Appendix D

Expected value of the impedance
phase

Estimation of the expected phase value by determining the probability function distribution.
By using the polar transformation the tensor element Z has the expression:
x=|Z|, R(Z)=wxcos(¢), I(Z)=xsin(¢)
Re(Z) and Im(Z) will each be considered as normal distributed random variables (r.v.’s);
then the variables x and ¢ are r.v.’s too.
We define a=R(Z) and b= 3(2)
as the expected values of Z, i.e., the mean values assumed to be the measured data following
a Gaussian distribution (a and b). The real and imaginary parts a and b have equal and
uncorrelated Gaussian errors s = AZ .
The two r.v. x, ¢ density function (df) will take the form :
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where the phase ¢ density function (df) is defined by :
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Solving this integration results in:
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The final expression for the probability function F () of the phase is:
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From the former expression, the expected value E(¢) = [ (¢ g4(¢)) dé can be obtained:
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By using a trapezoidal numerical integration, the expected value E(¢) can be solved with

high accuracy.

For significant errors, the expected value of the phase shifts down with respect to the measured

data, which is in accordance with the up-shifting of the expected value of the apparent

resistivity proportional to the impedance element error (from the x? statistical analysis on

MT apparent resistivities, appendix C).
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