +div( ) div ( ) T
f f s s f f f

M

c c T c T T
t

φρ φ ρ ρ
⎛ ⎞⎛ ⎞∂ ⎜ ⎟⎜ ⎟+ − − =

∂ ⎜⎜ ⎟ ⎟
⎝ ⎠⎝ ⎠

q λgrad Q  (1.16) 

where 

M in the r.h.s. underbrace is often referred to as accumulation term for the heat. 
TQ is the heat supply and 

 (1 )φ φ= + − +
cond
p

cond cond disp
f s

λ

λ λ λ λ  (1.17) 
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λ is the thermodispersion tensor, in which he coefficient in the underbrace,  is the 

thermal conductivity of the saturated porous medium as a whole. The coefficient of thermal 

dispersion  can be neglected with respect to 

cond
pλ

dispλ p
condλ as shown in Bear (1988). 

( )T−λgrad combines the conductive heat flux in the fluid and in the solid, and the dispersive 

heat flux in the fluid. 

By observing (1.5) and (1.16) it results that solute is transported at the pore velocity *

φ
=

q V  

while the heat transport is retarded due to the heat exchange between the fluid and the solid 

grains ( M , accumulation term for the heat). For a given Darcy velocity q  the velocity of the 

advective thermal front is 

 *

1/

f f
T

R

c cf f

M M
ρ φρ

= =
q

V V  (1.18) 

Oldenburg and Pruess (1999) estimated that for an hydrothermal convective system the 

retardation factor R appearing in (1.18) is approximately 7, i.e. the thermal front will move at 

1/7 the speed of the solute front. 

 

The equation of state for the fluid density (1.19) and one for the fluid viscosity (1.20) have 

to be added: 

 ( )0 0 01 ( ) ( ) ( )f f f f f fp p T T C Cα αρ ρ γ β α= + − − − + − 0  (1.19) 

where 0f fρ ρ=  for 0f fp p= , 0f fT T=  and 0C Cα α=  

γ , β and α  are the coefficient of compressibility, the coefficient of thermal expansion and 

the mass concentration ratio respectively.  

For the fluid viscosity 

 ( ),f f C Tµ µ=  (1.20) 

where the concentration and temperature dependencies are determined by empirical 

polynomial relationships (Hassanizadeh and Leijnse 1988). 

 

In the end, six equations in six dependents variables:  are defined: four 

balance equations ((1.1) (1.8) (1.5) (1.16)) and two equations of states for 

*, , , , ,f f fC p Tρ µV

 and f fρ µ . To 

complete the mathematical statement of heat and mass transfer problem appropriate initial and 

boundary conditions must be added. 
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Nomenclature 

 

c  heat capacity (fluid or solid). L2 T2 Θ-1

C  concentration of the solute. M L-3

D  hydrodynamic dispersion tensor. L2 T-1

 concentration of the considered α specie. 

diffD  molecular diffusion of the saturated porous media. L2 T-1

dispD  mechanical dispersion tensor. L2 T-1

g  vector of gravity acceleration. L T-2

*j   diffusive flux relative to the mass average velocity.  M L2 T-1

k  permeability. L2  

Κ  hydraulic conductivity tensor. L T-1

M Heat accumulation term M L-1 T-2 Θ-1

DPe  Peclet number.  1 

fp   fluid pressure. M L-1 T-2

q  Darcy velocity. L T-1

sinBous esqQ  Boussinesq term. M L-3 T-1

Q  sink/source term. M L-3 T-1

R Retardation factor 1 

0S  medium storativity. L-1 

T  temperature. Θ 
*V  pore velocity L T-1

Greek symbols 

 

α   mass concentration ratio. 1 

β   coefficient of thermal expansion. Θ-1 

γ   coefficient of compressibility.  L-1 

λ  thermodispersion tensor. M L T-3 Θ-1
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cond
fλ   tensor of heat conduction of the fluid occupying the void space of a porous 

medium.  M L T-3 Θ-1

disp
fλ  tensor of thermal dispersion.  M L T-3 Θ-1

cond
sλ   tensor of thermal conductivity of the solid porous matrix. M L T-3 Θ-1

µ  dynamic fluid viscosity. M L-1 T-1

fρ   density of the fluid system. M L-3

φ   porosity. 1 

ϕ   piezometric head or Hubbert potential L 

σ  stress tensor. M L-1 T-2

 

Subscript 

 

f fluid. 

s solid. 

0 reference values of the considered property. 
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