CHAPTER 9

Variational Approach to Hydrogen
Atom in Uniform Magnetic Field

Applying the generalized variational approach presented in Section 7.1, we calculate the temperature-
dependent effective classical potential governing the quantum statistics of a hydrogen atom in a uniform
magnetic at all temperatures [18,19]. The zero-temperature limit yields the binding energy of the
electron which is quite accurate for all magnetic field strengths and exhibits, in particular, the correct
logarithmic growth at large fields.

9.1 Introduction

The quantum statistical and quantum mechanical properties of a hydrogen atom in an external mag-
netic field are not exactly calculable. Perturbative approaches yield good results only for weak uniform
fields as discussed in detail by Le Guillou and Zinn-Justin [64], who interpolated with analytic map-
ping techniques the ground-state energy between weak- and strong-field regime. Other approaches are
based on recursive procedures in higher-order perturbation theory [65-67]. Zero-temperature proper-
ties were also investigated with the help of an operator optimization method in a second-quantized
variational procedure [68]. The behavior at high uniform fields was inferred from treatments of the
one-dimensional hydrogen atom [69-71]. Hydrogen in strong magnetic fields is still a problem under
investigation, since its solution is necessary to understand the properties of white dwarfs and neutron
stars, as emphasized in Refs. [72-75].

A compact and detailed presentation of the bound states and highly accurate numerical values for
the energy levels are given in Ref. [76].

Equations for a first-order variational approach to the ground-state energy of hydrogen in a uniform
magnetic field based on the Jensen-Peierls inequality were written down a long time ago [77], but never
evaluated. Apparently, they merely served as a preparation for attacking the more complicated problem
of a polaron in a magnetic field [77 79].

In plasma physics, the equation of state of a hydrogen plasma, which is influenced by a magnetic
field, was recently investigated with the help of fugacity expansions for weak and strong fields [80-82].

In our approach, we calculate the quantum statistical properties of the system by an extension
of variational perturbation theory [4]. The crucial quantity is the effective classical potential. In the
zero-temperature limit, it yields the ground-state energy. Our calculations in a magnetic field require
an extension of the formalism in Ref. [4] which derives the effective classical potential from the phase
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130 9. Variational Approach to Hydrogen Atom in Uniform Magnetic Field

space representation of the partition function.

Variational perturbation theory has an important advantage over other approaches: The calculation
yields a good effective classical potential for all temperatures and coupling strengths. The quantum
statistical partition function is obtained from a simple integral over a Boltzmann-factor involving the
effective classical potential. The ground-state energy is then obtained from its zero-temperature limit.
The asymptotic behavior in the strong-coupling limit is emerging automatically and does not have to
be derived from other sources.

9.2 Effective Classical Representations for the Quantum
Statistical Partition Function

A point particle in d dimensions with a potential V' (x) and a vector potential A(x) is described by a
Hamiltonian

H(p,x) = 5= [p — eAR)]® + V() CRY
The quantum statistical partition function is given by the Euclidean phase space path integral
Z = %D'd:ﬂ)dp e AlPxl/h (9.2)
with an action
hB
Alp. x| = / dr [—ip(7) - %(7) + H(p(7), x(7))], (9-3)
0

and the path measure

N+1

dd:rdp
DlrDip = 1 / | 9.4
frron = 11 [[ %5 00

The parameter 5 = 1/kpT denotes the usual inverse thermal energy at temperature T, where kg is
the Boltzmann constant. From Z we obtain the free energy of the system:

1
F==glnZ. (9-5)
In perturbation theory, one treats the external potential V(x) as a small quantity, and expands the
partition function into powers of V(x). Such a naive expansion is applicable only for extremely
weak couplings, and has a vanishing radius of convergence. Convergence is achieved by variational
perturbation theory [4], which yields good approximations for all potential strengths, as we shall see
in the sequel.

9.2.1 Effective Classical Potential

All quantum mechanical systems studied so far in variational perturbation theory were governed by a
Hamiltonian of the standard form

2
P

Hp,x)=—+V 9.6

(0.%) = 2+ V(). (96)

The simple quadratic dependence on the momenta makes the momentum integrals in the path integral

(9.2) trivial. The remaining configuration space representation of the partition function is used to

define an effective classical potential Vg (xq), from which the quantum mechanical partition function
is found by a classically looking integral

dz
7 = / d)\d exp [— Vet (%x0)] s (9.7)
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where \yn = /27h2(3/M is the thermal wavelength. The Boltzmann factor plays the role of a local
partition function Z*°, which is calculated from the restricted path integral

e Vet (x0) = %0 — )\fhj{Ddx 8(xg — x(7)) e AR/, (9.8)
with the action
e} M
A= [ ar [Tz?(r) + V(x(r))] , (9.9)
0
and the path measure
N+1 d
d*x
Dir = li " : 9.10
foe= o 11 ] ey ) (0:10)

As pointed out in Section 4.1, the special treatment of the temporal average of the Fourier path

- o
xo = X(7) = % /O drx(r) 9.11)

is essential for the quality of the results. It subtracts from the harmonic fluctuation width (x2)!

the classical divergence proportional to T = 1/kpf of the Dulong-Petit law [4,20]. Such diverging
fluctuations cannot be treated perturbatively, and require the final integration in expression (9.7) to
be done numerically.

For the Coulomb potential V (x) = —e? /47meq |x| in three dimensions, the effective classical potential
in Eq. (9.8) can be approximated well by variational perturbation theory [4,20,53,55].

9.2.2 Effective Classical Hamiltonian

In order to deal with Hamiltonians like (9.1) which contain a p - A(x)-term, we must apply the
generalized variational procedure introduced in Section 7.2. Extending (9.8), we define an effective
classical Hamiltonian by the phase space path integral

e Matoo) = 700 — (2)! § D aD s — X(T)o(po — ) AP (9.12)

with the action (9.3) and the measure (9.4). This allows us to express the partition function as the
classically looking phase space integral

d?zqd?
7= / ﬁ exp [~ BHeg (Pos Xo)] (9.13)

where pg is the temporal average of the momentum:

—
po=p() =5 [ drp(r) (9.14)
k3 Jo
The fixing of pg is done for the same reason as that for xg, since the classical expectation value <p2)°1
is diverging linearly with T, just as (x2)°l.
In the special case of a standard Hamiltonian (9.6), the effective Hamiltonian in Eq. (9.13) reduces
to the effective classical potential, since the momentum integral in Eq. (9.12) can then be easily
performed, and the resulting restricted partition function becomes

2
X Po X
Z/Po:Xo — _ 7Xo 1
exp( QM) (9.15)
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with the local partition function of Eq. (9.8). Thus the complete quantum statistical partition function
is given by (9.13), with an effective classical Hamilton function

2

P
Heg(Po,X0) = ﬁ + Veg(x0)- (9.16)
As a consequence of the purely quadratic momentum dependence of H(p,x) in (9.6), the po-integral
in (9.13) can be done, thus expressing the quantum statistical partition function as a pure configura-

tion space integral over the Boltzmann factor involving the effective classical potential Veg(xg), as in
Eq. (9.7).

9.2.3 Exact Effective Classical Hamiltonian for an Electron in a Constant Magnetic Field

The effective classical Hamiltonian for the electron moving in a constant magnetic field can be cal-
culated exactly. We consider a magnetic field B = Be, pointing along the positive z-axis. The only
nontrivial motion of the electron is in the x—y-plane. In symmetric gauge the vector potential is given
by

A(x) = g(—y,% 0)- (9.17)

The choice of the gauge does not affect the partition function since the periodic path integral (9.2)
is gauge invariant. Ignoring the trivial free particle motion along the z-direction, we may restrict our
attention to the two-dimensional Hamiltonian

2

1
= 517 —wply(p,x) + EMu)%x2 (9.18)

H(p,x)
with x = (z,y) and p = (py, py). Here, wp = eB/2M is half the Landau frequency, and

L:(p.x) = (X X P)> = Tpy — Yps (9.19)
the third component of the orbital angular momentum.
It is useful at intermediate stages of the following development to treat the more general problem

2

1

H(p,x)

At the end of the calculation only the limit 2, — wp will be relevant. The partition function of the
problem is given by Eq. (9.13), with d = 2. Being interested in an effective classical formulation, we
have to calculate the path integral (9.12). First we express the § function for the averaged momentum
as a Fourier integral

5(p() p( )) = / _— eX[) :’ S pO eX[) ——/ d7 V( (5) p(7) (9 21)
inVO]Ving an aquiliary source

vo(€) = —% ¢ (9.22)

which is constant in time. Substituting the ¢ function in Eq. (9.12) by this source representation, the
partition function reads

ZPoXo —  lim d%¢ exp (—%5 . p0> j{D/Qszp §(x0 — TT))

Q| —ws

1 [
X exp {_E /O dr [—ip(7) - x(7) + H(p(7),x(7)) + vo (&) - p(T)]} . (9.23)
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Evaluating the momentum integrals and utilizing the periodicity property x(0) = x(h3), we obtain
the configuration space path integral

Po,Xo — i 2 _i . _ M . 2 —
Z _QLh—IEuB d §exp( h.ﬁ Po 2h25£ )%D x6(xo — x(7))

h3
X exp {—%/O dr {%x?(f) + %M (@2 — w2) x2(r) — iMuwp(x(r) x %(7)). + x(r) -jl(é)} } ,

(9.24)

where the source vy coupled to the momentum in (9.23) has turned to a source j; coupled to the path
in configuration space [17], with components

w B M
hB

Expressing the § function in the path integral of Eq. (9.24) by the Fourier integral

J1(§) = Mwp (voy(€), —voz(€) ) = (=&y: &) (9.25)

0

- 2,% hB3
5(x0 — X(7)) = / {57)2 exp (i - o) exp l—% / deg(n)-x(T)l (9.26)

with the new source

. K
ja(k) = 5 (9.27)
the partition function (9.24) can be written as
.o ) i M L\ [ &% ,
ZPoX0 — QE%B d*¢ exp <—E§-p0 - 2ﬁ2ﬂ£ ) / on)? exp (ik - xo) ZalJ(&, K)]. (9-28)

The functional Zg[J(&, k)] is defined as the configuration space path integral

B hB B
Zol3(€, K)] :f@% exp l—%/o dT/O dT'x(T)G—l(T,T')x(T')—% O dTJ({,n)-X(T)],

(9.29)

where we have introduced the combined source J(&, k) = j1(€) 4 j2(x). Formally, the solution reads

B B
Zol3(€, 8)] = Za[0] exp l% /0 dr /0 v 3(E, 8) G (r. 7)) I, n)] , (9.30)

where G(7,7’) is the matrix of Green functions obtained by inverting

h d?

Glr )= M (Zim T e SReni ) s (9.31)
e 2iwp L -4+ 02 —w? ' )
Bgr dr2 1 B

The inversion is easily done in frequency space after spectrally decomposing the § function into the
Matsubara frequencies wy, = 2mm/hg,

1 :
5(7’—7')=ﬁ Z glwm(r=""), (9.32)

m=—oo

The result is

B o1 2 2 _ 2 _
(wm—l—Ql wg 2wBWm ) (9.33)

Glm) = ama U " 2wpwn w2402 —u?
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At this point, the additional oscillator in Eq. (9.24) proves useful: It ensures that the determinant

det G(wp) = (w2, + Q2 — w%)z + 4wdw? (9.34)

is nonzero for m = 0, thus playing the role of an infrared regulator. The Fourier expansion
I - : /
G(r,7) = ﬁm;oo G(wm)e nr=T) (9.35)

yields the matrix of Green functions

ar.7)= (G Gt ) 0.3

which inherits the symmetry properties from the kernel (9.31):
Gon(T,7") = Gyy(r, 7). Goy(T,7") = =Gyp(, 7). (9.37)

A more detailed description of these Green functions is given in Appendices 9A and 9B.
Since the current J does not depend on the Euclidean time, the expression (9.30) simplifies therefore

to
1 h3 h3
Zal3(E W) = Zal0]exp | %€, w) / dar [ dr Gu(r | . (9.38)
0 0
The Green function has the Fourier decomposition
1 > w2 + 0% — w2 - /
G . ’ - m iR B 7’me(‘l’7‘l’) 939
SRR TIPS T vy | (939
where ()4 are the frequencies
Qi = Ql + wpB (9.40)

and Q > wpg, for stability.

The ratios in the sum of (9.39) can be decomposed into two partial fractions, each of them repre-
senting a single harmonic oscillator with frequency Q. and €2_, respectively. The analytic form of the
periodic Green function of a single harmonic oscillator is well known (see Chap. 3 in Ref. [4]), and we
obtain for the present Green function (9.39):

(7, 7) = h coshQ_s'_(\T—T’\ — hf3/2) N COShQ_'(|T—TI| — hf3/2) . (9.41)
4MQ, sinh A5, /2 sinh ABQ_ /2
By factorizing the determinant (9.34) according to
det G(wm) = (W2, + Q2) (w3, +92) (9.42)

and summing over the logarithms of this, we calculate the partition function as a product of two single
harmonic oscillators:
1 1

Zo = Zg|0] = .
o = Zall] 2sinh A3, /2 2sinh hBQ_ /2

(9.43)

The results (9.41) and (9.43) determine the generating functional (9.38). The Euclidean time integra-
tions are then easily done, and subsequently the k- and &-integrations in (9.28). As a result, we obtain
the restricted partition function

1. sinhhBQ. /2sinh hBQ_ /2 2 1
{_’3 (Eln Slnhﬁﬂﬂ+/+2/ Smhﬁﬂﬁ_h/ +;_A}_“312(p°’x°)+5Mﬂixg>}'
(9.44)

ZP0:X0 —

lim exp
1—WBRB
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Taking the limit Q, — wp, we find from (9.40): Q. — 2wg, 2 — 0, and therefore

i sinh 804 /2 sinh hfwpg . sinh ABY_ /2
1 = — =1. 9.45
0Ltln | WP, )2 hBwp ' 9ibs  hBO )2 (9.45)

Recalling the definition (9.12), we identify the exact effective classical Hamiltonian for an electron in
a magnetic field as

1. sinhhfwp p2 1

Hesr(pPo.x0) = 3 In “Then t oy @B I+ (Po,Xo0) + EMw?Bxg. (9.46)

Integrating out the momenta in Eq. (9.13), the configuration space representation (9.7) for the partition

function contains the effective classical potential for a charged particle in the plane perpendicular to
the direction of a uniform magnetic field:

1. sinhhAfwp

Ve ==1 9.47
eﬂ‘(XO) 6 n hﬂUJB ( )
Note that this is a constant potential.
Denoting the area f d?zg by A, we find the exact quantum statistical partition function
A b
Ay sinh 7fwp

After these preparations, we can turn our attention to the system we want to study in this chapter:
the hydrogen atom in a uniform magnetic field, where the additional Coulomb interaction prevents us
from finding an exact solution for the effective classical Hamilton function.

9.3 Hydrogen Atom in Constant Magnetic Field

The zero-temperature properties of the hydrogen atom without external fields are exactly known. For
the quantum statistics at finite temperatures an accurate approximative result was found with the
help of variational perturbation theory [53]. Similar calculations have been performed for the electron-
proton pair distribution function which can be interpreted as the unnormalized density matrix [20].

Here we extend this method to the hydrogen atom in a constant magnetic field. This extension
is quite nontrivial since the weak- and strong-field limits will turn out to exhibit completely different
asymptotic behaviors. Let us first generalize variational perturbation theory to an electron in a constant
magnetic field and arbitrary potential.

9.3.1 Generalized Variational Perturbation Theory

We consider once more the effective classical form (9.13) of the quantum statistical partition function
which requires the path integration (9.12) in phase space. Fluctuations parallel and vertical to the
magnetic field lines are now both nontrivial, and we must deal with the full three-dimensional system
and the components of the electron position and momentum are now denoted by x = (z,y, z) and
P = (pz, Py, p-)- For the uniform magnetic field pointing along the z-axis, the vector potential A (x)
is used in the gauge (9.17). Thus the Hamilton function of an electron in a magnetic field and an
arbitrary potential V(x) is

2
1
H(p,x) = r wil,(p,X) + = Mwix® + V(x). (9.49)
2M 2
The orbital angular momentum [, (p, x) was introduced in Eq. (9.19), and the frequency wp below
Eq. (9.18). The importance of the separation of the zero frequency components x¢ and pg was discussed
in Section 9.2. Their divergence with the temperature T" prevents a perturbative treatment. Thus it
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is essential to set up the perturbation theory only for the fluctuations around x¢ and pg. For this we
rewrite the action functional (9.3) associated with the Hamiltonian (9.49) as

A[pa X] = Afp)mxo [pa X] + Aint [pa X], (950)
where we have introduced the fluctuation action
x " . , 1 ,
APoXo[p x| = / dT{ —i[p(7) — po] - X(7) + m[p(T) —po]® — QalL.(p(T) — po, x(T) — %0)
0
1 2 (oL g2 1 2 2
+§MQL [x* (1) =xp ]+ §MQ|\ [2(T) — 20] }-, (9.51)

in which x* = (x,,0) denotes the transverse part of x and €2, > Qp, for stability. The interaction
is now

Al ¥ = [ e Vin p(r),X(7) = Alp. ]~ A% lp. ] 9.52)
with the interaction potential
Vi (7). x(7)) = 1 {p2(r) ~ [p(r) — po]*} —wsx"(r) x p*(7)
01 (7) =) x (04 () = b)) + 5 Mk (1)
—gMOY [x (1) —xg]* — GMOR(r) — 2P + V(x(r)),  (953)

where pt = (ps, py, 0). The frequencies Q = (Q5,Q 1, Q) are for the moment arbitrary. The decom-
position (9.50) forms the basis for the variational approach, where the first term in the action (9.50)
allows an exact treatment. The transverse part was given in Section 9.2.3 and the longitudinal part is
trivial, since it is harmonic with frequency €. The associated partition function is given by the path
integral

2877 = § D 4D d(xo — X(7)3(p0 — plr))e & P, (9.54)

which can be performed. Details are given in Appendix 9C. The result is

RBQL /2 RBQ_J2 hBQYy /2

Po,X0 _ 9.55
Za sinh 3Q /2 sinh hFQ_ /2 sinh b3 /2 (9.55)

where auxiliary frequencies are composed of the frequencies Qp, Q) in the action (9.51) as
QL (p,01) =0, +Qp. (9.56)

This partition function serves in the subsequent perturbation expansion as trial system which depends
explicitly on the frequencies Q. The correlation functions are a straightforward generalization of (9.36)
to three dimensions:

GXo(1,7") G;‘g(ﬂ ') 0
G*(r,7") = | Gxo(r,7") GFo(r,7) 0 , (9.57)
0 0 GXo(r,7")

whose explicit form is derived in Appendix 9C.
The Q-dependent action in Eq. (9.50) is treated perturbatively. Writing the partition function
(9.12) as

ZPoXo — (27rh)3fD’3mD3p §(xo — x(7))d(po — p(7)) exp {—%A?f’xo p, x]}
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I
X exp {_E / 47 Vins (p(7), x(T))} , (9.58)
0
the second exponential is expanded into a Taylor series, yielding

ZPoxo — (27h)> % D'ng?’p §(xo — x(1))8(po — p(7)) exp {—%Agony b x]}

hB 1
X ll — %/0 dr Vine (P(7), x 2%2/ dT1/ dra Vint (P(71), X(71)) Vint (P(72), X(72)) —1 .
(9.59)

In three dimensions, the harmonic expectation values are defined with respect to the restricted path
integral as

()R = gg@ F 070D .. i — X))o D) ex {—%A?f”“’ b, x]}. (9.60)

Similar to the procedure presented in Section 7.2, we rewrite the Taylor expansion (9.59) as a cumulant
expansion of the form (7.21). The first cumulants are given by Eqgs. (7.22). Expressing the restricted
partition functions by the help of the relations (7.12), we obtain a perturbation series for the effective
classical Hamiltonian:

nt1 1B n\ PosXo
Heg(po, x0) = —Banp‘“xD + - P Z hln)n' < </0 dTWm(D(T),X(T))) > . (9.61)

Q,c

The Nth-order approximation of the effective classical Hamiltonian is then given by

n+1 hB n \ Po,Xo
Hgv)(po,xo)__%l Zpo,xo+ﬁz hn)n‘+ <</O dTvint(p(T),x(T))> > . (9.62)

Q,c

This expression depends explicitly on the three parameters €. Since the exact expression (9.61) is

independent of €, the best approximation for Hgv) (Po, X0) should minimally depend on €. The
optimal solution is obtained by determining the parameters from the conditions

VaH (po, x0) = 0. (9.63)

The solutions for the optimal variational parameters to Nth order are given by
Q(N) = (Q(BN) (pOa XO)) QiN) (pOa X0)7 Q‘(|N) (p07 XO)) - (964)

Inserting these into Eq. (9.62) yields the optimal effective classical Hamiltonian H™) (pg, xo).

9.3.2 First-Order Effective Classical Potential

The first-order approximation of the effective classical Hamiltonian (9.62) reads

Hg (po, x0) = —%ln ZB (Vi (p, %) )0 (9.65)
The invariance of the system under time translations makes one of the time integrals in the expansion
(9.61) trivial, yielding merely an overall factor h3. In particular, the first-order expectation value of
Vint (%) in (9.65) is independent of the Euclidean time .
In order to calculate ’HS)(po,xo), we use the two-point correlation functions derived in Ap-
pendix 9C, and the vanishing of the linear expectations, e.g.

(Pe(T) =P, )™ =0 (9.66)
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to find

2

MG (Po. x0) = 0 = wnla (Po. X0) + MwB(xO—i—yO) + W (o). (9.67)

where we have collected all terms depending on the variational parameters €2 in the potential

1 x
Wg)(xo) = —Bln ZBoX — MQp(wp — Qp)b% (x0) + M (w% - Qi) a’ (xg) — ZWQHQH(XO)
+(V(x))g ™. (9.68)

The quantities a? (xo), aﬁ (x0), and b% (x¢) are the transverse and longitudinal fluctuation widths

a? (x0) = GR7°(0), af(xo) = GBY(0), b3 (x0) = M?Z GPo0(0). (9.69)
Note that the potential (9.68) is independent of pg. This means that the approximation (9.67) to the
effective classical Hamiltonian contains no coupling of the momentum pg to a variational parameter
€, such that the optimal QM determined by minimizing 'Hg)(po, Xg) is independent of pg. We may
therefore integrate out pg in the phase space representation of the first-order approximation for the
partition function

A / 7‘1(50231)’0 ~6Hg (Po.xo) (9.70)
™

to find the pure configuration space integral

3
70 — / 4o sl xo), (9.71)
>\th

in which Wg) (xg) represents the first-order approximation to the effective classical potential of an
electron in a potential V(x) and a uniform magnetic field.

9.3.3 Application to the Hydrogen Atom in a Magnetic Field

We now apply the formulas of the preceding section to the Hamiltonian (9.49) with an attracting
Coulomb potential

62

V(x)=— (9.72)

dmeg |x|’

where |x| is the distance between the electron and the proton. The only nontrivial problem is the
calculation of the expectation value (V(x(7)))g " in Eq. (9.68). This is done using the so-called
smearing formula, which is a Gaussian convolution of V' (x). This formula was first derived by Feynman
and Kleinert [8], and exists now also in an extension to arbitrary order [20,53]. The generalization
to position and momentum dependent observables was given in the phase space formulation [17]. We
briefly re-derive the first-order smearing formula. The expectation value is defined by

(VR = TE D 4D Vi) 80 = )50 — B E 0 (0.7

Now we substitute the potential by the expression
V(x(r')) = / 32V (x)5(x — x(r'))

34 h3
= /d?’m V(x)/ (;i exp [ik” (x — x0)] exp {—%/0 drjT (r)[x(r) — Xo]} . (9.74)

w

m)
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where we have introduced the source
j(r) =ihsd(T — 7). (9.75)
Inserting the expression (9.74) into Eq. (9.73) we obtain

(V(x(r')) )™ = f / ¢V (x) / (;iT) explin - (x —x0)] ZE[],  (9.76)

with the harmonic generating functional
Z8[5) = (2n1)* § D20 5(x0 = X(1)5 (k0 ~ D)
1 1 [he
X exp —g./lgo’x“ [p, x| — £/ dr j(7) - [x(7) — %0] ¢ - (9.77)
0
The solution is

1 hB B3
Zsoyxo [j] — Zsf;o’xg exp [ﬁ /0 dT/O dle(T> G (T-, Tl)j(T/) (978)

with the 3 x 3-matrix of Green functions of Eq. (9.57). The properties of the Green functions are
discussed in the Appendices 9A and 9B. Expressing the source j(7) in terms of k via Eq. (9.75) and
performing the T-integrations, we arrive at

VO™ = [ @0V [ 55 e fin- =) exp [-grGo@O) k] (079

Recognizing that G39(0) = G735 (0) vanish, the s-integral is easily calculated and leads to the first-order
smearing formula for an arbitrary position dependent potential

<(7' Po,Xo _ 1 32V (x) exp | — (‘7" — ‘Z'O)Q + (y — yO)2 (Z - ZO)2
R = T [#2veg e l . - ] ,
(9.80)

the right-hand side containing the Gaussian fluctuation widths (9.69).
For the Coulomb potential (9.72) that we are interested in, the integral in the smearing formula
(9.80) can not be done exactly. An integral representation for a simple numerical treatment is

1
62 Po,Xo B 62 \/ﬁ df
<T€0|x| >n e ?“”(’“)0/ a2 (x0) + €2[a3 (xa) — a7 (x0)]
2

X ex _5_ 37(2) + yg 28
p { 2 <a2|(X0) + 52[a2l(x0) — aﬁ(XO)] + a|2(XO)> } . (981)

With this expression we know the entire first-order effective classical potential (9.68) for an electron
in a Coulomb potential and a uniform magnetic field which has to be optimized in the variational
parameters 2.

9.4 Results

We are now going to optimize the effective classical potential by extremizing it in €@ at different
temperatures and magnetic field strengths. In the zero-temperature limit this will produce the ground-
state energy.
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9.4.1 Effective Classical Potential for Different Temperatures and Magnetic Field Strengths

The optimization of Ws(‘zl) (x0) proceeds by minimization in € and must be done for each value of xg.
Reinserting the optimal parameters () (xq) into the expressions (9.68) and (9.81), we obtain the
optimal first-order effective classical potential W (1) (xg). The calculations are done numerically, where
we used natural units i = e2 /4meg = kp = ¢ = M = 1. This means that energies are measured in units
of eg = Me*/(4meg)?h? = 2Ry ~ 27.21 eV, temperatures in eg/kp ~ 3.16 x 10° K, distances in Bohr
radii ap = (47eg)?h?/Me? ~ 0.53 x 10719 m, and magnetic field strengths in By = e3M?/h3(47meq)? ~
2.35 x 10° T = 2.35 x 10° G. Figure 9.1 shows the resulting curves for various magnetic field strengths
B and an inverse temperature § = 1/7 = 1. Examples of the lower temperature behavior are shown
in Fig. 9.2 for 8 = 100. To see the expected anisotropy of the curves in the magnetic field direction
and in the plane perpendicular to it, we plot simultaneously the curves for W(l)(xo) transversal to
the magnetic field as a function of pg = /22 + y3 at z = 0 (solid curves) and parallel as a function
of zp at pg = 0 (dashed curves). The curves become strongly anisotropic for low temperatures and
increasing field strengths (see Fig. 9.2). At a given field strength B, the two curves converge for large
distances from the origin, where the proton resides, to the same constant depending on B. This is due
to the decreasing influence of the Coulomb interaction which shows the classical 1/r-behavior in each
direction. When approaching the classical high-temperature limit, the effect of anisotropy becomes
less important since the violent thermal fluctuations do not have a preferred direction (see Fig. 9.1).
For pg — oo or zg — 00, the expectation value of the Coulomb potential (9.81) tends to zero. The
remaining effective classical potential

1 1 x 1
Ws(2 )(Xo) — _Eln Z500 — Qp(wp — Qp) b3 + (wh — Q) o — iﬂﬁaﬁ (9.82)
is a constant with regard to the position xp, and the optimization yields Qg) = Qﬁ_l) = wp and

Q‘(ll) = 0, leading to the asymptotic constant value

W(l)(xo) . _l Bwp

5 S e (9.83)

The B = 0-curves are of course identical with those obtained from variational perturbation theory for
the hydrogen atom [53,55].

9.4.2 Ground-State Energy of the Hydrogen Atom in Uniform Magnetic Field

In what follows we investigate the zero-temperature behavior of the theory. Figures 9.1 and 9.2
show that the minimum of each potential curve lies at the origin. This means that the first-order
approximation to the ground-state energy for a fixed magnitude of the magnetic field B is found by
considering the zero-temperature limit of the first-order effective classical potential in the origin

EW = lim w®)(0). (9.84)

B—00
Thus we obtain from Eq. (9.68) the variational expression for the ground-state energy:

(1) 1 2 2 Q 1\’
Eg (B)ZE(QL—HUB)—I—T— — ), (9.85)
Q

|

where the expectation value for the Coulomb potential (9.81) can now be calculated exactly since the
exponential in the integral simplifies to unity:

R (TR SR R/ ol 7L
<|x| >g_\/:ml I = oy om (9.86)
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w@ 4

po/aB,zo/aB

FIGURE 9.1: Effective classical potential (in units of 2Ry) as a function of the coordinate po = \/ 2 + ya
perpendicular to the field lines at zo = 0 (solid curves), and parallel to the magnetic field as a function of zo at
po = 0 (dashed curves). The inverse temperature is fixed at 5 = 1, and the strengths of the magnetic field B
are varied (all in natural units). The small figure enlarges the range 0 < pg, z0 < 1 with noticeable anisotropy.

The equations (9.85) and (9.86) are independent of the frequency parameter Qp such that the opti-
mization of the first-order expression for the ground-state energy (9.85) requires the satisfying of the
equations

0 )
0B (B) L 9Ba’(B) L (9.87)
a0, o0,

Reinserting the resulting values Q(ll) and Ql(‘l) into Eq. (9.85) yields the first-order approximation for

the ground-state energy E(l)(B). In the absence of the Coulomb interaction the optimization with
respect to 2, yields Q(j) = wp, rendering the ground-state energy E(l)(B) = wp, which is the zeroth
Landau level. An optimal value for € does not exist since the dependence of the ground-state energy
of this parameter is linear in Eq. (9.85) in this special case. To obtain the lowest energy, this parameter
can be set to zero (all optimal frequency parameters used in the optimization procedure turn out to
be nonnegative). For a vanishing magnetic field, B = 0, Eq. (9.85) exactly reproduces the first-order
variational result for the ground-state energy of the hydrogen atom, EV)(B = 0) ~ —0.42[2Ry],
obtained in Ref. [8].

To investigate the asymptotics in the strong-field limit B — oo, it is useful to extract the leading
term wp. Thus we define the binding energy

£(B) =wp — E(B) (9.88)

which possesses a characteristic strong-field behavior to be discussed in detail subsequently. The result
is shown in Fig. 9.3 as a function of the magnitude of the magnetic field B, where it is compared with
the high-accuracy results of Ref. [64]. As a first-order approximation, this result is satisfactory. It
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w3

po/aB,zo/aB

FIGURE 9.2: Analogous plot to Fig. 9.1, but at the larger inverse temperature 5 = 100.

is of the same quality like other first-order results, for example those from the operator optimization
method in first order of Ref. [68]. The advantage of variational perturbation theory is that it yields
good results over the complete range of the coupling strength, here the magnetic field. Moreover, as
a consequence of the exponential convergence [4, Chap. 5], higher orders of variational perturbation
theory push the approximative result of any quantity very rapidly towards the exact value.

The Weak-Field Case

We investigate now the weak-field behavior of our theory starting from the expression (9.88) and the
expectation value of the Coulomb potential (9.86) in natural units:

W gy =B _ QL my_B_ 10
S =5 -5 (1+3) - 55—\ =hn) (9.89)

with

1 1-T=7
1 . 9.90
IV R R (9.90)

In comparison with Eq. (9.85) we introduced new variational parameters

h(n) =

= — Q= QL (991)
and utilized, as the calculations for the binding energy showed, that always n < 1. Performing

the derivatives with respect to these variational parameters and setting them zero yields conditional
equations which can be written after some manipulations as

Q Q1 11 1-yT—g
oy =——(14= In 1) Lo, (9.92)
4 ml—n 2/1—-n 14+41—n
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FIGURE 9.3: First-order variational result for the binding energy (in units of 2 Ry) as a function of the strength
of the magnetic field. The dots indicate the values of Ref. [64]. The dashed curve shows the simple estimate
of Landau-Lifschitz [69] 0.51n®B, which is closely related to the ground-state energy of the one-dimensional
hydrogen atom [70,71].

L BQ+1 n 1 | 1-yI—=n
- — —= 1+ =/ —= n
4 802 2V mQyI—-n 1+/1—7

Expanding the variational parameters into perturbation series of the square magnetic field B2,

1 |
_ = 0. 9.93
B ( )

n(B)=>_ mB™  QB)=> QB (9.94)
n=0 n=0

and inserting these expansions into the self-consistency conditions (9.92) and (9.93) we obtain order
by order the coefficients given in Table 9.1. Inserting these values into the expression for the binding
energy (9.89) and expand with respect to B2, we obtain the perturbation series

B o0
W(p)y==— B2, 9.95
eH(B) 5 ,;JE" (9.95)

The first coefficients are also given in Table 9.1. We find thus the important result that the first-order
variational perturbation solution possesses a perturbative behavior with respect to the square magnetic
field strength B? in the weak-field limit thus yielding the correct asymptotics. The coefficients differ
in higher order from the exact ones but are improved in higher orders of the variational perturbation
theory [4, Chap. 5].

Asymptotical Behavior in the Strong-Field Regime

In the discussion of the pure magnetic field below Eq. (9.87) we have mentioned that the variational
calculation for the ground-state energy which is thus associated with the zeroth Landau level yields a
frequency Q) oc B while € = 0. Therefore we use the assumption

Q> QH’ Q” < B (9.96)
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TABLE 9.1: Perturbation coefficients up to order B® for the weak-field expansions of the variational parameters
and the binding energy in comparison to the exact ones of Ref. [65].

n 0 1 2 3
40572 168289657 3886999332075
N 1.0 _IPT 05576 oo 0T 13023 —
K 7168 1258815488 884272562962432
~ —4.2260
16 997 129397573 5244316671877
0 =2~ 0.5659 T 20,6042 -0 q0199 @ 22RO
n 97 448 39337984 55267035185152
~ 2.9038
4 9 801973 25644980770
en | —— ~ —0.4244 T~ 0.2209 T 01355 LPPT
37 128 1835008 322256764928
~ 0.2435
53 5581
en [65] 0.5 0.25 — 2%~ —0.2760 290 12112
192 4608

for the consideration of the ground-state energy (9.85) of the hydrogen atom in a strong magnetic field.
In a first step we expand the last expression of the expectation value (9.86) which corresponds to the
condition (9.96) in terms of €2/Q; and reinsert this expansion in the equation of the ground-state
energy (9.85). Then we omit all terms proportional to C'/2; where C stands for any expression with
a value much smaller than the field strength B. In natural units, we thus obtain the strong-field
approximation for the first-order binding energy (9.88)

@ _B_(, B O o, Y 9.97
EQL,Q“ 2 <2 +SQL+ 4 + ™ n4Ql ’ ( )

As usual, we consider the zeros of the derivatives with respect to the variational parameters

1 1
38&179” Lo agéi:ﬂu Lo (9.98)
o9 - o, 7 ’
which lead to the self-consistence equations
2
Q = -—— (an”—anL—i-Z—lnél), (9.99)
m

NG
[ B Q

Let us first consider the last equation. Utilizing the second of the conditions (9.96) we expand the
second root around unity yielding the expression

0, B, [, %,
2 T B m2B3

..., (9.101)

where the terms are sorted with regard to their contribution starting with the biggest. Since we are
interested in the strong B limit, we can obviously neglect terms suppressed by powers of 1/B. Thus
we only consider the following terms for the moment:

B Q
Q) ~—+

: 9.102
5 - (9-102)
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Inserting this into the other condition (9.99), expanding the corresponding logarithm, and, once more,
neglecting terms of order 1/B, we find

2
Q =~ NG (InB—InQ)+mn2-2). (9.103)

To obtain a tractable approximation for 2, we perform some iterations starting from

fom _ 2 2

Reinserting this on the right-hand side of Eq. (9.103), one obtains the second iteration Ql(‘Z). We

stop this procedure after an additional reinsertion which yields

\/@ = \% (ln 2Be™? — 2In [\% {m 2Be™% — 2In (\%m 2Be_2> H) . (9.105)

The reader may convince himself that this iteration procedure indeed converges. For a subsequent
systematical extraction of terms essentially contributing to the binding energy, the expression (9.105)
is not satisfactory. Therefore it is better to separate the leading term in the curly brackets and expand
the logarithm of the remainder. Then this proceeding is applied to the expression in the angular
brackets and so on. Neglecting terms of order In"3B, we obtain

2
¥ ~ = (ln 2Be2 + ln% — 2lnln 23@‘2) . (9.106)

The double-logarithmic term can be expanded in a similar way as described above:

In2—2 In2—-2 1(In2-2)2 _
2= =Inln B - O(n™®B).  (9.107
Inln 2Be In [lnB (l—l— 5 )} nln B + 5 5 2B + O(In"°B) ( )

Thus the expression (9.106) may be rewritten as

2 2a a?
JO® = Z (mB—2nnB+ =+ S 1b)| +O( 3B 9.108
with abbreviations
a=2-In2~1.307, b= lng — 2~ —1.548. (9.109)

The first observation is that the variational parameter €2 is always much smaller than €, in the high
B-field limit. Thus we can further simplify the approximation (9.102) by replacing

B 2 QH B

without affecting the following expression for the binding energy. Inserting the solutions (9.108) and
(9.110) into the equation for the binding energy (9.97) and expanding the logarithmic term once more
as described, we find up to the order In=2B:

1
sM(B) = = (ln2B —4InBInlnB +41n’ln B — 4blnln B + 2(b+ 2) In B + b?
m

1
5 [8In’In B — 8bInln B + 27 ) + O(In"*B). (9.111)
n

Note that the prefactor 1/ of the leading In? B-term differs from a value 1 /2 obtained by Landau and
Lifschitz [69]. Our different value is a consequence of using a harmonic trial system. The calculation
of higher orders in variational perturbation theory would improve the value of the prefactor.
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TABLE 9.2: Example for the competing leading six terms in Eq. (9.111) at B = 10° By =~ 2.35 x 10*° T.
(1/m)In’B  —(4/7)inBnln B (4/7)In*In B —(4b/7)Inln B [2(b+2)/7]In B b?*/7
42.1912 —35.8181 7.6019 4.8173 3.3098 0.7632

At a magnetic field strength B = 10° By, which corresponds to 2.35 x 10T, the contribution
from the first six terms is 22.87 [2Ry]. The next three terms suppressed by a factor In™*B contribute
—2.29 [2Ry], while an estimate for the In"?B-terms yields nearly —0.3 [2Ry]. Thus we find

M (10%) = 20.58 + 0.3 [2Ry]. (9.112)

This is in very good agreement with the value 20.60 [2 Ry] obtained from the full treatment described
in Section 9.4.2.

Table 9.2 lists the values of the first six terms of Eq. (9.111). This shows in particular the significance
of the second-leading term —(4/7)In B Inln B, which is of the same order of the leading term (1/7)In*B
but with an opposite sign. In Fig. 9.3, we have plotted the expression

1

=3 In’B (9.113)

eL(B)
from Landau and Lifschitz [69] to illustrate that it gives far too large binding energies even at very
large magnetic fields, e.g. at 20008y o 108 T.

This strength of magnetic field appears on surfaces of neutron stars (106 — 108T). A recently
discovered new type of neutron star is the so-called magnetar [83]. In these, charged particles such as
protons and electrons, produced by decaying neutrons, give rise to the giant magnetic field of 10! T.
Magnetic fields of white dwarfs reach only up to 102 —10* T. All these magnetic field strengths are far
from a direct realization in experiments. The strongest magnetic fields ever produced in a laboratory
were only of the order 10T, an order of magnitude larger than the fields in sun spots which reach
about 0.4 T. Recall, for comparison, that the earth’s magnetic field has the small value of 0.6 x 1074 T.

It should, however, be noted that there are systems in solid state physics, where a rescaling of
variables corresponds to extremely strong magnetic fields. In a donor impured semiconductor like
GaAs, the properties of the system of an electron bound to the positively charged donor nucleus in
an external magnetic field of strength 6.57 T are comparable to a hydrogen atom in a field of strength
2.35 x 10° T [84]. The reason for this is the strongly reduced effective mass of the electron bound to
the donor nucleus, the large dielectric constant of the semiconductor, and thus a much larger radius of
the orbit of the electron. Hence the Coulomb interaction between the donor nucleus and the electron
is much weaker than in the hydrogen atom. This approximate analogy between both systems can thus
be used to investigate the effects of extremely strong magnetic fields in earthbound experiments.

As we see in Fig. 9.3, the non-leading terms in Eq. (9.111) give important contributions to the
asymptotic behavior even at such large magnetic fields. It is an unusual property of the asymptotic
behavior that the absolute value of the difference between the Landau-expression (9.113) and our
approximation (9.111) diverges with increasing magnetic field strengths B, only the relative difference
decreases.

9A Generating Functional for Particle in Magnetic Field and
Harmonic Oscillator Potential

For the determination of the correlation functions of a system, we need to know the solution of the
two-dimensional generating functional in the presence of an external source j = (jz, jy):

Z%0[j] = A4 7{ D2z §(xq — x(r)) e A" bedl/h (9A.1)
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The action of a particle in a magnetic field in z-direction and a harmonic oscillator reads
x . " M, . . 1 2 2 2
A*[x;j] = ; dr - % (1) —iMQp([x(T) — x0] X %X(7)), + 5]\/[ Q7 —QF) [x(1) — xq

() - (x(r) xO>], (9A.2)

where 2] > Qp, for stability. The position dependent terms are centered around xo = (zg, yo), which
is the temporal average of the path x(7), and thus equal to the zero frequency component of the Fourier
path

(o]
x(T) =x0 + Z (xmew"” + xfne_me) (9A.3)

m=1

with the Matsubara frequencies w,, = 27m/h3 and complex Fourier coefficients x,,, = x'¢ + ixim.
Introducing a similar Fourier decomposition for the current j(r) with Fourier components j,, and
using the orthonormality relation

1o
i | dreenmer b (94.4)
the generating functional can be written as
. . .
. d.%'redl'lmdyredylm 4 P
7%o[3] — m=m YImIm m (XX idmadm )/ 9A .5
= TL| /R oA

with
A (X, X3 3ms 3in) = hWBM (w3, + Q7 — QF) (23] + [z ] + [Wie]® + [yim']?)
+AiRBMQpwm (Tioyin — T yre) + 20B(2) jore + Tomdamm + Ynedyre + Ui dymt).  (9A.6)

Expression (9A.5) is equivalent to the path integral (9A.1) and after performing the integrations and
re-transforming the currents

1 " :
jm = — drj —tmT 9A.7
bu= 5 | ariee (9.7)
we obtain the resulting generating functional
1 h3 h3
Z*0[j] = 7% exp W/ dT/ dr'j(r)G* (1, 7")j(r") (9A.8)
0 0
with the partition function
o0 w4
7x =770 = [] m (9A.9)

oo 40F0% + (Wh +07)?

and the 2 x 2-matrix of Green functions
X0 / X0 /
ainr) =GR R T) ). (9A.10)

Gy (r,7") Gy (r,7")

The elements of this matrix are position-position correlation functions. This can easily be proved
by applying two functional derivatives with respect to the desired component of the current to the
functional (9A.1), for example

1 52
Z%0(§] 64 ()05 (T")

G (r.7") = ((2(r) — 20) (2(+”) — 20) ™ = [fﬂ 7% m] A

j=0
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where we have defined expectation values by
A2 — x
(= j'{ D2 . §(xo — X(7))e— A bl/h, (9A.12)

From the above calculation we find the following expressions for the Green functions in Fourier space
(0 < 7,7 <hp):

Gr(r ) = (2(r)a(r))™ = Gy (r.7) = (§(r) 5(7))™

7 & W24 02 0 I
= — Wm\T=T 9A.13
MB mz::l 10202, + (w2, + Q% — Q)2 ° ’ (9A.13)
Grs(mr') = (&) g(r')) = =Gys(r,7') = = (§(r) &(r') )™
4QB > W, —iw ( _ I)
- m(T=7"), 9A.14
M8 Z,l 40502+ (@3, + 2 — g2 © (94-14)

where, for simplicity, X(7) = x(7) — x¢. It is desirable to find analytical expressions for the Green
functions and the partition function (9A.9). All these quantities possess the same denominator which
can be decomposed as

40302, + (W2, + 02 — Q%)% = (W2, + Q%) (W2, + Q%) (9A.15)
with frequencies
QL (2p,0,) =0, +Qp. (9A.16)

Therefore the partition function (9A.9) can be split into two products, each of which known from the
harmonic oscillator [4, Chap. 5]:

o w2 o w? hBQ, /2 hBQ_ /2
*0 = __m m _
? H L)?n + Qi} H L}?n + Qz_} sinh A3, /2 sinh h3Q_ /2 (9A.17)

m=1 m=1

Now we apply the property (9A.15) to decompose the Green functions (9A.13) into partial fractions,
yielding

Gxo(r, ') = G (T, ')

1 > | — S L ity _ 1
_ _ - Wm (T—T - W \T—T ) __ 9A.18
Mp (al m;oo S e ;oo g+ 2 o) 41

with coefficients

02— +03 QL +0p

02 -0 103 Q-
02 -0z 20, '
+ —

| -0 20, (94.19)

Q1 = Qg = —

Following Ref. [4, Chap. 3], sums of the kind occurring in expression (9A.18) are spectral decomposi-
tions of the correlation function for the harmonic oscillator and can be summed up:

o0

1 —iwm (T—7") _ hﬁ /
m=—o0
Here we introduced the expression
~ coshQ. (|t — 7| — hB/2) ,
= , A.21
g (7,7 Snh A2 , 7,7 € (0, hf), (9 )



9A Generating Functional for Particle in Magnetic Field and Harmonic Oscillator Potential 149

with e € {+, —, L, ||}. Thus, the za- and yy-correlation functions can be expressed by

%0 %o L ([ hp h3 1
ze('r-, Tl) = ny(T7 7'/) = W <Mg+(7', 7'/) + m _(T, Tl) — Q+Q> s (9A22)

where, from Eq. (9A.16), Q1 = Q4 (2p, Q1) are functions of the original frequencies 5 from the
magnetic field and © from the additional harmonic oscillator (9A.2). Tt is obvious that expression
(9A.22) reduces to the Green function of the harmonic oscillator for Qp — 0:

1 (hﬁm

limO G(r, ") = Wﬂi 5

Qp—

gi(r.7") - 1) (9A.23)

with ¢ € {x,y}. In this limit, the partition function (9A.17) turns out to be the usual one [4, Chap. 5]
for such a harmonic oscillator
h3Q, /2
lim 2% = —————. 9A.24
Q50 sinh h3Q, /2 ( )
It is worth mentioning that with the last term in Green function (9A.22) the classical harmonic
fluctuation width

1

is subtracted. This is the consequence of the exclusion of the zero frequency mode of the Fourier
path (9A.3) in the generating functional (9A.1). The necessity to do this has already been discussed in
Section 9.2. The other terms in Eq. (9A.22) are those which we would have obtained without separating
the zg-component. Thus these terms represent the quantum mechanical Green function containing all
quantum as well as thermal fluctuations. It is a nice property of all Green functions discussed in this
chapter that

@R (r.7) = GER(r, ) — G (9A.26)

Such a relation exists for all other Green functions appropriately, including momentum-position cor-
relations which we consider subsequently.

The knowledge of relation (9A.20) makes it quite easy to determine the algebraic expression for
the mixed zy-correlation functions. Rewriting Eq. (9A.14) as

Gyo(r, ") = =Go(T,7')

= ! 0 3 ! —iwm (r—7") S 1 —iwm (T—7")
B 2MpBQ, Ot (m_zoo w2, —|—Q3_ ¢ + Z w2, T 02 e (9A.27)

m=—0o0

and applying the derivative with respect to 7 to relation (9A.20), we obtain the following expression
for the mixed Green function:

Gy (m,m") = =Go(r,7)
h

= T, {(O(r = ha(r. 7)) = h (7, 7)] = O(F = ) he (7', 7) = h_ (7. 7)]},  (9A.28)
where we have used the abbreviation

N sinh Q. (1 — 71" = hf3/2)
he(r, ) = sinh B9, /2

7,7 € (0, h3), (9A.29)

with e € {+, —, L, ||}. Note that classically (zy)°" = 0 such that Eq. (9A.26) reduces to

G;ZOJ (r,7) = G%r; (1, 7"). (9A.30)
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The Heaviside function in Eq. (9A.28) is defined symmetrically:

1 7>,
O(r—71)=L1/2 1=1, (9A.31)
0 T<7.

In the quantum mechanical limit of zero-temperature (5 — o), the Green function (9A.22) simplifies
to

h , ,
Jim @) = Jim Gy(r.7) = (e_QJr‘T_T |4 e=R-lr=r ‘), (9A.32)
— 00 — 00 1

while in Eq. (9A.28) only hy (7, 7") changes:

lim he(r,7')=—e =07, (9A.33)

B—o0

9B Properties of Green Functions

In this section we list properties of the Green functions (9A.22) and (9A.28) which are important for
the forthcoming consideration of the generating functional with sources coupling linearly to position
or momentum in Appendix 9C. For all relations we suppose that 0 < 7,7/ < hg.

9B.1 General Properties

A first observation is the temporal translational invariance of the Green functions:

G (nr) =GR -7, (9B.1)

where each of the indices i, j stands for x or y, respectively. For equal times we find

1 ( hg % 1 1 i=j
G*? =— | — — - - ., 9B.2
0 =15 (e 0+ o0 - ) < { o 15T @B
Moreover we read off the following symmetries from the expressions (9A.22) and (9A.28):

1 i=j

Soial (9B.3)

G (r,7') =G (', 1) x {

Otherwise,
G (T, ') = G3Y (', 7). (9B.4)

Throughout the chapter we always use periodic paths. Hence it is obvious that all Green functions are
periodic, too:

ij‘) 0,7") = fo (hB, "), ij” (1,0) = ij‘) (1, hB3). (9B.5)

9B.2 Derivatives of Green Functions

We now proceed with derivatives of the Green functions (9A.22) and (9A.28), since these are essen-
tial for deriving the generating functional of position and momentum dependent correlations in the
forthcoming Appendix 9C.

Before considering the concrete expressions we introduce a new symbol indicating uniquely to which
argument the derivative is applied. A dot on the left-hand side means to perform the derivative with
respect to the first argument and the dot on the right-hand side indicates that to differentiate with
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respect to the other argument. Having a dot on both sides the Green function is derived with respect
to both arguments:

oG (1,7") oG (1,7") _ PG (1, 7')

G nT) = ——— G T) = — G = (9B.6)
Applying such derivatives to the Green functions (9A.22), we obtain (i € {z,y}):
G, 7)) = n O —m)fi(r,7) =0 —7)fi(r,7)] = =G*;2 (1, 7") (9B.7)
4MQ |
with
AT = QL +Q)he(r, 7)) + (2L — Qp)h (1, 7), (9B.8)

where h (7, 7) was defined in Eq. (9A.29). Performing the derivatives to both arguments leads to the
expression

~oX h
G (r, ) =G (1, 7)) + M&(T -7, (9B.9)
where we have introduced the partial function
o ~eX0 h 2 2
G* (7)) = O [ g4 (r.7") + Q2 g_(r,7")] (9B.10)

which is finite for equal times.
Applying derivatives with respect to the first respective second argument to the mixed correlation
function (9A.28), we find

o X h’ oX
(1) = 1m0+ (1) = g_(r 1) = =G (m7) (9B.11)
and
o X AN o X /
Gy;(T, ) =-— Gm;('r, 7). (9B.12)
Differentiating each argument of the mixed Green function results in
ih

G (r.T) = . ©(r =) fa(r,7") = O = 7) fa7!, 7)] = =*G*5(7, ') (9B.13)
with
Falr ) = (O + 0 () — (U — Qp)h (7. (9B.14)
An additional property we read off from Egs. (9B.7) and (9B.11) is (4,5 € {z,y}):
® X0 ’ o X0/ _/ -1 i = j
G (r, ™) = G (', 7) x { 1 i (9B.15)
Xo / eXg _/ -1 =7,
Gij(T,T):Gij(T,T)X{ 1 it (9B.16)
The double-sided derivatives (9B.9), (9B.10), and (9B.13) imply
oGoxo AN oGoxo / 1 Z = .7 9B 17
z‘j(TaT)— ij(T’T>X 1 i#] (9B.17)

The derivatives (9B.7), (9B.10), (9B.11), and (9B.13) are periodic:

*G(1,0) =GP (1, hB), °GiP(0,7") =Gy (hB, T'), (9B.18)

X _ X eX( N eXp !
G*i (r,0) =G py (r,nB3), G i 0,7)=G i (hB, 1), (9B.19)
GO (1,0) =G (1 hB),  *GUL(0,7) =G (hB, ). (9B.20)
( )

0) ="°G*5P(m.hpB), G (0.7) =Gy (B, 7). (i # ).
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9C Generating Functional for Position- and Momentum-
Dependent Correlation Functions

With the discussion of the generating functional for position-dependent correlation functions and, in
particular, the Green functions in Appendix 9A and their properties in Appendix 9B, we have layed the
foundation to derive the generating functional for correlation functions depending on both, position
and momentum. Following the framework presented in Ref. [17], such a functional involving sources
coupled to the momentum can always be reduced to one containing position-coupled sources only.
We start from the three-dimensional effective classical representation for the generating functional

. dPxod®po L poxo
Zaliv] = [ TGERZR (9C.1)

with zero-frequency components xo = (zo,%0,20) = const. and pg = (Pzq: Pyg, Pyg) = const. of the
Fourier path separated. The reduced functional is

2B, v] = (27h)° j'{ DD d(x0 — X(7))3(po — P(T)) exp {—%A?{’”‘” (D, x5, v]} o (902)

where the path integral measure is that defined in Eq. (9.4). Extending the action (9.3) by source terms,
considering a more general Hamilton function than (9.17), and introducing an additional harmonic
oscillator in z-direction, the action functional in Eq. (9C.2) shall read

h3
AG™ [p.x1 . v] = /0 dT{ —iB(r) - %(r) + 51 B%(r) — ol (B, %) + 5 MOZ [1%(7) + (7))

1 - -
+§Mﬂﬁ22(7) +j(r) - x(7) + v(7) - p(T)} (9C.3)
with shifted positions and momenta

x = x(1) — Xo, p = p(7) — po. (9C.4)

The orbital angular momentum [, (p, x) is defined in Eq. (9.19) and is used in Eq. (9C.3) with the

shifted phase space coordinates (9C.4). We have introduced three different frequencies in (9C.3),

Q = (25,921,9)), where the first both components are used in regard to the oscillations in the

plane perpendicular to the direction of the magnetic field which shall be considered here to point into

z-direction. The last component, €|, is the frequency of a trial oscillator parallel to the field lines.
Due to the periodicity of the paths, we suppose that the sources are also periodic:

30)=j(B),  v(0) = v(np). (9C.5)

Since we want to simplify expression (9C.2) such that we can use the results obtained in Appendix 9A,
the momentum path integral is solved in the following. In a first step we re-express the momentum
d-function in (9C.2) by

3 h3
3o ~p0) = [ G e {—% | darso-lot - po]}, (9.0)

where

g (9C.7)

is an additional current which is coupled to the momentum and is constant in time. Defining the sum
of all sources coupled to the momentum by

V(& 1) =v(r) +vo(). (9C.8)
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the functional (9C.2) can be written as

p*(7)
oM

2805, = [ @ § DaD it —X(7) exp{ -5 Var |~ in(r) (1) +

~Qpl.(p(r). X(7)) + MO {22(r) + (7)) + g MAZ(r) +3(7) - () + V(E.7) p(T)} }
(9C.9)

where we have used the translation invariance p — p of the path integral. To solve the momentum
path integral, it is useful to express it in its discretized form. Performing quadratic completions such
that the momentum path integral separates into an infinite product of simple Gaussian integrals which
are easily calculated, the remaining functional is reduced to the configuration space path integral

h3 -
25l = [ @ oxp [2% | v a] 0% 000~ X)) exp { A i V1|
(9C.10)

with the measure (9.10) for d = 3. The action functional is

h3
AR [x; . V] = / ‘“ gx (r) +iMQs {&(7)j(r) - §(7)2(r)}

FM (2~ 03) {2() + (1)} + g M) + 5(7) [ (7) + MOV, (€.7)]

iM M

+9(7) [y (1) = MQBVe(§, 7)) + 2(7)j:(7) n

drx(r)- V(g 1), (9C.11)

where the last term simplifies by the following consideration. A partial integration of this term yields

] hB .
/0 drx(r)- V(€,7) = —/0 dr (x(7) — x0) - V(. 7). (9C.12)

The surface term vanishes as a consequence of the periodicity of the path and the source. This
periodicity is also the reason why we could shift x(7) by the constant x¢ on the right-hand side of
Eq. (9C.12). Obviously, the importance of this expression lies in the coupling of the time derivative of
V(&,7) to the path x(7). Thus, V(£,7) can be handled like a j(7)-current [17] and the action (9C.11)
can be written as

hB
AR*0[x;§, V] = AR [x; J, 0] = AR [x; 0, 0] — % / drx(1) - J(&,7) (9C.13)
0

with the new current vector J(&, 7) which has the components

Jo(&.7) = Jo(7) + MQBV, (€, 7) — iMVy (€. 7).
Jy(&.7) = jy(r) = MQBV, (&, 7) —iMV, (&, 7), (9C.14)

T€7) = Ga(7) — 5MOV(€,7)

and couples to the path x(7) only. With the expression (9C.10) for the generating functional and the
action (9C.13), we have derived a representation similar to Eq. (9A.1) with the action (9A.2), extended
by an additional oscillator in z-direction. We identify

Je=Jur Gy =y (9C.15)
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Inserting the substitutions (9C.15) into the solution (9A.8) for the generating functional in two dimen-
sions and performing the usual calculation for a harmonic oscillator with external source [4, Chaps. 3,5]
in z-direction, we obtain an intermediate result for the generating functional in three dimensions (9C.2):

MM
Zgliv = Nt [ e i g [T arvien

% %
xexp{%/o dT/O dr' J(€, 1) GXD(T,T’)J(g,T’)} . (9C.16)

The partition function follows from Egs. (9A.17) and (9A.24)

WAL /2 RBO_J2 KBy /2

Zp07x0 — ZPnyo — .1
Q 10,0 sinh A3€ /2 sinh h3Q_ /2 sinh A3 /2 (9C.17)
and G*°(r, 7’) is the 3 x 3-matrix of Green functions
Gra(m, ') GRo(T,7) 0
G*(r,7") = | Go(r,7") Gyo(r,7') 0 . (9C.18)

Except GX0(1,7’), the Green functions are given by the expressions in Egs. (9A.22) and (9A.28). The
Green function of the pure harmonic oscillator in z-direction

1 (hﬁQ|

MﬁQQ ——g(r, ") — 1) (9C.19)

GXo(r, 7)) = 5

follows directly from the limit (9A.23). Since the current J (9C.14) still depends on time derivatives of
V, we have to perform some partial integrations in the functional (9C.16). This is a very extensive but
straightforward work and thus we only present an instructive example. For that we apply the properties
and the time derivatives of the Green functions which we presented in Appendix 9B. Consider the
integral

] ] .
M [ vt e e o

occurring in the second exponential of Eq. (9C.16) with ¢ € {z,y,z}. A partial integration in the
7'-integral leads to

M2 =hs , G ,
I = —W/O dr Vi(&,7) (GZO(T,T> (€, 7) s —/0 dr % 1(5,7)>
M? " " Ay *Xo ANYA /
o | ar [ arvienene e (oC.21)

The surface term in the first line vanishes as a consequence of the periodicity of the current (9C.5)
and the Green function (9B.5). A second partial integration, now in the 7-integral, results in

~
| |

B %
2h2/ dT/ dr' Vi(&,7)*G* T2 (1, 7" ) Vi (€, 7)

e e X Mot )
—om / dT/ dr' Vi(&,7)°G*,; (1, 7 Vi(€,7') — 7 /. dr V(& 7). (9C.22)
Here we have applied the periodicity property of the right-hand derivative of the Green function
(9B.19), leading to a vanishing surface term in this case, too. In the second line, we have used the
decomposition (9B.9) of the double-sided differentiated Green function. Note that the last term just
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cancels the appropriate term in the first exponential of the right-hand side of Eq. (9C.16). Eventually,
after performing all such partial integrations, we re-express Eq. (9C.16) by

hpg hg
2B li.v = N 2 [ o exp{% /O dr /0 dr'5(¢. ) B (r.7') é(ﬁm’)} (90.23)

with six-dimensional sources

s(¢,7)= (i), V(&.7)). (9C.24)

and the 6 x 6-matrix H*° (7, 7/) which has no significance as long as we have not done the &-integration.
We explicitly insert the decomposition (9C.8) into expression (9C.24) of the source vector §. Since
vo(€) from Eq. (9C.7) is constant in time, some temporal integrals in the exponential of Eq. (9C.23)
can be calculated and we obtain

1 KB 1B
27V = A ZE exp § 52 /0 dr /O dr's(r) H* (7, 7') s(7')

hB3
X /d3§ exp {—2%552 + i%ﬁ . /0 dTv(T)} (9C.25)
with the new 6-vector
s(t) = (j(r),v(r)) (9C.26)

consisting of the original sources j and v only. The Gaussian ¢-integral in Eq. (9C.25) can easily be
solved and the terms appearing from quadratic completion modify the above matrix H* (7, 7/). The
final result for the generating functional of all position and momentum dependent correlations is given
by

1 hg hg
Z&O”‘Du,v1=zs%°”‘°exp{ﬁ / ‘”/0 dr's(r) GP>o(r, 1) s(7') ¢ . (9C.27)

The complete 6 x 6-matrix GPo*0(r,7’) contains all possible Green functions describing position-
position, position-momentum, and momentum-momentum correlations. As a consequence of sepa-
rating the fluctuations into those perpendicular and parallel to the direction of the magnetic field, all
correlations between x, y on the one and z on the other hand vanish as well as those for the appropriate
momenta. The symmetries for the Green functions and their derivatives were investigated in detail in
Appendix 9B and lead to a further reduction of the number of significant matrix elements. It turns
out that only 9 elements are independent of each other. Therefore we can write the matrix

GXo0:Po (T, 7_/)

GPo>o (1, 7") GPoxo (r,7") 0 GPoxo(r,7") Ggg;xﬂ (r,7") 0
GRe>o(r', 1) GRy*(r, ') 0 —GRo>o (1, 7") GRs>o(1,7") 0

_ 0 0 G®Bo>o (1, 7") 0 0 GBoxo(T,7')
| emeen om0 Gt G0
GRoo(r'.7) GRExo (7, 7) 0 Gpoxo(r', 1) GRoye(r.7') 0

0 0 GPoxo (7', 7) 0 0 GPoyo(r, ')

(9C.28)

The matrix decomposes into four 3 x 3-blocks, each of the which describing another type of correlation:
the upper left position-position, the upper right position-momentum (as well as the lower left one),
and the lower right momentum-momentum correlations. The different elements of the matrix are

GRyxo(r, ') = (a(n)a(r))g ™ = Gha(r.T), (9C.29)
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GTy(r, ) = (FOFE)E™ = Gy, 9C.30)
GE (1) = (2(n)2(r))g™ =GR ), (9C.31)
Go(r, ) = (H(palr) ) = IMG™(r, ') — MR GRy(r.7)

= % {O(r =) [ha(r, 7Y+ h_(r,7")] = O —7) [hi (7', 7) + h_ (7', T)]}, (9C.32)
GE (1) = (B 5 = IMG™S(r.v') + MOGE(r, )

— h / / 1 QB C

= —qlonn ) =9 = 550 (9C.33)
GT(r. ) = (E(IFlr) IR = IMG™22(r,7)

= Do~y (7~ O — )y (7. 7] (90.34)
GRL32(1:7) = () 0 = ~MP G ) = 2P0 Gy ) 4 ME G, ) -

- B ) o - (1- ) (90.35)
GRopeo(r,7') = (Pa(n)Py (1)) ™" = 2iM*Qp* GR3 (1, 7') = M**G* ) (7. 7") + MPQB Gy (7, 7))

= m\iQL {0(r =) [he(r, )= h (7,7 — O —7) [hp(v',7) — h_ (7', 7)]}, (9C.36)

X0 2e SeX0 , 1 hAMQ

GPoxo(r, ') = (Po(1)p=(r') ) ™ = =M**G*_ (7, 7) — ]g =— Loy(r.7') = %, (9C.37)

where the expectation values are defined by Eq. (9.60). Note that all these Green functions are invariant
under time translations such that

Gy (T, ') = G (r — ) (9C.38)

with p, v € {z,y, 2, Dg, Dy, P2 }-

It is quite instructive to prove that all these Green functions can be decomposed into a quantum
statistical and a classical part as we did it in Eq. (9A.22). Since we know that the classical correlation
functions do not depend on the Euclidean time, all derivative terms in Egs. (9C.29) (9C.37) do not
contain a classical term. We can write each Green function

0,X0 — m cl
GRoo(r, ') = GI(1,7') = G- (9C.39)

This relation has been already checked for Egs. (9C.29)-(9C.31) in Appendix 9A. The classical con-
tribution is zero in Egs. (9C.32), (9C.34), and (9C.36) following from the absence of classical terms
in derivatives of the Green functions and mixed correlations like (9A.30). It seems surprising that
the correlation (9C.33) contains a classical term while (9C.32) possesses none. This is, however, a
consequence of the cross product of the orbital angular momentum appearing in the action (9C.3) and
the explicit classical calculation entails

1 Qp

cl cl cl cd __ —
Gop, = (wp2) =0, G5 = (zp,)° = G —an (9C.40)

where the latter is the subtracted classical term in Eq. (9A.22) when considering the first two substi-
tutions in (9C.15). In Eq. (9C.37), the second term is obviously the classical one since
M

Grp. = pap2) = 5 (9C.41)

The extraction of the classical terms

M 0%

cl cd _
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in the case of the Green function GB%X0(7,7’) requires the consideration of the last two terms in
Eq. (9C.35). Thus we have shown that the decomposition (9C.39) holds for each of the Green functions
(9C.29) (9C.37). Note the necessity of subtracting the classical terms since they all diverge in the
classical limit of high temperatures (8 — 0).






