
Chapter 2.  2D thermohaline approach: model scenario 
and preliminary simulations
 

In this chapter the available NEGB structural model (Scheck 1997) will be integrated in the 

FEFLOW database. Then a representative cross-section of the basin will be obtained from this 

three dimensional structural model and used as model scenario for the 2D thermohaline 

simulations. In order to approach numerical simulations of coupled fluid flow, mass and heat 

transfer, based on the NEGB, a proper grid resolution has to be defined. The preliminary 

numerical simulations described here are aimed to build up a finite element mesh suitable for 

the thermohaline problem. 

 

2.1 Definition of the two-dimensional model scenario for 

thermohaline simulations by use of FEFLOW® 

 
2.1.1 The need of a two-dimensional approach 

 

The basic problems in solving the coupled non-linear equations of fluid flow, heat and mass 

transport are due to numerical instabilities which arise during the simulation process. 

Numerical thermohaline simulations based on real geothermal systems are hindered by the 

highly deformed mesh geometry resulting from the complex geological structure. 

Consequently, a certain degree of mesh refinement is required in order to solve the density-

dependent problems (Gresho and Sani 2000; Diersch and Kolditz 2002). However, mesh 

refinement increases the numerical complexity of the problem. Moreover, the different 

spatially varying physical parameters involved in the equations, provide additional difficulties 

in solving the thermohaline flow problem. Transport phenomena in sedimentary basin are 

controlled by the spatial variation in heterogeneous conductivity fields (Dagan 1989). As 

discussed by Simmons et al. (2001) heterogeneity of hydraulic properties can even perturb 

flow over regional length scales and generate instabilities especially in systems where density 

stratifications are encountered. These considerations summarize the major drawbacks 

concerning the numerical approach for thermohaline flow in geothermal system. In summary, 

from a numerical point of view, the complicated geometry of the basin fill, together with the 
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heterogeneity of physical parameters, and fluid density variations lead to self-perturbing 

natural systems. 

Although fluid flow and transport processes in sedimentary basins occur in a three-

dimensional environment, the study of a two-dimensional thermohaline problem is necessary 

in order to obtain more details with regard to numerical features of the non-linear coupled 

system. In a vertical profile (x,z) the number of independent spatial variables of the problem 

is reduced by one degree of freedom. Therefore a highly refined mesh can be defined in a 

cross-section model scenario by use of much less active nodes. Consequently the 

computational time decreases drastically. This allows to estimate a proper cell dimension for 

thermohaline flow simulation. Once the model robustness is achieved it is possible to define 

proper boundary conditions in order to reproduce observed data.  

Therefore, the 2D approach provides a series of advantages in successfully tracking down 

a simulation-based method for developing stable solutions with regard to the given 

geometrical (structural) resolution, the physical equations and the numerical approximation. 

The method then can be used to tackle a three-dimensional thermohaline model scenario.  

In order to create a cross section of the NEGB, with all spatial and physical characteristics 

preserved, the three-dimensional structural model of the basin had to be integrated into 

FEFLOW.  

 

2.1.2 Integration of the structural model of the NEGB into FEFLOW© 

 

FEFLOW is a software conceived for the modelling of flow and/or transport processes in 

natural porous media. FEFLOW has been chosen for this study for several reasons. The code 

is based on the Finite Element technique and it is one of the few commercial softwares which 

can handle two-dimensional and three-dimensional thermohaline flow. The finite element 

method is suitable for defining grids which can be easily adapted to the complicated structure 

of a sedimentary basin such as the NEGB. Moreover FEFLOW offers a Geographic 

Information System interface (GIS) whereby data integration and regionalization can be 

applied. These components ensure an efficient working tool in building the finite element 

mesh, integrating structural model data, and assigning model properties. 

The first step for building the numerical model scenario is to define a so called 

superelement. The superelement delimits the horizontal extension (x,y direction) of the 3D 

finite element mesh within the working window of FEFLOW. For constructing the finite 

element mesh, the grid resolution has to be defined within the superelement. The discretized 
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superelement is also referred to as a slice. Once the slice is built, it is possible to integrate the 

geometrical characteristics of the different stratigraphic units of the NEGB in FEFLOW’s 

database. A layer, i.e. a stratigraphic unit, is composed of two slices also referred to as top and 

bottom slices. In order to define a layer, the z-coordinate (or elevation) of each node of the top 

and bottom slices must be assigned. Therefore the layer resolution is determined by the finite 

element grid resolution in the horizontal and by the layer thickness in the vertical direction. 

The structural model of the NEGB was incorporated in FEFLOW by applying the described 

procedure for each model slice.  

As mentioned in paragraph 1.2.2, the study area covers a rectangular surface of 230 x 330 

km. Therefore the chosen superelement is a rectangle, in which the corner coordinates have 

been referred to the Gauss-Krueger coordinates of the NEGB. The finite element resolution 

constructed in this superelement is identical with the grid resolution of the structural model 

(Scheck 1997). Hence each model slice consists of 60 x 70 grid points (or nodes) in the West-

East and North-South direction respectively. Consequently the mesh resolution of a layer is 

approximately 3.9 x 4.8 km in the horizontal direction while in the vertical direction the 

discretization results from layer thickness which is strongly variable. At this resolution the 

structure and geometry related to the NEGB stratigraphic units are accurately preserved in 

FEFLOW database. Fig. 2-1 is a 3D rendering illustrating the stratigraphic units incorporated 

in FEFLOW as well as the defined finite element mesh.  

 

F  
1
l

ig. 2-1: 3D rendering of the NEGB incorporated in FEFLOW. The stratigraphic units abbreviations are given in Tab.
-1. A detail of a finite element used to discretize the whole model volume is shown in the circle. The dashed line 
ocalizes the cross-section chosen for the 2D thermohaline model scenario (Fig. 2-2).  
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The actually implemented model consists of the first eight layers of the given geological 

model (from Top Cenozoic down to the base Zechstein Salt) and of an additional slice located 

at 5 km depth, acting as the model basement. This picture emphasizes the highly complicated 

structure of the layers especially in salt domes and uplifted areas. In Fig. 2-1, the finite 

element mesh used to define the top slice of all layers is shown for the topography. Each 

model slice consists of 4071 (59 x 69) rectangular elements. The 3D finite elements used to 

discretize the whole basin volume are eight-nodes quadrilateral prisms. Since 9 layers have 

been incorporated, the total number of 3D finite elements is 36639 corresponding to 42000 

active nodes. In Fig. 2-1 a sketch of a 3D finite element representing a salt dome area is 

depicted. In this particular setting, finite elements are highly distorted since the height of the 

elements can drastically vary within few kilometres.  

The physical parameters of all stratigraphic units, given in Tab. 1-1, can be stored in the 

FEFLOW database by assigning each layer the related parameter value. At this point the 

available 3-D structural model of the NEGB and the physical parameters are fully adapted to 

the simulation program. Cross-section modelling scenarios can be created from the 3-D 

structural model simply by taking a vertical profile through the structural model along a 

surface line as depicted in Fig. 2-1. The resulting cross-section will comprise the finite 

element mesh as well as the different physical parameters of each layer. In the next paragraph 

the selected representative cross-section will be described. 
 

2.1.3 The representative NEGB cross-section 
 

Two-dimensional investigation of thermohaline flow in the NEGB basin requires the choice 

of a proper model scenario. Indeed, as mentioned in the previous chapter, in the NEBG there 

is some topographical variations and particular geological structures such as salt pillows and 

diapirs. At a regional scale, topographical variations induce regional flow that can enhance 

hydrodynamic mixing and affect solute transport in the shallow aquifer. The steep flanks of 

the salt diapirs can further induce gravitational driven flow, also referred to as non-Rayleigh 

convection (Bjorlykke et al. 1988). Moreover, because of the high thermal conductivity of salt 

diapirs the temperature fields can be strongly disturbed favouring thermally induced flow and 

salt dissolution (Evans and Nunn 1989). Therefore, topographical variations and salt-tectonic 

structures must be comprised in the cross-section in order to gain insights in their interaction 

with other fluid-dynamics, affecting solute transport within the basin. Additionally the 

vertical profile must cross areas where observed data, such as salty plumes and saline springs 
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are observed. A cross-section in which all these features are comprised can be considered as a 

“good” or representative 2D model scenario for the NEGB. 

In Fig. 2-2 (a) the location of the cross-section is shown on the NEGB topography 

together with the salty groundwater distribution (Grube et al. 2000) and the observed saline 

springs (Schirrmeister 1996). From this figure it can be seen that the chosen cross section 

slices the study area along the whole West-East basin extent. The cross-section cuts the main 

regions where topographical variations arise as well as a wide area of salty groundwater 

plumes. Some of the observed saline springs are located along the profile. The cross section 

does not intersect the uplifted area delimited by the southern margin since this region 

corresponds to eroded layers where fluid flow and mass transport play a minor role.  

 

 
Fig. 2-2 a: Location of the 2D cross-section together with the fresh/salty water interface and saline springs as 
shown in Fig. 1-5 
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Fig. 2-2 (b) illustrates the geological structures of the chosen cross-section. Shallow salt-

structures are comprised within the resulting profile area.  
 

Fig. 2-2 b: Stratigraphic units of the 2D cross-section. The stratigraphic unit abbreviations are given in  

Tab. 1-1. 
 

This cross section will be used as a representative model scenario for carrying out 

thermohaline simulations based on the NEGB as described in the next chapters. According to 

the geological features, the cross-section will allow to test and identify the different flow 

regimes within the NEGB (forced versus free convection). This purpose can be achieved only 

by use of a numerically stable solution. Therefore an adequate grid refinement will be 

essential in order to define a cell resolution which resolves short wavelength interactions of 

the coupled system. A robust 2D finite element mesh will be defined in the next paragraph by 

performing preliminary transient thermohaline simulations  

 

2.2. Preliminary 2D thermohaline simulations 

 

2.2.1. Governing equations and assumptions 
 

The governing equations of thermohaline convection in a saturated porous media are derived 

from the conservation principles for linear momentum, mass and energy (e.g. Bear 1991; 

Kolditz et al. 1998; Nield and Bejan 1999). A description of the equations and parameters can 

be found in Appendix 1. The resulting system is fully implemented in FEFLOW and is briefly 

reported here by the following set of differential equations (ref. Appendix 1: Eq. 1.2; Eq. 1.5; 

Eq. 1.9; Eq. 1.16) 
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Eq.(2.1) is the equation of fluid mass conservation.  is the medium storativity which 

physically represents the volume of water released (or added to) from storage in the aquifer 

per unit volume of aquifer and per unit decline (or rise) of head

0S

ϕ .  is the Boussinesq 

term which incorporates first order derivatives of mass-dependent and temperature-dependent 

compression effects. q  is the Darcy (or volumetric flux density) velocity defining the specific 

discharge of the fluid. The Darcy’s law is expressed by Eq.(2.2) where  is the hydraulic 

conductivity tensor. Eq.(2.3) is the equation of solute mass conservation where 

BoussinesqQ

K

φ  is the 

porosity of the porous medium,  is the mass concentration, is the tensor of hydrodynamic 

dispersion and  is a mass supply. Eq.(2.4) is the energy balance equation of the fluid and 

the porous media. 
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CQ

fc and sc is the heat capacity of the fluid and solid respectively, T is the 

temperature,  is the thermal conductivity of the saturated porous medium as a whole. λ

From Eq.(2.1) and Eq.(2.2) it can be seen that FEFLOW uses a hydraulic head-formulation. 

This approach is usually preferred since it allows more convenient formulations of boundary 

conditions and parameters relations for shallow aquifers.  

 As mentioned in Appendix 1, constitutive and phenomenological relations of the 

different physical parameters involved in the equations are needed to close this coupled 

system. Here the hydraulic conductivity relation and the Equation Of State (EOS) for the fluid 

density are recalled (see Appendix 1 for details): 
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The hydraulic conductivity tensor  is related to the reference fluid density K 0 fρ ,  is the 

gravitational acceleration, is the tensor of permeability, 

g

k ( , )f C Tµ takes into account the 
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fluid viscosity effects due to temperature and concentration variations. The EOS for the fluid 

density is related to the reference temperature , pressure 0T 0p  and concentration ,  

Eq.(2.6). 

0C

α  is the mass concentration ratio, β  is the coefficient of thermal expansion and.γ  

is the coefficient of compressibility. 

 The flow and transport equations (Eq.(2.2), Eq.(2.3), Eq.(2.4)) for thermohaline 

convection are non-linear and strongly coupled since temperature and salinity control the fluid 

density fρ and dynamic viscosity fµ . The variation of fluid density is essential for the 

modelling of thermohaline convection because of its primary importance for calculating the 

correct buoyant force included in the equation of motion (i.e. generalized Darcy’s law 

Eq.(2.2)). Fitted polynomial expressions are commonly used for temperature, pressure and 

salinity dependences of the fluid density (Sorey 1976). In order to reproduce the density 

model described in paragraph 1.2.3, all the mentioned dependences are accounted for 

FEFLOW. For this purpose, two polynomial expressions which accurately represents the 

coefficient of thermal expansion ( , )T pβ  and compressibility ( , )T pγ  for the fluid density 

(Eq.(2.6)) have been derived and coded as an extension to the simulation program. A detailed 

description of these polynomial functions and the implemented code is reported in Appendix 

2 and Appendix 3 respectively. The method has been approved by WASY and can also be 

found in Magri (2004). As seen in the paragraph 1.2.3, the density of the saturated brine is 

1220g/L. The fluid density 0
fρ  is referred to freshwater conditions and set equal to 1000 g/L. 

Therefore the density ratio
0

0

s
f f

f

ρ ρ
α

ρ
−

= , appearing in Eq.(2.6), is set equal to 0.22.  

Since the main goal of this chapter is the definition of a robust 2D finite element mesh a 

number of simplifying assumptions are required. 

No coefficient of mechanical dispersion is included in the dispersive flux of the solute. 

This means that the coefficient of hydrodynamic dispersion D appearing in Eq.(2.3) is equal 

to the molecular diffusivity of solute in the saturated porous medium Ddiff (Eq.(1.6) Appendix 

1). In the specific case, such simplification may introduce differences in the resulting solute 

field (Nield 1974; Rubin 1975)). The mechanical dispersion takes into account the structure of 

the porous medium. As described in Appendix 1, the mechanical dispersion causes the flow 

streamlines to divide in the longitudinal direction. Consequently, this additional spreading 

enhances solute mixing with freshwater and the resulting fluid density differences become 

smoothed. Therefore, in the case where no coefficient of mechanical dispersion is considered 
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the solute field will be less homogenous and more saline. Nevertheless, as proved in 

Rosenberg and Spera (1992), neglecting the coefficient of mechanical dispersion does not 

affect the basic character of the fluid dynamics of the system. Therefore, this simplifying 

assumption will also be used for the thermohaline simulations described in the next chapter. 

Another approximation which will be considered henceforth is the so called Oberdeck-

Boussinesq approximation OB. The OB approximation consists in neglecting the density 

dependences included in the term  in the LHS of the fluid balance equation (Eq.(2.1) 

and explicitly detailed in Eq.(1.43), Appendix 1), i.e. 

BoussinesqQ

Boussinesq 0Q = . Kolditz et al. (1998) 

evaluated the OB approximation for different convection problems. Their studies proved that 

the differences in the concentration field resulting from the OB approximation on a long term 

simulation are negligible and the fluid-dynamics is not affected. 

Additionally, fluid viscosity is considered constant and referred to freshwater conditions. 

Viscosity effects on the flow regime will be evaluated only on a robust thermohaline model. 

In the next chapter the concentration and temperature dependences of viscosity will be 

incorporated in the thermohaline simulations. Other fluid properties such as heat capacity and 

conductivity are considered constant. 

To complete the set of differential equations defining the thermohaline problem 

appropriate initial and boundary conditions for the hydraulic head, the temperature and the 

concentration must be defined. 

 

2.2.2. Boundary and initial conditions 

 
The boundary conditions used in this preliminary thermohaline approach are first and second 

type boundary conditions. A set of boundary conditions which can reproduce observed data 

such as mass and temperature distribution at the surface can be defined once a suitable grid 

for thermohaline flow is built. The boundary conditions used here are schematically illustrated 

as follows (Fig. 2-3 A.): 
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Fig.2-3: A: Boundary conditions of the preliminary thermohaline simulations and, B: Initial temperature 
distribution (°C) derived from a steady-state heat transport problem. The bold line delimits the Top Salt. 
Temperature values have been interpolated with a Kriging gridding method by use of the commercial software 
Surfer 8.  
 

• At the surface the hydraulic head, fluid temperature and concentration have to be 

defined. The head is set equal to the topographical elevation. The fluid temperature 

and concentration values are fixed to 8°C and 0 g/L respectively. 

• At the Top Salt a fixed concentration value of 345.2 g/L has been set. As seen in the 

paragraph 1.2.3 this value corresponds to the saturation concentration of the fluid at 

the depth of interest. Even though salt dissolves with time and produces brine, the 

shape of the salt layer does not change. In their study, Ranganathan and Hanor (1988) 

made a similar assumption for salt domes. 

• At the basement a constant temperature boundary condition is defined. The value is set 

to 150 °C which corresponds to a linear vertical gradient of 30 °C/km. 

• The lateral boundaries are closed to fluid, heat, and mass flow. 

The simulation of transient flow requires a priori knowledge of physically meaningful initial 

conditions, which can be obtained from a steady-state calculation of the problem or from the 

interpolation of observed data. Initial conditions derived from observed data introduce 

perturbations to the parameters field which immediately initializes high numerical 

instabilities. Therefore the numerical system will need a large number of time steps for 

calculating the solution and in some cases will not converge at all. 
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On the other hand, using initial conditions derived from steady-state solutions of the 

considered problem guarantees a higher stability of the simulations and increases the rate of 

convergence of the coupled equations (Ortega and Rheinboldt 1970). Nevertheless, obtaining 

steady state solutions for coupled nonlinear systems as in the thermo-convective case is in 

most cases impossible. Therefore, the initial pressure and temperature distributions are 

obtained from the numerical solution of uncoupled steady-state fluid flow and heat transport 

models. The resulting pressure profile is not disturbed, it is hydrostatic. In order to calculate 

the initial temperature distribution, the hydraulic conductivity value of each layer has been set 

close to 0. Therefore the resulting temperature profile is purely conductive. The initial 

temperature field prescribed for the thermohaline simulations is illustrated in Fig. 2-3B. For 

presentation, the temperature values have been interpolated with a Kriging gridding method 

by use of the commercial software Surfer 8. This figure illustrates the well-know thermal 

anomalies around salt domes. Concave isothermal lines are associated with the salt domes 

whereas above these structures the isothermal lines are convex. Such anomalies are due to the 

high thermal conductivity of the salt domes with regard to the thermal conductivity of the 

surrounding sediments. 

The initial salt concentration is homogenous and set to fresh water condition (0 g/L) 

everywhere above the Top Salt.  

 

2.2.3. Numerical and time step schemes 

 
As mentioned in paragraph 2.1.1, the physical perturbations which arise during the simulation 

of thermohaline flow are caused by heterogeneous physical parameters which are encountered 

in all hydrothermal systems. Additionally, strong buoyancy forces together with steep 

gradients dramatically trigger the numerical instabilities of the system. These instabilities, 

also referred to as wiggles, are manifested by negative values of nonnegative properties such 

as fluid density or concentration. Wiggles have a numerical nature. They signal that the 

gradients are insufficiently resolved by the mesh. As a result, numerical errors are generated. 

In density plume problems the perturbations created by the propagation of these numerical 

errors are virtually uncontrollable (Schincariol et al. 1994). To prevent such wiggles an 

extremely refined mesh is required. Unfortunately, such a grid resolution cannot be achieved 

at the basin-scale (1x102 km) with regard to the computational power of the available 

software and hardware. The numerical compromise is the use of a full upwind scheme. This 
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numerical scheme introduces a balancing tensor diffusivity term to stabilize the solution. This 

is equivalent to an increase the coefficient of molecular diffusivity Ddiff appearing in Eq.(2.3) 

according to Diersch and Kolditz (2002): 

 num 2
diff ( )

2
v l lο∆

= + + ∆D D , (2.7) 

where is the fluid pore velocity andv l∆ the characteristic element length. Such numerical 

diffusion (or artificial dissipation) is represented by the second term in the right hand side of 

Eq.(2.7), 
2

v l∆ . From this relation, it can be inferred that the physics of the problem is highly 

changed if a too coarse mesh (i.e., large l∆ ) is used. At large l∆  an overestimated numerical 

diffusion will be introduced and will govern the whole transport process. Therefore the 

resulting over-dispersive smoothing will overwhelm thermally buoyant induced flow. 

Consequently no temperature effects on the flow regime can be taken into account. Particular 

attention must be made in defining a correct space gridding that prevents the upwinding 

scheme to introduce dominant over-dissipative terms. 

Transient simulation of convective processes also requires proper time schemes. Here a 

predictor-corrector time integrator (Gresho and Sani 2000) advances the balance equations in 

time. Specifically, the second order Trapezoid Rule scheme (TR) with automatically 

controlled time-stepping is used. This scheme has been proved to be an accurate strategy 

especially for strong nonlinearities (Diersch and Kolditz 1998). At each time step a 

convergence tolerance factor directly controls the time-step size. If the error estimates do not 

violate the constraints, the time step is increased, otherwise the time-step is reduced. Fig.2-4 

illustrates the adaptive time scheme strategy. More details about this temporal discretization 

can be found in the WASY white papers (WASY-GmbH 2002). 
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Fig.2-4: Adaptive time scheme strategy for coupled transient flow, mass and heat transport.(Modified from 
Diersch and Kolditz 1998). 

 

In order to gain insights into the temporal evolution of the studied system a reasonable 

computing time interval has to be set. For the problem considered here, such an interval is 

strictly artificial, having no relation to any geological timescale. Nevertheless, the computing 

time interval should not be too low with regard to the geological time-range of flow processes 

in sedimentary basin (i.e. ka or Ma). Here a computing time interval of 200 ka has been set. 

When a time scale will be mentioned in the description of the results, it will be referred to 

computing time with no regard to a particular geological timescale.  

 In bad-posed problems the predicted time-step size decreases asymptotically at a certain 

moment of the numerical simulation process. Consequently the numerical problem cannot be 

solved within the appointed computing time interval. During the iterative process this 

behaviour indicates that the constraints cannot be satisfied. This is likely due to an insufficient 

mesh definition. In other words, the finite elements of the grid simply do not work. 

 

 

2.2.4. Building a mesh suitable for the thermohaline approach 

 31



 

According to the previous considerations, a mesh suitable for thermohaline flow can be 

defined. The finite element composing the mesh should be constructed so that an asymptotic 

decrease of the time-step will not arise. The iterative time scheme will then run over the 

prescribed computing time-scale (200 ka) and a preliminary solution of the transient problem 

can be obtained. Moreover temperature effects on the flow regime must be taken into account. 

Therefore the mesh must be sufficiently refined in order to avoid over-dissipative terms 

introduced by the upwinding scheme (Eq.(2.7)). The last requirement is that mesh 

convergence is achieved. This implies that further refinement of the spatial discretizations will 

not introduce discrepancies in the results, i.e. the numerical calculations are independent from 

additional mesh refinements. 

Fig 2-5 illustrates the finite element mesh of the representative cross-section obtained 

from the integrated 3D structural model. For pictorial needs a 10:1 vertical exaggeration is 

used. The mesh density is derived by the original resolution of the structural model.  

 

 
Fig.2-5: Initial finite element mesh obtained from the original 3D structural model of the NEGB. For pictorial 
needs a 10:1 vertical exaggeration is used. 60 grid points discretize each model slices. The rectangle delimits a 
salt dome environment which is illustrated in Fig.2-6 and Fig.2-7 with no vertical exaggeration.  
 

As mentioned in paragraph 2.1.2. each model slice is discretized by 60 nodes and every 

layer is composed of 59 quadrilateral elements. The mesh resolution is 3.9 km in the 

horizontal direction (x). The vertical mesh resolution is determined by the layer thickness and 

can span from few meters up to 1 km. The morphology of all stratigraphic units in the 

neighbouring of salt diapirs is highly deformed. The finite elements geometry is extremely 

distorted especially in the vertical direction (z). The elements taper at the salt dome crests, i.e. 

the quadrilaterals are narrow trapezoids. 

It turned out that the time-step size decreased asymptotically when this finite element 

mesh was used to solve the thermohaline problem. Moreover this problem arose as soon as 
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the simulation was initialized. Therefore the simulated computing time could not cover 200 

ka.  

All 2D finite elements are formulated such that a perfect equilateral triangle or square give 

the best answers. As elements deviate from these perfect shapes, there is a corresponding 

degradation in the computed results (MacNeal 1990). The element aspect ratio is an helpful 

indicator of the element performance. This ratio is defined as the value obtained by dividing 

the maximum length of the element in the horizontal direction (x) by the maximum length in 

the vertical direction (z). Square mesh elements are associated to unitary aspect ratio. At the 

resolution of 60 grid points per slices all elements discretizing the model area present an 

aspect ratio higher than one, i.e. the quadrilaterals are elongated in the horizontal direction 

(x). A mesh refinement applied in the vertical direction (z) increases the density of nodes in 

the x direction. Consequently, vertical refinements can lead to an element aspect ratio value 

close to one. Fig. 2-6 illustrates a zoom of the finite element discretizing a salt dome. No 

vertical exaggeration is used.  

 

 

Fig.2-6: Zoom of the initial finite element mesh in salt a dome environment. No vertical exaggeration. The mesh 
resolution of the cross-section from which this zoom is obtained is 60 grid points per slice. The chosen salt dome 
is localized in the rectangle depicted in Fig.2-5. 
 

The finite elements taper along the steep salt flanks. No vertical refinement can possibly 

transform these distorted elements to squares. Since many salt domes are included in the 

domain, perfect square elements cannot be obtained throughout the whole model area. A 

compromise has to be found. In this context, the only way to obtain “good” elements that will 

work for the simulation process, is to apply a vertical refinement on the whole mesh and test 

whether the simulation based on this denser mesh can run over the appointed computing-time 

or not. If an asymptotical decrease of the time-step occurs during the simulation it is probably 

because most of the elements do not work properly. A denser vertical refinement is then 
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necessary. Eventually a correct mesh discretization is obtained by repeatedly applying the 

described procedure. The refinement can be easily applied on the original structural model by 

the use of the FEFLOW mesh editor interface. This pragmatic approach can hopefully be 

successful in building a robust finite element mesh suitable for thermohaline problem. If so, 

the simulation will run over the computing time interval and a preliminary “solution” can be 

achieved.  

Fig.2-7 is a sketch illustrating the mesh robustness as a function of the number of grid 

points discretizing the model slices. The robustness index is “0” when asymptotical decrease 

of the time-step has occurred during the simulation and the calculations could not be 

completed. “1” indicates that the simulation ran successfully over the computing time interval 

of 200 ka. Vertical refinements have been applied up to 200 nodes per slices. It can be seen 

that a successful simulation has been carried out on a mesh having 159 grid points per slices. 

An interesting feature of the mesh robustness can be inferred by from Fig.2-7.  

 

 
Fig. 2-7: Sketch illustrating  the mesh robustness as a function of the number of grid points discretizing the 
model slices in the horizontal direction (x).  

 

The simulation process is very sensitive to the number of grid points discretizing the 

slices. As long as this number is far from 159 the simulations could not be completed: 

numerical oscillations occurred immediately after the process was initialized and the predicted 

time-step decreased asymptotically. On the other hand, simulations based on meshes having a 

grid density very close to 159 points per slices could run over 200 ka although with some 

time-step oscillations. Higher vertical mesh refinements did not improve the simulation 

stability, in contrary it is declining. 
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Fig.2-8 illustrates the resulting refined finite element mesh in a salt dome environment (cf. 

Fig.2-6) No pictorial vertical exaggeration is used. The thicker quadrilaterals are less 

elongated and are slightly close to square shape in some distance from the salt flanks. 

 

 
Fig.2-8: Zoom of the refined finite element mesh in salt a dome environment. No vertical exaggeration. The 
mesh resolution of the cross-section from which this zoom is obtained is 159 grid points per slice. The chosen 
salt dome is localized in the rectangle depicted in Fig.2-5. 

 

At this point a mesh allowing a complete simulation run over the computing time (200 ka) 

has been obtained. Longer term calculations have been successfully performed on this mesh 

up to 400 ka. The whole model area is now composed of 1422 elements, each slice being 

discretized by 158 nodes. This value corresponds to a mesh resolution of 1.45 km in the 

horizontal direction. However, numerical dissipative terms introduced by the upwind 

balancing tensor diffusivity (Eq.(2.7) can still be dominant at this mesh resolution. If this is 

the case, only the numerical diffusivity governs the transport process. As a result, 

thermohaline and coupled fluid flow-mass transport simulations lead to the same mass profile. 

In order to check whether this is the case or not the mass profile resulting from a coupled fluid 

flow-mass transport problem has been compared to the mass profile obtained from a 

thermohaline simulation. The results are illustrated in Fig.2-9.  
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Fig.2-9: Mass distribution obtained from: a thermohaline simulation (A), and from a coupled fluid flow and 
mass transport simulation (B). 

 

No significant variation can be observed by comparing the mass distribution obtained 

from thermohaline simulation (Fig.2-9A) with the mass distribution derived from a coupled 

fluid flow and mass transport problem (Fig. 2-9B). The transport process is dominated by the 

over-estimated numerical dissipation and the resulting mass profile has no physical meaning. 

Temperature effects on solute transport are overwhelmed and cannot be taken into account at 

this mesh resolution. The actual mesh is surely robust, providing a “solution” of the problem. 

Nevertheless, robustness alone is not sufficient. Indeed the solution is only mathematically 

correct but physically unlikely. At this mesh resolution, the numerical scheme defines a 

problem which is completely different from the real natural system. Therefore the mesh has to 

be further refined.  

In order to preserve the global aspect ratio of the finite elements, which has until now 

ensured the mesh robustness, vertical and horizontal mesh refinements are performed 

simultaneously. In this way, an element will be subdivided in 4 new elements having the 

aspect ratio of the original element. This refinement procedure has been repeatedly applied 

until both thermohaline and coupled fluid flow-mass transport simulations have provided 

different mass patterns. It turned out that two consecutive refinements were necessary in order 

to observe substantial differences in the mass profiles of the two different problems. Each 

finite element is therefore subdivided in 16 new elements. The whole model consists of 22752 

elements (1422 x 16). The total number of slices is 37, each of them being discretized by 633 

nodes. The mesh resolution is 364 m in the horizontal direction (x). Fig.2-10 illustrates the 

resulting mesh in a salt dome environment. At this resolution, temperature effects on the 
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transport process can be taken into account. The simulation results based on this refined mesh 

will be shown in the next chapter. 

 
Fig.2-10: Zoom of the final finite element mesh in salt a dome environment. No vertical 
exaggeration. The final mesh resolution of the cross-section from which this zoom is obtained is 633 
grid points per slice. The chosen salt dome is localized in the rectangle depicted in Fig.2-5. 

 

 With the purpose of testing the grid convergence an additional refinement has been 

applied. No spatial discretization effects were observed with regard to the mass patterns of the 

thermohaline problem. The results are independent from further mesh refinements. This 

proves that the actual resolution the finite element mesh ensures convergence. 

 

2.3. Discussion 

 
In this chapter a representative cross-section of the NEBG has been obtained. The initial mesh 

resolution of the original structural model has been refined so that: 

• A preliminary solution can be calculated over a prescribed computational time of 200 

ka, or even longer. 

• The numerical scheme approximations do not dominate the transport processes. Brine 

flow induced by concentration and temperature gradients can be taken into account by 

the mesh. 

• The grid convergence is achieved. 

The final mesh consists of 23421 nodes (22752 elements) with a resolution of 364 m in the 

horizontal direction. 
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 Fluid flow, heat and mass transport simulations will be henceforth based on this finite 

element mesh. In the next chapter the mechanisms driving salt within the NEGB will be 

investigated. A new set of boundary conditions will be defined in order to reproduce observed 

data such as brine and fluid temperature distribution at the surface. The interaction between 

topography driven flow and solute transport will be quantified (forced versus free 

convection). The main fluid-dynamics of salt migration throughout the sediments fill will be 

inferred from evolution analysis of the transport processes. Furthermore, viscosity effects will 

be taken into account and evaluated. Based on these 2D numerical results, a regional picture 

of the transport processes affecting the NEGB will be tracked down.  
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