Chapter 1

Theoretical Background

1.1  Principles of Magnetotellurics and Geomagnetic Deep
Soundings

The source of the Magnetotelluric (MT) and Geomagnetic Deep Sounding (GDS) measure-
ments are the electromagnetic (EM) fields originated in space (mostly due the solar wind)
which perturb the terrestrial magnetic field. Such perturbations lead to the deformation of
the magnetosphere, constituted partly of ionized plasma (e. g., Villlante [1993]). Another
source of electromagnetic disturbances is the ionosphere (ionized due to UV radiation, thus
producing different current densities), which leads to a strong diurnal EM variation. The
EM-fields propagate in the atmosphere (of conductivity around zero) and reach the earth
surface as quasi-homogeneous waves, valid for the frequencies considered by MT and GDS
(> 1075 [1/s]). A great part of the incident fields reflects at the surface and a small part
penetrates as quasi-stationary plane waves (EM harmonic plane waves) into the conductive
earth. The latter is what MT and GDS measures at the earth surface.

Maxwell’s equations

The EM-fields in isotropic and homogeneous media (of constant electric conductivity o
[S/m]), of uniform electric permittivity e [‘f—fn] and magnetic permeability p [X—Ti] are de-
scribed by the Maxwell’s equations. Considering the fields with harmonic temporal variation

(e"™?), these equations are:

VxE=—-iwB
V x B = iwucE + uoE ~ pok (1.1)
V:-B=0
V-E=¢q/e=0 (1.2)

The electric current density j [%] is proportional to the electric field according to Ohm’s
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law:
j=ocE

where ¢ [%] is the volume density of charge, B the magnetic field [%], E [L] the electric
field and w:%’r the angular frequency. The permittivity and permeability in the earth are
assumed both to be approximately constant values (u, ~ 1, &, ~ 20). The parameters
= pri, and € = g,&, approach in consequence the values of the vacuum (air; p,, €,). Due
to the stationary approximation of the EM-field, the displacement current is negligible and
the field propagate only by diffusion (we < o; eq. 1.1).

By the diffusive process, the current density across (and perpendicular to the) conductivity
interface is continuous. For a homogeneous media (i.e., Vo = 0) the current density achieves
thus V - j = 0; otherwise surface charges ¢/e would arise at the interface.

The incident field measured by MT corresponds to the TE-polarisation mode (tangential
electric field at the surface; Schmucker and Weidelt [1975]). Therefore, since the propagation
is a diffusive process (eq. 1.1), where the density current across interfaces is continuous,
no surface charges (¢/¢) at the air-earth interface occur (eq. 1.2) because the electric field

component is tangential.

The penetration of the quasi-stationary fields F = E, B in a homogeneous earth (i.e, o is
constant) are described by applying the Laplacian vector operator (V) to the second order
differentials of the Maxwell’s equations:

V?F = iwpoF = k*F (1.3)

The term k% = iwpo [1/m?] is the diffusion factor, which describes the complex penetration

depth 1/k ([m]) of the EM-field (e. g., Schmucker and Weidelt [1975]).

The penetration in depth of the EM field for a stratified earth (see below) is called the
Ey
wbBy
homogeneous earth this is C(w) = 1/k, as was outlined above. Also, the real part of the

"response function” C(w) = by some authors (e.g., Weaver [1994]). In the case of a

response function (Re(C(w))) represents physically the depth of the gravity center of the
induced current density (Weidelt [1975]).

Skin depth
In terms of the diffusion factor describing the penetration in depth of the fields (eq. 1.3), the
so-called ”skin depth” (§(w) [m]) in a homogeneous earth is defined as:

2 2
5(w):”W:”W—MU7 (1.4)

which represents the exponential decay of the EM-field amplitude with depth. At depth §(w),
the EM-field amplitude has dropped by 1/e with respect to its value at the surface. The skin
depth of the EM-fields increases with the period (7' [s]), namely proportional to the square
root of T (T = 2%; eq. 1.4).

For a general 1-D stratified Earth of N layers the penetration in depth of the EM-fields
measured at the surface (C(w)) is solved iteratively, with a recursive formula (Wait [1970])
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1.1 PRINCIPLES OF MAGNETOTELLURICS AND GEOMAGNETIC DEEP SOUNDINGS

described by the EM-response function Cj(w). The index i refers to the EM-response mea-
sured at the top of the layer ¢ (Weaver [1994]):
1-— r; exp(—Qkidi)

Cilw) = ki [1 4 7r; exp(—2k;d;)] "

wherei =N -1, , N —2,,..,1 and

1-— kiCZ‘+1(w)
Te — ————=—F~ -
1+ kiCiy1(w)

d; is the thickness of the layer ¢ and k; = y/iwuo; the diffusion factor in the layer (of conduc-
tivity o;; eq. 1.3).
The bottom layer N (with depth — oo) has the response function Cj(w) = 2.

kn

Thereby, an analogous skin depth (eq. 1.4) for a stratified earth is:

6(w) = /2|C1(w)] (1.6)

1.1.1 Magnetotellurics

The Magnetotelluric method uses the horizontal components of the electric and magnetic
fields to determine an electrical impedance Z (see below) as a function of frequency (Z =
iwC(w)).

In a 2-D earth with a strike along the horizontal z-axis (i.e., % = 0) and conductivity o(y, z)
(z positive downwards), the Maxwell’s equations are decoupled into two polarisation modes.
The decoupling is valid since the EM-fields are treated as plane waves, which means that the
interaction between electric and magnetic fields are always orthogonal with each other and
therefore the horizontal component of the magnetic field tangential to the conductivity strike
does not depend on the magnetic field component perpendicular to it.

In this context, the so-called TE-polarisation mode refers to the tangential electric field and
the TM-polarisation mode to the tangential magnetic field; both components are tangential
with respect to the strike (z-axis) of the conductivity structure:

TE — polarisation : E,, B, TM — polarisation : B, E,
_ ' — uoE Y —iwB
oy 0z poLa oy * 5, e
—0F, ) 0B .
5, = = iwB, 6; =iuok, (1.7)
—0F . 0B .
3y Y —jwB, 8; =iuck,
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Impedance tensor

The electrical impedance Z [mV/T] is the ratio between the electric and magnetic field
components, which comes from the matrix form relation: E = ZB.
In a homogeneous media, the ratio of the orthogonal components is (from eq. 1.3):

Z =iw/k (1.8)

In a general 3-D earth, the impedance is expressed in matrix form in cartesian coordinates
(x,y horizontal and z positive downwards):

E; . Ly Zzy B (1 9)
Ey Zyl“ Zyy By

VA

Thus each tensor element is Z;; = E;/B; (i,j = x,y).

In a 2-D earth the diagonal elements of Z vanish (in the 2-D strike coordinate system):
Zpw = Zyy = 0.

In a 1-D layered earth, besides having vanishing diagonal elements, the off-diagonal ele-
ments are related in the form: Z,, = —Z,,.

The tensor Z can be rotated to any other coordinate system by an angle 6 with the rotation
matrix R:

T cosf)  sinf
Z,, = RZR where R =
- sinf cos6

with positive 8 describing a c.w. rotation from the coordinate system of Z,,,.
Impedance phase

The phase of the impedance element describes the phase shift between the electric and mag-
netic field components:

Z=|=t

J

e’ — p=1p — Yp; = arctan <

Re(%’))

where 4,7 = z, y and ¢g, p; is the phase of the electric and magnetic field, respectively.
In a homogeneous earth the impedance phase (eq. 1.8) is:

which means that the electric field precedes the magnetic field by 45°, given by the diffusive
process of the EM plane waves propagation.

In a 1-D layered earth the phase increases over 45° when the EM-response (C1(w); eq.
1.5) penetrates into a higher conductivity media. By analogy, the phase decays below 45°
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Figure 1.1:

v
<

Scheme of a 1-D layered earth
(e)] ..
of conductivity o1 and o2.

The impedance phase (¢) be-
o) haviour by the diffusive pro-
cess is:

o1<o02 = ¢>7/d

o1>02 = p<mw/4d

for the EM-response penetrating into a less conductive media. This means that by the diffu-
sive process the phase shift between the orthogonal electric and magnetic field components
attenuates when the fields penetrates into a less conductive media:

In the 1-D/2-D case the phases lie in the I or III quadrant ([0, pi/2] or [r, 37/2]), which
means that the real and imaginary parts of Z,, (or Z,,) have equal sign. This is due to
the principle of causality of the interaction between electric and magnetic fields induced in
the earth; i.e., any secondary field induced due to a conductivity contrast should necessarily
postdate the primary incident field (the initial source).

By convention, the element Z,, is defined as positive and therefore Z,, is negative, implying
an impedance phase in the I and III quadrant, respectively !.

The principle of causality should be generally satisfied in a 3-D earth. There can be par-
ticular conductivity structures, however, which can violate this principle, as was discussed
for the first time by Egbert [1990]. The present thesis also gives insights into this particular
case, by applying a current channeling analysis (Chapter 6) to field data and synthetic data
from 3-D models (Chapters 7, 8).

Apparent resistivity

The electrical resistivity in depth (the inverse of o) of an inhomogeneous earth can be de-
termined indirectly by measurements realized at the surface. In this sense, an ”apparent”
resistivity of the true value can be inferred by the EM fields of the corresponding penetration
depths.

The apparent resistivity p,,; [2m] (i,j = x,y) is defined in terms of the impedance tensor
element (eq. 1.9) by the form:

Paij = :“‘ZijP/W

In case of a homogeneous earth (of conductivity o), the apparent resistivity reflects the true
value of the earth’s conductivity:

pa = 1/o = plZ2/w.

!The impedance phases in this thesis will be presented all in the I and IT quadrants. Thus a phase originally
laying in the III, IV quadrant is moved to the I, II by adding =
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1.1.2 Geomagnetic Deep Sounding

The Geomagnetic Deep Sounding method (GDS) measures the horizontal and vertical com-
ponents of the magnetic fields. The ratio between the horizontal and vertical components
are most sensitive to the lateral variations in conductivity. The horizontal component per-
pendicular to a conductivity interface sharply increases at the side of the contact of higher
conductivity, while the vertical component increases at the side of lower conductivity (Ritter
[1996]). In a 2-D earth, the magnetic field components arisen from the TE-polarisation mode
(eq. 1.7) identify the spatial lateral variations in conductivity.

For EM plane waves, the vertical and horizontal components of the sum of external and
internal magnetic fields are linearly related in the form:

B, =T,B, + T,B,

T, and T, are the magnetic transfer functions (or tipper). They contain the ratio between
the vertical and the horizontal component, thus give evidence regarding the lateral conduc-
tivity distribution. They can be represented as vectors, assigned with the name induction
arrows (Parkinson [1959], Schmucker [1970]):

T = T,& + T,§

which is separated into its real P and imaginary parts Q:

P,Q(w) = Re, Im[T,(w)]z + Re, Im[Ty(w)]y.

In the so called Wiese convention, the real parts of T point away from higher conductivity
values (fig. 1.2).

01
\ / P(w,xy) :
Figure 1.2:
-~ / Representation of real induc-
tion arrows (P(w)) in a lateral
« —> spatial variation of conductiv-
/ ity (o1,2). The arrows point
X J \ \ away from the higher conduc-
tive media.
y

The length Lp g and direction ¢p g of the arrow (with respect to the x-axis) is:

Re, Im(T,)

Lpq = \/Re.Im(T;)? + Re.Tm(T,)2  ¢pgq = arctan Re, Im(T,)

In a 2-D earth the direction of the induction arrows is perpendicular to the orientation of

the regional strike, provided that they are not influenced by local shallow 3-D conductivity

structures (magnetic distortion; next section).
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1.2 Dimensionality and distortion of the transfer functions

The transfer functions have specific characteristics according to the dimensionality of the
conductivity structure. The ideal case of a 2-D model of the underground would fulfill
the expectations of geophysicists, since the measurements are usually carried out along a
transect. 2-D modeling is much simpler to elaborate than a 3-D one. The non-uniqueness
problem becomes more remarkable in the 3-D modeling because of the larger numbers of
model parameters to be solved versus an insufficient number of observations. Besides, 3-D
model inversion schemes are either still under study or are seldomly available because of their
complicated application. For these reasons, one deals in general with a 2-D model assumption,
which is only an approximation of the real earth since 3-D conductivity structures are usually
present (in terms of the penetration depths of the EM-fields).

In this chapter diverse physical aspects are presented in which the electromagnetic fields are
affected by departures from an ideal 2-D model. The idea is to recover the regional 2-D infor-
mation (as the regional strike direction) if and only if the electromagnetic fields are distorted
by electrostatic currents (DC) produced by local 3-D structures. I will first introduce the dif-
ferent concepts of distortion cases (section 1.2.1) so as to describe in the further subsections
the mathematical aspects of them. First is shown a method for recovering the 2-D impedance
tensor where no distortion analysis is considered (section 1.2.2). The following sections refer
to the distortion (section 1.2.3) and dimensionality analysis (section 1.2.4), where the sec-
tions of tensor decompositions introduce the most common methods used for recovering 2-D
information (sections 1.2.5, 1.2.6).

1.2.1 Introduction

The MT transfer functions can be affected by DC-currents, in MT referred to as galvanic
distortion?, produced by local conductive bodies, small 3-D structures which can impede the
regional exploration of the underground. In this sense, they are a cause of distortion for
the regional fields® and therefore the goal is to remove this effect and recover the regional
information. Such anomalous structures (or local anomalies) should be at shorter depths
than the skin depth of the induced electromagnetic (EM) fields under consideration in order
to neglect induction effects and thus have an electrostatic DC (galvanic) effect prevailing
(e.g., Vozoff [1987]). Also, the local anomaly should be placed electrically far (in terms of a
skin depth) from the regional conductivity contrast in order to neglect the inductive coupling
between both structures. Thereby the regional fields inside the small body can be assumed
uniform, implying that the anomalous electrostatic field is in-phase with the regional field (e.

2The term galvanic refers here to an electrostatic effect, although the word ”galvanic” comes originally
from electro-chemistry. Two cells (cathode, anode) conformed by silver and copper are set in a solution of
nitrate. These galvanic cells are basically batteries to produce electricity. This has nothing to do with the
galvanic distortion referred to in the MT literature, which is a distortion produced by DC-currents.

3The regional fields refer the electromagnetic response of the media without the local structures.
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g., Groom and Bailey [1991]). The intensity and direction of the DC currents depend on the
conductivity contrast between the regional space and the anomaly, as well as its geometry.
In this sense, a 2-D regional model superposed by shallow local anomalies (i.e., the distorter)
is identified in magnetotellurics as the ”superposition model”, where ”galvanic” distortion
(i.e., DC currents produced by the anomalies) affects the regional fields.

Under the above mentioned assumptions, the distortion of the regional electric fields due to
local conductive heterogeneities, referred to as telluric galvanic distortion in M'T, is frequency
independent. Then, telluric distortions can effect considerably the measured electric field
amplitudes in the frequency band under consideration, being especially stronger at lower
frequencies where the amplitudes of the regional fields decrease. The so-called static shift
effect refers to this type of distortion, where the apparent resistivity (p,) curves are affected
by a parallel offset.

The DC-current induces also anomalous magnetic fields*, which are proportional to and
in-phase with the regional electric fields (e.g., Groom and Bailey [1991]). They decrease
in magnitude proportional to the square root of the frequency (Groom and Bailey [1991])).
Thus this magnetic effect, in MT identified as magnetic galvanic distortion, is much smaller
than the telluric distortion effect at lower frequencies, at which the EM-field skin depths
considerably increase in comparison with the dimensions of the local structure. Therefore
the magnetic effect can be considered to vanish at lower frequencies. Of course, under non-
negligible magnetic galvanic distortions, the magnetic transfer functions are also effected by
the local structures.

A local 2-D conductivity macro-scale anisotropy striking differently from the regional 2-D
structure can also be a galvanic distorter, provided that its scale is smaller than the penetra-
tion depths of the fields. But MT measurements are usually unable to distinguish between
an intrinsic anisotropy and a macro scale (or pseudo-) anisotropy because of the limited pen-
etration depth range of the measured fields. Thus a conductivity structure consisting of a
bundle of lamellae is not truly anisotropic but can have the same gross physical properties
for MT.

A pseudo-anisotropy of finite extensions, conceived as highly conductive vertical thin dikes
—due for example to salinary fluids in shear zones— can strongly channel all the currents into
one direction. The horizontal electric field components will be thus strongly polarised into
one single direction. In this case, a tensor decomposition scheme for recovering the regional
fields fails, being unable to determine the regional strike. This special case of distortion was
treated by assuming an anomalous DC-current density in a preferred direction to infer the
presence and orientation of such strong scatterers, and the theory is presented in Chapter 6.

4The attribute ”anomalous” for the magnetic fields is in the sense that these are produced by the local
anomaly.
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1.2.2 The impedance Eigenvalues for a 2-D model

In an ideal 2-D model case, the regional impedance tensor in the coordinate system of the
2-D structure has the form

0 Zzr
VAR i (1.10)
VAR

Due to the orthogonality between the electric (E-) and the magnetic (B-) field components
involved in each polarization mode (XY or YX), the product between E- and B-vectors is

E-B=0 (1.11)

This condition is a consequence of the transverse electromagnetic (EM) waves property of
the fields (Eggers [1982]). Now, the regional impedance tensor (Z,) can be rotated by any
angle 6 to an arbitrary coordinate system with respect to the regional one to bring a tensor
Z ., of the form:

Zm = R(0)-Z" - RT(0),

cos@ sind
where R(0) =
—sinf cosf

is the rotation matrix.

By considering the relation E = Z,, - B, which is equivalent to
E, = Z;zB; + Z:):yBy

E, = Zy,B; + Zy,B,

we can expand the relation given in eq.(1.11) in the form

E-B=E,B, + E,B,

) ) (1.12)
= Zpu By + (Zpy + Zyo) B By + ZyyB,

Imposing eq. 1.12 to vanish (i.e., recalling the orthogonality of the transverse EM waves),
implies that the tensor Z,, can be transformed to a tensor A containing the eigenvalues :

0 N
=X 0

A=

where i=1, 2 denotes two possible solutions, i.e., two different eigenvalues ();) can validate
the orthogonal equation E - B = 0, result which will be demonstrated in the following.

The fields E and B are transformed to the vectors E' and B?, respectively, constituting the
eigen-vectors of the equation system. We observe that A corresponds to the impedance tensor
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of a 1-D medium. The problem reduces to find \;, E? and B* for the given impedance Z,
fulfilling:

E' = 7B = \B' then (Z—-A)B'=0,

and the solution is obtained from the characteristic function det(Z — A) =0 resulting in a
quadratic equation in the eigenvalue \;:

0=detZ — (Zuy — Zyz) i + A2

which implies two eigenvalues thereof, each conforming the elements of a 1-D tensor A.
Since we are dealing with a 2-D case, the eigenvalues \; 2 correspond to the TE(=XY) and
TM(=YX) polarisation mode impedance elements of the regional coordinate system, with
solutions obtained from the above equation:

1
A —% + 3v/a? = 4det [Zn| (1.13)

where o = (Zyy — Zyg).

It can be easily demonstrated, that the values a and det |Zyy,| are independent of the rotation

angle —which means that in any coordinate system the results for Z7, , Z/, will be the same—.

The eigenvalues are therefore rotational invariant and recover the r?égional tensor regardless
of the knowledge about the 2-D strike direction. This expression was formulated by Eggers
[1982]. This solution is an approximation of the 2-D regional tensor under 3-D galvanic
distortion. In this case, the eigenvalues are local site-dependent relative to the position of
the 3-D anomaly and are a mixture of the 2-D regional impedances (Groom and Bailey
[1991]). However, in case of weak distortion, i.e., the electric fields are slightly deviated
from the regional electric fields, the eigenvalues are nearly recovering the 2-D impedances.
Furthermore with the addition of noise, the eigenvalues have been shown to be generally more
stable than the elements of an impedance tensor rotated to the regional coordinate system

(Groom and Bailey [1991]).

1.2.3 Telluric and magnetic galvanic distortions

In the general case of telluric galvanic distortion effecting the 2-D regional response, the
elements of the measured impedance tensor (Z) in the regional coordinate system will be
proportional to and in-phase with the elements of the regional impedance Z, in the form
(Bahr [1988)]):

0 Z,
Zyy 0

Z = Dezr == De (114)
where D, is the telluric distortion matrix of frequency independent real numbers, a conse-
quence of the distorted current which is in-phase with the regional electric field. The above
relation comes from the effect observed on the total field F under the presence of galvanic

currents. D, is responsible for the frequency independent distortion of the regional electric
field (E;). Then, the total observed field F is E = D E".
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Until now we have just considered the telluric distortion assuming that magnetic effects are
negligible. In the presence of magnetic galvanic distortion, an anomalous magnetic field B¢
is originated from the galvanically distorted current, which is proportional to and in-phase
with the regional field E, (e.g., Groom and Bailey [1991]): B* = D, E".
D,,, is the magnetic distortion matrix of frequency independent real numbers. Then, the
observed field B will be the sum of the anomalous field B* and regional magnetic field B" :
B=B"+B*=B"+ D,E".
From the above relations given for the total observed F and B fields, it can be derived that
the elements of the observed impedance tensor will be proportional to the elements of the
regional tensor Z”, expressed in terms of the magnetic and distortion matrix in the form
(Chave and Smith [1994)):

Z =D.Z*(I + D,,Z")7" (1.15)

The product elements D,, Z" are non-dimensional and correspond to the magnetic effect.
Thereby the impedance is no more frequency independent distorted, since the elements of Z*
are contained in the magnetic effect.

1.2.4 Skew parameters of dimensionality

In the telluric galvanic model (eq.1.14), the impedance phases of each column element pair
are equal, since the matrix D, contains real numbers. This is due to the in-phase condi-
tion accomplished between the regional and the anomalous electric fields. If the anomalous
magnetic fields are not negligible, then the 2-D superposition model of eq.(1.15) governs the
measured impedance. Therefore a phase difference between the elements of each column is
expected if magnetic effects are present. In this sense Bahr (1988) found a non-dimensional
rotational invariant parameter which is a measure for these phase differences, identified as
the phase sensitive skew (n):

B \/2 |Re Zp, Im Zy— Re Zyy Im Zy + Re Zyyy Im Zyy — Re Z, Im 7|

g

(1.16)

where

Qg = Zwy - Zya:v

which is also rotational invariant.

A skew value of zero supports the validity of the telluric distortion hypothesis, i.e., a perfect
regional 2-D model can be identified. Greater values indicate the departure of this assump-
tion. Bahr gave a limit of 0.3 to test the validity of the galvanic model, where small phase
differences due to the galvanic magnetic effects could take place. A surpass of this limit could
reflect the non-validity of the galvanic magnetic distortion, which means that 3-D inductive
structures are present.

Another non-dimensional rotational invariant parameter which measures the departure from
an ideal 2-D model is the skew given by Swift [1967]:

s = |agl|/|az] (1.17)
defined also in terms of the rotational invariant « shown previously, and

ag = Zzz + Zyy
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which is also rotational invariant.
A value of zero supports an ideal 1-D or 2-D model assumption. Values greater than 0.1 can
be identified whether with a 3-D model or a galvanic 2-D model.

1.2.5 Telluric tensor decomposition

Under telluric galvanic distortion assumptions Groom and Bailey [1989b] proposed a tensor
decomposition method where the distortion matrix D, (eq.1.14) is separated into three ma-
trices and a real number. In the coordinate system of the regional 2-D structure the measured

impedance Z is expressed as:
Z =D./Z" = (gTSA)Z"

where g is a real number denominated the ”gain” factor. The matrices T' and S are called
the twist and shear tensor of the telluric deformation, respectively:

T 1 1 —t g 1 1 e (118)
1+62 ¢ 1 Vite? e 1 '

The twist parameter (¢ = tan((;)) represents the electric field rotation through a clockwise
angle ; due to additional anomalous DC-currents. T is normalised by this twist parameter.
The tensor S is also normalized by the shear parameter e = tan((,.) with the physical meaning
of deflecting the electric field by an angle 3., clockwise with respect to the x axis and counter-
clockwise for the other horizontal axis. The name shear is motivated from the analogy made
with the mechanical strain of bodies, with shear representing the deformation of its principal
axes. Both twist and shear angles under maximal telluric deformation should not exceed the
|45°].
S represents the anisotropy or splitting tensor, which has the geometrical effect of stretching
the two electric field components by different factors:

Aot tEts 0 (1.19)

Vits?2 | 0 1-s

This distortion does not refer to the electrical anisotropy mentioned in the introduction, but
is an effect produced by the small scale 2-D and/or 3-D scatters.
Groom and Bailey [1989b] have shown that the anisotropy A and the gain factor g cannot
be determined due to the equivalence:

Z = (gTSA)Z, = TSZ,

where the impedance Z, still represents a 2-D tensor. The final expression for this reduced
tensor decomposition form by using eqs. 1.18 is:

1—te e—1 0 Z
Z = v (1.20)
e+t 1+4te Zyy 0

26



1.2 DIMENSIONALITY AND DISTORTION OF THE TRANSFER FUNCTIONS

The product gA represents the static shift effect mentioned at the beginning of this section,
which can not be determined by the tensor decomposition. For an arbitrary coordinate
system, for example the measured coordinate system, the impedance tensor will then be:

Zm = R(TS)Z.RT (1.21)
where R is the rotation matrix.

The goal is to determine the strike direction of the regional 2-D structure, once the twist and
shear have been estimated. The system consists of 7 parameters to be solved for:

Re,Im(Zy,), Re,Im(Z},), t, e, 0

where 60 represents the strike angle, ¢ and e the distortion parameters twist and shear, respec-
tively (eq. 1.18), and Z,

zys Zyg are the regional impedances. The system is overestimated,

since there are 8 known variables corresponding to the 4 complex impedance elements of Zy,

The impedance Z,, can be expressed in terms of the Pauli spin matrices:

0 1 0 -1 1 0
Y= ;N = DRES
10 1 0 0 —1
and
1
= | <a01+ 5 DTS Z)
where

ag = Lz + Zyya a1 = Z:):y + Zyz
03 = Zay + Zyor 03 = Zng — Zyy.

Thereof the following system of non-linear equations in terms of the tensor decomposition of
eq. 1.21 can be obtained:

a0 = U Zyy + Zy,) + e(Zyy — Zyy)

a1 = [(1—et)Zy, — (1 +et)Z,,)] cos 20 — [(e + t) Zy, + (e — ) Z,,] sin 20
ag =—(1—et)Zy, — (1+et)Zy,

a3 = —[(1 —et)Zy, — (1 +et)Zy, | cos 20 — [(e + t) Zy, + (e — t)Z,, ] sin 20

(1.22)

From these equations, the distortion parameters ¢ and e, the strike angle 8 and the regional
impedances can be estimated with a least square method. The test of misfit between the
tensor decomposition model and the measured data is:

|Zij — Zi?

M
NS

1

i||

N
<.
Il
—

HMMT

(1.23)

where Zij is the model impedance. If the tensor elements are assumed normally distributed,

eq. 1.23 represents a x? test of one degree of freedom, leading to an expected value of 1.

Thus, an acceptable tensor decomposition fit with the telluric galvanic model is indicated by
2

ax ~l1.
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1.2.6 Telluric and magnetic tensor decomposition

Chave & Smith (1994) extended the telluric decomposition method to include also magnetic
galvanic distortions. The tensor decomposition model to be solved is that from eq.(1.15),
where the telluric matrix D, is the product of the twist and shear matrices (eq. 1.18) as in
the telluric decomposition scheme. The magnetic galvanic matrix D,, is defined:

v Day
Dy, €

Dy, =

It can be demonstrated that the off-diagonal elements of the magnetic distortion matrix are
not distinguishable, which means physically that the anomalous magnetic fields aligned with
the induced regional magnetic field are being absorbed in it (Chave and Smith [1994]). Only
the diagonal elements can be determined from the decomposition, representing the magnetic
effect at right angles to the regional magnetic field. The non-linear systems of equation
(1.22) contains now two more unknown variables; the magnetic distortion parameters -y and
€. Then, there are 9 parameters to be determined, which can be solved by considering at
least two frequencies simultaneously.

The system was also extended to solve the magnetic transfer functions. This leads to 12
real equations and it can be solved for 12 parameters: Re,Im(Z;,) , Re,Im(Z;,) , the re-
gional magnetic transfer function (2more),e,t,0,y, ¢ and an additional magnetic parameter
associated to the vertical magnetic field component distortion. Chave & Smith (1994) used
a modified Levenberg-Marquard algorithm to solve the system. They recommend also the
x? misfit test of eq.(1.23) but modified in the denominator. The impedance amplitudes are
replaced by the data errors. This functional has now 4 degrees of freedom for normally dis-
tributed tensor elements; therefore an acceptable model decomposition fit should not exceed
this value. For simultaneous frequencies the number of degrees of freedoms increases.

Smith [1997] simplified the telluric and magnetic tensor decomposition method, where, in-
stead of inverting matrices as in eq.(1.15), he found an equivalent expression of the form:

Z = D.Z" — Z D, Z". (1.24)

The telluric and magnetic matrices D., D,, each contain only two parameters to be solved,
reducing to

1 ¢
D, = and D= | " |, (1.25)

respectively.

The diagonal elements of the telluric matrix are set to one because they are absorbed in
the regional impedance, corresponding to the known unsolved problem of gain 4 anisotropy
effects explained in section 1.2.5 (Groom and Bailey [1989b]).

As mentioned above, the reduction of the off-diagonal elements to zero in the magnetic ma-
trix D,, is also due to the indetermination in solving them. This means that the anomalous
magnetic fields aligned with the induced regional magnetic field are being absorbed in it.
Given the indeterminacy of the parallel distorted field, the off-diagonal elements are assumed
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to vanish (Smith [1997]).

From this parameterizations Smith (1997) found exact solutions for each distortion param-
eter as a function of the measured impedance elements assumed to be in the 2-D regional
coordinate system:

magnetic
~ ReZyyImZ,, —ImZ,,Re Z,, ~ ReZy,ImZ;, —ImZ,, Re Zy,
77 Re ZyyIm(det Z) — Im Z,, Re(det Z)’ 7 Re Zyy Im(det Z) — Im Z,,, Re(det Z)
(1.26)
telluric
. Re Z,, Im(det Z) — Im Z,,, Re(det 2) Re Z,, Im(det Z) — Im Z,, Re(det 2)
= CcC =
Re Z,, Im(det Z) — Im Z,,, Re(det Z)’ Re Z,, Im(det Z) — Im Z,, Re(det Z() )
1.27

Thereby the solution for the regional impedance (eq. 1.24) can be directly solved for single
frequencies, provided that the regional strike angle is known. Thus, in the regional coordinate
system the regional response Z” as function of the measured impedance Z is:

ngac = Zy /(1 — €Zyy)

(1.28)
Ly = Zay/(1 = VZ2z)
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