Appendix A

Derivation of the probability function of the regional skew for normal distributed tensor elements

The conditional probability function (p.f.) of the regional skew parameter $G_{p}\left(\tilde{\eta}_{p}\right)$ derived from the transformation of variables (Chapter 2; eq. 2.9) is:

$$
\begin{equation*}
G_{p}\left(\tilde{\eta}_{p}\right)=P\left(-\frac{\tilde{\eta}_{p}^{2} d}{2}<\left(x_{p} s_{i} u_{i}+c\right)<\frac{\tilde{\eta}_{p}^{2} d}{2}\right) \tag{A.1a}
\end{equation*}
$$

where x_{p} is the conditional random variable (r.v.) valid for the transformation of spaces (diagonal tensor element; Fig. 2.1), u_{i} is the mean value of the variable x_{i}, s_{i} and c as defined in eq. 2.8.
We make the variable transformation:

$$
\begin{gather*}
y\left(x_{p}\right)=y_{p}=\left(x_{p} s_{i} u_{i}+c\right) \rightarrow x_{p}=\frac{y_{p}-c}{s_{i} u_{i}} \tag{A.1b}\\
y_{p}=\frac{\eta_{p}^{2} d}{2} \tag{A.1c}
\end{gather*}
$$

to treat the upper limit of p.f. written in eq. A.1a in terms of the r.v. x_{p}. We refer to this as the p.f. $F\left(\tilde{y}\left(x_{p}\right)\right)$:

$$
\begin{equation*}
F\left(\tilde{y}\left(x_{p}\right)\right)=P\left(y_{p}<\frac{\tilde{\eta}_{p}^{2} d}{2}=\tilde{y}_{p}\right)=P\left(x_{p}<\frac{\tilde{y}_{p}-c}{s_{i} u_{i}}=x_{p}\left(\tilde{\eta}_{p}\right)\right) \tag{A.2a}
\end{equation*}
$$

The transformation of variable from y_{p} to x_{p} is valid since they fulfill the required properties for a valid transformation of spaces. The p.f. F (eq. A.2a) is transformed to the space of x_{p}, thus F can be determined given a known p.f. for x_{p}.
The r.v. x_{p} is assumed normally distributed with d.f. $\phi\left(x_{p}\right)$, mean value u_{p} and standard deviation σ_{p}. Considering eq. A.2a, the p.f. F as function of $\tilde{y}\left(x_{p}\right)=\tilde{\eta}_{p}^{2} d / 2$ (eqs. A.1b,
A.1c) takes the form:

$$
F\left(\frac{\tilde{\eta}_{p}^{2} d}{2}\right)=\left\{\begin{array}{c}
\int_{-\infty}^{x_{p}\left(\tilde{\eta}_{p}\right)} \phi\left(x_{p}\right) d x_{p}=\psi_{o}\left(\frac{x_{p}\left(\tilde{\eta}_{p}\right)-u_{p}}{\sigma_{p}}\right) \text { if }\left(s_{i} u_{i}\right)>0 \tag{A.2b}\\
\int_{x_{p}\left(\tilde{\eta}_{p}\right)}^{\infty} \phi\left(x_{p}\right) d x_{p}=1-\psi_{o}\left(\frac{x_{p}\left(\tilde{\eta}_{p}\right)-u_{p}}{\sigma_{p}}\right) \text { if }\left(s_{i} u_{i}\right)<0
\end{array}\right.
$$

where ψ_{o} is a Gaussian distribution with unit variance and zero mean. The two relations in the right side of eq. A. 2 b come from the first condition of a valid transformation of spaces, i.e., $y_{p}\left(=\eta_{p}^{2} d / 2\right)$ is monotonic in x_{p}. For example, if $s_{i} u_{i}<0$, the r.v.'s defined in eq.(A.1b) approach $y_{p}\left(x_{p}^{b}\right)<y_{p}\left(x_{p}^{a}\right)$ if $x_{p}^{b}>x_{p}^{a}$. This implies reversing the integration limits in eq. A. 2 b .

The p.f of η written in eq.(A.1a) corresponds to a folded distribution, which is related to the p.f. F defined in eq.(A.2b) by the form (e.g., Dudewicz \& Mishira, 1987):

$$
\begin{equation*}
F\left(\frac{\eta_{p}^{2} d}{2}\right)-F\left(\frac{-\eta_{p}^{2} d}{2}\right)=\Psi_{o}\left(\frac{\left(\frac{\eta_{p}^{2} d}{2 s_{i} u_{i}}-\frac{c}{s_{i} u_{i}}\right)-u_{p}}{\sigma_{p}}\right)-\Psi_{o}\left(\frac{\left(\frac{-\eta_{p}^{2} d}{2 s_{i} u_{i}}-\frac{c}{s_{i} u_{i}}\right)-u_{p}}{\sigma_{p}}\right) \tag{A.3}
\end{equation*}
$$

after expressing x_{p} in terms of $\eta_{p}=\sqrt{\frac{2\left|x_{p}\left(s_{i} u_{i}\right)+c\right|}{d}}$ (eq. 2.8). The right term is obtained after standardizing F, valid for $s_{i} u_{i}>0$.
With the variable transformations

$$
\begin{align*}
& x_{p}^{+}(\eta)=\frac{\eta^{2} d}{2 s_{i} u_{i}}-\frac{c}{s_{i} u_{i}} \tag{A.4}\\
& x_{p}^{-}(\eta)=\frac{-\eta^{2} d}{2 s_{i} u_{i}}-\frac{c}{s_{i} u_{i}}
\end{align*}
$$

a final expression is defined for the conditional p.f. of η, by introducing these variables (eq. A.4) in eq. A.3:

$$
G_{p}(\eta)= \begin{cases}\Psi_{o}\left(\frac{x_{p}^{+}(\eta)-u_{p}}{\sigma_{p}}\right)-\Psi_{o}\left(\frac{x_{p}^{-}(\eta)-u_{p}}{\sigma_{p}}\right) & \text { if } s_{i} u_{i}>0 \tag{A.5}\\ \Psi_{o}\left(\frac{x_{p}^{-}(\eta)-u_{p}}{\sigma_{p}}\right)-\Psi_{o}\left(\frac{x_{p}^{+}(\eta)-u_{p}}{\sigma_{p}}\right) & \text { if } s_{i} u_{i}<0\end{cases}
$$

This p.f. is related to the standardized folded normal distribution function (e.g., Dudewicz \& Mishira, 1988). The two relations on the right come from the monotonic condition for a valid transformation of spaces as mentioned above (eq. A.2b).

