
Appendix A

Average Kinetic Energy Release in

Sequential Fragmentation

In this appendix, a calculation is made for the expected average velocity following

sequential C2 loss. By calculating the kinetic energy release for each fragmentation

process, it is possible to model the experimental spatial distributions. The crux of

this calculation hangs on the fact that the final internal energy is independent of size.

The average kinetic energy release 〈KER〉cm can be defined as Eq. A.1 [Eng86,

Eng87] 1.

〈KER〉cm = 2 ∗ Eint − Ea

s − 1
(A.1)

where Eint is the initial internal energy, Ea is the activation energy, and s is the

number of degrees of freedom. When no reverse activation barrier is present, as

indicated by measurements on C60 [RHR90], the activation energy is equal to the

dissociation energy. The first fragmentation process can be written as

〈KER〉cm = 2 ∗ Eint1 − D1

s1 − 1
(A.2)

where the index 1 indicates the first fragmentation step. The next step in the sequen-

tial fragmentation process is shown in Eq. A.3

1A superscript of ‘cm’ denotes the KER is calculated in the center of mass frame, while lab

indicates that the KER is in the laboratory frame
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194 Average Kinetic Energy Release in Sequential Fragmentation

〈KER2〉cm = 2 ∗ Eint2 − D2

s2 − 1
(A.3)

where Eint2 = Eint - D1 - Efrag - 〈KER1〉, i.e., the amount of energy lost by the first

fragmentation process.

〈KER2〉cm = 2 ∗ Eint1 − D2 − Efrag − 〈KER1〉
s2 − 1

(A.4)

The energy content of the fragment, Efrag, and the first KER, 〈KER1〉, are assumed

to be much smaller than D1 energy for this calculation. The KER in Eq. A.3 and

Eq. A.4 are in the center of mass frame. For comparison to experiment, a transforma-

tion from the center of mass frame to the laboratory frame will be made. Here, it will

be indicated as the proportionality constant B∆N , where ∆N denotes the number of

fragmentation step. The total KER after two fragmentation steps can be written as

〈KERtotal〉lab
2 = B1〈KER1〉cm + B2〈KER2〉cm

= 2 ∗ B1
(Eint − D1)

s1 − 1
+ 2 ∗ B2

(Eint − D1 − D2)

s2 − 1
(A.5)

The third fragmentation step results in

〈KERtotal〉lab
3 = B1〈KER1〉cm + B2〈KER2〉cm + B3〈KER3〉cm

= 2 ∗ B1
(Eint − D1)

s1 − 1
+ 2 ∗ B2

(Eint − D1 − D2)

s2 − 1

+ 2 ∗ B3
(Eint − D1 − D2 − D3)

s3 − 1
(A.6)

The degrees of freedom, s∆N , can be written as s∆N = 3 ∗ (M − K(∆N − 1)) − 6 =

(3M − 6)− 3K(∆N − 1), where M is the original number of atoms, K is the number

of atoms lost per fragmentation step (which strictly requires an index, but for the

present it will be assumed that the fragment size is equivalent for each step).

〈KERtotal〉lab =
∆N∑

∆N=1

2 ∗ B∆N
Eint −

∑∆N
∆N ′=1 D∆N ′

(3M − 7) − 3K(∆N − 1)
(A.7)

This equation can be applied to C60, where M=60 and K=2, thus s∆N = s60−2∆N =

3 ∗ (60 − 2(∆N − 1)) − 6 = 174 − 6(∆N − 1), resulting in

〈KERtotal〉lab =
∆N∑

∆N=1

2 ∗ B∆N
Eint −

∑∆N
∆N ′=1 D60−2∆N ′

173 − 6(∆N − 1)
(A.8)
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However since the initial internal energy, Eint is not known, a trick can be used

so that a final internal energy, Eintfinal
is considered and for each fragmentation step

the energy loss associated with that fragmentation is added to the internal energy.

The internal energy of the fragment prior to the fragmentation can be written as

Eintfinal
= Eint − D ⇒ Eint = Eintfinal

+ D (A.9)

Following similar calculations, as from Eq. A.2 to Eq. A.8, a similar equation results.

〈KERtotal〉lab =
∆N∑

∆N=1

2 ∗ B∆N

Eintfinal
+

∑∆N
∆N ′=1 D60−2∆N ′

173 − 6(∆N − 1)
(A.10)

The final energy, Eintfinal
, is considered to be the same for each fragment, regardless

of mass, and this energy leads to no further fragmentation on the time scale shorter

that the time of flight.

B∆N is the conversion factor between the center of mass and laboratory frame.

The KER is determined from the sum of the kinetic energy of the two particles

involved in the fragmentation.

KER =
1

2
mrv

2
r =

1

2
m1v

2
1 +

1

2
m2v

2
2 (A.11)

where mr is the reduced mass and vr is the relative velocity in the center of mass

frame. We want to determine the factor between vr and the velocity of one of the

fragments, v1. The velocity, v1 can be determined by conservation of momentum,

m1v1 = - m2v2. Solving for v2 and plugging into Eq. A.11 results in Eq. A.12.

1

2
mrv

2
r =

1

2
m1v

2
1 +

1

2
m2

(
m1

m2

v1

)2

(A.12)

solving for vr,

v2
r = v2

1 ∗
(

(m1 + m2)

m2

)2

(A.13)
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and plugging this into Eq. A.11,

〈KER〉cm =
1

2
mrv

2
r

=
1

2
mrv

2
1 ∗

(
(m1 + m2)

m2

)2

=
1

2

m1m2

m1 + m2

(
(m1 + m2)

m2

)2

v2
1

〈KER〉cm =
m1 + m2

m2

〈KER〉lab (A.14)

Thus, B = m2

(m1+m2)
, where m2 is the mass of C2 and m1 is the mass of the larger

fragment. The values of B are indicated for several fragments in Table A.1. This is

put into Eq. A.10:

〈KERtotal〉lab =
∆N∑

∆N=1

2 ∗ m2

m60−2∆N + m2

Eintfinal
+

∑∆N
∆N ′=1 D60−2∆N ′

173 − 6(∆N − 1)
(A.15)

The known dissociation energies and number of degrees of freedom of the different

fragmentation steps of C60 (see Table A.1) can be inserted into Eq. A.10 to calculate

the accumulated KER.
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Table A.1: Dissociation energies and number of modes for different fragmentation
steps. Dissociation energy values are from [TAG01].

∆N Notation D60−2(∆N−1) [eV] Degrees of freedom B

1 C+
60 →C+

58 9.75 174 1/30

2 C+
58 →C+

56 8.25 168 1/29

3 C+
56 →C+

54 8.65 162 1/28

4 C+
54 →C+

52 8.4 156 1/27

5 C+
52 →C+

50 8.4 150 1/26

6 C+
50 →C+

48 8.75 144 1/25

7 C+
48 →C+

46 8.3 138 1/24

8 C+
46 →C+

44 8.0 132 1/23

average 8.6 153 1/26.5

Table A.2: Calculation of accumulated KER in laboratory and center of mass frame.
Laboratory frame KER calculated from Eq. A.15 and values from Table A.1, with
Eintfinal

= 40eV . The center of mass KER is calculated by 1/B ∗ 〈KER〉lab.

∆N Notation 〈KERtotal〉lab[meV ] 〈KERtotal〉cm[eV ]

1 C+
60 →C+

58 19.17 0.58

2 C+
58 →C+

56 43.12 1.25

3 C+
56 →C+

54 72.63 2.03

4 C+
54 →C+

52 108.56 2.93

5 C+
52 →C+

50 151.64 3.94

6 C+
50 →C+

48 203.22 5.08

7 C+
48 →C+

46 264.32 6.34

8 C+
46 →C+

44 336.31 7.74
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Simplification to one fit parameter

To simplify Eq. A.10, a few average values will be used. First, the average value of s af-

ter a certain number of fragmentation steps, can be determined by s̃ = (
∑∆N

i=1 si)/∆N .

This approximation is justified because the number of modes changes slowly in com-

parison to the change in internal energy. For 8 fragmentation steps, s̃ = 153. The

second approximation is to take the average dissociation energy. Defined in a similar

way as the average number of degrees of freedom, D̃ = (
∑∆N

i=1 Di)/∆N . For 8 fragmen-

tation steps, D̃ = 8.4. The final approximation is the average B, which is equivalent

to taking an average fragment size. B̃ = (
∑∆N

i=1 Bi)/∆N . For 8 fragmentation steps,

B̃=1/26.5.

Substituting these into Eq. A.10 gives

〈KERtotal〉lab =
∆N∑

∆N=1

2 ∗ B̃
Eintfinal

+ ∆N ∗ D̃

s̃

=
2 ∗ B̃

s̃

∑ (
Eintfinal

+ ∆N ∗ D̃
)

(A.16)

The first few steps are shown below

〈KERtotal〉lab
1 =

2 ∗ B̃

s̃
(Eintfinal

+ 1 ∗ D̃)

〈KERtotal〉lab
2 =

2 ∗ B̃

s̃
(2 ∗ Eintfinal

+ 3 ∗ D̃)

〈KERtotal〉lab
3 =

2 ∗ B̃

s̃
(3 ∗ Eintfinal

+ 6 ∗ D̃) (A.17)

This can be simplified to the Eq. A.19, which is a function which is solely dependent

on the number of C2 units.

〈KERtotal〉lab
∆N = 2 ∗ B̃

∆N ∗ Eintfinal
+ 1/2 ∗ ∆N(∆N + 1) ∗ D̃

s̃

= 2 ∗ B̃
(Eintfinal

+ 1
2
D̃)∆N + 1

2
D̃(∆N)2

s̃
(A.18)

For C60, the following numbers have been used. Eintfinal
is the internal energy which

provides a rate of fragmentation longer than the time of flight, which is about 40 eV.

This is assumed to be independent of final size. The average number of degrees of
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freedom, s̃, is set to 153, the average B̃ is set to 1/26.5, and the average dissociation

energy, D̃, is taken to be 8.6 eV.

〈KERtotal〉lab
∆N =

2 ∗ B̃

s̃

(
(Eintfinal

+
1

2
D̃)∆N +

1

2
D̃(∆N)2

)

=
2 ∗ 1/26.5

153
∗

(
(40 +

1

2
8.6)∆N +

1

2
8.6(∆N)2

)

=
2 ∗ 1/26.5

153
∗

(
(40 + 4.28)∆N + 4.28 ∗ (∆N)2

)

=
2 ∗ 1/26.5

153
∗ 4.28 ∗ (10.3∆N + (∆N)2)

= 2.11 ∗ 10−3 ∗ (10.3∆N + (∆N)2) (A.19)

Defining the constant A ≡ 2.11 ∗ 10−3, the final equation is Eq. A.20.

〈KERtotal〉lab
∆N = A ∗ (10.3∆N + (∆N)2) (A.20)

.
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Table A.3: This table is similar to Table A.2, except here the values are from Eq. A.20
taking several approximations into account. Laboratory frame KER calculated from
Eq. A.20 and values from Table A.1, with Eintfinal

= 40eV . The center of mass KER

is calculated by 1/B ∗ 〈KER〉lab.

∆N Fragmentation 〈KERtotal〉lab [meV] 〈KERtotal〉cm [eV]

1 C+
60 →C+

58 23.8 0.72

2 C+
58 →C+

56 51.9 1.51

3 C+
56 →C+

54 84.2 2.36

4 C+
54 →C+

52 120.7 3.26

5 C+
52 →C+

50 161.4 4.20

6 C+
50 →C+

48 206.4 5.16

7 C+
48 →C+

46 255.5 6.13

8 C+
46 →C+

44 308.9 7.10



Appendix B

Spatially Resolved Detection :

From Pixels to 〈KER〉cm

In this appendix, the data evaluation of the position sensitive detector is explained.

The X, Y, and time of flight coordinates are recorded for each event.

Projections

Fragmentation produces a three dimensional spatial distribution. It is assumed to be

isotropic and Gaussian in each dimension for C60.

f(vi)dvi ∝ e−v2
i mr/2kBT dvi (B.1)

for i= x,y, and z. f(vi) is the velocity distribution in one direction. The total velocity

distribution is given by

f(vx, vy, vz)dvxdvydvz ∝ e−v2
xmr/2kBT e−v2

ymr/2kBT e−v2
zmr/2kBT dvxdvydvz

∝ e−(v2
x+v2

y+v2
z)mr/2kBT (B.2)

The three dimensional distribution is integrated over the z component to give the

two dimensional image.
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∫
f(vx, vy, vz)dvz ∝

∫
e−v2

xmr/2kBT e−v2
ymr/2kBT e−v2

zmr/2kBT dvz

∝ e−(v2
x+v2

y)mr/2kBT

∫
e−v2

zmr/2kBT dvz

∝ Ke−(v2
x+v2

y)mr/2kBT (B.3)

where K is equal to the integral and a constant.

The 2D image is then projected onto the x or y axis. This is achieved by integration

over y or x, respectively.
∫

f(vx, vy)dvy ∝
∫

Ke−v2
xmr/2kBT e−v2

ymr/2kBT

∝ Ke−(v2
x)mr/2kBT

∫
e−v2

ymr/2kBT dvy

∝ K ′e−(v2
x)mr/2kBT (B.4)

where K’ is equal to the integral of the y component and a constant. The velocity

distribution in the center of mass can be converted to the lab frame of one of the

fragments. The KER is determined from the sum of the kinetic energy of the two

particles involved in the fragmentation.

KER =
1

2
mrv

2
r =

1

2
m1v

2
1 +

1

2
m2v

2
2 (B.5)

where mr is the reduced mass and vr is the relative velocity in the center of mass

frame. We want to determine the factor between vr and the velocity of one of the

fragments, v1. The velocity, v1 can be determined by conservation of momentum,

m1v1 = - m2v2. Solving for v2 and plugging into Eq. A.11 results in Eq. A.12.

1

2
mrv

2
r =

1

2
m1v

2
1 +

1

2
m2

(
m1

m2

v1

)2

(B.6)

solving for vr,

v2
r = v2

1 ∗
(

(m1 + m2)

m2

)2

(B.7)

Thus the final equation of Eq. B.4, can be rewritten as

f(v1x
) = K ′e−(v2

1x)m1/2kBT (B.8)



203

The projections are fit with a Gaussian, which can be defined as

f(p) = e
−v2

1x
/2σ2

(B.9)

where v1x
indicates the velocity of particle one in the x direction. The velocity at 1/e

can be easily determined by

e−v2/2σ2

= e−m60−2∆Nv2

60−2∆N/2kBT

1

2σ2
=

m60−2∆N

2kBT

⇒ σ =

√
kBT

m60−2∆N

(B.10)

The raw measured width is the convolution of the previous 2D image and the addi-

tional width gained upon fragmentation.

A special property of Gaussian distributions is that the convolution of two Gaus-

sians results in a third Gaussian whose width is determined by the squares of the

widths.

σ2
AB = σ2

A + σ2
B (B.11)

Either the width of the previous 2D image can be deconvoluted or the width of

Cn+
60 . It is essential to take this deconvolution in velocity space.

Pixels to Velocity

The distance in pixels can be converted to velocity by the relation

vi =
di

tCn

(B.12)

where i indicates either the x or y axis (refer to Fig. 2.22 for orientation of the axes).

The time of flight of mass Cn, tCn
, is given by the relation

tcn
=

L

vztotal

(B.13)

where L is the length of the time of flight mass spectrometer and vztotal
= vacc + vz,

the velocity due to the acceleration zone and the initial velocity in the z direction.
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The acceleration velocity, vacc is dependent on the the charge, Ze0, electric potential

of the acceleration region, V , and mass, m, as is shown in Eq. C.5.

vacc =

√
2Ze0V

m
(B.14)

The velocity due to fragmentation, vz, is negligible in comparison to vacc. Thus, the

lateral velocity (perpendicular to time of flight axis) for x and y can be written as

vi =
dp ∗ N ∗

√
2Ze0V

m

L
(B.15)

where dp is the width of the pixel, which is known geometrically to be 0.25 mm/pixels

and N is the number of pixels, the measured quantity. For a given voltage, this

expression can be reduced to

vi = b ∗ N ∗
√

Ze0

m
(B.16)

where b is a constant of the experiment. In sections “kinetic energy release distribu-

tion: C60 → C58” and “Fragmentation by sequential C2 loss”, the voltage spanning

across the 2 cm interaction region was 500 V (with excitation occurring in the center),

which leads to a b value of

b =
(dp ∗

√
2V

L
=

0.25 ∗ 10−3[m/pixel] ∗
√

2 ∗ 250[V ]

0.45[m]
= 0.012423[

√
V /pixels]

(B.17)

A second voltage which is used for results presented in this thesis (Section Deviations

from a single gaussian projection”) was 1000 V. The corresponding b value is

b =
dp ∗

√
2V

L
=

0.25 ∗ 10−3[m/pixel] ∗
√

2 ∗ 500[V ]

0.45[m]
= 0.017568[

√
V /pixels]

(B.18)

Velocity to KER

The measured width of a projection is directly proportional to the velocity in that

dimension. The component of velocity is part of the total velocity, however it is found

that the width of the Gaussian fit in vx is the same as the width of v( Eq. B.2 to

Eq. B.4). From Eq. B.11, there are two ways in which to interpret the data. The first

is

σ2
60−∆N(calc) = σ2

60−∆N(meas) + σ2
60(meas) (B.19)
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where (meas) indicates the fit experimental data and (calc) indicates the calculated

true width. By subtracting only the width of C60 from the measured width, one gets

the accumulated width.

The second deconvolution is

σ2
60−∆N(calc) = σ2

(60−∆N−1)(meas) + σ2
60−∆N(calc) (B.20)

The measured width of the previous spot size is subtracted from the measured width

of the fragment to give the KER for that particular fragmentation.

The kinetic energy at σ is calculated by

KE =
1

2
m60−2∆Nσ2

60−2∆N(calc) (B.21)

The average kinetic energy in the laboratory frame is defined as

εlab =
1

2
m58v2 =

1

2
m58

∫
∞

0
v2v2e−mv2/2kBT dv∫

∞

0
v2e−mv2/2kBT dv

=
3

2
kBT (B.22)

To transfer the center of mass frame, the following procedure is followed. The

KERcm is determined from the sum of the kinetic energy of the two particles involved

in the fragmentation.

KERcm =
1

2
mrv

2
r =

1

2
m1v

2
1 +

1

2
m2v

2
2 (B.23)

where mr is the reduced mass and vr is the relative velocity in the center of mass

frame. We want to write 〈KER〉 as a function of velocity of one of the fragments,

e.g., v1. The velocity, v1 can be determined by conservation of momentum, m1v1 =

- m2v2. Solving for v2 and plugging into Eq. B.23 results in Eq. B.24.

1

2
mrv

2
r =

1

2
m1v

2
1 +

1

2
m2

(
m1

m2

v1

)2

(B.24)

solving for vr

v2
r = v2

1 ∗
(

(m1 + m2)

m2

)2

(B.25)

which can be inserted into Eq. B.23.
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〈KER〉cm =
1

2
mrv

2
r

=
1

2
mr

(
v1 ∗

(m1 + m2)

m2

)2

=
1

2

m1m2

m1 + m2

(
(m1 + m2)

m2

)2

v2
1

=
m1 + m2

m2

〈KER〉lab
1 (B.26)



Appendix C

Collection Probability of Particles

for Different Kinetic Energies

The collection probability of a particle is dependent on the initial kinetic energy

(KE). When the velocity components perpendicular to the time of flight (TOF) axis

are too large, then the particle will not be incident onto the detector. In this short

calculation, we seek to find the percentage of particles to hit the detector for a given

KE.

First, let us consider the case where the kinetic energy is well defined, E0 and

isotropic, producing a spherical shell with radius R, as is shown in Fig. C.1, at the

detector. We want to integrate over dθ and dφ. This is shown by the integration in

Eq. (C.1).

2

∫ 2π

0

∫ π/2

0

R2sinθdθdφ = 4πR2 (C.1)

This results in the surface area of 4πR2. (n.B. integration over dr will give the

volume of a sphere) and this is the normalization factor to give the percentage of

particles striking the detector.

We must now define the MCP detector area. The detector has a radius of r, as

sketched on the right hand side of Fig. C.1. This will change the limit of integration

for θ. The new limit is defined by the radius of the detector, r, and the radius of the

shell, R. (sin θ = r
R
)
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R
rθ

MCP
detector

Shell given by E0

Figure C.1: Schematic of calculation used to determine the collection probability

2

∫ 2π

0

∫ arcsin(r/R)

0

R2sinθdθdφ = 4πR2 ∗
[
1 −

√
1 −

( r

R

)2
]

(C.2)

Thus the detection probability is given by

W =

[
1 −

√
1 −

( r

R

)2
]

(C.3)

This relation takes only geometric factors into account. r is a fixed number at 25

mm. R can be determined by multiplying the radial velocity, vr, by the time-of-flight,

t. This equation breaks down when r < R. When this occurs, all particles hit the

detector.

The radial velocity, vr, is related to the kinetic energy by the relation

vr =

√
2Ek

m
(C.4)

where Ek is the kinetic energy and m is the mass.

The time-of-flight, t, is related to the length of the TOF spectrometer, dz and the

velocity in the z direction, vz, which is determined by the relation

vz =

√
2ZU

m
(C.5)
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where Z is the charge and U is the potential. Here we assume that the acceleration

velocity is much larger than the initial kinetic energy in the z direction, thus vz0
=

0 m/s. A calculation including an initial velocity in z, vz0
= 1500 m/s, changes the

collection percentage by 0.53%.

Putting vr and t together, we arrive at

R =

√
2Ek

m
∗ dz√

2ZU
m

=

√
Ek

ZU
∗ dz (C.6)

Thus, the detection efficiency is NOT related to the mass, but rather the kinetic

energy, charge, potential, and length of the time-of-flight apparatus. The potential

is a constant, z = 1, dz = 2 m, and r = 0.025 m. We can substitute everything into

Eq. C.3.

W =


1 −

√√√√√1 −


 r

dz

√
Ek

Z∗U




2

 (C.7)

The percentage of particles which will hit the detector for a certain kinetic energy

is plotted in Fig. C.2. Here a comparison is made between the different detectors

used in recent measurements. PSD denotes “position sensitive detector”.

Note: the parameters for the PSD are different than for the linear TOF, namely

U = 250 or 500 V, r = 0.040 m, and dz = 0.45 m.
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Figure C.2: Particle collection probability for three different ion TOF configurations
used in this work. The bottom graph shows a close up of the linear time of flight,
indicating the percent of particles collected at 3 eV and 9 eV. These values correspond
to the measured kinetic energy of C+ fragments in a pump-probe measurement. These
results are presented in Chapter 5.



Appendix D

Magnetic Field Shielding

A charged particle moving in a magnetic field traverses a helical path as can be

described by the Lorentz Force.

F = q(
−→E + −→v ×−→

B ) (D.1)

Due to their heavy mass and slow velocities, the magnetic force generally can

be neglected for ions for typical TOF lengths (meters). Electrons (and light ions),

however, will be strongly affected even by weak magnetic fields, such as the Earth’s,

which is approximately 50µT. Since the detection of particles is made within sub-mm

(0.25 mm) resolution, sufficient shielding becomes critical.

To reduce the magnetic field in the chamber, concentric cylindrical mu-metal

shields (Vacuum Schmelze GmbH) have been implemented. Mu-metal is a nickel-iron

alloy (77% Ni, 14% Fe, 5% Cu and 4%Mo), which has a particularly high magnetic

permeability. In theory, the most effective shielding is achieved through a geometric

progression of successive surfaces [MDC89], e.g. the relation between inner and outer

diameter. Practically, this is expensive and often only 2 or 3 cylinders provide enough

shielding to reduce the magnetic fields at the center of the cylinders to a negligible

level, a reduction of 8 orders of magnitude. For the present design, two cylinders were

enough to sufficiently shield the Earth’s magnetic field. The larger cylinder has an

outer diameter of 148 mm (slightly smaller than the inner diameter of the vacuum

cylinder). The smaller cylinder has an outer diameter of 100 mm. The thickness of

both is 1 mm.

The attenuation factor of each individual cylinder can be calculated by the relation
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[VAC88]:

Ai = µ · di

Di

(D.2)

where µ is the magnetic permeability, di is the thickness of the walls, and Di is the

diameter of the cylinder. A typical value of magnetic permeability is 25000. The

outer cylinder has an attenuation of 170 and the inner cylinder has an attenuation

of 250. The attenuation factor for two concentric cylinders can be calculated with

Eq. D.3.

STotal = A1 · A2 ·
[
1 −

(
D2

D1

)]
+ A1 + A2 + 1 (D.3)

The total magnetic shielding for the present apparatus is 1.4*104. The magnetic field

at the center of the cylinders is ≈ 50µT/1.4*104 = 3.5*10−9 T.

This attenuation was chosen so that the “deflection” of most of the electrons by the

magnetic field was within the resolution of the spectrometer. The lateral acceleration

can be calculated from the Lorentz force. The electric field will be neglected.

FL = z−→v ×−→
B = zvBsinθ (D.4)

where z is the charge, v is the velocity, B is the magnetic field, and θ is the angle

between the velocity vector and the electric field. The translation distance lx or ly

along the x or y axes (i.e., perpendicular to the time of flight axis) can be calculated

by considering that an electron will be released with a certain kinetic energy (Ekin)

and direction from which the velocity components can be calculated. The Ekin in the

determines the velocity, v(Ekin) =
√

2Ekin

m
and given the length of the time of flight

apparatus, L, t(Ekin) = L/v(Ekin).

The radius of the circular path, R, can be calculated with the centrifugal force,

zvBsinθ =
mv2

R
⇒ R(Ekin) =

mv

zB sin θ
(D.5)

from which the period of rotation, T , can be calculated

T (Ekin) =
2πR(Ekin)

v(Ekin)
=

2πm

zB sin θ
(D.6)

For a magnetic field of B = 3.5∗10−9T , the period of rotation, T , equals 10 ms. This

means that a complete cycle is not achieved during the time of flight (order of 1 µs.

For every kinetic energy value, an electron completes (t(Ekin)/T (Ekin)) 2πR(Ekin) =
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0.45 meters of the 2πR circumference. This corresponds to an arc and is equivalent

to s = 0.45 = Rθ(R(Ekin)) (see Fig. D.1(left) for the definition of the variables). The

displacement distance, ly, can be calculated by R(Ekin) − p(Ekin), with

p(Ekin) =
√

R2(Ekin) − h2(Ekin)

=
√

R2(Ekin) − R2(Ekin)sin2θ

= R(Ekin) cos θ. (D.7)

Thus, ly = R(1−cos θ). If the electron is released in the z direction (along the time-

of-flight axis), and approximate that the z component is perpendicular to the earth’s

magnetic field the displacement ly is shown in Fig.D.1(right) . The displacement

for electrons emitted with a kinetic energy of 0.18 eV is equivalent to the spatial

resolution. For electrons with larger kinetic energy, the displacement is smaller than

the resolution of the detector.
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Figure D.1: The left hand side of the figure shows the Lorentz force definitions for
the calculation. The magnetic field propagates out of the page. The right hand side of
the figure shows the dependence of the lateral motion as a function of electron kinetic
energy.

The design of the cylinders was intended for an apparatus yet to be built, thus the

arrangement of the mu-metal was not optimum for the present apparatus (particularly

the gap between the interaction region and vacuum chamber). The two cylinders were

open on the detector end, and partially open on the interaction region end. The open

ends allow for magnetic fields to penetrate into the center. Fig. D.2 shows a diagram
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of the designed mu-metal shielding inside the vacuum chamber. The outer shield was

punctuated with several small holes (∼ 50 %) at the position of the ion gauge and

vacuum pump as indicated in Fig. D.2. Small holes were chosen over one large hole

to reduce the amount of magnetic field penetration.

Mu Metal Shielding in Vacuum Chamber

148mm

40cm

Thickness: 1mm mu metal

detector

4cm

11cm

8cm

10cm 5cm

2.5cm29cm

Location of ion gauge and turbo pump

Inner diameter of 
outer wall

reducing flange

Interaction
Vacuum
Chamber

vacuum

Figure D.2: Cross section of vacuum apparatus, highlighting the mu-metal scheme.
Double walled mu-metal shielding exists only in the new section with the detector. For
the outer cylinder, several small holes were placed at the location of the ion gauge and
turbo pump. A stop-gap solution was proposed to connect the interaction region with
the new chamber.

From the 5 cm diameter aperture of the new vacuum chamber to the laser inter-

action region, a single walled cylinder of 5 cm diameter was constructed. Optimally,

the double walled cylinder would extend over the interaction region. The solution

presented here is only for a temporary adaptation to the present vacuum chamber,

and will no longer be used upon construction of the new chamber.


