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Abstract

While the last decades witness great advances in hardware technology, new mobile applications have
also become much more demanding. Hence, mobile devices still face the restrictions in resources,
such as battery life, storage capacity, and processor performance. In Mobile Cloud Computing
(MCC), offloading is a popular technique proposed to augment the capabilities of mobile systems
by mitigating complex computation to resourceful cloud servers. While offloading may be benefi-
cial from the performance and energy perspective, it certainly exhibits new challenges in terms of
security due to increased data transmission over networks with potentially unknown threats.

Among possible security issues are timing attacks which are not prevented by traditional cryp-
tographic security. Timing attacks belong to side-channel attacks in which the attacker attempts
to compromise a system by analyzing the time it takes to respond to various queries. Offloading
is particularly vulnerable to timing attacks because it often needs many times sending/receiving.
So metrics on which offloading decisions are based must include security aspects in addition to
performance and energy-efficiency. This thesis covers both the theoretical and practical aspects of
offloading policies in MCC systems. Unlike previous work that only considers the performance
and energy perspectives, this thesis presents and evaluates offloading policies based on security-
performance tradeoff analysis to satisfy the security and performance requirements in offloading
systems. Proposed stochastic models are applied and evaluated by numerical simulation and real
world experiments. Specifically, the contributions of this thesis can be summarized as follows:

• Several stochastic model-based approaches to quantitatively assess the security and perfor-
mance attributes of the mobile cloud offloading system are proposed.

• Methods to formulate metrics that include both, performance and security aspects and that
optimise the tradeoff between the two are studied.

• A secure and cost-efficient offloading policy considering the specific threat of timing attacks
against MCC systems is proposed and the offloading policy is evaluated with experiments.

• Two widely used secure containers for Android: Samsung Knox and IBM MaaS360, to en-
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hance the client security in MCC systems are compared.
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Chapter 1

Basic Concepts and Problems

1.1 Problem Statement

Cloud computing has been widely accepted as computing infrastructure of the next generation, as it
offers advantages by allowing users to exploit platforms and software provided by cloud providers
(e.g., Google, Amazon and IBM) from anywhere on demand at low price [122].

Mobile devices, such as smartphones, tablets and smart watches, have become mandatory items
in today’s world. They are no longer used only for voice communication and short message service
(SMS); instead, they are used for watching videos, gaming, web surfing, recording health data and
social networking. Mobile devices are becoming progressively an important constituent part of ev-
ery day’s life as very convenient communication and business tools with a wide variety of software
covering all aspects of life. Although the last decades witness great advances in hardware technol-
ogy, new applications have also become much more demanding. Hence, mobile devices still face
the restrictions in resources, such as battery life, network bandwidth, storage capacity, and processor
performance.

Mobile cloud offloading is a promising solution to augment the mobile systems’ capabilities by
migrating computation via WiFi or 3G/LTE to more resourceful servers (i.e., Windows Azure and
Amazon EC2 web services) [36]. The concept of computation offloading has been proposed with
the objective to avoid a long application execution time on mobile devices, which results in large
power consumption. This is different from the traditional client-server architecture, where a thin
client always migrates computation to a server [82]. The offloading client has the capability to do
the computation tasks locally on the mobile device. In mobile cloud offloading, applications are
often divided into two parts: one of those parts that can be offloaded and the other that must be
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CHAPTER 1. BASIC CONCEPTS AND PROBLEMS

Attack

Attack

Figure 1.1: An illustration of Mobile Cloud Offloading system

executed on the mobile device, such as the user interface [136].
In many scenarios, the limited computing speeds of mobile systems can be enhanced by mobile

cloud offloading. One example is a context-aware computing infrastructure proposed in [57] –where
multiple streams of data from different sources like GPS, maps, accelerometers and temperature
sensors need to be analyzed together in order to obtain real-time information about a user’s context.
Even though battery technology has been steadily improving, it has not been able to keep up with
the rapid growth of power consumption of mobile systems. Offloading may extend battery life by
migrating the energy-intensive parts of the computation to servers [83].

The smooth offloading of computation depends on a fast and stable network connection, which
guarantees seamless communication. But in an unreliable network, task completion can be delayed
or interrupted by congestion or packet loss, in which case offloading may not always benefit [130].
This involves making a decision regarding whether and what computation to migrate, which usually
depends on many parameters such as the network bandwidth and the amounts of data exchanged
through the networks.

Over the last years, research on computation offloading focused on how to offload and what
to offload from mobile devices to cloud servers in order to reduce the execution time and power
consumption of computation tasks [82]. Several offloading infrastructures have been developed for
offloading at varying granularity, among which the MAUI offloading system, presented in 2010, not
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1.1. PROBLEM STATEMENT

only achieves significant reduction in energy consumption for some jobs on mobile devices, but also
improves the performance of mobile applications (i.e., refresh rate of a game can increase from 6
to 13 frames per second) [36]. In addition, instead of offloading the full code, MAUI partitions the
application code at runtime to maximize energy savings. However, several challenges still exist in
the following three aspects of mobile offloading systems:

Time and energy consumption in data transition
Data transmission over wireless or cellular networks is of highly unpredictable quality. Wu
[138] proposed metrics to express the energy response time tradeoff, the Energy-Response
time Weighted Sum (ERWS) and Energy- Response time Product (ERP) [50] for mobile of-
floading systems which can be optimised using different offloading policies.

Lossy network
Low bandwidth or long delays are possible factors incurring connectivity problems. Conse-
quently, when migrating computation to the cloud server, the execution of the offloading task
may suffer from long delays or even failures by in the network. Limited battery capacity of
the mobile device prohibits unpredictable waiting times, which may also be caused by a long
recovery process. A dynamic scheme to determine whether and when to launch the local re-
execution, instead of always waiting for network recovery to offload [130] may help to deal
with this problem.

Security and data confidentiality
Along with the benefits of high performance, the offloading system witnesses potential se-
curity threats including compromised data due to the increased number of parties, devices
and applications involved, that leads to an increase in the number of points of access. Secu-
rity threats have become an obstacle in the rapid expansion of the mobile cloud computing
paradigm. Significant efforts have been devoted to research organisations and academia to
build secure mobile cloud computing environments and infrastructures [68]. However, works
on modelling and quantifying the security attributes of mobile offloading system are rare.

Quantitative analyses of system dependability and reliability have received great attention for
several decades. However quantification of security has only recently attracted more attention, and
some initial conceptual work has been published already decades ago. A series of model-based eval-
uation of security mechanisms has been published only recently. But few studies have considered
the quantitative evaluation of security and the tradeoff with performance [134].
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CHAPTER 1. BASIC CONCEPTS AND PROBLEMS

1.1.1 Security Issues

Although the cloud based approach can dramatically extend the capability of mobile devices, the
assignment of developing a secure and reliable mobile cloud offloading system remains challenging
[68]. Protecting user privacy and data secrecy from an adversary is a key to establish and maintain
consumers’ trust, especially in Mobile Cloud Computing (MCC) systems. Thus metrics on which
offloading decisions are based must include security aspects in addition to performance and energy-
efficiency. In recent years, numerous works about security in mobile cloud offloading and cloud
computing have been presented [37, 54, 67, 93].

Since offloading servers may lie in any corner of the world beyond the reach and control of users,
there are many security and privacy challenges that need to be understood and taken care of in
mobile offloading. Also, one can never ignore the possibility of a server breakdown that has been
witnessed, rather quite often in the recent times [16].

There are several security challenges existing in the mobile cloud offloading scenario. Attacks
can happen on both the client side and the server side as well as the communication between them
(Figure 1.1). As reported by the Open Web Application Security Project (OWASP) [6], the “top 10”
vulnerabilities in cloud-based or Software as a Service (SaaS) deployment models are listed: acces-
sibility vulnerabilities which are intrinsic in TCP/IP such as denial of service (DoS) and distributed
denial of service (DDoS); web application vulnerabilities like cross-site scripting and Structured
Query Language (SQL) injection; authentication of respondent devices; data verification; physical
access issues; privacy and data confidentiality including the increasing threat of data compromise in
the cloud, due to the increasing number of devices and applications involved; and trust computations
as the unencrypted data must reside in the memory of the host running the computation.

One important threat against the offloading system is the side-channel attack, which is not covered
by traditional cryptographic security [22]. Among side-channel attacks are timing attacks, whose
remote feasibility has been proven in [20]. A timing attacker does not require special equipment
or physical access to the machine, which makes a practical threat against web services as well as
mobile cloud offloading systems [19]. Protecting cryptographic implementations against timing
attacks is one of the most important challenges in modern cryptography [15,73]. Timing attacks are
based on information gained from the service response time. In a timing attack, the attacker deduces
information about a secret key from runtime measurements of successive requests.

Offloading is particularly vulnerable to timing attacks because it often needs many times send-
ing/receiving. In a mobile cloud offloading system, an attacker can pretend to be a normal client
and send offloading requests to the cloud server. Timing attacks enable the attacker to extract se-
crets maintained in the cloud server by observing the time it takes the server to respond to various
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1.2. CONTRIBUTIONS

queries [21]. The process of a timing attack can be interrupted by frequently changing the key in the
server [111] or mitigated by random padding in response time [73].

1.1.2 Tradeoff Analysis

A tradeoff is a situation that involves losing one quality or aspect of an object in return for gaining
another quality or aspect. Tradeoff between security and throughput is always a major concern in
wireless networks [64].

In mobile computing, security mechanisms such as security protocols or encryption algorithms
bring a cost to the system in terms of processing effort and energy consumption. For instance, when
Advanced Encryption Standard (AES) is implemented to protect the communication between mobile
devices, the messages have to be encrypted before sending, which may degrade the performance. In
this scenario, the tradeoff is that encryption with longer AES keys is slower because it requires more
computing power to process. So the longer the encryption key the higher the encryption cost.

However, if the encryption key length is short, it is easier for an attacker to compromise the mobile
computing system. A security incident has associated costs as well. So one has to choose an optimal
key-length for the system as to keep encryption costs and security incident costs together as low as
possible [134]. In the presence of timing attacks, we investigate how to the set system parameters to
obtain the optimum tradeoff between security and performance in mobile computing systems.

1.2 Contributions

Performance and security are two major attributes that must be taken into consideration when de-
signing mobile cloud offloading systems. As a system administrator, one may want to improve
performance and security at the same time. Accordingly, we consider three objectives as follows:

• Improving offloading performance: by offloading heavy workload to resourceful cloud
servers, mobile users want to reduce the job execution time on the mobile devices or increase
the system throughput.

• Quantitative security assessment: protecting user privacy and data integrity are gradually at-
tracting people’s attention in recent years, especially in mobile computing systems where data
resides over a set of networked resources. However, studies on assessing security quantita-
tively are still rare. In order to proceed to a quantitative treatment of the performance-security
tradeoff of offloading systems, we first have to provide methods to assess security quantita-
tively.

7



CHAPTER 1. BASIC CONCEPTS AND PROBLEMS

• Security and performance tradeoff: security and performance are both critical design ob-
jectives of mobile cloud offloading systems. As discussed in Section 1.1.2, improving security
of the system often brings an overhead that affects performance. One may look forward to
improving security of offloading systems while maintaining performance within an accept-
able range. So the tradeoff analysis of security and performance needs to be performed in the
offloading scenario.

The main contributions of this thesis propose several model-based measures of assessing perfor-
mance and security of mobile cloud offloading systems, and proceed to improve the tradeoff of both
attributes. In the following we give a short overview of the major contributions. A chapter-by-
chapter summary of this thesis is introduced in Section 1.3. The major contributions of this work
are listed as follows:

1) We propose several stochastic model based approaches to quantitatively assess the security
and performance attributes of the mobile cloud offloading system.

2) We show methods to formulate metrics that include both, performance and security aspects
and that optimize the tradeoff between the two. By solving the proposed hybrid CTMC and
queueing model, the optimal rekeying rate is determined for several system metrics. We found
that with carefully selected parameters, we can configure the offloading system to achieve an
optimal security and performance tradeoff.

3) By combining renewing the server key regularly with inserting random delays into the server
processing time, we propose a secure and cost-efficient offloading scheme for MCC systems.
Our experimental results show that the security performance tradeoff of offloading can be
improved through our scheme.

4) We implement a system that allows us to compare the impact of different random padding
strategies on the expected success of timing attacks. It is revealed that the variance of ran-
dom delays is the decisive factor to mitigation effectiveness of a random padding and the
extra number of measurements that an attacker has to make grows linearly with the standard
deviation (SD) of the random padding.

5) With respect to client security issues, we perform an empirical comparison between two pop-
ular secure container solutions for Android: Samsung Knox and IBM MaaS360, and show
several experimental results. Our experimental results shows that it is more secure for an
application to run in the Knox container than in the MaaS360 container. We also found that
mobile devices witness a notable deterioration in the performance of compute-intensive appli-
cations using the Knox container. However, for a memory-intensive application, performance
does not degenerate much in Knox and MaaS360 containers comparing with running on the
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1.3. THESIS STRUCTURE

device (outside the container).

1.3 Thesis Structure

This thesis consists of three parts. In the first part we generally introduce the background of this
thesis and some related work.

First, in Chapter 1 we present some elements of this thesis: where it happens, when it happens
and how it develops. This thesis focuses on the field of the offloading technique in MCC. We
introduce the basic concept of mobile cloud offloading and the security issues in offloading systems.
The initial idea of tradeoff analysis is presented and the contributions of this thesis are summarized.

Chapter 2 first describes the basic characteristics of mobile cloud offloading. We discuss the
tradeoff for offloading decisions and the existing offloading frameworks are compared in terms of
their parameters, potential application and optimization strategy. We provide a brief introduction
of the timing attack, which is the main security threat we consider in this thesis. Then we survey
related work regarding existing mobile cloud offloading schemes, security assessment techniques
and side-channel attacks.

The second part of the thesis illustrates the quantitative security assessment methods of the mobile
cloud offloading system and the tradeoff analysis of its security and performance attributes.

In Chapter 3 we first present an introduction to the stochastic modeling techniques used through-
out this thesis. Then a state transition model is proposed for a general mobile cloud offloading
system under the specific threat of timing attacks. Our model aims to quantitatively assess the se-
curity attributes of an offloading system. We show how to formulate metrics that include both,
performance and security aspects and that optimize the tradeoff between the two. System metrics
are evaluated by solving the steady-state probabilities of the proposed model.

Chapter 4 illustrates the issue of security and performance tradeoff analysis of mobile cloud
offloading. We investigate how to quantitatively assess the security attributes and their impact on
the performance. The security model proposed in the previous chapter is improved and extended
with a performance model. By transforming the security model to a model with an absorbing state,
the "mean time to security failure" (MTTSF) measure is computed.

In Chapter 5 we propose a secure and cost-efficient offloading scheme for MCC by combining
renewing the server key regularly with inserting random delays into the server processing time.
A system is implemented to evaluate our scheme and to compare the impacts of different random
padding strategies on the expected success of timing attacks.

9



CHAPTER 1. BASIC CONCEPTS AND PROBLEMS

The third part of the thesis concerns how to improve the client security of mobile cloud offloading
systems.

The analysis presented in chapters 4 and 5 mainly considers the server security of offloading
systems, while we address the client security in Chapter 6. We perform an empirical comparison
between two popular secure containers for Android: Samsung Knox and IBM MaaS360. Bench-
mark tests are conducted to compare these two containers. Then in order to quantitatively assess
the security property of these containers, we propose a measurement method based on a simulat-
ing attack. We arrive at guidelines how to select the secure containers in the actual application
environment.

Chapter 7 concludes the thesis with a summary. The contribution of proposed offloading policies
is emphasized. In the end, we provide the outlook of our future work.
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Chapter 2

Background and Related Work

In MCC, compute-intensive applications suffer from the restricted resources of mobile devices, such
as limited battery lifetime and memory. Mobile cloud offloading is a popular solution to mitigate
these restrictions and enhance the capabilities of the mobile system by migrating large computation
and complex processing from resource-limited devices to more resourceful computers (i.e., servers)
[83]. In this chapter, we first provide a brief introduction of mobile cloud offloading. In particular,
we are interested in different offloading architectures and frameworks. In the second part of this
chapter, we introduce the procedure of a timing attack to mobile cloud offloading. The timing attack
is the main security issue on which we focus our attention in this thesis. In addition, the existing
countermeasures against this attack are surveyed. Last, we present the related work of this thesis.
We give an overview of existing mobile cloud offloading schemes and model analysis methods for
offloading and timing attack investigations. Our reviews are intended to serve as a guideline for a
structured approach to building secure and cost-efficient offloading systems.

2.1 Mobile Cloud Offloading Overview

In this section we introduce the mobile cloud offloading architectures and describe a comparison
of the existing offloading frameworks.

2.1.1 Generic architecture

The general architecture of mobile cloud offloading system can be depicted as in Figure 2.1.
Offloading users with mobile devices are connected to powerful cloud servers in different forms.
A simple way is through Wi-Fi networks where mobile devices connect to the Internet via Wi-Fi
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Figure 2.1: Mobile cloud offloading architecture [69]

access points (wireless routers). But this form has range limitations, e.g., eduroam [2] signal only
covers the area near education buildings. A more flexible and long range connection is through
cellular networks, where mobile users first connect to a 3G/LTE network through devices such as
Base Transceiver Station (BTS) and Mobile Switching Center (MSC) to transmit data to the Internet.
Base stations establish and control the connections (air links) and functional interfaces between the
networks and mobile devices. This connection has much higher availability than Wi-Fi because it
has high coverage. However the average data rate of cellular networks is often lower than Wi-Fi.

At runtime, mobile applications discover a cloud service and offload jobs to it. A mobile ap-
plication generates the jobs of the offloading system which can either execute them locally on the
mobile device or offload them to cloud servers. In the latter case the mobile clients offload jobs
to a server and receive the computation results sent back by it. The offloadable jobs can be any
computation-intensive or energy-intensive jobs such as Optical Character Recognition (OCR), real-
time translation and chess algorithm computation, to name some examples. The offloading decision
mechanisms on the mobile systems are managed by the system administrator by a mobile device
management (MDM) system. The administrator makes offloading decisions based on performance
and security criterion.

12



2.1. MOBILE CLOUD OFFLOADING OVERVIEW

In the mobile cloud offloading system, mobile network operators can provide services to mobile
users such as authentication, authorization, and accounting based on the home agent and subscribers’
data stored in databases. After that, the mobile users’ requests are delivered to the cloud service
providers (e.g. Amazon Elastic Compute Cloud EC2 and Simple Storage Service S3) through the
Internet. In the cloud, cloud controllers process the requests to provide mobile users with the cor-
responding cloud services. These services are developed with the concepts of utility computing,
virtualization, and service-oriented architecture (e.g., web, application, and database servers) [43].

2.1.2 Tradeoff for offloading decisions

In mobile cloud offloading, mobile devices offload heavy workloads to cloud servers in order
to reduce execution time and energy consumption. But offloading is not always beneficial since it
brings an overhead caused by data transmission and the effort for executing offloading codes. At
the same time, mobile users are confronted with dynamically changing network situations due to
user mobility, that makes it hard to make offloading decisions in mobile situations [85]. So it is
reasonable to make good offloading decisions based on several criteria to make sure that offloading
benefits the user.

From the perspective of execution time, mobile cloud offloading may improve performance when
the execution (including data transmission and computation) can be performed faster at the server
than the mobile device [69]. Let T

s

be the time to execute the offloading job on the cloud server,
T
c

be communication time involving establishing connection and data transmission and T
l

be the
local execution time on the mobile device. That is, the server execution time T

s

together with the
communication time T

c

is shorter than the execution time T
l

on the mobile device:

T
s

+ T
c

< T
l

. (2.1)

In order to reduce the energy consumption on the mobile device, we let the E
l

be the energy used
by the mobile device when the application is locally executed. Let E

t

be the energy required for
transmitting offloading jobs and E

i

be the energy used when the application is idle, waiting for the
server to send back the result. Mobile cloud offloading is beneficial from the energy consumption
perspective if it satisfies:

E
t

+ E
i

< E
l

. (2.2)

While employing mobile cloud offloading may be beneficial from the performance and energy
perspective, the system surely exhibits new security challenges because of increased data transmis-
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sion over networks with potential threats. Thus, we have to take security into consideration when
making offloading decisions in addition to performance and energy-efficiency. Metrics such as con-
fidentiality and mean time to security failure (MTTSF) can serve as criterion to judge the security
of mobile offloading systems. We let the C

o

be the original confidentiality of the offloading system
and C

s

be the confidentiality when we develop a security strategy to protect the system. In order to
improve the system security, the strategy has to satisfy:

C
s

> C
o

. (2.3)

In the rest of this thesis, we propose tradeoff metrics to investigate the interrelation between
security and performance perspectives of mobile offloading systems.

2.1.3 Existing frameworks

Table 2.1.3 describes a comparison of several existing mobile cloud offloading frameworks in
terms of their applications, tradeoff parameters and optimization strategies.

Generally speaking, execution time, energy consumption and data transmission are the main
tradeoff parameters that most of the offloading frameworks use. But the EECOF (Energy Effi-
cient Computational Offloading Framework) particularly investigates the tradeoff between the size
of data transmission and energy consumption cost in offloading different components of the appli-
cation. The frameworks ThankAir, CloneCloud and DiET are proved to be effective for scientific
computing applications, whereas the Cuckoo, MAUI and MACS are usable for applications which
do a lot image processing work such as face detection. The EECOF framework is shown to work for
a SOA (service-oriented architecture) prototype application and SociableSense is designed specifi-
cally for applications requiring social interaction measurement.

As for the strategies to optimize the offloading decision, most of the existing offloading frame-
works utilize heuristics based on ILP (Integer Linear Programming), parallelizing model, and multi-
criteria decision theory. As a practical implementation of mobile cloud offloading for Android,
Cuckoo uses a very simple heuristics to always prefer offloading to remote servers.
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Framework Tradeoff parameters Application Optimization strategy

CloneCloud [28]
Execution time,

energy consumption

Virus scanner,

image searching

Integer Linear

Programming

Cuckoo [66]
Execution time,

energy consumption

Object recognition,

PhotoShoot game

Always prefer

remote execution

ThinkAir [76]
Execution time,

energy consumption

Great Computer Language

Shootout, N-queens

Parallelizing

method based

MAUI [36]

Execution time,

Energy consumption,

offloaded data

Face-recognition,

chess and video game

0-1 Integer

Linear Programming

MACS [78]

Execution time,

energy consumption,

data transmission

Face detection

and recognition
Cost function based

SociableSense

[110]

Energy consumption,

latency, data transmission

Sociability measurement

application

Multi-ciriteria

decision theory

EECOF [118]
Data transmission,

energy consumption cost
SOA prototype application

Preconfigured

service access

DiET [112]

Execution time,

size of transmitted data,

throughput

SciMark 2.0 (a scientific

computing benchmark)
User configuration based

Table 2.1: The Comparison of the existing offloading frameworks

2.2 Timing Attacks

As more and more information on individuals and business are placed in the cloud, concerns today
are serious about how safe an environment is. One should take security metrics into account when
making mobile cloud offloading decisions, because security concerns become the main barrier to the
development of MCC [68]. In this thesis, we mainly deal with the threat of the timing attack whose
remote feasibility has been proved [20]. In the following, we introduce the procedure of timing
attacks.
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Figure 2.2: An illustration of A Timing Attack

Implementations of cryptographic algorithms often perform computations in non-constant time,
due to performance optimization [42]. If such operations involve secret parameters, these timing
variations in cryptographic computation can leak some information and a careful statistical analysis
could even arrive at the total recovery of the secret keys [111].

Figure 2.2 shows an illustration of a timing attack. In the offloading system, a group of mobile
devices offload computation to a cloud server supporting a web service. The server is an Apache
web server with OpenSSL. We assume there is an attacking client conducting timing attacks to the
cloud server. The cloud server can not discover the attacker because it sends only regular requests
to the server. The attacking client sends requests to the server and the server returns back the result.
What the attacker does additionally is that it records the response times.

The attacking client gains information about the server’s secret by analysing the response time
measurements. Simply, a timing attack is that an attacker repeatedly sends guesses about a secret
value to the server, which rejects them as incorrect. However, if the first bit of the guess is correct,
it takes slightly longer to return the error. With many measurements and some filtering, the attacker
can distinguish this difference and then decrypt bit by bit the server’s secret.
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tdecrypt
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Figure 2.3: Brumley’s remote timing attack

2.2.1 Brumley’s attack

It was commonly believed that timing attacks can be directed only towards smart cards or affect
inter-processing locally, but some studies reveal that remote timing attacks are also possible and
should be taken into consideration [21, 111].

We take Brumley’s attack [21] as an example and explain how remote timing attacks work. As
shown in Figure 2.3, a regular client establish a connection with the cloud server use a three-way
handshake. During a standard full SSL handshake the SSL server performs an RSA decryption using
its private key. The SSL server decryption takes place after receiving the CLIENT-KEY-EXCHANGE

message from the client. The CLIENT-KEY-EXCHANGE message is composed on the client by
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encrypting PKCS 1 padded random bytes with the server’s public key. The randomness encrypted
by the client is used by the client and server to compute a shared master secret for end-to-end
encryption.

Upon receiving a CLIENT-KEY-EXCHANGE message from the client, the server first decrypts
the message with its private key and checks the resulting plain text for proper PKCS 1 formatting.
If the decrypted message is properly formatted, the client and server can compute a shared master
secret. If the decrypted message is not properly formatted, the server generates its own random bytes
for computing a master secret and continues the SSL protocol. Note that an improperly formatted
CLIENT-KEY-EXCHANGE message prevents the client and server from computing the same master
secret, ultimately leading the server to send an ALERT message to the client indicating the SSL
handshake has failed.

In Brumley’s attack, the client substitutes a properly formatted CLIENT-KEY-EXCHANGE mes-
sage with a guess value g. The server decrypts g as a normal CLIENT-KEY-EXCHANGE message,
and then checks the resulting plain text for proper PKCS 1 padding. Since the decryption of g will
not be properly formatted, the client will receive an ALERT message from the server. The attacking
client computes the time difference from sending g as the CLIENT-KEY-EXCHANGE message to
receiving the response message from the server as the time to decrypt g. The attacker repeats this
process for many guess value of g. With carefully analysing the response time measurements, the
attacker can guess the server’s private key bit by bit.

Because timing attacks can be conducted remotely without the need of touching the hardware,
mobile cloud offloading systems are surely vulnerable to such attacks. However this threat is not
covered by traditional cryptographic security. Mobile cloud offloading requires access to resource-
ful servers for short duration through wireless networks. These servers may use virtualization tech-
niques to provide services so that they can isolate and protect different programs and their data.
However, in [133] it is shown that using a cache timing attack, an attacker can bypass the isolated
environment provided by virtualization characteristics, where sensitive code is executed in isolation
from untrustworthy applications. It is worth mentioning that a timing attack also poses a threat to
other types of systems such as vehicular networks [123] and wireless sensor networks (WSNs) [95].

2.3 Related Work

The computation offloading is not a novel concept since it has evolved from many paradigms of
distributed computing [12, 16, 43, 47, 52, 68, 79, 82, 122]. In this section we summarize the related
work in the directions of mobile cloud offloading approaches, model analysis techniques and timing
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attacks.

2.3.1 Offloading approaches

Due to the limitation of relatively low battery capacity of mobile devices as well as fragile mobile
networks, a significant amount of studies have been performed on offloading computation to the
cloud to achieve two main objectives: to extend battery lifetime [40, 83, 108, 137], and to shorten
execution time of heavy applications [25, 109, 128–130]. In order to optimize the offloading gain,
mobile cloud offloading involves making a decision about whether, when and what to offload. The
latest works on mobile cloud offloading [25,40,109,135] focus on the offloading decision problems.

In order to achieve efficient computation offloading, Chen [25] propose a game theoretic ap-
proach for offloading decision making problem. Researchers in [40] consider a mobile computation
offloading problem where multiple mobile services in workflows can be invoked to fulfill their com-
plex requirements. To address unstable connectivity of mobile networks, a novel offloading system
is proposed to design robust offloading decisions for mobile services. It is also worth mentioning
that in [14], a precise evaluation of the feasibility and costs of offloading processes in terms of band-
width and energy consumption are presented. The researchers conduct measurements on a testbed
of 11 Android devices and the same number of software clones running on the Amazon EC2 cloud.

A vast body of research categorizes mobile cloud offloading approaches into static and dynamic
resting with regard to when the offloading decisions are made. As shown in Figure 2.4(a), the
static offloading utilizes performance prediction models and offline profiling based on measured
data to estimate the offloading gain [87,104,131,139]. The application is partitioned into client and
server part to be executed [69]. The static partition approaches have the advantage of low execution
overhead, but the parameters are very dependent on the accurate prediction of system performance.

In contrast, the dynamic offloading approach (Figure 2.4(b)) can adapt to variable conditions.
The dynamic strategies initially perform static analysis of the application code and instrumentation
in order to prepare for dynamic profiling [24, 36, 41, 58, 59]. During the execution, the offloading
system keeps updating its configuration based on the information obtained from dynamic profiling.
Meanwhile, dynamic decisions are often subject to high overhead caused by the run-time situation
monitoring and profiling. For ease of reference, Table 2.2 summarizes all the related work in terms
of their offloading decision approach, parameters and core component.
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Figure 2.4: Flowchart of static and dynamic offloading process

• Static approaches

The first offloading approach we consider is suggested in [87]. It generates a cost graph for the
application which takes into account the computation time and the data to be transmitted. The sum
of both these parameters is minimized by a branch-and-bound algorithm and a pruning heuristic that
reduces the search space to provide a near-optimal result.

Wang and Li [126] present a computation offloading scheme using program abstraction to parti-
tion an ordinary program into client-server distributed subprograms to be run on a device or a server.
A polynomial time algorithm is suggested to achieve optimal partitioning of programs for a given
set of inputs. Their scheme is designed to guarantee the right distributed execution under different
contexts.

An adaptive method presented in [139] performs computation offloading to save energy on a
mobile client which uses an initial profile and timeout obtained by executing the program. It does
not need to estimate the execution time of each computation instance. With the reduced energy
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consumption, an improvement in the performance is achieved for image processing benchmarks.
In [131], the researchers propose a graphic rendering adaptation technique which can adapt the

game rendering parameters to satisfy cloud mobile gaming processing and communication con-
straints, such that the overall mobile gaming user experience is maximized. First, a static analysis is
performed to select optimal settings for game rendering. While executing, the rendering settings are
modified based on the communication and computation costs. Their experimental results indicate
that the Game Mean Opinion Score (GMOS) is improved corresponding to the user experience.

CloneCloud [28] is an offloading framework that makes an effort to allow the execution of a mo-
bile application on the cloud. CloneCloud uses static analysis and dynamic profiling corresponding
to different inputs to partition applications while optimizing execution time and energy use for a
target computation and communication environment. It constructs a profile tree to represent the
execution traces of the application. At runtime, partitioning is done by migrating a thread from the
mobile device at a specified point to the clone in the cloud, executing in the cloud for the remainder
of the partition, and reintegrating the migrated thread back to the mobile device.

An offloading approach aiming at improving the execution performance is presented in [104] us-
ing the branch-and-bound and min-cut based strategies for partitioning applications. It first performs
a static analysis and profiling, and then generates a weighted object relation graph (WORG), which
represents the objects and relations between them. The proposed partitioning scheme takes the
bandwidth as a variable to improve static partitioning and reduce the cost of dynamic partitioning.

• Dynamic approaches

As for the dynamic offloading approaches, the first one we consider is suggested in [24], It offloads
computation to powerful servers to save energy in a wireless Java environment. It is suggested to
perform compression and decompression operations simultaneously during computation offloading
in order to reduce the data transmission cost. The offloading decisions are made dynamically based
on the required computation and communication energy for invoking various applications. Their
strategy is based on object serialization features of a Java framework where the overall optimum
solution is investigated instead of obtaining the optimum for each method.

In [140], Yang et al. propose an architecture which supports offloading part of a mobile applica-
tion seamlessly from mobile handsets to powerful servers. Their approach first gathers the resource
information, and then the application is partitioned using a multi-cost graph. The graph is con-
structed via a profiling procedure which is a part of the offloading process. They solve the graph
partitioning problem using a designed partitioning algorithm to provide a close approximation to an
optimal solution.
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Table 2.2: The Comparison of offloading approaches

Work Year
Offloading
decision

Profiling parameters Core component

[87] 2001 Static computation time and data sharing Cost graph

[126] 2004 Static
execution cost, communication cost
and run-time bookkeeping cost

Control flow graph

[139] 2007 Static execution time and energy cost Execution profile
[131] 2010 Static computation and communication Adaptive graphic rending
[28] 2011 Static computation and migration cost Execution profile

[104] 2014 Static
execution cost, data transmission
and bandwidth

Objective relation graph

[24] 2004 Dynamic
computation and communication
energy

Java serialization feature

[140] 2008 Dynamic
class weight and communication
cost

Multi-cost graph

[58] 2008 Dynamic class usage and use frequency Execution profile
[29] 2010 Dynamic application structuring and security Formulation of partition
[36] 2010 Dynamic energy, bandwidth and latency Application profile

[41] 2015 Dynamic
execution time of service workflow
and mobility of mobile devices

Genetic algorithm based

[59] 2015 Dynamic
energy consumption, expected
delay and communication cost

M/G/1-queue based

An adaptable offloading approach based on execution behavior of the mobile application is pro-
posed in [58]. Their mechanism records the consumed resources and the history of the execution
pattern of the application, and later offloading decisions are made corresponding to the records. The
static offloading strategy migrates most used classes to the servers, while it offloads only the invoked
classes in the dynamic offloading. It is shown that their offloading scheme reduces the application
execution time and the profiling overhead against simple runtime offloading.

B. Chun et al. [29] investigated dynamic and seamless partitioning of applications between weak
device and clouds to better support execution in different environments. They formulate the dynamic
partitioning problem of an application as a collection of processing modules interacting with each
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other. Then the system support for dynamic partitioning is discussed including structuring applica-
tions, partition choosing and partition with security constraints. However, they do not provide any
solution in their work.

The MAUI framework [36] provides automatically fine-grained code offloading to cloud servers.
It creates two versions of the mobile application, one of which runs locally on the mobile device and
the other runs remotely on the server, to enable software portability. The MAUI architecture includes
decision engine, proxy and profiler on both the client side and server side. It makes offloading
decisions dynamically at runtime to minimize the energy consumption considering various latency
constraints. MAUI regards the application partitioning as a 0-1 ILP problem. However, it does not
support the tradeoff analysis between energy consumption and execution time.

The work [41] proposes a dynamic offloading approach by investigating computation offloading
for service workflows where multiple services are composed together. They consider mobility of
mobile devices and aim to find a strategy by optimizing the execution time of the service workflow
and the energy consumption of the mobile device.

The researchers in [59] consider a dynamic offloading problem in the context of MCC where the
cloud servers are accessed via two channels: through a (costly) cellular connection or through inter-
mittently available WLAN hotspots. They first build M/G/1 queueing models to represent different
offloading options, local execution or offloading to a cloud. Then the dynamic decision problem
is solved in the framework of Markov decision processes (MDPs), considering the availability of
WLAN hotspots, energy consumption, communication costs and the expected delays.

Z. Hao et al. [54] presents a mobile cloud computing platform which allows users to choose to
run their applications either in the cloud (for high security guarantees), or on their local mobile
device (for better user experience). A scheme is proposed in [37] to enable a secure and efficient
cloud-assisted image sharing architecture for mobile devices, by directly utilizing outsourced cor-
related images to reproduce the image of interest inside the cloud for immediate dissemination. In
order to deal with the limitation of the existing group key management (GKM) protocols, Mapoka et
al [93] propose the slot based multiple group key management (SMGKM) scheme for multiple mul-
ticast groups, which supports the movement of single and multiple members across a homogeneous
or heterogeneous wireless network while participating in multiple group services with minimized
rekeying transmission overheads.

Another work worth addressing is context-aware computing infrastructure [57] – where multiple
streams of data from different sources like GPS, maps, accelerometers and temperature sensors need
to be analyzed together in order to obtain real-time information about a user’s context.
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2.3.2 Security assessment techniques

Model analysis techniques are widely used to evaluate system performance. Ou et al. [105, 106]
analyze the performance of offloading systems in failure-prone and fault-tolerance environments by
proposing an analytical model based on application execution state transition in offloading. Their
model considers the surrogate unreachability, the failure recovery time, and total execution time of
applications and shows that in the areas covered by surrogates, offloading may result in speedup in
the performance. In the scenario of secure group communication systems (GCSs) [27], a mathemat-
ical model based on stochastic Petri net (SPN) is proposed to investigate the performance charac-
teristics. The model takes intrusion detection system (IDS) detection interval and rekeying interval
into account to quantify the tradeoff between performance and security attributes of GCSs.

In [49] an analytical Markov model is presented to investigate the performance of service compo-
nent migration from a mobile client to the infrastructure-based cloud. The proposed model utilizes
a two-phased method to give a reconfiguration scheme and the gain through reconfiguration can be
computed from the model. A multi-queue based stochastic model for offloading problems in MCC
has been developed in [59] using various performance metrics. The costs in terms of bandwidth (the
communicate overhead) and energy (computation and use of network interfaces of mobile devices)
are researched in [14] by giving an evaluation model of the feasibility and cost of mobile cloud
offloading.

Using quantitative methods to analyze system dependability and reliability has received great
research interests for several decades. In 1993, Littelwood [90] first introduced the idea to evaluate
the system security attributes using analytical methods of system reliability. Then, Nicol et al. [103]
surveyed the model-based techniques for evaluating system dependability, and summarized how they
can be extended to evaluate system security. However quantification of security has only recently
attracted more attention. Some initial conceptual works have been published already decades ago,
and a series of studies about model-based evaluation of security mechanisms have been published
only recently.

In [92] the researchers attempt to quantify the system security attributes of intrusion tolerant sys-
tems through a semi-Markov process (SMP) model. They treat various system failures as absorbing
states in their model and the MTTSF is computed as the time or effort to reach such absorbing states.
The authors in [143] show how a key distribution center can be modeled and analyzed, and how to
find an optimal key refresh rate for such a system. Previous work on the security of computing and
information systems has been mostly assessed from a level point of view. A system is assigned a
given security level with respect to the presence or absence of certain functional characteristics and
the use of certain development techniques.
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In 2013, Zhang [142] proposed an approach to evaluate the network security situation objectively
using Network Security Index System (NSIS). Only a few studies have considered the quantitative
evaluation of security. The authors in [86] make an effort to examine the security vulnerabilities
of operating systems of routers within the cloud carrier by assessing the risk based on the National
Vulnerability Database (NVD) and give quantifiable security metrics for cloud carrier, which is very
useful in the Service Level Agreement (SLA) negotiation between a cloud consumer and a cloud
provider. More recently a number of model-based evaluations of security mechanisms have been
published [96, 101, 127].

However in the existing literatures, the question of quantitatively assessing the system security
attribute is still open. In this thesis, we develop several methods based on stochastic models to
quantitatively assess the security attributes of the mobile cloud offloading system. Compared to
the previous work that only considers the performance and energy perspectives, the proposed ap-
proaches goes beyond the existing ones by considering the security and performance tradeoff and
informed offloading decisions are made based on quantitatively assessments of system attributes.

2.3.3 Side-channel attacks

The timing attacks discussed in this thesis belong to side channel attacks. Rather than brute-force
or theoretical weaknesses in the encryption algorithms, side channel attacks make use of information
leakage by the physical implementation of a cryptosystem. Power channel, timing channel and
electromagnetic channel are examples of side channels.

An early example of the side channel attack is the password authentication weakness discovered
in the Tenex operating system [84]. Kocher was the first who observed that side channel attacks
could generally be applied against various common cryptographic algorithms. Following researches
extend the analysis of side channel attacks based on his foundation works on response times [71]
and power consumption [70].

Side channels exist where a computer may leak its information through Radio frequency (RF)
emissions [81]. Surprisingly, methods as effortless as watching the diffuse reflections of cathode
ray tube (CRT) display against nearby walls may allow an observer to see the content on the screen
remotely [80]. Side channels have also been used to detect passwords over Secure Shell (SSH) [120],
where the researchers predict the key sequences from the inter-keystroke timings by developing a
Hidden Markov Model (HMM) and a key sequence prediction algorithm.

Every logical operation in a device takes time to execute, and the time can differ depending on
the inputs. So with precise analysis of each operation time, an attacker may guess the secret input
successfully. This is the information leakage that a timing attacker takes advantage of. The idea of
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timing attack was first suggested by Kocher in 1996 [71]. The approach proposed in [42] improves
Kocher’s ideas and conducts a practical implementation of timing attack against a smartcard which
stores a RSA private key. Schindler [115] presented a timing attack against the implementation of
RSA exponentiation which employs Chinese Remainder Theorem (CRT) theorem. He also modeled
and optimized timing attacks against RSA in [116].

OpenSSL is a widely used open source crypto library which is generally seen on Apache Web
Servers to provide SSL service. In [21], Brumley and Boneh demonstrate that timing attacks can
reveal RSA private keys from an OpenSSL-based web server over a local network. In 2005, the
researchers in [9] improved Brumley and Boneh’s approach and proposed an efficient attack on
RSA implementations that use CRT with the Montgomery Multiplication (MM) algorithm. They
also gave suggestions to improve the decision strategy. In 2007, the researchers in [8] showed a
local implementation of the timing attack on RSA that exploits branch mis-prediction delays in
order to determine the secret. Bortz et al [18] present that timing difference may leak information
such as the existence of an account or shopping cart size in web applications.

2.3.4 Defense against timing attacks

A popular strategy for defending against timing attacks is to adjust the system implementation
so that the timing and cache access patterns of hardware instructions are independent of the inputs.
However, this solution is architecture-specific, brittle, and difficult to get authorized [19]. So people
also try to hide or mask the timing information. A series of works [13, 32, 53, 141] have proposed
techniques to pad the execution to certain predetermined thresholds and formal models are also
presented to describe the bound on timing channel leakage [45, 72].

To counter cache-based side-channel attacks, researchers in [44,45] present a tool called CacheAu-
dit for the automatic, static exploration of the interactions of a program with the cache and show an
approach that relies on game theory for framing and solving the decision problem, which offers the
advantage of a clean interface between the security guarantees and algorithm challenges.

Interposition of random delays in the cryptographic algorithm execution flow is a simple but
quite effective countermeasure against side-channel and fault attacks by mitigating the information
leakage [34].

Even though Kocher [71] observed that this technique can be rendered useless by increasing the
number of timing measurements, inserting random delays has the advantage of easy implementa-
tion and leading to lower system cost. It requires the attacker to take more samples in more time,
which gives the system administrator more opportunities to prevent this attack. Random delays are
easily deployed even if the source code of the application is not at hand. They are widely used
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for protection of cryptographic implementations in embedded devices. The first detailed analysis
of this kind of countermeasure showed in [31] where the number of samples for a successful dif-
ferential power analysis (DPA) attack grow linearly with the standard deviation of the delay. Since
then, several papers have presented implementations of random delay countermeasures in various
systems [56, 77, 91].

The researchers in [91] implement random delays on FPGA and obtain the optimal parameters for
delay generators. To date, based on random delay insertion, a processor architecture resistant to side-
channel attacks was proposed in [56] using a combination of randomized scheduling, randomized
instruction insertion and randomized pipeline-delay. Researchers in [77] present a design and hard-
ware implementation of asynchronous AES with random noise injection for improved side-channel
attack resistance.

Blinding technique is another widely deployed countermeasure against timing attacks on cryp-
tosystems. The idea was first introduced by Kocher [71] to adapt the techniques used for blinding
signatures to prevent timing attacks. It was improved by Adi Shamir [117] by choosing a new ran-
dom secret for public key schemes with only negligible overhead. Although blinding techniques
are often the preferred solution in practice, they are not a general remedy for timing leaks. First,
blinding relies on the algebraic properties of the computed function. It works for securing RSA,
but is more difficult to apply to algorithms for computing functions with a less obvious algebraic
structure, such as AES or examples outside the realm of cryptography [75]. Second, potential new
side-channels are introduced during the blinding (and unblinding) operations. From this perspective,
blinding relocates the problem of side-channels to a different part of the implementation. Although
we are not aware of a documented exploit, timing differences in the blinding steps can, in principle,
be exploited by side-channel attacks.

Another countermeasure is to ensure that the implementation exhibits a constant execution time.
As one can see, this countermeasure yields the provable absence of timing leaks. Its drawbacks are
that it is difficult to achieve constant running times on many platforms and that the performance of
a constant-time implementation may be unacceptable to pad all execution time to WCET (Worst-
case Execution Time) [74]. A less restrictive way of dealing with timing leaks is to ensure that
only an acceptable amount of secret information is revealed through them. We will follow this
line of thought and explore the proper countermeasure against timing attacks in mobile offloading
systems [71].

Researchers in [15] reason about tradeoffs between security and performance in mitigating side-
channel attacks, where they concentrate on the decision between the masking countermeasure and
leakage-resilient constructions. Unlike our work, they investigate which implementation has the
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best performance for a fixed level of security. They consider power analysis attacks and use the
best known attacks as a security benchmark, whereas we consider timing attacks and look for the
optimal rekeying rate for the best security and performance tradeoff. In the area of Internet traffic
masking, which obfuscate the information leaked by packet traffic features, the tradeoff between
traffic privacy protection and masking cost, namely required amount of overhead and realization
complexity has been studied [60]. They first propose a general model of an application flow and
then optimize the metrics based on measured Internet traffic traces.

The approach proposed in this thesis goes beyond existing approaches by combining a rekeying
mechanism with random padding of the processing time and considering a quantitative treatment of
security problem. We aim to find a secure and cost-efficient offloading strategy for a given system
configuration by optimizing the security and performance tradeoff.

2.3.5 Secure containers

A secure container is an authenticated, encrypted area of a user’s mobile device designed to
separate, isolate and protect enterprise data from attackers. It is a promising solution to enhance the
client security in offloading scenario.

There are several container products on the market.BlackBerry’s Secure Work Space [17] is an
option for providing extra security for work data on iOS and Android devices. Using container-
ization and application wrapping, Secure Work Space separates personal information from work
information by creating a personal space and a work space on devices. The Samsung company has
made an effort to improve the security of its mobile devices for several years, through its Knox
technology [7]. Knox is Samsung’s defense-grade security platform to empower corporations to
secure, manage and customize the business’s mobile devices. Samsung has gotten a big boost by
having its Knox-enabled devices approved by the U.S. Department of Defense (DoD) for use in
DoD networks [113]. At the same time, IBM also provides a product for securing enterprise mo-
bility. Within its MaaS360 Enterprise Mobility Management (EMM) suite, IBM MaaS360 Mobile
Application Security enables an application container solution for the enterprise and third-party
applications, providing operational and security management for Android, iOS and other mobile
devices.

Apple does not use a separate workspace for business applications and content, but instead keeps
each application in a separate sandbox and highly restricts what data can be moved between sand-
boxes. The APIs introduced in iOS 7 allow MDM tools to control the permissions for that data.
Other iOS policies enable IT staff to manage application deployment and VPN usage on a per-
application basis [5].
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Andrus proposes the idea to run multiple "virtual phones" (VPs) on a mobile device [10], running
each VP under its own namespace to isolate the applications and data. The idea of secure containers
is put forward after that. Android for work [51] is the secure container designed by Google which
utilizes the "multiple user" mechanism added in Android 5.0 to create a "work user" environment.
This provides some isolation between the work and the user environment but it still allows data shar-
ing. Knox container differs from other container solutions in that it is both software and hardware
(root of trust by ARM TrustZone) based.

It is worth mentioning that Chin examines Android inter-application communication and identify
security risks in the application components in [26]. [65] makes a case study of Samsung Knox
container (mainly focuses on Knox 1.0) and presents a systematic assessment of security critical
areas in design and implementation of the secure container. It reveals several design weaknesses
of Knox 1.0. However, we consider the runtime security of the containers in this work and make
an empirical approach for the quantitative evaluation of the security and performance attributes of
secure container solutions.

2.4 Summary

Many offloading approaches are proposed to extend battery lifetime and to shorten execution
time on the mobile device. Several researchers have worked on optimizing the tradeoff between the
energy consumption and response time in mobile offloading. However, few work considers how to
evaluate the secure attribute and the security performance tradeoff of offloading systems.
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Part II

Security Performance Tradeoff
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Chapter 3

Modelling Formalisms and Security
Analysis

Mobile cloud offloading has been proposed to migrate complex computations from mobile devices
to powerful servers. While this may be beneficial from the performance and energy perspective,
it certainly exhibits new challenges in terms of security due to increased data transmission over
networks with potentially unknown threats. Among possible security issues are timing attacks which
are not prevented by traditional cryptographic security. Metrics on which offloading decisions are
based must include security aspects in addition to performance and energy-efficiency. This chapter
aims at quantifying the security attributes of mobile cloud offloading systems.

In this chapter, we propose a state transition model of a general mobile offloading system under
the specific threat of timing attacks. Our model is aimed to deal with an offloading system with a
master secret stored on the server side. In a timing attack the attacker deduces information about
a secret key from runtime measurements of successive requests. From the security quantification
point of view, since the sojourn time distribution function in different system states may not always
be exponential, the underlying stochastic model needs to be formulated as a Semi-Markov Process
(SMP).

First, we present an introduction to the stochastic modeling techniques we use. We define the
terms and notation of these techniques. Then a model based method is presented for the security
quantification analysis. Computing the system security and cost metric, we investigate the cost for a
given security requirement. Our results will give security metrics on which offloading decisions are
based.
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3.1 Markov Chains and Queueing Models

In this section, we give an introduction to the modeling techniques: Markov chains and queueing
models. The notation that will be used throughout this thesis is defined and important results are
summarized on their properties.

3.1.1 Stochastic processes and Markov chains

A Markov process is a special type of stochastic process [121]. A stochastic process is a collection
of random variables {X(t)|t 2 T}, defined on a probability space, and indexed by a parameter t
(usually assumed to be time) which can take values in a set T [55]. T is called the index set or
parameter space. If the index set is discrete, then the process is called a discrete-time stochastic
process; otherwise, if T is continuous, the process is a continuous-time stochastic process.

The values assumed by random variables X(t) are called states. The set of all possible states
forms the state space of the process and this may be discrete or continuous. If the state space is
discrete, the process is referred to as a chain and the states are usually identified with the set or a
subset of natural numbers. Without loss of generality, we assume the state space can be denoted
I = {0, 1, 2, ...}.

A Markov chain is a Markov process with a discrete state space. A Markov process is a stochastic
process whose conditional probability distribution function satisfies the following property: Given
a stochastic process {X(t)|t 2 T}, for any t0 < ... < t

n

< t
n+1 the distribution of X(t

n+1) only
depends on X(t

n

), not on the values X(t0), ..., X(t
n�1), i.e.,

Pr{X(t
n+1)  x

n+1 | X(t
n

) = x
n

, ..., X(t0) = x0} = Pr{X(t
n+1)  x

n+1 | X(t
n

) = x
n

}.
(3.1)

As can be observed, the conditional probability distribution of future states of the process depends
only upon the present state, not on the sequence of events that preceded it. Eq. 3.1 is generally
denoted as the Markov or memoryless property. Then we give the definitions of discrete-time Markov
chains and continuous-time Markov chains.

Definition 3.1.1. Discrete-time Markov chain A discrete-time Markov chain (DTMC) is a discrete-
time process {X

n

|n = 0, 1, 2, ...} that satisfies the Markov property: For all natural numbers n and
all states x

n

,
Pr{X

n+1 = x
n+1 | Xn

= x
n

, ..., X0 = x0} = Pr{X
n+1 = x

n+1 | Xn

= x
n

}.

Thus, the fact that the system is in state x0 at time step 0, in state x1 at time step 1, and so on, up
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to the fact that it is in state x
n�1 at time step n � 1 is completely irrelevant for the next step. The

state in which the system finds itself at time step n + 1 depends only on where it is at time step n.
To simplify the notation, rather than using x

i

to represent the states of a Markov chain, henceforth
we shall use single letters, such as i, j, and k.

The conditional probabilities Pr{X
n+1 = j|X

n

= i} are called transition probabilities and
denoted by p

ij

(n). Then we have the transition probability matrix

P(n) =

0

BBBBBBBBB@

p00(n)
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...

p
i0(n)

...
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p11(n)
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p
i1(n)

...

p02(n)

p12(n)

p22(n)

...

p
i2(n)

...

· · ·

· · ·

· · ·
...

· · ·
...

p0j(n)

p1j(n)

p2j(n)

...

p
ij

(n)

...

· · ·

· · ·

· · ·
...

· · ·
...

1

CCCCCCCCCA

(3.2)

P is a stochastic matrix, i.e., for all states i and j,

p
ij

(n) � 0,
X

j

p
ij

(n) = 1 .

A Markov chain is said to be homogeneous if for all states i and j

Pr{X
n+1 = j|X

n

= i} = Pr{X
n+m+1 = j|X

n+m

= i}

for n = 0, 1, 2, ...and m � 0.
If the parameter space T is continuous, a Markov process is called a continuous-time Markov

chain (CTMC). The formal definition of CTMC is:

Definition 3.1.2. Continuous-time Markov chain We say that a stochastic process {X(t)|t � 0} is
a continuous- time Markov chain if for all integers (states) n, and for any sequence t0, t1, ..., tn, tn+1

such that t0 < t1 < ... < t
n

< t
n+1,

Pr{X(t
n+1) = x

n+1 | X(t
n

) = x
n

, ..., X(t0) = x0} = Pr{X(t
n+1) = x

n+1 | X(t
n

) = x
n

}.

The state residence times in CTMCs are exponentially distributed [55]. Thus, we can associate
with every state i in the CTMC a parameter µ

i

describing the rate of the exponential distribution,
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that is, we have as residence distribution in state i:

F
i

(t) = 1� e�µ

i

t, t � 0. (3.3)

Thus the vector µ = (µ1, ..., µi

, ...) describes the state residence time distributions in the CTMC.
The interactions in a continuous-time Markov chain are usually specified in terms of the rates at
which transitions occur. A continuous-time Markov chain in some state i at time t will move to
some other state j at rate q

ij

(t) per unit time. The matrix Q(t), formed by placing q
ij

(t) in row i

and column j, for all i and j, is called the transition-rate matrix. We have

Q(t) =
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(3.4)

Notice that the elements of the matrix Q(t) satisfy the following properties:

q
ij

(t) � 0, i 6= j,

and
� q

ii

(t) =
X

j 6=i

q
ij

(t) = µ
i

.

In this manner, a continuous-time Markov chain is represented by its matrix of transition rates, Q(t),
at time t.

Transient distribution analysis of a CTMC Let the probability that the system is in state i at time
t be ⇡

i

(t), i.e.,
⇡
i

(t) = Pr{X(t) = i}, (3.5)

and ⇡(t) = {⇡
i

(t), i 2 I}. The transient distribution of a CTMC can be computed by solving

d⇡(t)

dt
= ⇡(t)Q(t). (3.6)
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Steady-state distribution analysis of a CTMC If the CTMC arrives a point in time at which the
rate of change of the probability distribution vector ⇡(t) is zero, then the left-hand side of Eq. 3.6
is identically equal to zero. In this case, we call the system is in a steady-state. The steady-state
distribution is written simply as ⇡ = {⇡

i

, i 2} in order to show that it no longer depends on time t.
⇡ can be computed by solving the system of linear equations

⇡Q = 0. (3.7)

Semi-Markov Processes (SMPs) are generalizations of Markov chains in that the future evolu-
tion of the process is independent of the sequence of states visited prior to the current state and
independent of the time spent in each of the previously visited states, as is the case for discrete-
and continuous-time Markov chains. Semi-Markov processes differ from Markov chains in that
the probability distribution of the remaining time in any state can depend on the length of time the
process has already spent in that state.

A semi-Markov process consists of two components: (i) a discrete-time Markov chain {X
n

|n =

0, 1, 2, ...} with transition probability matrix P which describes the sequence of states visited by
the process, and (ii) H

ij

(t), the conditional distribution function of a random variable T
ij

which
describes the time spent in state i from the moment the process last entered that state

H
ij

(t) = Pr{T
ij

 t} = Pr{⌧
n+1 � ⌧

n

 t|X
n+1 = j,X

n

= i}, t � 0.

The random variable T
ij

is the sojourn time in state i per visit to state i prior to jumping to state j.
The evolution of a semi-Markov process is as follows:

1) The moment the semi-Markov process enters any state i, it randomly selects the next state to
visit j according to P, its transition probability matrix.

2) If state j is selected, then the time the process remains in state i before moving to state j is a
random variable T

ij

with probability distribution H
ij

(t).
Thus the next state to visit is chosen first and the time to be spent in state i chosen second, which
allows the sojourn time per visit to depend on the destination state as well as the source state. The
steady-state probabilities {⇡

i

, i 2 I} of the SMP states can be computed in terms of the embedded
DTMC steady-state probabilities v

i

and the mean sojourn times h
i

[124]:

⇡
i

=
v
i

h
iP

j

v
j

h
j

i, j 2 X
s

. (3.8)
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Figure 3.1: (a) The M/M/1 queue and (b) its state transition diagram

3.1.2 Elementary queueing theory

The simplest of all queueing systems is the M/M/1 queue, that is a single server queue with
first-come, first-served (FCFS) scheduling discipline, a Poisson arrival process and service time
that is exponentially distributed. As shown in Figure 3.1(a), � is the parameter of the Poisson
arrival process and µ is the exponential service rate. The mean time between arrivals (which is
exponentially distributed) is 1/� and the mean service time is 1/µ.

The underlying Markov chain of the M/M/1 queue is a birth-death process with the state tran-
sition diagram shown in Figure 3.1(b). Birth–death processes are continuous-time Markov chains
with a special structure. If the states of the Markov chain are indexed by the integers 0, 1, 2, ..., then
transitions are permitted only from state i > 0 to its nearest neighbors, namely, states i�1 and i+1.
As for state i = 0, on exiting this state, the Markov chain must enter state 1. Here we introduce
some basic performance measures of the M/M/1 queue.

Utilization In a M/M/1 queue, the utilization ⇢ is defined as the fraction of time that the server is
busy and we have ⇢ = �/µ.

Number of customers Let N be the random variable that describes the number of customers in the
system and p

n

the probability that there are n customers in the system, p
n

= Pr{N = n}. Then
the average number of customers in the system is

E[N ] =
1X

i=0

np
n

. (3.9)
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Let E[N
s

] be the average numbers of jobs in the server and E[N
q

] be the average numbers of jobs
in the queue. For a overall queueing system, the average number of jobs in the queueing system
E[N ] must be equal to the sum of the average numbers of jobs in the components of the queueing
system, i.e., E[N ] = E[N

q

] + E[N
s

]. Given the system utilization of a M/M/1 queue, we have

E[N ] =
⇢

1� ⇢
=

�

µ� �
, (3.10)

and the average number of customers in the queue

E[N
q

] =
⇢2

1� ⇢
= ⇢E[N ]. (3.11)

System time and queueing time The time that a customer spends in the system, from the instant
of its arrival to the queue to the instant of its departure from the server, is called the response time
or sojourn time. We shall denote the random variable that describes response time by R, and its
mean value by E[R]. The response time is composed of the time that the customer spends waiting
in the queue, called the waiting time, plus the time the customer spends receiving service, called the
service time. We shall let W

q

be the random variable that describes the time the customer spends
waiting in the queue and its mean will be denoted by E[W

q

]. Given the system utilization of a
M/M/1 queue, we have

E[R] =
1/µ

1� ⇢
=

1

µ� �
. (3.12)

System Throughput The throughput of a queueing system is equal to its departure rate, i.e., the
average number of customers that are processed per unit time. It is denoted by X . In a stable
queueing system in which all customers that arrive are eventually served and leave the system, the
throughput is equal to the arrival rate, �. This is not the case in queueing systems with finite buffer,
since arrivals may be lost before receiving service.

In the end of this section, we introduce the most general law in model-based performance evalu-
ation: Little’s law, named after the author who first proved it [89]. Little’s law relates the average
number of jobs in a queue to the average number of arrivals per time unit and the average time a job
spends in a queue.

Little’s law: The average number of customers in the system is equal to the average arrival rate of
customer to the system multiplied by the average system time per customer,

E[N ] = �E[R]. (3.13)
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3.2 Metrics

Before proposing models for the mobile cloud offloading system, we establish the metrics we want
to investigate. We present security and performance metrics respectively in this section. In addition
to analyzing the metrics independently, the tradeoff between different metrics is also addressed.

3.2.1 Security Metrics

The security metrics are defined in this work as confidentiality ⇤ and system (security) cost C. In
information security, confidentiality is defined as the property that information is not made available
or disclosed to unauthorized individuals, entities, or processes (Excerpt ISO27000 [62]). If a timing
attack to the offloading system is successful, the attacker will obtains the server’s private key. It
can browse unauthorized files thereafter and do more harm. This denote the loss of confidentiality.
So the confidentiality metric ⇤ is defined as the probability that the sensitive information of the
offloading system is not disclosed.

⇤ = Pr{information is not disclosed} . (3.14)

In our scenario, the offloading system suffers from cost in two cases: the system loses sensitive
information in the compromised state, and cost is also incurred when the system deploys a rekeying
process regularly. So the cost metric C is defined as the sum of these two costs.

C = C
rekeying

+ C
disclosure

. (3.15)

3.2.2 Performance Metrics

The performance metrics we are interested in describe the system in terms of its throughput,
completion times, or response times, as defined e.g. in queueing theory or networking. Here we use
the throughput as the performance metric for the offloading system. By Little’s Law, the throughput
(denoted X) is defined as:

X =
E[N ]

E[R]
. (3.16)

The throughput equals the average number of jobs in the queue (E[N ]) divided by the average
time a job spends in the queue (E[R]).
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3.2.3 Tradeoff Metric

In order to investigate how system security will interact with performance, we also define a trade-
off metric. The scurity-performance tradeoff metric we propose is an objective function formed
from the product of the security attribute confidentiality and the system throughput. This can be
seen as Security per time metric. As a system designer, one may look forward to maintaining
the confidentiality of sensitive information with higher throughput, as for the tradeoff measure, the
larger the better.

� = ⇤⇥ X . (3.17)

The security and performance metrics defined here will be used to evaluate the system attributes
in the rest of this thesis.

3.3 Model based Security Analysis

A mobile cloud offloading system is a solution to enhance the capabilities of the mobile system by
migrating computation to more resourceful computers (i.e., servers). To quantitatively analyse the
security attributes of a system under the threat of timing attacks, we have to incorporate the actions of
an attacker who is trying to capture sensitive information in conjunction with the protective actions
taken by the offloading system.

Therefore, we have to develop a composite security model that takes into account the behaviour
of both actors. First, we propose a SMP model for the security attribute of the offloading system.
Semi-Markov Processes are generalizations of Markov chains where the sojourn times in the states
need not be exponentially distributed [88].

3.3.1 Offloading under timing attacks

We specify the behaviour of the mobile cloud offloading system under timing attacks and the
attacker in our scenario in this section.

We consider an environment where there is a remote cloud server for executing mobile application
jobs. An offloading approach is implemented in this environment to perform computation and data
offloading [119]. The computation- or energy-intensive jobs generated by the mobile applications
can be either executed locally on the mobile device or offloaded to the cloud servers to save execution
time and energy on the mobile devices. Real-time multimedia applications, especially real-time
strategy game, fitness application are some applications that can benefit from this approach. For
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instance, in mobile chess games, the searching job for the next best move needs a lot of computation
resources, so this job is offloaded to cloud servers. The mobile device only needs to send the current
arrangement of all figures on the board, which is a small amount of data, and receives the search
results after the jobs are executed in the cloud.

In the mobile cloud offloading system we consider, mobile clients are connected to a mobile
network via base stations and WiFi access points that establish and control the connections (air links)
and functional interfaces between the networks and mobile devices. The mobile users’ requests are
delivered to the cloud service providers (e.g. Amazon Elastic Compute Cloud EC2 and Simple
Storage Service S3) through the Internet. In the cloud, cloud controllers process the requests to
provide mobile users with the corresponding cloud services [43].

A master key stored in the cloud server is used for the encryption and decryption operations of
all user data. The offloading system is assumed to be vulnerable to timing at tacks in which the
attacker in the worst case will eventually decrypt the system’s private key saved in the server. In
timing attacks to the offloading system, an attacker continues to send jobs to the cloud server. In
addition the attacker records each response time for a certain service and tries to find clues to the
master secret of the server by comparing time differences from several request queues. If the attacker
successfully breaks the secret information from the timing results, he may enter the system, read and
even modify other users’ information without further authorization. In order to improve security, the
server regularly or irregularly changes the master key, which is called the rekeying process.

3.3.2 System lifetime analysis

After initialization, the system starts to operate properly in the good state. A normal client and the
cloud server use a three-way handshake to establish a connection (Figure 3.2). After a full-duplex
communication is established, the offloading jobs generated by the mobile applications are offloaded
to the cloud server. Then the mobile device receives the computation results sent back by the server.

The mobile offloading system is under the specific threat of timing attacks conducted by random
attackers. When an attacker starts to conduct timing attacks to the cloud server, the system is in
danger (Figure 3.3). We assume the attacker conducts a Brumley’s attack discussed in Section 2.2.1.
In this state, the attacker is still conducting the timing attack to guess the server key and it is not yet
able to access confidential information.

If the attacker succeeds to determine the encryption key through time measurements, confidential
data will be disclosed which is assumed to incur a high cost. This can only happen if the system is
in the compromised state (Figure 3.4) and we call the incident of entering the compromised state a
security failure.
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Figure 3.2: Illustration of the offloading system after initialization

Attacking Client Regular Client SSL Server 

ClientHello

ServerHello �public key�

guess g

Alert!

t

Timing 
attack

decrypt
(p=gd mod N)

Figure 3.3: Illustration of the offloading system when an attacker is conducting timing attacks
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SSL Server 
Compromised 

state Attacking Client 

Figure 3.4: Illustration of the offloading system in the compromised state
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Figure 3.5: Illustration of the offloading system in the rekeying state R
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Figure 3.6: State transition diagram for a generic offloading system

We assume that the security policy of the server system requires to launch a rekeying process
regularly to avoid timing attacks. Renewing the server encryption key can prevent or interrupt a
timing attack. However this rekeying process is not free. It brings cost to the system. When the
system such as Cisco MDS Family Storage Media Encryption is used in the server side, tape volume
groups should be rekeyed periodically to ensure better security and also when the key security has
been compromised [30]. The system has to process all user-files with both the new and the old
master key. In this process, the system does not accept any other user commands. When user data is
very large, this process will take long. Therefore, it is reasonable to recommend an optimal rekeying
interval for the master key replacement cycle (or an optimal rekeying rate), and select a suitable time,
when there is a low number of user accesses (e.g. at night). After the rekeying process, the system
is secure and it is brought back to the initial state. The life cycle of the system starts again.

3.3.3 Security Model

From the real system life time, we abstract four operational states for the mobile cloud offloading
system. Figure 3.6 depicts the SMP model we propose for describing the dynamic behaviour of a
generic mobile cloud offloading system. This system is under the specific threat of timing attacks.
The state transition model represents the system behaviour for a specific attack and given system
configuration that depends on the actual security requirements. We describe the events that trigger
transitions among states in terms of probabilities and cumulative distribution functions, which will
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be shown later.
The states and parameters of the SMP model are summarized here:

• G Good state in which the offloading system works properly
• T Timing attack state in which an attacker is conducting timing attacks
• C Compromised state after the attacker knows the secret of the system
• R Rekeying state in which the system renews its master secret
• p

t

probability that an attacker beginS to conduct a timing attack to the system
• p

a

probability of system confidentiality lost
• p

i

probability that the system returns to initial state by manual intervention
• p

r

probability that the attack is terminated due to rekeying operation

After initialisation, the system is in the good state G. The sojourn time in state G is the life time
of the system before an attacker starts a timing attack or the system renews its key. We assume there
is only one attacker in the system at one time. If an attack happens, the system is brought to state T ,
in which the timing attack takes place and the attacker decyphers the encryption key by making time
observations. So while the system is in state T , the attacker is not yet able to access confidential
information.

It takes a certain amount of time to perform the timing attack after which the attacker will know
the encryption key and the system moves to the compromised state C. Renewing the encryption key
can prevent or interrupt a timing attack. During rekeying the system is in state R. The challenge is
to find an optimal value for the rekey interval. The rekeying should certainly happen before or soon
after the system enters the compromised state. Rekeying will bring the system back to the initial
state G.

If the attacker succeeds to determine the encryption key through time measurements, confidential
data will be disclosed which is assumed to incur a high cost. In this state, one possibility is that
one attacker stops the attack and another attacker comes for a new timing attack. So the system is
brought from compromised state C to another timing attack state T . The attack can also be stopped
by manual intervention, i.e. closure of the session when finding the intrusion behaviour. The system
may also trigger the rekeying process regularly, this can happen either in the attack state T or in the
compromised state C, both transitioning the system to the rekey state R from which it will finally
return to the initial state.
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3.4 Semi-Markov Process analysis

For the offloading system, we have described the system’s dynamic behaviour by a SMP model in
Figure. 3.6 with four states {G, T,C,R} and the transition between these states. A system response
to a security attack is fairly automated and could be quite similar to how it may respond to accidental
faults. Let {X(t) : t � 0} be the underlying stochastic process with a discrete state space X

s

=

{G, T,C,R}. To obtain a complete description of this SMP model, two sets of parameters must be
known: the mean sojourn time h

i

in each state and the transition probabilities p
ij

between different
states, where i, j 2 X

s

, which we have depicted in the previous Section. The mean sojourn time in
each state are summarized here:

• h
G

the mean time the system spends before an attacker conducts a timing attack or rekey
itself

• h
T

the mean time before the attacker break the master secret of the server by timing attack
• h

C

the mean time the system is in the compromised state
• h

R

the mean time for rekeying process

In order to carry out the security quantification analysis, we need to analyse the SMP model of
the system that was described by its state transition diagram. As described in Eq. 3.8, the steady-
state probabilities {⇡

i

, i 2 X
s

} of the SMP states are computed in terms of the embedded DTMC
steady-state probabilities v

i

and the mean sojourn times h
i

.

3.4.1 DTMC steady-state analysis

In order to distinguish from the steady-state probabilities of the SMP states, we let �!v = {v
i

, i 2
X

s

} be the steady-state probability vector of the underlying DTMC. Assuming the existence of the
steady-state in the underlying DTMC, it can be computed as

�!v = �!v · P i 2 X
s

. (3.18)

where �!v = [v
G

, v
T

, v
C

, v
R

] and P is the DTMC transition probability matrix which can be written
as:
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(3.19)

In addition, we have the total probability relationship:

X

i

v
i

= 1 i 2 X
s

. (3.20)

The transition probability matrix P describes the DTMC state transition probabilities between the
DTMC states as shown in Figure 3.6. The first step towards evaluating security attributes is to find
the steady-state probability vector �!v of the DTMC states by solving Eqs. 3.18 and 3.20. We can
get solutions:

v
G

=
p
i

p
a

+ 1� p
a

+ p
a

p
r

�
, (3.21)

v
T

=
p
t

�
, v

C

=
p
t

p
a

�
, v

R

= v
G

� p
i

p
t

p
a

�

For the sake of brevity, we assume: � = 2 + 2p
i

p
a

+ p
t

+ p
t

p
a

� 2p
a

+ p
a

p
r

� p
i

p
t

p
a

.
In the next subsection, the DTMC steady-state probabilities are used to compute the SMP steady-

state probabilities.

3.4.2 Semi-Markov model analysis

The mean sojourn time h
i

in a particular state i 2 X
s

is the other quantity that is needed to
compute the SMP steady-state probabilities. It is determined by the random time that a process
spends in a particular state.

The parameters h
T

, h
C

, p
t

, p
a

depend on the attackers’ behavior which we model as random
processes. The analysis in this chapter only takes into account the mean value of these processes.
More complex study will consider a quantitative analysis of attacker behavior based on empirical
data. However, this chapter is limited to dealing with an SMP model only.

Clearly, for the model to be accurate, it is important to estimate accurately the model parameters.
Some parameters we will get from experiments. The measurements we are in process of taking are
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based on an offloading server under timing attacks. We have built a timing attack demonstrator and
metric the mean time for a successful attack which will be used as h

G

. Some parameters, e.g. the
probability that an attacker begins to conduct a timing attack and attacks system confidentiality after
a successful timing attack will be assumed as an attacker. Other parameters used in our system can
be tuned by the system administrator, like the rekeying probability p

r

and the mean sojourn time
in the initial state h

G

. In this work, however, our focus is primarily on developing a quantitative
analysis methodology for the security attributes of an offloading system. So, in the absence of exact
values of model parameters, we assume it will also be meaningful to evaluate the sensitivity of
security attributes to variations in model parameters.

In Section 3.5 we present a case study with numerical results to show how one can use our quan-
titative analysis of system security and the influences of changes in the various model parameters.
Here, we can compute the steady-state probabilities {⇡

i

, i 2 X
s

} of the SMP states by using Eqs.
3.8 and 3.21. Again, for the sake of brevity, we assume:
� = (p

i

p
a

+1�p
a

+p
a

p
r

)h
G

+p
t

h
T

+p
t

p
a

h
C

+(p
i

p
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+1�p
a

+p
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p
r

�p
i

p
t

p
a

)h
R

. The solutions
are presented as

⇡
G

=
p
i

p
a

+ 1� p
a

+ p
a

p
r

�
h
G

(3.22)

⇡
T

=
p
t

�
h
T

(3.23)

⇡
C

=
p
t

p
a

�
h
C

(3.24)

⇡
R

=
h
R

h
G

⇡
G

� p
i

p
t

p
a

�
h
R

(3.25)

3.4.3 Computing Security

We have defined the security metrics confidentiality ⇤ and system (security) cost C in Sec-
tion 3.2.1. We compute the security metrics as functions of the state probabilities of the SMP model
in this section.

From the system lifetime analysis, one can see that the offloading system’s confidential data will
be disclosed only in the compromised state C. Therefore, the steady-state confidentiality metric can
then be computed as

⇤ = 1� ⇡
C

. (3.26)

The offloading system suffers from cost in two states, the compromised state C and the rekeying
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state R. The system loses sensitive information in the compromised state, and cost is also incurred
when the system deploys a rekeying process regularly. The steady-state probabilities ⇡

i

may be
interpreted as the proportion of time that the SMP spends in the state i. In the SMP model, the
rekeying effort cost C

rekeying

and the data disclosure cost C
disclosure

are both interpreted as the
proportion of system life time, that is, the steady-state probability of the SMP. In order to share
relative importance between the loss of sensitive information and the effort needed to rekey regularly,
we define two weights w and its complement 1�w for the two kinds of cost. We use normalization
weights for simplicity. The system cost can be computed as:

C = C
rekeying

+ C
disclosure

= (1� w)⇡
R

+ w⇡
C

,
(3.27)

where ⇡
i

, i 2 {C,R} denotes the steady-state probability that the SMP is in state i. 0  w  1 is
the weighting parameter.

In order to investigate how system security will interact with the cost, we also compute a Security
per dollar metric. An objective function formed from the division of the security attribute confiden-
tiality and system cost is created to demonstrate the relationship between the cost the system has to
pay and the corresponding security system gain. This metric shows the how much security per cost
one can obtain. As a system designer, one may look forward to maintaining the confidentiality of
sensitive information with lower system cost, as for the metric T , the larger the better.

T =
⇤

C
. (3.28)

Given the steady-state probabilities, the system throughput can be written as:

X =
��4�5(�1 + �2 + �3 + �5)

�
+

�0�4[(�1 + �2 + �3 + �6)�5 + �2�3]

�
(3.29)

+
µ0[(�1 + �2)(�1 + �3) + �1�6]�5

�
.

3.4.4 Sensitivity analysis

The main aim of parametric sensitivity analysis is to predict the effect of variations in inputs and
parameters on outputs (metrics), hoping to find performance or reliability bottlenecks, and guiding
an optimisation process [48]. It is a useful procedure for offloading system optimisation in the
early design phase. Since some model parameters are difficult to ascertain in the design phase,
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sensitivity analysis can predict the influence on the quantitative analysis results from changes in
different parameters.
Metric 2 {C,⇤,T} is a metric. x 2 {p

i

, p
t

, p
a

, p
r

, h
G

, h
T

, h
C

, h
R

} is a variable in our model.
The sensitivity analysis is conducted by calculating the derivative of the metric with respect to a
certain input parameter.

d(Metric)

dx
(3.30)

Eq. 3.30 is the sensitivity formula for metric prediction in the SMP model. The numerical results
in the format of graphs will be shown in the next section, from which we can see intuitively the
impact of parameter changes on different metrics.

3.5 Numerical Study

In this section we give numerical results as examples to show how one can evaluate security
attributes of the SMP model defined in the previous sections using different metrics.

We use the system parameters we propose in [96]. We assume that the probability of a timing
attack coming to the offloading system is equal to the one that the system will trigger its rekeying
process, i.e., p

t

= 0.5. The mean time the system spends before an attacker conducts a timing attack
or it rekeys is h

G

= 10 time units. Further, the probability that the attacker successfully cracks the
system secret using a timing attack is p

a

= 0.6 and the probability of an unsuccessful attack 1 � p
a

= 0.4. The time taken by a successful timing attack is assumed to be h
T

= 5 time units. Besides,
suppose that the probability that the system returns to the initial state by manual intervention is p

i

= 0.2 and probability of the attack is terminated due to rekeying operation is p
r

= 0.5. Hence, the
probability that the current attack stops and another timing attack affects the system is 1 � p

i

� p
r

= 0.3 . We also assume the duration for a specific attack is supposed to be h
C

= 3 time unites and
rekeying time is h

R

= 1 time unite respectively.
Using the values given above as the model input parameters and Eqs. 3.22 - 3.25, we obtain the

steady-state probabilities of the Semi-Markov process as:
⇡
G

= 0.6634, ⇡
T

= 0.2023, ⇡
C

= 0.0728, ⇡
R

= 0.0615.
The steady-state probabilities ⇡

i

may be interpreted as the proportion of time that the SMP spends
in state i. For the assumed values of the input parameters, the proportion of time that the offloading
system spends in the initial state G is approximately 66% of the whole system life time.

Figure 3.7 shows the metric of system cost C, confidentiality ⇤ and Security per dollar metric
T changing with different weighting parameters w. To better scale for the figure, the Security per
dollar metric T is divided by 15 and the cost metric C is multiplied by 10. From Figure 3.7, it can
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Figure 3.7: System metrics changing with weighting parameter w under different p
r
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G

be seen that the system cost increases with rekeying probability p
r

when the weighting parameter is
small, as we put more weight on the rekeying effort cost. At high values of w, the information loss
cost component becomes the decisive factor. We see the decrease in system cost C as p

r

increases.
While one can see that the cost increases with the rekeying probability p

r

, the confidentiality ⇤

stays constant with changing weighting parameters w as ⇤ is independent of the weighting. The
Security per dollar metric increases as the rekeying probability p

r

increases when the parameter w
is small. We found that as we tune the weighting parameter w, the effect of increasing the rekeying
probability p

r

is different for different metrics.
Figure 3.8 shows how different metrics behave with changes in rekeying probability parameter

p
r

and the time in the initial state h
G

. It can be seen that the system cost C decreases with both
p
r

and h
G

. At the same time, the Security per dollar metric T increase with growing p
r

and h
G

.
The larger p

r

and h
G

are, the better the offloading system performs. So in the offloading system,
one can increase the rekeying probability and the sojourn time in the initial state to improve the
security attribute. But in the SMP model, we cannot represent the rekeying rate with a single model
parameter. We will improve the model in the next Chapter.

As discussed in Section 3.3.3, p
r

is the probability that the attack is terminated due to rekeying
operation, so it depends on the system configuration. The rekeying process can bring the system back
to the initial state before an attack, which will affect h

G

. Since we can tune the trigger probability of
the rekeying process as system administrators, we conduct sensitivity analysis of system behaviour
on the effect from changes in the rekeying probability p

r

and the mean sojourn time in the initial

53



CHAPTER 3. MODELLING FORMALISMS AND SECURITY ANALYSIS

(a) C as a function of h
G

and p
r

(b) ⇤ as a function of h
G

and p
r

Figure 3.9: Sensitivity analysis to C and ⇤54
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Figure 3.10: Security per dollar metric as a function of h
G

and p
r

state h
G

. Figure 3.9(a) shows the system cost C as a function of h
G

and p
r

. Interestingly, when
the mean time in the initial state h

G

is short, the system cost increases as the rekeying probability
p
r

increases. However, we see a decrease in system cost as p
r

increases, when h
G

is very long.
Also we can see, the system cost is more sensitive to h

G

than to p
r

. In Figure 3.9(b), we conduct
sensitivity analysis to the system confidentiality metric ⇤. It increases dramatically with the sojourn
time h

G

in state G when the system is rekeying more frequently. However, it does not interact that
strikingly with model input parameter p

r

.
The Security per dollar metric as a function of h

G

and p
r

is depicted in Figure 3.10. As expected,
the metric T monotonically increases as p

r

and h
G

increase. That is because the system more often
rekeys and it spends more time in good state. When the time in the initial state is short, the metric
T hardly changes with the parameter p

r

. However, the rekeying probability has a significant effect
on the system as h

G

is very large.
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3.6 Summary

In this chapter, we have presented an introduction to the modeling techniques and an approach
for quantitative assessment of security attributes for an offloading system under the specific threat of
timing attacks. A state transition model that describes the dynamic behavior of this system is used
as the basics for developing a stochastic model. We have solved for steady-state probabilities of the
Semi-Markov Process model as the foundation of security attribute analysis. These include system
cost and a Security per dollar metric. Also, the model analysis is illustrated in a numerical example.
The sensitivity of the influencing factors in the quantitative analysis is also discussed.
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Chapter 4

Security and Performance Tradeoff
Analysis

With growing interest in the combined analysis of performance and security, stochastic models have
been widely applied to conduct quantitative evaluations. In this chapter, we improve our proposed
security model to represent the system rekeying rate with a transition rate of a CTMC model (the
Security Model). In oder to take the performance property into account, we extend the model with an
open queueing model (the Performance Model), which is proposed to exhibit the offloading decision
and job processing operation. A job is either processed locally by the mobile device or offloaded
and served by cloud servers.

In the presence of timing attacks, we investigate how to set system parameters to obtain the
optimum tradeoff between security and performance in mobile cloud computing systems. This
chapter aims at quantifying the security attributes and their impact on the performance of mobile
offloading systems. The offloading system is modeled as a hybrid CTMC and queueing model. The
proposed model focuses on state transition and state-based control. The quantification analysis is
carried out for steady-state behavior of the CTMC model as to optimize the tradeoff metric. By
transforming the security model to a model with absorbing state, we compute the "mean time to
security failure" (MTTSF) measure.

4.1 Tradeoff analysis of Mobile Cloud Offloading

In order to proceed to a quantitative treatment of the performance-security tradeoff of mobile
cloud offloading systems we propose a hybrid CTMC and queueing model which treats the security
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and performance attributes respectively.
We show how to formulate measures that include both, performance and security aspects and that

optimize the tradeoff between the two. Our model deals with a general offloading system with a
private key (e.g. a Tape volume key) stored on the server side, where random timing attacks try to
guess the key. Frequently renewing the server private key can prevent or interrupt a timing attack.
However this rekeying process brings cost to the system as it requires processing effort. So the
system performance will be affected. We try to investigate the tradeoff between the security we gain
and the performance degradation. By solving the proposed model, we propose different metrics on
which offloading decisions can be based.

4.2 The Hybrid Model

We develop a hybrid CTMC and queueing model that takes into account the behavior of both the
system and the attacker, to proceed to a quantitative assessment of the performance and security
attributes of the mobile cloud offloading system under the threat of timing attacks.

Figure 4.1 depicts the diagram of a performance and security model formulated of a CTMC and an
open queueing model for describing dynamic behavior of a mobile offloading system. As compared
to the model proposed in the last chapter, which only considers the security attributes of offloading
systems, the proposed hybrid CTMC and queueing model here takes the performance properties of a
generic offloading system into account. In the SMP model, we cannot represent the system rekeying
rate with a single model parameter. Here, we improve our proposed security model and represent
the system rekeying rate with a transition rate in the CTMC model.

In the upper part of Figure 4.1 is a CTMC model (the Security Model) proposed to depict the se-
curity attributes of an offloading system. It is a state transition model represents the system behavior
under a specific attack and given system configuration that depends on the actual security require-
ments. We assume that the server is configured as to renew its key regularly to prevent or handle
timing attacks. Whereas the lower part of Figure 4.1 is the open queueing model (the Performance
Model), which is proposed to exhibit the offloading decision and job processing operation.

In our scenario, the offloading system is under timing attacks. If the attacker successfully com-
promises the system through time analysis, all jobs dispatched to offload are not secure any more,
therefore they must be repeated and do not contribute to the throughput. That means only jobs
processed locally contribute to the system throughput.

The aim of an attacker is to hack the master secret stored in the server. The attacker records each
response time for a certain query and tries to guess the master secret of the server by comparing time
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Figure 4.1: The hybrid CTMC and queueing model

differences from several request queues. Obviously, this requires the attacker to spend effort, where
we use time to represent the attacking effort. We use exponential distribution to model the attacker
arrival time and the time a timing attack takes.

The upper part of Figure 4.1 shows the CTMC model representing the states of the mobile cloud
offloading system. The operational states of an offloading system are abstracted from the system
lifetime analysis discussed in Section 3.3.2. The CTMC states are the same as the SMP model listed
on page 42. We summarize the parameters of the CTMC model here:

• �1 rate at which the system launches the rekeying process in state G and state T

• �2 rate at which an attacker triggers a timing attack to the system
• �3 rate at which a timing attack succeeds to break the system secret
• �4 rate at which the system is brought back to the good state by the rekeying process
• �5 rate at which the system launches the rekeying process in state C

• �6 rate at which the attacker successfully breaks the key, while fails at accessing the data or
he just fails to conduct a successful timing attack
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We describe the events that trigger transitions among states in terms of transition rates. We assume
that the time the system spent in each state is exponentially distributed. We also assume that there is
only one attacker in the system at a time. If an attacker starts a timing attack to the cloud server, the
system is brought to the timing attack state T at rate �2. The attacker has to make an effort before he
successfully cracks the system secret by a timing attack, and the system moves to the compromised
state C at rate �3. Consequently the mean time a timing attack takes is represented by ��1

3 . If the
attacker fails to conduct a successful timing attack, the system will go back to the good state G by
the arc �6.

The rekeying rate is the parameter one can tune as a system administrator. It indicates how often
the system launches the rekeying process. The rate �1 is the rekeying rate when the system is in the
good state G or in the timing attack state T . The considered mobile cloud offloading system has
intrusion detection mechanisms running on it that can find indicators of compromised behavior, in
which case the system will trigger the rekeying process more frequently. The intrusion detection
mechanism does not trigger the rekeying immediately because of the rekeying cost to the service
performance. So in the compromised state C, we assume the rekeying process is triggered at a
different rate, �5 = n�1, n > 1. The parameter n represents the relationship between the rekeying
rate (or rekeying frequency) in good state and the rekeying rate in compromised state. The rekeying
process will bring the system back to the initial state G at rate �4.

The challenge is to find an optimal value for the rekeying interval. The rekeying rate should be
high to reduce the security lost cost in the state C, but triggering the rekeying process too often will
lead to high system effort cost. We optimize this tradeoff in Section 5.5.

4.2.1 Performance Analysis

When jobs are generated by a mobile application, they are either offloaded to the cloud or executed
locally. In the rekeying state R, the system refuses all user requests and all jobs are processed locally
on the mobile device. Consequently all the jobs are dispatched to the Mobile device queue and some
jobs will be lost. As a result, the system throughput is degraded. So the rekeying period should be
as short as possible. When the system is in the compromised state C, which means the attacker
successfully compromises the system through a timing attack, all jobs dispatched to offload are not
secure any more. Hence they must be repeated and do not contribute to the throughput. The lost
jobs are represented by the red arc in Figure 4.1. In this state, only jobs processed locally on the
mobile device contribute to system throughput.

The lower part of Figure 4.1 shows the queueing model proposed to exhibit the performance
attribute of the system. The two queues express the job processing by the cloud server and the
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mobile device respectively. The parameters � and �0 indicate the arrival rates for the two queues. A
job dispatched to offload comes to the upper queue and is processed by the server with service rate
µ, which also includes the data transmission time. For jobs dispatched to execute locally, the service
rate is µ0 which is assumed to be lower than µ.

4.3 Model Analysis

In this section, we derive and evaluate the security and performance attributes of the offloading
system using methods for quantitative assessment of dependability, known as the dependability at-
tributes, e.g. reliability, availability, and safety which have been well established quantitatively. We
will evaluate the security and performance metrics by computing the steady-state probability of the
CTMC model and solving the queueing model.

4.3.1 CTMC Steady-State Probability

For the system security attributes, we have described the system’s dynamic behavior by a CTMC
model with the state space X

s

= {R,G, T, C}. The state space is the same as the SMP model,
but the transitions between the states are represented by transition rates {q

ij

, i 2 X
s

}. In order to
carry out the security quantification analysis, we need to determine the stationary distribution of the
CTMC model.

As in Section 3.1.1, the steady-state probabilities {⇡
i

, i 2 X
s

} of the CTMC can be computed by
solving the system of linear equations

⇡Q = 0, (4.1)

where ⇡ = [⇡
R

,⇡
G

,⇡
T

,⇡
C

] and Q is the infinitesimal generator (or transition-rate matrix) which
can be written from Figure 4.1 as:

Q =

R G T C

R

G

T

C

0

BBBBB@

��4

�1

�1

�5

�4

��1 � �2

�6

0

0

�2

��1 � �3 � �6

0

0

0

�3

��5

1

CCCCCCA

(4.2)
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In addition, we have the total probability relationship:

X

i

⇡
i

= 1 i 2 X
s

. (4.3)

The transition-rate matrix Q describes the dynamic behavior of the security model as shown in
Figure 4.1. The first step towards quantitatively evaluating security attributes is to find the steady-
state probability vector ⇡ of the CTMC states by solving Eqs. 4.1 and 4.3. We use Mathematica to
solve the linear equations and get the solutions:

⇡
R

=
[(�1 + �2)(�1 + �3) + �1�6]�5

�
, (4.4)

⇡
G

=
(�1 + �3 + �6)�4�5

�
, ⇡

T

=
�2�4�5

�
, ⇡

C

=
�2�3�4

�
.

For the sake of brevity, we assume:
� = (�1 + �4)(�1 + �3 + �6)�5 + [(�1 + �4)�5 + (�4 + �5)�3]�2.

4.3.2 CTMC with absorbing state - MTTSF analysis

For quantifying the reliability of a software system, mean time to failure (MTTF) is a widely
used reliability measure. MTTF provides the mean time it takes for the system to reach one of
the designated failure states, given that the system starts in a good state. In reliability analysis, the
failed states are made absorbing states. Once the system reaches one of the absorbing states, the
probability of moving out of this state is 0, i.e., there are no outgoing arcs from such states. In this
section, we use mean time to security failure (MTTSF) as the measure for quantifying the security
of our offloading system. MTTF or MTTSF can be evaluated by making the compromised state of
the CTMC an absorbing state, as shown in Figure 4.2.

Given a Continuous-Time Markov Chain (CTMC) with one absorbing state, we may enter this
chain at some state i with probability ↵

i

. For each state that is visited, the time before going to the
next state follows an exponential distribution. Thus, the time required to reach the absorbing state
from an initial state i is a sum of samples from exponential distributions. For a given CTMC, a
phase-type distribution is defined as the distribution of the time to absorption that can be observed
along the paths in a CTMC with one absorbing state [102].

In our scenario, the MTTSF is the mean time it takes for the system to reach the security failure
state C. The first moment of a PH-distribution exactly expresses the mean time to absorption in an
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Figure 4.2: CTMC model with an absorbing state

absorbing CTMC. So for our model

MTTSF = E[X] = �↵T�11. (4.5)

The parameters are

T =

0

BB@

��4 �4 0

�1 ��1 � �2 �2

�1 �6 ��1 � �3 � �6

1

CCA , (4.6)

and the initial probability vector is
↵ =

⇣
0 1 0

⌘
. (4.7)

Substituting into Eq. 4.5, we get

MTTSF =
(�1 + �4)(�1 + �2 + �3 + �6)

�2�3�4
. (4.8)

4.3.3 Computing Security and Throughput

Given the steady-state probabilities of CTMC model, we can compute the security and perfor-
mance metrics we defined in Section 3.2. The security metrics have can be computed by Eqs. 3.26
and 3.27:

⇤ = 1� �2�3�4

�
, (4.9)
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C = (1� w)
[(�1 + �2)(�1 + �3) + �1�6]�5

�
+ w

�2�3�4

�
. (4.10)

Then we compute the throughput metric of the offloading system. As shown in the lower part of
Figure 4.1, for each queue, the throughput equals the average number of jobs in the queue divided by
the average time a job spends in the queue. The system throughput equals the sum of the throughput
of the two queues.

We assume the total system life time is T . In the good state G and timing attack state T , the
number of jobs served by the system should be �(⇡

G

+ ⇡
T

)T + �0(⇡
G

+ ⇡
T

)T , given the queues
are stable. While in the rekeying state R, the server refuses all the users’ requests and all jobs must
be executed locally. Assuming µ0 < � + �0, the number of jobs served then is µ0⇡

R

T . In the
compromised state C, all the jobs dispatched to offload are not secure, so they do not contribute to
the throughput. In this state, the system throughput only covers the jobs executed locally �0⇡

C

T .
Therefore, we get the system throughput as

X =
�(⇡

G

+ ⇡
T

)T + �0(⇡
G

+ ⇡
T

)T + µ0⇡
R

T + �0⇡
C

T

T
(4.11)

=(⇡
G

+ ⇡
T

)�+ (1� ⇡
R

)�0 + ⇡
R

µ0 .

4.4 Numerical results

In this section, we evaluate the proposed metrics using the model analysis results. First we specify
the parameters for the security model. We use the system parameters we propose in [98]. It is
assumed that the attack rate to the system is �2 = 1. Because a timing attack is considered to
consume more time than the time between attacks [20], the rate at which a timing attack succeeds to
break the system secret is assumed to be smaller than the attack rate, i.e. �3 = 0.3 . We also assume
it takes an average of 0.5 time units for the server to carry out a rekeying process and the rate at
which the system is brought back to the good state by the rekeying process is �4 = 2. The rate at
which the attacker successfully breaks the key, while it fails at accessing the data or it just fails to
conduct a successful timing attack is assumed to be �6 = 1.

For the system parameters we use experimental data from an offloading engine and OCR (Optical
Character Recognition) implementation [130] here. The mean local execution time for an OCR
job on the mobile device was 2377 ms. We set µ0 = 1/2.377 ⇡ 0.42. The mean offloading time
including the data transition time is 1191 ms. Then µ = 1/1.191 ⇡ 0.84 . For the queues to be
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Figure 4.3: System cost C as a function of the rekeying rate �1

stable, we assume � = 0.8 and �0 = 0.4.

• System cost analysis

Figure 4.3 shows the system cost metric C (defined in Eq. 3.15) changing with the rekeying rate
�1. Here we set the weighting parameter w = 0.5 to put equal importance to the loss of sensitive
information cost and the effort needed to rekey regularly. The parameter n in this figure is the
coefficient of rekeying in the compromised state, i.e. �5 = n�1. In this chapter, we consider 4
rekeying options, that is n = 0.5, 1, 2, 3 respectively. The rekeying rate �1 indicates how often the
system launches the rekeying process. The higher the rekeying rate, the more often the rekeying
process is triggered. When the rekeying rate is low, the system cost is very large due to the high
probability of an insecure state. We find the optimum rekeying rate �1 = 0.2996 for the lowest
system cost when n = 3. After the lowest value, because of the increasing effort to perform rekeying
process, the cost is also getting larger at high rekeying rate. We further see that the system cost
decreases with increasing coefficient n. This is because for all rekeying rates, the mean time in the
compromised state decreases as we rekey more frequently in this situation.

We study the effect of the weighting parameter w on the system cost in Figure 4.4. We look at
the marginal values first. It can be seen from the figure that the cost decreases monotonically with
the rekeying rate �1 when w = 0, where we only consider the costs of losing sensitive information
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Figure 4.4: System cost metric C over rekeying rate �1 and weighting parameter w
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0.285

Figure 4.5: Confidentiality metric ⇤ and throughput X over the rekeying rate �1

in the compromised system. Intuitively, in this case when we trigger the rekeying process more
often, the security cost will decrease. When we put all weight on the rekeying effort (w = 1), the
cost increases with the rekeying rate. The light color in the middle of the figure shows the optimum
rekeying rate. For the middle values of the weighting parameter w, the optimum rekeying rate for
the lowest cost decreases when we put more weight on the rekeying effort cost. For each specific
rekeying rate �1 the system cost is a straight line weighting the two kinds of cost. In this figure, we
get the largest rekeying effort cost and lowest security cost at rekeying rate �1 = 2.0.

• Performance analysis

Figure 4.5 shows the system security and performance metrics, i.e. system confidentiality ⇤

(defined in Eq. 3.14) and throughput X (defined in Eq. 3.16), changing with the rekeying rate �1.

Also 4 rekeying options are considered here, i.e. n = 0.5, 1, 2, 3 respectively. It can be seen that the
confidentiality metric ⇤ monotonically increases with growing rekeying rate �1. It also increases
when the multiple of the rekeying rate in the compromised state n is larger. This is because the
security improves when the system launches the rekeying process more frequently, as the system
is more likely to be brought back to good state from the timing attack state and the compromised
state. At small values of the rekeying rate, the system throughput is low because more time is
spent in the compromised state when the offloading throughput is not contributing. We find the
highest throughput when the rekeying rate �1 = 0.285, when n = 3. After obtaining the maximum
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Figure 4.6: Security and Performance Tradeoff with Rekeying Rate �1

throughput, the more often the server triggers the rekeying act, the more often the server denies
offloading requests. As a result, the system throughput decreases with the rekeying rate.

• Tradeoff analysis

At last, we present the security and performance tradeoff analysis for the offloading system in
Figure 4.6. The tradeoff metric � (defined in Eq. 3.17) increases rapidly with the rekeying rate �1 at
its low values, as the system security improves quickly. We find the optimum rekeying rate for the
best security and performance tradeoff at �1 = 0.5169, when n = 3 (n is the multiple of rekeying
rate in compromised state). This optimum rekeying rate is different from the one for the lowest
system cost since they look at different aspects of evaluating the system. It is also different from
the rekeying rate for the highest system throughput. That is because the optimum rekeying rate for
throughput is not the optimum for the system security.

However, after reaching the optimum value, the tradeoff metric decreases much slower as the
rekeying rate is getting larger. When the rekeying rate has a large value, the multiple parameter
n does not affect the tradeoff metric much as the rekeying act is triggered frequently enough. The
system tradeoff metric decreases because of the degrading system throughput at large rekeying rates.

We show a method that can be used by the system administrator to find out how to tune the security
mechanism (rekeying) in the system. The system cost can act as a criterion for service providers to
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charge their users. If users need higher security level, they have to pay more for offloading services.
The system administrator can also use the result to obtain the minimum cost or maximum security
performance tradeoff for the system.

4.5 Summary

In order to proceed to a quantitative treatment of the security-performance tradeoff of offloading
systems we have proposed a hybrid CTMC queueing model for an offloading system under the
specific threat of timing attacks. We have shown how to formulate measures that include both
security and performance attributes and that optimize the tradeoff between the two. System metrics
are also proposed which take into account both the rekeying effort a system makes and the sensitive
information loss. The optimum rekeying rate is found for the tradeoff metric depending on n,
the parameter for the rekeying rate in compromised state. We found that with carefully selected
parameters, we can configure the offloading system to achieve an optimal security and performance
tradeoff.
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Chapter 5

A Secure and Cost-efficient Offloading
Policy

We present an offloading scheme which is the combination of regular rekeying and random padding
in this chapter. We quantitatively analysis the security and performance metrics which system archi-
tects need to make informed tradeoff decisions involving system security.

In order to proceed to a quantitative treatment of the tradeoff problem, a hybrid CTMC and queue-
ing model has been proposed in the last chapter to model the mobile cloud offloading system which
treats security and performance attributes respectively. By extending this model, we introduce a
random padding countermeasure in the offloading system for mitigating the information leakage
through time side-channels.

This chapter proposes and evaluates a secure and cost-efficient offloading scheme which optimizes
the performance and security tradeoff of the offloading system, with the major contributions being
twofold:

• We propose a secure and cost-efficient offloading scheme for mobile cloud computing by
combining renewing the server key regularly with inserting random delays into the server
processing time. The numerical results based on experimental data show that the security
performance tradeoff of offloading can be improved through our scheme.

• We implement a system that allows us to compare the impact of different random padding
strategies on the expected success rate of timing attacks. We tune the mean and the variance
of the random paddings and investigate the impact on mitigating the time side-channel in-
formation leakage. It is revealed that the variance of random delays is the decisive factor to
mitigation effectiveness of a random padding and the extra number of measurements an at-
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tacker has to make to conduct a timing attack grows linearly with the standard deviation (SD)
of the random padding.

5.1 The Offloading Scheme

A timing attack is a practical threat to the mobile cloud offloading system. Besides renewing the
server’s private key periodically, we introduce a random padding countermeasure to the system in
order to mitigate this attack.

Figure 5.1 depicts the diagram of the performance and security model of a CTMC and an open
queueing model which we proposed in the previous chapter for describing dynamic behavior of
a mobile cloud offloading system. We extend the hybrid model by adding random delays in the
offloading queue as a countermeasure to mitigate timing attacks.

Figure 5.1: Performance and Security model for a generic mobile cloud offloading system

72



5.2. EXPERIMENTS

Random delays are padded for each service response in order to mitigate timing information
leakage. When random delays are interposed, the attacker needs more samples to average and
successfully guess the secret in the server. So it takes more time for it to conduct the timing attack.
As a result, the attacking rate �3 decreases as this mitigation method is taken. This process is
represented by the dashed arc in Figure 5.1.

5.2 Experiments

In order to empirically evaluate our approach for mitigation to timing attacks and for improving
the security and performance tradeoff of mobile cloud offloading systems, we set up a simulation
using the OMNeT++ tool. Experimental and numerical analyses have been done to investigate:

1) the mitigation effectiveness of the random delay countermeasure against timing attacks;
2) the impact of the random padding parameters on the mitigation effectiveness. We study how

the mean and the variance affect the number of additional measurements an attacker may have
to make; and

3) the optimal system rekeying rate for the performance and security tradeoff.

5.2.1 Experiment setup

Our server and client applications are developed using the OMNeT++ tool based on the INET 2.6
framework. The connection between two hosts use the TCP protocol as shown in Figure 5.2. All
tests were run under Mac OS X 10.10 on a 2.6 GHz Intel Core i5 processor with 8 GB 1600 MHz
DDR3 RAM.

A timing attack uses statistical analysis of the time one application takes to do some calculation
in order to learn about the data it is operating on. Timing attacks on secrets are fundamentally
limited by the ability of an attacker to accurately measure differences in response times across a
network. In our implementation, we explore the limits and mitigation effectiveness of random delay
countermeasure against timing attacks by deploying a client application to record and analyze the
amount of time taken by the server application to compare two values bit by bit. We mimic a
Brumley’s remote timing attack which is discussed in Section 2.2.1.

The experiments are conducted as follows: As an attacking client sends a guessed value g (a 256-
bit value), the server application receives the value and compares it with the one that has been stored
in the server from the first bit to the last. Once the server finds that one bit in the received value is
different, it sends back an alert to the client. Otherwise, the server continues to compare the next bit.
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Figure 5.2: Experiment setup

So if the first bits are the same, it takes slightly longer for the server to send back the result. The
client records the response time of the server and makes guesses of the server’s secret based on its
measurements.

A random padding countermeasure is deployed on the server side. After the server processes
each message received from the client, random delays drawn from different distributions are padded
before sending the results to mitigate the timing information leakage.

5.2.2 Convolution method

First, we analyze the completion time distribution for timing attacks. We have discussed the
implementation of Brumley’s timing attack in Section 2.2.1. A complete Brumley’s timing attack
can be viewed as a binary search for a system secret and it consists of several steps to recover the
ith bit of the secret. The attacker repeats these steps to recover the secret bits one by one. We call
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Figure 5.3: Test and Verify the Convolution Method. (a) The time distribution for an attack en-
tity. (b) The time distribution of complete attacks which consists of 256 entities. (c) The result of
interactively convolution method. (d) The rescaled distribution of complete attacks.

the process to recover 1 bit an attack entity.
After recovering the half-most significant bits of the system secret, the attacker can use Cop-

persmith’s algorithm [33] to retrieve the complete factorization. Then the system is successfully
compromised by the attacker by timing attack. From the setup of Brumley’s remote timing attack,
a typical attack takes approximately 2 hours, and to get its distribution may take days. So we try to
simplify this process using the convolution method.

For each secret bit, the attacking behavior can be regarded as a single entity. And these entities
are assumed to be independent and identically distributed (i.i.d.). When the distribution of the attack
entity time is known, the cumulative distribution function (CDF) of one complete attack duration
can be computed by the interactive convolution method. It needs 256 attack entities to factor a
RSA-1024 bit key. To simplify the computational process, we propose Algorithm 1 by doing the
convolution pairing.
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Algorithm 1 Interactively convolution algorithm
1: Input: CDF of an attack entity: p
2: Output: CDF of the complete attack
3: for i = 1:8 do
4: p conv(p,p);
5: end for
6: return p

Then we can get the 256 attack entities distribution by 8 self-convolutions. The results are shown
in Figure 5.3. The mean of Figure 5.3(c) is 2.181 h and the variance is 0.000264 respectively. For
Figure 5.3(d), the mean is 2.179 h and the variance is 0.000267. We test and verify that the convolu-
tion method is adequate for our scenario. This method can radically decrease the computation time
for the subsequent evaluation.

5.3 Comparison of Distributions

We draw random delays from different random distributions. This experiment aims at comparing
the impact of different random distributions to the limits of timing attacks against offloading systems.
The parameters, the mean and the variance of different distributions are shown in Table 5.1. We set
the mean of all random distributions as 0.1 ms. For the Erlang distribution, it is difficult to get a
large variance because the shape parameter has to be integer.

The attacking client sends two messages separately with a certain bit equals 0 and 1 to the server.
Random delays are added after the server processes each message received from the client. Different
numbers of timing samples are taken from the client measurement. When the client can distinguish
the time difference of server application processing two different messages from statistical analy-

Table 5.1: Continuous Distributions

Mean Variance SCV
Weibull(0.05, 0.5) 0.1 0.05 5

Uniform(0, 0.2) 0.1 0.0033 0.33
Exponential(0.1) 0.1 0.01 1

Truncated normal(0.1, 0.1) 0.1 0.01 1
Erlang(5, 0.1) 0.1 0.002 0.2
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Figure 5.4: Comparison of different random delay distributions

sis of the samples, we call it a successful attack. We use the percentage of successful guesses to
represent the mitigation effect against timing attacks of random delay countermeasure.

The result is depicted in Figure 5.4. It shows that the Weibull distributed delays can mitigate the
timing attacks as the attacker needs more samples to guess the secret than the situation if no random
delays are added. The results of the other three random distributions are the superposition of the
result with no random padding. The impact of the other three distributions is negligible because
their variance is small.

In the next section, we choose the Weibull distribution to draw random delays because it is widely
used in reliability engineering and failure analysis and it is easy to change the variance of Weibull
distribution by tuning the parameters.

5.4 Mitigation Effectiveness of Random Delays

In this section, we investigate the timing attack resilience of mobile cloud offloading systems with
random delay paddings. It is worth mentioning that Figure 5.5 has to be read together with Table 5.2.

We evaluate the mitigation effectiveness of random delay countermeasure against timing attacks

77



CHAPTER 5. A SECURE AND COST-EFFICIENT OFFLOADING POLICY

(a)

(b)

Figure 5.5: Comparison of the effectiveness of Weibull distributed random delays with different
parameter sets. (a) Mitigation effectiveness of Weibull random delays with same scale parameter.
(b) Mitigation effectiveness of Weibull random delays with same mean.
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Table 5.2: The parameter sets of the Weibull distribution for the two experiments in Figure 5.5

(a)

shape k scale ⌘ mean(ms) variance SCV n(sample)
no random 375

0.50 0.0500 0.1000 0.0500 5.00 470
0.45 0.0500 0.1239 0.1043 6.79 625
0.40 0.0500 0.1662 0.2725 9.87 830
0.37 0.0500 0.2092 0.5642 12.89 1070
0.35 0.0500 0.2515 0.9980 15.78 1400
0.34 0.0500 0.2944 1.6151 18.64 1750

(b)

shape k scale ⌘ mean(ms) variance SCV n(sample)
no random 375

0.50 0.0500 0.1000 0.0500 5.00 470
0.39 0.0287 0.1000 0.1043 10.43 625
0.31 0.0116 0.1000 0.2725 27.25 830
0.26 0.0053 0.1000 0.5642 56.42 1120
0.23 0.0027 0.1000 0.9980 99.80 1370
0.21 0.0015 0.1000 1.6151 161.51 1580

by comparing the number of response time measurements an attacker needs to achieve a certain level
of successful guesses about the server secret. Different numbers of timing attacks are taken by the
client. When the client can tell the secret bit of the server from statistical analysis of the samples,
we call it a successful guess.

The impact of different randomly distributed delays to the limits of timing attacks has been com-
pared in the previous section. It has been shown that Weibull distributed delays can mitigate the
timing attacks more effectively than the random delays picked from some other common distribu-
tions, such as uniform, exponential and Erlang distributions. As the attacker needs more samples to
guess the server’s secret. So we choose Weibull distributed delays as the mitigation countermeasure
against timing attacks.

We perform two experiments with different parameter sets for the Weibull distribution as shown in
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Table 5.2. The first experiment is conducted by changing the Weibull distribution shape parameter
k 2 {0.5, 0.45, 0.4, 0.37, 0.35, 0.34} while keeping the scale parameter ⌘ = 0.05. We set these
parameters in order to increase the variance of random delays. The result is depicted in Figure 5.5
(a). It is showed that the Weibull distributed delays can mitigate the timing attacks as the attacker
needs more samples to guess the secret than if no random delays are added.

It is assumed that the attacker uses an error detection and correction strategy as described in [23],
so 90% successful guesses is sufficient for a successful attack. We record the numbers of samples on
the 90 percentile of successful guesses in the subtables. As one can see, the attacker only needs 375
timing samples to make 90% successful guesses when there is no random delay padding. However,
when the Weibull distributed delays with k = 0.5 are used, it needs 470 samples to get the same
percentage of successful attacks, that is, the attacker needs to spend more effort in the timing attack
procedure. As the shape parameter k increases (at the same time the variance is larger), the attacking
client needs more samples to guess the server’s secret. As a consequence, the effectiveness of the
mitigating countermeasure is getting better compared with no random delay padding.

In order to analyze the impact of the mean and variance of a Weibull random delay to the miti-
gation effectiveness against timing attacks, we conduct the second experiment by adjusting the two
parameters as to keep the mean constant while increasing the variance. We set the mean to 0.1ms

and the variance is the same as in the first experiment (Figure 5.5b). Surprisingly, the results are
nearly the same as in the first experiment (Figure 5.5a), i.e. the attacker needs the same number of
measurements for a successful guess. This outcome indicates that the mean is a negligible factor as
changes of the mean does not affect the mitigation effectiveness. However the variance of random
delays is the primary influencing factor to the mitigation effectiveness.

To support our argument, we conduct an experiment changing the mean of the Weibull random
delays while keeping the variance constant. The result is presented in Figure 5.6. It indicates
that changing the mean does not significantly affect the mitigation effectiveness as the results are
superposed on each other. The attacker needs nearly the same number of samples to conduct a
successful timing attack when different Weibull distributed random delays are superposed. Different
random padding policies with the same variance have the same effect on mitigating timing attacks
even though the mean is growing.

5.4.1 Quantitative Relationship

In this subsection, we quantitatively analyze the relationship between the variance of Weibull
random variable and the mitigation effectiveness of random delay countermeasure in Figure 5.7. We
use the number of extra samples the attacker needs to present the mitigation effectiveness against
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Figure 5.6: The effectiveness of Weibull distributed random delays with the same variance but
different means

Figure 5.7: The number of extra samples as a function of the standard deviation of Weibull dis-
tributed random delays
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timing attacks, i.e., when Weibull distributed delays are added, the extra number of measurements
that the attacker has to make to get the same level of successful guesses.

One can see that the number of extra samples needed by the attacker grows linearly with the
standard deviation of the Weibull random delay. This observation matches previous results in the
power side-channel [31].

In the next subsection, numerical results are presented to analyze the tradeoff between the security
and performance in mobile cloud offloading systems.

5.5 Numerical Results

In this section, we evaluate the our offloading policy using the model analysis methods. The
rekeying rate �1 is the parameter that a system administrator can tune and the goal of this evaluation
is to find the optimal rekeying rate for the mobile offloading system.

We use the experiment results to parameterize the system model. The transition rates for the
CTMC model are taken from the implementation of our previous work [98]. The timing attack
success rate �3 is taken from the timing attack experiment in Section 5.4.

Figs. 5.8 and 5.9 show the system security and performance metrics, i.e. system confidentiality
⇤ and throughput X , changing with the rekeying rate �1. The rekeying rate �1 indicates how often
the system launches the rekeying process. It can be seen that the confidentiality measure monoton-
ically increases with growing rekeying rate �1. This is because security improves when the system
launches the rekeying process more frequently. One can also see security improves with growing
shape parameter k of the Weibull distributed delays. That is because when k is larger, the variance
of the random delays are larger and the mitigation effect against timing attacks is better.

However, the throughput does not grow monotonically with the rekeying rate. It has an optimum,
which means one can tune the rekeying rate to obtain a maximum system throughput. Figs. 5.9
reveals that the system throughput grows when the shape parameter k increases. Even though adding
random paddings brings an overhead to the system response time, the performance is still improved
because random paddings mitigate the information leakage which reduces the throughput lost in
the insecure state. The system administrator can choose the offloading strategy with the highest
throughput from Figure 5.9. But the optimal rekeying rate does not mean the optimal security
situation.

We present the security and performance tradeoff analysis for the mobile cloud offloading system
in Figure 5.10. We have computed the tradeoff metric in Section 3.2.3 which is higher better. We
find the optimum rekeying rate for the best security and performance tradeoff at �1 = 0.5169, when
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Figure 5.8: Confidentiality metric ⇤ changing with Rekeying Rate �1

Figure 5.9: Throughput metric X changing with Rekeying Rate �1
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Figure 5.10: Security and Performance Tradeoff changing with Rekeying Rate �1

no random delays are added. When the rekeying rate has a large value, the system tradeoff metric
decreases because of the degrading system throughput at large rekeying rates. One can see that the
system has the lowest tradeoff metric when no random delays are padded. As Weibull distributed
random delays are inserted to mitigate the timing information leakage, the tradeoff metric is getting
greater. This shows that the random delay countermeasure can improve the system security against
timing attacks while meeting the system performance requirements. From Figure 5.10, Weibull
distributed random delays with the shape parameter k = 0.21 is the most desired padding policy
we can choose and the optimal rekeying rate for the tradeoff metric is �1 = 0.2548. Then we get
the optimal offloading policy for the considered mobile cloud offloading system. From Table 5.3, it
can be seen that the optimal rekeying rate decreases when the variance of Weibull distributed delay
is growing. As a consequence, the system needs to make less effort to launch the rekeying process,
which leads to less system cost. This trend can be seen from the dashed arrow in Figure 5.10.

In summary, when random delays are deployed in mobile cloud offloading systems, one should
try to enlarge the variance of the random delay while keeping the mean as low as possible by tuning
the parameters. Using the results in Figure 5.9 and Figure 5.10, the system administrator can obtain
the optimum rekeying interval for the minimum cost or maximum security performance tradeoff.
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Table 5.3: Optimum rekeying rate for different Parameter-sets of Weibull distribution

Shape k Scale � Mean Variance Optimal
rekeying rate

no random 0.5169
0.50 0.0500 0.1000 0.0500 0.4643
0.39 0.0287 0.1000 0.1043 0.4045
0.31 0.0116 0.1000 0.2725 0.3518
0.26 0.0053 0.1000 0.5642 0.3030
0.23 0.0027 0.1000 0.9980 0.2738
0.21 0.0015 0.1000 1.3682 0.2548

5.6 Summary

In this chapter, we have proposed a secure and cost-efficient scheme for mobile cloud offload-
ing systems against timing attacks by combining renewing the server key regularly with inserting
random delays into the processing time. A random padding countermeasure has been added to our
hybrid CTMC and queueing model for mitigation to timing attacks. We have set up a simulation to
investigate the impact of the random padding parameters on the mitigation effectiveness.

The numerical results based on experimental data show that the security performance tradeoff of
the offloading system is improved through the proposed scheme. Further, we found that the variance
of random delays is the primary influencing factor to the mitigation effectiveness of random padding
and that the extra number of measurements an attacker has to make grows linearly with the standard
deviation of the random delays. So when random delays are deployed in mobile cloud offloading
systems, one should tune the parameters to enlarge the variance while keeping the mean as low as
possible.

85



CHAPTER 5. A SECURE AND COST-EFFICIENT OFFLOADING POLICY

86



Part III

Improving Client Security
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Chapter 6

An Empirical Evaluation of Container
Solutions

The analysis presented in chapter 4 and 5 mainly consider the server security of mobile cloud of-
floading systems, while we address the client security issues in this chapter. In mobile cloud com-
puting, mobile clients can enhance the security of offloading by employing secure containers. A
secure container is an authenticated, encrypted area of a user’s mobile device designed to separate,
isolate and protect enterprise data from attackers.

Bring Your Own Device (BYOD) security is a concern for many companies’ IT departments.
Many corporations implement a "secure container" solution that provides full separation of work
and personal data on mobile devices to mitigate the dangers brought by BYOD. In this paper, we
perform an empirical comparison between two popular secure containers for Android: Samsung
Knox and IBM MaaS360. We first conduct benchmark tests to compare these two containers. Then
in order to quantitatively assess the security property of these containers, we propose a measurement
method based on a simulated attack. Our experimental results show that performance of compute-
intensive applications in the Knox container will be affected drastically compared with when they are
running on the device (outside the container), while for memory-intensive applications, performance
will not deteriorate much in Knox and MaaS360 containers. We also found that with an overhead of
3.3 ms (0.58%) in mean response time, Knox container can extend the mean time to security failure
(MTTSF) by 109.6 min (878%). Within the MaaS360 container, the MTTSF is prolonged by 10.2
min (81.4%) but the response time is 3.3 ms (0.58%) longer per job than without containers.
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6.1 Android container solution

Bring Your Own Device (BYOD) refers to the policy of permitting employees to bring their
personally owned devices (laptops, tablets, and smartphones) to their workplace, and to use those
devices to access privileged company information and applications [100]. BYOD is on the rise and a
recent Tech Pro Research report [1] found that 72% of enterprises polled were permitting BYOD or
are planning to do so. While it may be beneficial for the employees to extract more work satisfaction
and also upgrade to the latest hardware more frequently than in the painfully slow refresh cycles at
most organizations, BYOD certainly exhibits new challenges in terms of security due to increased
use of personal devices with potentially unknown threats.

The wide spread of mobile devices and their progressive functions, ranging from receiving emails
to accessing bank accounts, make them a notable target for attackers [125]. This, together with the
fact that users habitually store sensitive security information (SSI) in such devices, makes BYOD
security a major concern for the IT department of a company.

The popularity of the BYOD security has attracted the attention of many researchers in recent
years. Researchers in [39] propose a MUSES (Multi-platform Usable Endpoint Security) system
to enforce an enterprise policy on the mobile devices. The system applies Machine Learning and
Computational Intelligence techniques to refine its security policies. DeepDroid proposed in [132]
is a custom instrumentation tool. DeepDroid also tries to enhance BYOD security by enforcing
enterprise policy on Android devices. But it requires root access, in which case the device may be
subject to other threats.

One promising solution to BYOD security is the secure container. A container is an authenticated,
encrypted area of a user’s mobile device designed to separate, isolate and protect enterprise data from
attackers. Corporate data such as email, documents, and enterprise applications are encrypted and
processed inside the container. This work/personal environment ensures that work data and personal
data are separated and that only a work container is managed by the enterprise. The container is an
important part of the Mobile Device Management (MDM) as all MDM products are built with an
idea of containerization [38].

We focus on the secure container solutions on Android platforms, which is attractive for the fol-
lowing reasons. First, Android is the most popular mobile operating system which has occupied
82.8% market share in the second quarter of 2015 [46] on various hardwares. Second, Android
is representative with respect to the state-of-the-art in mobile computing. Last, Android has be-
come the major target of the attackers to mobile devices since the security review process of new
applications is not rigorous enough in many application stores [63].
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In this chapter we present an empirical assessment of security and performance attributes of se-
cure container solutions (Samsung Knox and IBM MaaS360) on Android devices. First, we take
benchmark tests to compare different containers. They show that mobile devices witness a notable
deterioration in the performance of compute-intensive applications using the Knox container. How-
ever, for memory-intensive applications, performance does not degenerate much in both Knox and
MaaS360 containers compared with running them on the device outside the container. Secondly, in
order to perform a quantitative evaluation of the security attribute, we set up a testbed that conducts
simulating attacks to different container solutions. Our experiment results show that with a Knox
container, the security gain is that the MTTSF is extended by 109.6 min (878%), but the perfor-
mance impairment is that the mean response time is 3.3 ms (0.58%) longer. As for a MaaS360 con-
tainer, with an overhead of 3.3 ms (0.58%) per job, the MTTSF is extended by 10.2 min (81.4%).
The performance loss also includes an additional 2.7 ms (0.53%) of algorithm execution time in the
Knox container and 1.4 ms (0.28%) in the MaaS360 container.

6.2 Samsung Knox and IBM MaaS360

In this Section, we introduce the context of two widely used Android container solutions: Sam-
sung Knox and IBM MaaS360.

6.2.1 Samsung Knox

Knox is Samsung’s solution to BYOD security threats. It was first proposed in early 2013 with
version 1.0.0. This version was deployed in Android 4.3 on Galaxy S3 and S4. The latest version
is Knox 2.6 deployed in Android 6.0 Marshmallow. Knox provides a "secure container" which is a
secure environment alongside the user’s personal environment.

Knox Platform Architecture

Knox addresses mobile device security by building a comprehensive, hardware-rooted trusted
environment with multi-layer architecture (shown in Figure 6.1):

• Hardware Root of Trust The hardware boot is protected by three components: 1) the Device
Root Key (DRK) is a device-unique asymmetric key that is signed by Samsung through an
X.509 certificate; 2) the Samsung Secure Boot key is used to sign Samsung-approved executa-
bles of boot components and 3) Rollback Prevention Fuses are hardware fuses that encode the
minimum acceptable version of Samsung-approved executables.
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Figure 6.1: Samsung Knox Platform Architecture [114]
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• Secure Boot and Trusted Boot Secure Boot is a security mechanism that prevents unautho-
rized bootloaders and operating systems from loading during the startup process. It guaran-
tees the initial integrity of an Android kernel and the code running in the TrustZone. Trusted
Boot is able to distinguish between different versions of authorized binaries and takes mea-
surements of the bootloaders. At runtime, TrustZone applications use these measurements to
make security-critical decisions.

• TrustZone TrustZone is a set of security extensions added to ARMv6 processors and greater
[11]. These ARM processors can run a secure operating system (secure OS) and a normal
operating system (normal OS) at the same time from a single core.

• TIMA TrustZone-based Integrity Measurement Architecture (TIMA) relies on the protection
and isolation of the TrustZone’s secure world from the normal world and ensure the operating
system (OS) kernel integrity. TIMA contains periodic kernel measurement (PKM), real-time
kernel protection (RKP) and remote attestation.

• SE for Android Knox introduced Security Enhancements for Android (SE for Android) to
enforce Mandatory Access Control (MAC) policies [114]. These enhancements protect ap-
plications and data by strictly defining what each process is allowed to do, and which data it
can access. This layer’s security depends on the integrity of the kernel and the security policy
stored on disk, which is guaranteed by TIMA.

All versions of Knox already tie the Samsung hardware to the security system running on the
device – at a layer below the operating system. As the developer of both the hardware and security
system, Samsung has the same advantage that BlackBerry has long enjoyed in such integration.
Apple’s iOS devices also have vertically integrated security, but Apple severely restricts access to
that stack, so government agencies and others cannot customize it in the way that Samsung allows.

In addition to securing the operating system, Samsung Knox addresses the security of individual
applications by using containers and data encryption.

Knox Workspace

Knox Workspace is designed to separate, encrypt and protect enterprise data from attackers.

• Container environment Knox Workspace provides a virtual Android environment to iso-
late enterprise applications and data in their own secure zone. Once activated, the Knox
Workspace product is tightly integrated into the Knox platform. Applications outside Workspace
cannot use Android inter-process communication or data-sharing methods with applications
inside Workspace. For example, photos taken with the camera inside Workspace cannot be
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viewed outside. The same restriction applies to copy and paste. Since KNOX 2.0, application
wrapping is no longer required. Thus one can run any existing Play Store application in the
Workspace container.

• Sensitive Data Protection Knox defines two classes of data – protected data and sensitive
data. All data written by applications in Workspace is protected data. Protected data is en-
crypted on disk when the device is powered off. In addition, the decryption key for protected
data is tied to the device’s hardware. This makes protected data recoverable only on the same
device. Even stronger protection is applied to sensitive data. Sensitive data remains encrypted
as long as the Workspace is locked, even if the device is powered on. When a user unlocks
Knox Workspace using their password, Sensitive Data Protection (SDP) allows sensitive data
to be decrypted.

6.2.2 IBM MaaS360

MaaS360 is an enterprise mobility management platform developed by IBM. MaaS360 provides a
comprehensive approach for companies to manage and safeguard their mobile devices, applications
and content. As a fully integrated cloud platform, MaaS360 simplifies the deployment of MDM and
allows visibility and control across mobile applications and documents from a single user interface.
Furthermore, MaaS360 Mobile Application Security provides a container solution to help enter-
prises enforce authentication, set up single sign-on across containerized applications and configure
data leak prevention (DLP) controls.

An overview of the complete MaaS360 package is shown in Figure 6.2. We summarize the
important features as follows:

• Containerization MaaS360 Secure Productivity Suite (secure container) allows the IT depart-
ment to manage all the emails, contacts, calendars, applications and the web from an isolated
workspace on the employees’ mobile devices. It protects enterprise data and applications
with containerization which prevents access from compromised devices, such as jailbroken or
rooted devices. With the container, MaaS360 allows to integrate security control of mobile
applications and specification of encryption settings. It enforces data file protection and uses
application-level tunneling for protected access to corporate data, without needing a device
VPN.

• Enterprise Gateway MaaS360 Mobile Enterprise Gateway is an activated module as part of
the MaaS360 Cloud Extender (CE) [61]. It provides mobile access to resources behind the
firewall such as SharePoint, Microsoft Windows file sharing content, intranet sites and appli-
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MaaS360

Figure 6.2: IBM MaaS360 overview [4]

cation data. Unlike browser-based applications, where device caching may lead to security
leaks, MaaS360 Mobile Enterprise Gateway ensures that confidential data is never stored on
devices in an unencrypted format, and that a user’s ability to transfer that information else-
where can be limited by administrative policy. MaaS360 Mobile Enterprise Gateway ensures
that corporate data can only be viewed on authorized mobile devices and the communication
between the enterprise gateway and the mobile devices are fully encrypted.

• Authentication and access control MaaS360 Advanced Mobile Management enforces on-
device access control and compliance with policies and regulations. It can also deliver and
update these policies remotely to the application container, based on user and device security
posture.

• SDK option MaaS360 uses the Software Development Kit (SDK) option to help enable se-
curity controls directly in the application code and add containerization features enterprise
applications.

IBM MaaS360 also allows to remotely locate, lock and wipe lost or stolen devices and selectively
wipe corporate data while leaving personal data intact. Table 6.1 shows a comparison of these two
secure container solutions.
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Table 6.1: Comparison of Knox and MaaS360

Similarities Differences

containerization;

supporting email, contact

and calendar management;

Knox ensures hardware root of trust;

Maas360 supports enterprise gateway;

Maas360 must work in the MDM model,

but Knox can work in client mode only

6.3 Benchmark Results

In this Section, we explore the benchmark results of the mobile devices in different Android
container solutions.

We adapt Geekbench 4 for Android developed by Primate Labs [3]. Geekbench provides a com-
prehensive set of benchmarks designed to measure processor and memory performance of mobile
devices. It displays Single-Core Score and Multi-Core Score as shown in Figure 6.3. In mobile
systems, the single core performance is a more import measure than the multi-core performance,
because the multi-core performance is related to multi-task processing. However, in most use cases
of mobile devices, only the main core may reach its full utilization, while the other cores are barely
used. So we only compare the single-core performance of a mobile phone in different secure con-
tainer solutions. For the experiments we used two different mobile phones, a Samsung Galaxy S6
(2.1 GHz Exynos 7420 CPU with 3 GB RAM) and a Samsung Galaxy S5 (2.46 GHz Qualcomm
Snapdragon 810 CPU with 2 GB RAM).

Geekbench for Android uses a number of different tests, or workloads, to measure a mobile
device’s performance. The workloads are divided into three different sections:

Integer performance

Most software makes heavy use of integer instructions, which means a high integer performance
indicates good overall performance of the mobile device.

• AES: The AES workload encrypts a generated text string using the advanced encryption stan-
dard (AES) [99]. AES is used in security tools such as SSL, IPsec, and PGP. Geekbench 4
uses AES instructions (AES-NI or ARMv8 AES) when available. Otherwise Geekbench uses
its own AES implementation.
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• JPEG compression and decompression: The JPEG workload compresses and decompress
one digital image using lossy JPEG format. The workload uses JPEG library version 6b.

Figure 6.3: Screen shot of Geekbench 4

Floating point performance

While almost all software makes use of floating point instructions, floating point performance
is especially important in video games, digital content creation, and high-performance computing
applications.

• SGEMM: SGEMM is short for "Single float precision General Matrix Multiplication. This
workload tests how fast a mobile device can calculate the product of two matrices. Matrix
multiplication is such a common operation with a wide variety of practical applications that it
has been implemented in numerous programming languages.

• SFFT: The Sparse Fast Fourier Transform (SFFT) [107] workload simulates the frequency
analysis used to compute the spectrum view in an audio processing application.
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Memory performance

The STREAM benchmark [94] is a simple synthetic benchmark program that measures sustain-
able memory bandwidth (in MB/s) and the corresponding computation rate for simple vector kernels.
Software working with large amounts of data (e.g., digital content creation) relies on good memory
bandwidth performance to keep the processor busy.

• STREAM copy: The STREAM copy workload tests how fast a device can copy large amounts
of data in memory. It executes a value-by-value copy of a large list of floating point numbers.

• STREAM bandwidth The STREAM bandwidth sums the amount of data that the application
explicitly reads plus the amount of data that the application explicitly writes.

Figures 6.4 and 6.5 show the results of the two mobile devices’ performance under different
workloads. We run the benchmark program ten times in each container and present the average
results. All the workload results are "high better". We found that the Knox container has the lowest
integer performance. As one can see in Figure 6.4, the Samsung S6 device processes 7.37 MB/s of
AES encrypted data per CPU core, less than the MaaS360 container (7.91 MB/s) and the on device
(7.93 MB/s) situations. As for the JPEG workload, the average compresses and decompress rate

Figure 6.4: Benchmark results of Samsung Galaxy S6 under different workloads
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Figure 6.5: Benchmark results of Samsung Galaxy S5 under different workloads

is 13.1 Mpixels/s, while the rates are 13.7 Mpixels/s and 13.6 Mpixels/s in the MaaS360 container
and on device respectively. However, the MaaS360 container does not affect the integer computation
performance dramatically compared with the on device situation. This is probably because the Knox
container has higher encryption level than the MaaS360 container, but we cannot get the encryption
details for both containers. The floating point workload result also shows that the Knox container
leads to performance deterioration when the mobile device is performing SGEMM computation (0.1
GFlops less than MaaS360 and on device situations).

However, the memory measurements of the mobile device in different containers are almost the
same as on the device. The Samsung S6 device can copy 3.6 GB/s floating point numbers in memory
in all the three situations. The memory bandwidth is 7.42 GB/s and 7.41 GB/s in the Knox container
and the MaaS360 container, and 7.41 GB/s on the device. The benchmark result of Samsung S5
device (Figure 6.5) is similar to S6 and we do not repeat the details for simplicity. Because the
Samsung S6 device has more computation power and memory than the S5, so its integer and floating
point results are generally higher than the latter.

So in the Knox container, the performance of compute-intensive mobile applications will be af-
fected, while for memory-intensive applications, the performance will not deteriorate obviously in
Knox and MaaS360 containers compared with when they are running on the device.
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6.4 Security and Performance Analysis

In this section, we present a quantitative security assessment and investigate how much perfor-
mance we lose when gain more security using the containers. In order to proceed to a quantitative
treatment of the security attributes of Android containers, we simulate attacks to the containers and
evaluate the containers’ defensive effect.

6.4.1 Metrics

The performance metrics of interest describe mobile systems in terms of throughput, completion
time, or response time, as defined in queueing theory or networking. We use the mean response time
(denoted by T ) as the performance metric for the container solutions.

The mean time to security failure (MTTSF) is the security metric we use. We investigate the time
an attacker needs to break the secure containers by performing timing attacks. A timing attack is
a side-channel attack which poses a practical threat on mobile devices as its remote feasibility has
been proved in [20].

6.4.2 Experiment Setup

We develop a target application (shown in Figure 6.6) to receive messages from clients and send
back responses. We publish the target application through Google Play private channel and deploy it
in a Knox container, a MaaS360 container and on the device (outside the containers). The simulated
attacker performs timing attacks to the target application running on the mobile device. A timing
attack uses statistical analysis of how long it takes to do some calculation in order to learn about the
secret. The key idea of conducting a timing attack is to identify information by analysing the time
differences [97]. The target application is developed using Android Studio 2.2.2 and deployed on
the Samsung Galaxy S5 device. The attacking client is developed with Java and runs on a laptop.
Figure 6.7 shows an illustration of the experiment setup.

Similar to the Brumley and Boneh’s attack [21], in our scenario, the attacker sends two messages
m1 and m2 to the target application. After receiving the message m1, the application simulates a
RSA algorithm and then sends an answer message back. When the client sends message m2, the
application waits an additional 1ms before sending back the answer. The attacking client takes
measurements of the response times (T ) of the target application and estimates the time difference
based on the measurements. T 0 is the response time when the target application is deployed in a
Knox or MaaS360 container.
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Figure 6.6: The target application

6.4.3 Simulating Attacks

We conduct a series of experiments that perform timing attacks to different container solutions and
evaluate the number of samples a real attacker needs when it could identify an empirical resolution of
1ms in the Android application response time. In statistical terminology this amounts to performing
a hypothesis test [35].

We simulate an attacker conducting empirical hypothesis tests and we evaluate the effectiveness
of identifying the time difference in the response time. The simulated attacks follow this procedure:
the hypothesis test H is given two sets of totally N = 2500 samples of measured response times
X = T1[1], ...T1[N ] and Y = T2[1], ...T2[N ] corresponding to the two messages m1 and m2 sent
to the target application. When the attacher sends message m2, the target application in containers
waits an additional 1ms before sending back the answer. So the application’s secret is T2 � T1 =

1ms. The attacker sets the null hypothesis as T2 � T1  1ms. The attacker then performs the
hypothesis test H(X,Y ) by randomly taking n samples from X and Y and comparing the median
value of the samples. The number of samples n is set to be n =

�
2i, i = 1, ..., 11

 
. To reject the
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Figure 6.7: Illustration of the experiment setup

null hypothesis means that H believes that X and Y are from different distributions, which is not
true. If the attacker correctly reject the null hypothesis, we call it a successful attack. We evaluate
the false positive (FP) rate ↵ for the attacker. We perform 1000 trials of randomly picked n samples
from the measured response time X and Y and count how many times the test H(X,Y ) mistakenly
accepts the null hypothesis.

As shown in Figure 6.7, in the target application, we also measure the time between receiving
the messages and sending back the answer (t1) and the algorithm computation time (t2), because we
want to compare the execution time of the application simulating a RSA algorithm in each container.

6.4.4 Results

First, we measure the response time of the target application and investigate how T changes with
different containers. The histogram of response time, local execution time and transmission time
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Figure 6.8: Response time, local execution time and transmission time for different secure containers
on Samsung S5 device (ms)

of the target application on Samsung S5 device is shown in Figure 6.8. One can see that the mean
response time (T ) of the application in Knox and MaaS360 containers is 3.3ms (0.58%) longer than
outside the containers. When the RSA algorithm is executing locally in the Knox container, it takes
2.7ms (0.53%) longer than outside the containers, but in the MaaS360 container it takes 1.4ms

(0.28%) longer. So the Knox container impairs performance most. The attacking client is connected
to the mobile device directly through WiFi so the transmission time (T - t1) is correspondingly
small. The transmission time to the application in these two containers (8.9 ms and 9.5 ms) is also
longer than on the device directly (7.7 ms) because the message must go through several layers of
the container before it is transmitted to the target application. The relative growth rates are 15.6%
and 23.4%, respectively.

Figure 6.9 shows how the variance of the response time measured by the attacking client varies
with the number of samples s. From the figure we find that the number of samples required to reach
a stable response time is very small. The attacker only needs about 9 samples to obtain a variation of
under 0.5ms (⇡ 0.09%), well under that to perform a successful attack. When the target application
is running outside the containers (on device), it requires 7 samples for the response time to reach
convergence. However, in the Knox and MaaS360 containers, to obtain a stable response time,
needs 9 samples and 8 samples respectively. So the attacker needs to make more effort to attack
the containers on the mobile device, which means the container solutions can improve the security
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Figure 6.9: The response time variance decrease as we increase the number of samples s104
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Figure 6.10: The empirical false positive (FP) rate ↵ for the attacker changing with number of
samples n

of the mobile applications. It is worth noting that this stable response time is not the final result.
Using Brumley and Boneh’s method, the attacker has to repeat this process n times to estimate the
response time. So it requires a total number of s⇥ n samples to make a successful guess.

To further quantitatively assess the security attribute of the container solutions, we use the hy-
pothesis testing procedure proposed earlier in this section to compute the empirical false positive
(FP) rate ↵ for the attacker. The result is shown in Figure 6.10. One can see that for all n, the Knox
container nearly always has the highest FP rate, i.e., it is most difficult for the attacker to make the
right guesses from the response time measurements when the application is running in the Knox
container. As for the MaaS360 container, when the number of samples n is greater than 100, we see
that the attacker needs more samples than in the on device situation to make a right guess. As shown
by the dashed line in Figure 6.10, the attacker requires 190, 300 and 1320 samples to get a FP rate
of 50% when the target application is running on the device, in the MaaS360 container and in the
Knox container, respectively. We assume that with an error detection and correction strategy [23], if
a FP rate of 50% it is still possible for the attacker to make a successful guess. Then MTTSF can
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Table 6.2: The tradeoff analysis

Loss in T

(ms) / relative rate

Loss in execution time

(ms) / relative rate

Gain in MTTSF

(min) / relative rate

Knox 3.3 / 0.58% 2.7 / 0.53% 109.6 / 878%

MaaS360 3.3 / 0.58% 1.4 / 0.28% 10.2 / 81.4%

be computed as:

MTTSF = T ⇥ s⇥ n , (6.1)

where s is the number of samples to obtain a stable response time and n is the number of samples
to make a successful guess.

The tradeoff analysis results are shown in Table 6.2. When the target application is running in
the Knox container, the security gain is that MTTSF is 109.6 min (878%) longer than without
containers, but the performance impairment is that the mean response time T is 3.3 ms (0.58%)
longer. As for MaaS360 container, with an overhead of 3.3 ms (0.58%) in T , the MTTSF is extended
by 10.2 min (81.4%). The performance loss also includes an additional 2.7 ms (0.53%) of algorithm
execution time in the Knox container and 1.4 ms (0.28%) in the MaaS360 container. So in our case,
the Knox container is the most secure solution in the presence of timing attacks, and running in the
MaaS30 container is still more secure for an application than just running on the mobile device.
But the users have to take the performance impairments into consideration when employing secure
container solutions.

6.5 Summary

Secure containers are a promising solution to BYOD security concerns. In this chapter, we have
presented an empirical approach for the assessment of the security and performance features in
the paradigm of secure containers on Android platforms. Each aspect was demonstrated through
comparing two popular deployed Android secure containers: Samsung Knox and IBM MaaS360.

We have conducted benchmark tests to the container solutions. To quantitatively assess the secu-
rity attributes, we have set up a testbed that evaluates the number of samples a timing attacker needs
to identify an empirical resolution of 1ms in the Android application response time. Through the
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tradeoff analysis, it is found that when the target application is running in the Knox container, the
security is enhanced and the MTTSF is 109.6 min (878%) longer than without containers. How-
ever, the performance impairment is that the mean response time T is 3.3 ms (0.58%) longer. As for
MaaS360 container, with an overhead of 3.3 ms (0.58%) in mean response time, the MTTSF is ex-
tended by 10.2 min (81.4%). We also found that the performance of compute-intensive applications
running in the Knox container degrades strongly, while the performance of memory-intensive appli-
cations is not seriously affected in both containers. So the Knox container can provide more security
enhancement against timing attacks than the MaaS360 container. However one has to take the per-
formance overhead into account, when using the Knox containers to protect his compute-intensive
applications.
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Chapter 7

Conclusions and Outlook

7.1 Conclusions

In Mobile Cloud Computing (MCC), offloading is a promising solution to overcome current restric-
tions of mobile systems, with migrating heavy workloads to remote servers. However, the benefits
of the offloading technique are not free as it exhibits costs in terms of security. In this thesis we have
studied both the theoretical and practical aspects of offloading policies for MCC systems. The main
goal has been to make quantitative assessment of the security and performance attributes and to
propose secure and cost-efficient offloading policies based on tradeoff analysis to satisfy the system
requirements. We discuss contributions as follows:

• Quantitative security assessment: through several proposed stochastic model based approaches,
we provide solutions to quantitatively assess the security attributes of the mobile cloud of-
floading system.

• Security and performance tradeoff : by proposing a hybrid CTMC and queueing model, we
show methods to formulate metrics that include both, performance and security aspects and
that optimise the tradeoff between the two. By solving the hybrid model, the optimal rekeying
rate is determined for the system metrics, which can be a guideline for configuring offloading
systems. We found that with carefully selected parameters, one can configure the offloading
system to achieve an optimal security and performance tradeoff.

• Secure and cost-efficient offloading policy: through combining renewing the server key regu-
larly with inserting random delays into the server processing time, we propose a secure and
cost-efficient offloading scheme for MCC. Our experimental results show that the security
performance tradeoff of offloading can be improved through our scheme.
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We implement a system that allows us to compare the impact of different random padding
strategies on the expected success of timing attacks. We tune the mean and the variance of the
random paddings and investigate the impact on mitigating the time side-channel information
leakage. It is revealed that the variance of random delays is the decisive factor to mitigation
effectiveness of a random padding and the extra number of measurements an attacker has to
make grows linearly with the standard deviation (SD) of the random padding. So when ran-
dom delays are deployed in mobile cloud offloading systems, one should tune the parameters
to enlarge the variance while keeping the mean as low as possible.

• Improving Client security: with respect to client security issues, we perform an empirical
comparison between two popular secure container solutions for Android: Samsung Knox and
IBM MaaS360. Our experimental results shows that the Knox container can provide more
security enhancement against timing attacks than the MaaS360 container. We also found that
mobile devices witness a notable deterioration in the performance of compute-intensive appli-
cations using the Knox container. However, for a memory-intensive application, performance
does not degenerate much in Knox and MaaS360 containers compared with running on the
device (outside the container).

7.2 Outlook

The main goal of using the proposed offloading policy is to satisfy the security and performance
requirements of the MCC system. Although several methods and approaches have been proposed,
considering the specific application environment, the following questions are expected to be inves-
tigated:

(1) We may consider extension of the theoretical work on system modeling for offloading systems.
In our models, we only considered there is one attacker in the system at one time and all the jobs
are the same. Our results hold for a generic offloading system. But in the real scenario, the system
may involve several kinds of jobs and there may be more than one attacker in the offloading system.
So we could conduct validation based on real workloads and more realistic application examples to
gain insights about efficiency of the proposed offloading policies.

(2) In order to improve the offloading security, renewing the server key regularly is employed
in the proposed offloading policy. But this is a very simple key refresh protocol and may not be
efficient when implemented in practical systems. So extending the analysis to include a efficient key
refresh protocol will be the future work.

(3) In the model analysis, we have evaluated the performance and security metrics based on the
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steady-state distributions. A more functional dynamic model is expected to investigate the dynamic
security assessment of the offloading systems.

(4) Authentication of respondent devices is another important security challenge existing in the
mobile cloud offloading scenario. We could extend our research to consider the timing attack threat
together with authentication issues. At the same time, the MTTSF parameter is sometimes hard to
measure in practical systems. Therefore, another objective of our future work is to investigate the
way how to estimate and measure the MTTSF.

(5) Multi-site offloading is another interesting research topic as it is possible for mobile devices
to save more time and energy by offloading to several cloud service providers. In the future we plan
to extend our offloading server to a multi-site system to investigate whether simple management
directives for multi-site offloading can be derived. We would also study how the timing attack will
act in the multi-site offloading scenario.
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Appendix A

Continuous Distribution Functions

Here we list the probability density function and some important properties of the continuous
probability distributions used in this thesis.

A.1 The Uniform Distribution

A continuous random variable X that is equally likely to take any value in a range of values (a,
b), with a < b, gives rise to the uniform distribution. Such a distribution is uniformly distributed on
its range. The probability density function of X is given as

f
X

(x) =

(
1

b�a

a < x < b

0 otherwise.
(A.1)

The mean of the uniform distribution is obtained as

E[X] =

Z 1

�1
xf(x) dx =

a+ b

2
. (A.2)

Its variance is computed from

Var[X] = E[X2]� (E[X])2 =
(b� a)2

12
(A.3)
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A.2 The Normal Distribution

The normal (or Gaussian) distribution is a very common continuous probability distribution. If
X is a Gaussian random variable then its probability density function f

X

(x), sometimes denoted by
N (µ, �2), is

f
X

(x) =
1

�
p
2⇡

e�(x�µ)2/2�2
. (A.4)

The mean of the normal distribution is E[X] = µ and the variance is Var[X] = �2.

A.3 The Exponential Distribution

The exponential distribution is the probability distribution that describes the time between events
in a Poisson process. The probability density function for an exponential random variable, X , with
parameter � > 0, is given by

f
X

(x) =

(
�e��x x � 0

0 otherwise.
(A.5)

The mean of the exponential distribution is E[X] = ��1 and the variance is Var[X] = ��2. One
of the most important properties of the exponential distribution is that it possesses the memoryless
property. This means when the distribution of a "waiting time" until a certain event does not depend
on how much time has elapsed already.

A.4 The Erlang Distribution

The Erlang distribution is a continuous probability distribution with two parameters: a positive
integer ’shape’ k and a positive real ’rate’ �. The probability density function for a Erlang distributed
random variable X is

f
X

(x) =
�kxk�1e��x

(k � 1)!
x > 0. (A.6)

The mean of the Erlang distribution is E[X] = k/� and the variance is Var[X] = k/�2. The
Erlang distribution with shape parameter k = 1 simplifies to the exponential distribution.

114



A.5. THE WEIBULL DISTRIBUTION

A.5 The Weibull Distribution

The Weibull distribution is also a continuous probability distribution that has two parameters: a
’scale’ parameter ⌘ and a ’shape’ parameter k. The probability density function of a Weibull random
variable X is

f
X

(x) =

8
<

:

k

⌘

(x
⌘

)k�1e
�(x

⌘

)k
x � 0

0 otherwise.
(A.7)

The mean and variance of the Weibull distribution can be expressed as

E[X] = ⌘�

✓
1 +

1

k

◆
, (A.8)

and

Var[X] = ⌘2

"
�

✓
1 +

2

k

◆
�
✓
�

✓
1 +

1

k

◆◆2
#

(A.9)
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Zusammenfassung 
 
Während die letzten Jahrzehnte große Fortschritte der Hardware-Technologie erlebt haben, ist die 
Nachfrage nach neuen Applikationen viel größer geworden. Trotzdem sehen sich mobile Geräte 
immer noch mit Beschränkungen der Ressourcen konfrontiert sowie Batterielebensdauer, 
Speicherkapazität und Prozessorleistung. Im Feld Mobile Cloud Computing (MCC) ist Offloading 
eine populäre Technik, die aufgestellt wird, um die Kapazitäten von mobilen Systemen zu erweitern, 
indem sie komplexe Berechnungen auf ressourcenreiche Cloud-Server erleichtert. Zwar ist 
Offloading aus den Leistungs- und Energieperspektiven vortelhaft sein kann, stellt es aufgrund der 
erhöhten Datenübertragung über Netzwerke mit potenziellen unbekannten Bedrohungen sicherlich 
neue Herausforderungen dar.  

Zu den möglichen Sicherheitsfragen gehören Timing-Attacken, die die traditionelle 
kryptographische Sicherheit nicht verhindern kann. Timing-Attacken gehören zu Side-Channel-
Attacken, in denen der Angreifer versucht, ein System zu kompromittieren, indem er die Zeit 
analysiert, die das System benötigt, um auf verschiedene Abfragen zu antworten. Offloading ist 
besonders anfällig für Timing-Attacken, weil es viele Male senden / empfangen muss. Die Metriken 
von Offloading müssen neben den Leistungs- und Energieperspektiven auch Sicherheitsaspekte 
beinhalten. Diese Theorie behandelt sowohl theoretischen als auch praktischen Aspekte der 
Richtlinien von Offloading in MCC-System. Ganz anders als die früheren Arbeiten, die nur die 
Leistungs- und Energieperspektiven berücksichtigen, werden die Offloading-Richtlinien auf der 
Grundlage der Security-Performance-Tradeoff-Analyse in unsrer Arbeit präsentiert und evaluiert. 
Vorgeschlagene stochastische Modelle werden durch numerische Simulationen und reale 
Experimente angewendet und evaluiert. Insbesondere können die Beiträge dieser Arbeit wie 
folgendes zusammengefasst werden: 

x Es werden mehrere stochastische modellbasierte Ansätze zur quantitativen Bewertung der 
Sicherheits- und Leistungsmerkmale des Mobile Cloud Offloading Systems vorgeschlagen. 

x Methoden zur Formulierung von Metriken, die sowohl Leistungs- als auch 
Sicherheitsaspekte beinhalten und die den Kompromiß zwischen den beiden optimieren, 
werden untersucht. 

x Eine sichere und kostengünstige Offloading Richtlinie unter Berücksichtigung der 
spezifischen Bedrohung von Timing-Attachen gegen MCC-Systeme wird vorgeschlagen 
und die Offloading Richtlinie wird mit Experimenten ausgewertet. 

x Zwei weitverbreitete sichere Container für Android: Samsung Knox und IBM MaaS360, 
um die Client-Sicherheit in MCC-Systemen zu verbessern, werden verglichen. 
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