
Chapter 2

Confidence limit of the

magnetotelluric phase sensitive

skew

When determining a parameter function of the impedance tensor, its corresponding error is
normally not taken into account if it is a complicated non-linear function of the elements.
One specific example treated here is the phase sensitive skew defined by Bahr (1991), which
is a rotationally invariant parameter of the impedance tensor.
The skew parameter is based on the hypothesis that the impedance tensor is affected by
telluric distortion, produced by shallow 3-D anomalies overlaying a regional 2-D structure
(i.e., a superposition 2-D model). A 2-D model affected by telluric distortion implies equal
phases between each pair of columm tensor elements (in the regional coordinate system).
Skew measures these impedance phase differences and thus indicates the departure from two
dimensionality. It would be zero if the telluric distortion hypothesis is valid for noise-free
data, whereas values over 0.3 can be considered as an indicator of 3-D inductive effects
(Bahr, 1991). However, with the addition of noise to the tensor elements the skew values can
suffer significant bias, leading to a false interpretation of dimensionality. A way to avoid this
problem is to estimate the probability function of skew, because the tensor elements with
errors can be considered analogous to random variables. Thus, instead of the skew value
itself, its probability threshold can provide a more plausible information on dimensionality.

In this paper (Lezaeta [2001]), the confidence limits of the regional skew are derived by
expressing its distribution function in terms of the tensor element density functions. The
Jacobi-matrix transformation of random variables is used in the derivation (e.g., Fisz [1976]).
This procedure is valid for functions which are continuous and continuously differentiable.
Skew fulfills these conditions. The transformation was considered by assuming the tensor
elements as normally distributed random variables. The result is tested for synthetic data
with random Gaussian noise added to the tensor. An example applied to measured data is
also shown (section 2.2). These experimental data were processed with a robust procedure
(Egbert and Booker [1986]), which estimates an error covariance matrix for the impedance
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tensor, assumed to approach asymptotically a Gaussian distribution (Egbert, pers.comm.).

The scope of this paper is to show that the mathematical procedure performed in the deriva-
tion of the probability function distribution of the skew results in a feasible confidence limit to
analyze dimensionality. Examples with synthetic and measured data demonstrates this. In a
similar manner, the confidence limits of any other non-linear function of the tensor elements
and hence the measured data can be estimated.

The variable transformation for skew

Regional skew (η) is a continuous function of the tensor elements. It has the following form:

η =

√
2 |x1x7− x4x6 + x2x8 − x3x5|√

(x2 − x3)2 + (x6 − x7)2
(2.1)

where,

x1 = Re{Zxx} x2 = Re{Zxy} x3 = Re{Zyx} x4 = Re{Zyy} (2.2)

x5 = Im{Zxx} x6 = Im{Zxy} x7 = Im{Zyx} x8 = Im{Zyy}

These variables correspond to the real and imaginary part of the impedance tensor (Z)
elements defined in magnetollurics:

Z =


 Zxx Zxy

Zyx Zyy




Skew (η) is rotationally invariant and it vanishes if the response is equivalent to that from
the ideal two dimensional superposition model (i.e., electrostatic distortion without magnetic
effect). This means that each pair Zxx, Zyx and Zxy, Zyy have equal phases.
Assuming a known density function distribution (d.f.) f for the tensor elements
X = (x1, .., x8) (eq. 2.2) −assumed as random variables (r.v.)− we can derive the function
distribution (f.d.) of η in terms of X by using the Jacobi-matrix J for the transformation of
variables (e.g., Fisz, 1976).
The transformation of X into η is given by a space Y , which contains again the r.v.’s of X,
except for one r.v. xp which is replaced by η:

X = (.., xp−1, xp, xp+1, ..) → Y = (.., xp−1, η, xp+1, ..) (2.3)

The Jacobi transformation is valid if η is continuously differentiable in X. This property is
valid in the space of X where the sum of variables contained in the modulus in the numer-
ator of η (Eq. 2.1) is either a negative or a positive real number. Thus η is continuously
differentiable in X except at η(X) = 0, i.e., when the numerator of η does not vanish. In
order to fulfill this property for the further steps of the d.f. derivation, η will be regarded
statistically as a non-zero positive real number. The lowest limit of η will be assigned as
0+. It is worth pointing out that a zero skew value is feasible for noise-free data (for which
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2. CONFIDENCE LIMIT OF THE MAGNETOTELLURIC PHASE SENSITIVE SKEW

no statistical error estimation of η is required), thus describing the validity of a ”perfect”
regional 2-D model, likewise obtainable from numerical modeling.
It is also required for the derivation of the skew d.f. that η with regards to the r.v. xp should
satisfy the following conditions required by the Jacobi-transformation:
(1) η is monotonic with respect to xp , i.e., for a given xap < xbp in the range (−∞,∞), η is
either monotonically increasing if η(xap) < η(xbp), or monotonically decreasing if η(xap) > η(xbp)

(2) The partial derivative is equivalent with the inversion ∂xp

∂η =
(
∂η
∂xp

)−1

Condition (1) is not completely satisfied because η is an absolute value as function of the
tensor elements. A further analysis is required to account for this (section 2.1). The second
condition is true for the variables x1, x4, x5 and x8 having absolute partial derivatives of the
form:

|∂xp
∂η

| =
η ·
[
(x2 − x3)2 + (x6 − x7)2

]
|xi| (2.4)

for (p, i) = (1, 7), (4, 6), (5, 3), (8, 2).
In consequence, the choice of one of these xp’s is arbitrary in the transformation due to the
symmetry of |∂xp

∂η |. Note that these variables are the diagonal impedance elements Zxx, Zyy,
where η encounters a local minimum in them and is symmetrical with respect to this mini-
mum (Fig.2.1).
The off-diagonal elements Zxy, Zyx do not fulfill condition (2) and therefore η is not symmet-
rical about a minimum and a maximum value in the off-diagonal elements (fig.2.2).

Having satisfied these conditions, the density function g(η) of skew takes the form (e.g., Fisz,
1976):

g(η) = |det[J(X/Y )]| · f(X); X = (x1, .., x8) (2.5)

The matrix J is of dimension 8x8 determined by the number of r.v.’s contained in X, and
have the partial derivatives of X at Y (eq. 2.3). Det[J(X/Y )] is its determinant

∣∣∣∂xp

∂η

∣∣∣.
The expression for the multi-variate probability function of skew in terms of eq. 2.5 is:

G(η) =
ηo∫

0+

g(η)dη =

=

ηo∫
0+

·



∞∫
−∞

∞∫
−∞

∞∫
−∞

· · ·
∞∫

−∞

∣∣∣∣∂xp(η, .., xp−1, xp+1, ..)
∂η

∣∣∣∣ · f(.., xp−1, xp+1, ..) · · · dxp−1dxp+1 · · ·

 dη

(2.6)
Solving this multi-variate integration is complicated; to make further progress we simplify
the problem to a uni-variate system. This implies determination of a conditional probability
function for η in terms of one r.v. xp, while the other variables of X are kept fixed at
their respective mean values ui (i = 1, .., 8 with i �= p). As mentioned above in regards to
conditions 1 and 2 to validate the variable transformation, the r.v. xp should be one of the
diagonal tensor elements.
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2.1 PROBABILITY FUNCTION OF SKEW

data

REGIONAL SKEW - SITE CAL T= 102 s

�
local

extreme

Skew(Z )xx Figure 2.1: Characteristic surface
plot from synthetic data of the re-
gional skew parameter (η) as function
of the real and imaginary part of the
tensor element Zxx (km/s). The grid-
ding interval of the variables is 0.01
centered on the extremal point, while
the other tensor elements are kept
fixed at their synthetic values. This
plot is also characteristic for the other
diagonal tensor element Zyy. Any of
these 4 diagonal elements can be used
in the Jacobi-transformation of ran-
dom variables.

REGIONAL SKEW - SITE CAL (T= 102 s)

data

local extreme

�

Global

maximum

Skew(Z )xy

Figure 2.2: Characteristic surface
plot from synthetic data of the re-
gional skew parameter (η) as function
of the real and imaginary part of the
tensor element Zxy (km/s). Details as
in Fig.2.1. Skew has global positive
& negative extreme. This is also true
for the other off-diagonal tensor ele-
ment Zyx. These 4 elements cannot
be used in the Jacobi-transformation
of random variables (see text).

2.1 Derivation of the probability function of the regional skew

parameter

The conditional probability function P of η(xp) = ηp, given the known mean values ui of the
tensor elements (i �= p), will be expressed as:

Gp(η̃p) = P (ηp < η̃p) (2.7)

The derivation of P should satisfy condition 1 of the variable transformation, i.e, η should
be either monotonically increasing or decreasing with respect to xp. Also, the r.v. xp should
be one of the diagonal tensor elements.
In order to simplify the following equations for the further derivation of Gp, the skew param-
eter from eq.(2.1) will be expressed with the new term:

ηp =

√
2|xp(siui) + c|

d
(2.8)

where the sub-index pairs (p, i) are as in eq.(2.4), and d = (u2 − u3)2 + (u6 − u7)2 is in the
denominator of η at the corresponding mean values. The parameter c contains 6 conditional
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2. CONFIDENCE LIMIT OF THE MAGNETOTELLURIC PHASE SENSITIVE SKEW

variables at their respective mean values and, si = ±1 is assigned to the addition or subtrac-
tion symbol which precedes the respective pair xpxi in eq.(2.1).
Analysing for example the conditional probability for the r.v. x1 (i.e., Re(Zxx); eq. 2.2),
then ui = u7, s7 = 1 and c = −u4u6 + u2u8 − u3u5.
In the following, the p.f P of η (eq. 2.7) is expressed in terms of eq.(2.8), and after a change
of variables a new expression is derived:

Gp(η̃p) = P

(√
2|xpsiui + c|

d
< η̃p

)
= P

(
|xpsiui + c| < η̃2

pd

2

)

= P

(
− η̃2

pd

2
< (xpsiui + c) <

η̃2
pd

2

)
(2.9)

Assuming that the tensor elements are normally distributed, the r.v. xp has a normal d.f.
φ(xp) with mean up and standard deviation σp.
The conditional p.f. Gp(η) (eq. 2.9) for normally distributed tensor elements, expressed in
terms of the standard distribution having a variance of 1 and mean 0 (ψo) is:

Gp(η) =




Ψo

(
x+

p (η)−up

σp

)
−Ψo

(
x−p (η)−up

σp

)
if siui > 0

Ψo

(
x−p (η)−up

σp

)
−Ψo

(
x+

p (η)−up

σp

)
if siui < 0

(2.10)

where the variables:

x+
p (η) =

η2d

2siui
− c

siui
(2.11)

x−p (η) =
−η2d

2siui
− c

siui
.

The p.f. of η (eq. 2.10) is related to the standardized folded normal distribution function (e.
g., Dudewicz and Mishra [1988]). The two relations on the right comes from the monotonic
condition for a valid transformation of spaces. The derivation ofGp(η) is given in the appendix
(A).

Confidence limit

The confidence limit (C.L.) of the skew (η) is defined as the probability (P ) that its true
value ηo has to lie within a certain range [ηa, ηb]. We use the conditional probability function
Gp(η) of skew (eq. 2.10) to derive the confidence limit C.L., expressed as:

P (ηa < ηo < ηb) = C.L. = Gp(ηb)−Gp(ηa)

Since the p.f. Gp depends on the standardized normal distribution Ψo, which is symmetrical
around the expected value, the desired confidence limit will be given by the following upper
and lower limits:

Gp(ηb) = ψo

(
x+

p
(ηb)− up

σp

)
− ψo

(
x−

p
(ηb)− up

σp

)
=
1 + C.L.

2
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2.1 PROBABILITY FUNCTION OF SKEW

Gp(ηa) = ψo

(
x+

p
(ηa)− up

σp

)
− ψo

(
x−

p
(ηa)− up

σp

)
=
1− C.L.

2
(2.12)

if siui > 0, otherwise the indexes a with b and b with a should be exchanged, as indicated in
eq.(2.10).
The confidence limit (ηa, ηb) can be determined numerically with some iterative algorithm,
since this cannot be solved directly by simply inverting the folded standard function Ψ+

o −Ψ−
o .

The variables ηa, ηb are the quantiles of the d.f. Gp at the values 1−C.L.
2 , 1+C.L

2 , respectively
(provided that siui > 0, otherwise the limits are reversed). Public function libraries written in
Fortran as well as in C language can be used to calculate the quantile of a desired distribution
function (e.g., Brandt [1999]). The algorithm to find C.L. consists of minimizing the function:

min
{(

Gp(n
j
a,b)−

1± C.L.

2

)}
(2.13)

with ηja,b (j = 0, 1, 2, ...) chosen iteratively in order to take appropriate values for the mini-
mization function.
The result is dependent on the variable xp chosen, which can be either the element ReZxx,
ImZxx, ReZyy or ImZyy. It is however advisable to select the variable which brings the
largest confidence limit (section 2.2).

95% confidence limit
To show an example of the 95% confidence limit in terms of an explicit random variable xp,
consider this to be the element x1 = ReZxx (eq. 2.2), which, expressed in terms of η (eq.
2.1) is:

xp(η, xp−1, ...) = x1(η, x̂2, .., x̂8) =
±η2

2x̂7
·
[
(x̂2 − x̂3)

2 + (x̂6 − x̂7)
2
]
+
(x̂4x̂6 − x̂2x̂8 + x̂3x̂5)

x̂7

The variables of eq.(2.11), derived from the transformation of limits of the probability function
of η (Gp(ηp); eq. 2.9), are:

x+
1
(η) =

η2d

2x̂7
− c

x̂7
, x−

1
(η) =

−η2d

2x̂7
− c

x̂7

where
c = −x̂4x̂6 + x̂2x̂8 − x̂3x̂5

d = (x̂2 − x̂3)
2 + (x̂6 − x̂7)

2

si = s7 = 1 and ui = x̂7

Each x̂i is the measured data considered as the mean value of the respective variable.
To derive the 95% confidence limit of η, i.e., C.L. = 0.95, the function to minimize through
successive iterations is:

min
{(

G1(n
j
a,b)−

1± 0.95.
2

)}
with ηj

a,b
(j = 0, 1, 2, ...)

until the lower and upper limits ηa, ηb are found for a given tolerance. G1(η) is the proba-
bility function of eq.(2.10) at p = 1, which approaches the lower and upper limits ηa, ηb (or
viceversa) as expressed in eqs. 2.12.
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2. CONFIDENCE LIMIT OF THE MAGNETOTELLURIC PHASE SENSITIVE SKEW

2.2 Examples with synthetic and field data

1. Synthetic data

The confidence limit of η was tested to the responses of a forward 3-D model, calculated with
a modified version (Mackie and Booker, 1999) of the algorithm developed by Mackie et al.
(1994).
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52 

 

   depth= 2 km

Figure 2.3: Horizontal view of the 3-D model at 2 km depth. The model
responses at sites ORI and CC0, located next to the thin conductor, were used
in the estimation of the skew confidence limits.

The model consists of a shallow 3-D conductive vertical dike (of 5 Ωm and 8 km depth) with
horizontally finite extensions (8 × 40 km2). It is embedded in a resistive medium (500 Ωm),
and one of its edges is connected to a 2-D conductive block (1 Ωm), which reaches a depth of
5 km. The dike strikes by 45◦ with respect to the conductive block. In Fig.2.3, an horizontal
view of the 3-D model at 2 km depth is presented. The skew values of two sites (ORI and
CC0) were considered in the test. Site ORI is located near the centre of the dike and site
CC0 is above and near the edge of the dike (Fig.2.3).
Gaussian noise was added to the tensor elements of the model responses with standard de-
viation of 2% and 5% of the largest tensor element amplitude. The procedure was repeated
100 times. The mean value of the random sample is the estimate of the noisy tensor element,
and its error the estimate of the standard deviation.
The right hand plots of Figs. 2.4 and 2.5 show the 5% noisy tensor elements with their

errors, compared against the model responses. The skew parameters calculated from the
model responses (ORI, CC0) and the noisy data (ran) are shown on the left hand plots of the
figures. The 2% and 5% random noise data are illustrated separately with their respective
95% confidence limits. The latter comes from the conditional probability function of skew
(Gp(η); eq. 2.10), which minimizes eq.(2.13), for the variable xp (of one the diagonal tensor
elements; eq. 2.2) resulting in the largest confidence limit, since this was seen to cover the
region of the model response.
At site CC0 (located above the end of the dike; Fig.2.3), the skew of the model response
indicates that at the period range 100-500 s the departure from the 2-D superposition model
is the highest, which means the most significant induction effect at these penetration depths.
The noisy skew has been down biased indicating in contrast that the best fit with the 2-D
model hypothesis is at this period range. The confidence limit indeed reflects the range of
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Figure 2.4: An example of skew values using synthetic data (left), estimated from the tensor
elements shown in right (units in km/s). The elements of the model response (lines) are shown
over the data scattered with 5% Gaussian noise (dots). The skew of the model response (CC0;
Fig.2.3) is shown over the noisy skew (ran) within its 95% confidence limit. Above: Skew from
the elements with 2% Gaussian noise. Below : Skew from the elements with 5% Gaussian noise.
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Figure 2.5: As for Fig.2.4, but with station ORI (from 3-D model; Fig.2.3).

the 95% probability in which the true skew value can lie.
By site ORI (close to the centre of the dike; Fig.2.3), the confidence limit of skew also reflects
the 95% range probability of the true value. Their thresholds follow generally the trend of
the real skew.
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2. Field data

As an example, data from two stations (TIQ and GER) obtained from MT measurements
carried out in the Southern Central Andes (Chapter 4) are shown. Time series data were
processed using the robust technique of Egbert and Booker (1986), performing also a remote
reference site to improve the data quality. The impedance tensor is estimated with an error
covariance matrix, which is assumed to follow an asymptotically Gaussian distribution. This
assumption of course improves with increasing number of sample data recorded.
Figure 2.6 shows the tensor elements of sites TIQ and GER, and the skew values with their
confidence limits. The latter was estimated for the diagonal element variable which gave the
largest confidence limit, analogous to the synthetic data example. The greatest uncertainties
of skew (i.e, a broader confidence limit) are seen at the shortest and longest periods, where
the relative errors of the tensor elements are the largest. At long periods, the smallest skew
values close to the lower confidence limit could reflect a strong down bias from the true values,
since the upper confidence limit is further higher.
For these data set, the upper confidence limit for the skew can be used to analyse dimension-
ality. Where this upper threshold (i.e., the 97.5% probability) is far greater than 0.3 (f. ex.),
while the lower confidence limit is near a zero skew, might indicate to an unreliable skew due
to noise rather than an indicator of 3-D inductive effects.
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Figure 2.6: Example with field data for site TIQ (left) and GER (right) located in the
Southern Central Andes. Above: The tensor elements of the field data processed with a robust
procedure (units in km/s). Below : The skew parameters of the data (dots) within the 95%
confidence limits (lines).
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Conclusions

The derivation of the conditional probability function of the skew parameter allows estima-
tion of a plausible confidence limit of the true value.
To analyse dimensionality on field data, it is advisable to treat the upper 95% confidence limit
instead of the skew value itself. It was shown with synthetic data that the skew estimated
from tensor elements scattered with 2% and 5% random Gaussian noise could suffer strong
bias with regards to the true skew value. Where the confidence limit becomes extreme large
(�0.3), the data should be discarded from the analysis.
The statistical procedure developed here can also be analogously applied for any other pa-
rameter which is a continuous and continuous differentiable non-linear function of the tensor
elements.
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