
Dissertation

———————————————————————————————————————

The Surgery and Level-Set
Approaches

to Mean Curvature Flow

———————————————————————————————————————

zur Erlangung des Grades eines Doktors der Naturwissenschaften

Fachbereich Mathematik
und Informatik
Freie Universität Berlin

Max-Planck-Institut
für Gravitationsphysik

(Albert-Einstein-Institut)

vorgelegt von

John Head

betreut von

Prof. Dr. Gerhard Huisken

Mai, 2011



.



.

To my mother Bianca

.



.



.

Tag der mündlichen Qualifikation: 21. Juli 2011

1. Gutachter: Prof. Dr. Gerhard Huisken
2. Gutachter: Prof. Dr. Carlo Sinestrari

Erklärung

Ich bestätige hiermit, dass ich diese Arbeit selbständig verfasst und keine anderen als die
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Abstract

Huisken and Sinestrari [HS3] have recently developed a surgery-based approach to ex-
tending smooth mean curvature flow beyond the singular time in the two-convex setting.
According to their construction one removes, by hand, the regions of large curvature from
the hypersurface before a singularity forms. They showed that the procedure can be con-
trolled uniformly across all surgeries by a set of parameters depending just on the initial
data.

Within this context we discuss estimates on certain Lp-norms of the mean curvature
explicitly in terms of the surgery parameters. Our approach leads to new bounds on the
required number of surgeries, and we prove as a corollary that the flow with surgeries
converges (in an appropriate limit of the surgery parameters) to the well-known weak
solution of the level-set flow introduced in [CGG, ES1].

Zusammenfassung

Huisken und Sinestrari [HS3] entwickelten vor Kurzem einen auf Chirurgie basierenden
Ansatz, um den glatten Fluss entlang der mittleren Krümmung, im “zwei-konvexen” Fall,
über die singuläre Zeit hinaus fortzusetzen. Gemäß ihrer Konstruktion entfernt man von
Hand die Gebiete großer Krümmung aus der Hyperfläche, bevor sich eine Singularität
bildet. Sie zeigten, dass sich dieser Vorgang gleichmäßig über alle Chirurgien durch eine
Menge von Parametern kontrollieren lässt, welche nur von den Anfangsdaten abhängen.

In diesem Zusammenhang diskutieren wir Abschätzungen für gewisse Lp-Normen der
mittleren Krümmung, in expliziter Abhängigkeit von den Chirurgie-Parametern. Unser
Ansatz führt zu neuen Abschätzungen über die Anzahl der benötigten Chirurgien. Als ein
Corollar beweisen wir, dass der Fluss mit Chirurgien (durch einen geeigneten Grenzübergang
in den Chirurgie-Parametern) gegen die bekannte schwache Lösung des Niveauflächen-
flusses, welcher in [CGG, ES1] eingeführt wurde, konvergiert.
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1 Introduction

We begin with an informal discussion setting up and motivating the subject of this work.
The following background material is organised in roughly chronological order with the
exception that any mention of weak solutions has been postponed to the end of the section.
Our main results are collected in Section 1.2 and we conclude the chapter with a brief
description of the layout of the thesis in Section 1.3.

1.1 Background

Mean curvature flow is a geometric deformation process for hypersurfaces of Euclidean
space. It arises naturally in differential geometry as the steepest descent flow of the area
functional with respect to the L2-norm on the surface. The problem was introduced more
than half a century ago in the context of materials science by Mullins [M] and continues
to generate widespread mathematical interest.

Explicitly, given a smooth hypersurface immersion F0 : Mn → Rn+1, the solution of
mean curvature flow starting from M0 ≡ F0(Mn) is the one-parameter family F : Mn ×
[0, T ) → Rn+1 satisfying

∂F

∂t
(p, t) = −H(p, t)ν(p, t), p ∈Mn, t ≥ 0,

F (·, 0) = F0,
(MCF)

where H and ν denote the mean curvature and outward-pointing unit normal respectively.
According to our choice of signs the right-hand side is the mean curvature vector ~H and
the mean curvature of the round sphere is positive. We write Mt ≡ F (·, t)(Mn).

(MCF) is a quasi-linear, weakly parabolic system which inherits many properties from
and indeed formally resembles the standard heat equation.1 A conspicuous feature of mean
curvature flow is that all relevant curvature quantities associated with Mt are governed
by reaction-diffusion systems of the form

∂

∂t
hi

j = ∆g(t)h
i
j + |A|2hi

j.

Here the hi
j are the components of the Weingarten map and |A|2 is the squared norm of the

second fundamental form. If, for example, M0 is closed, the presence of the cubic reaction

1A standard calculation reveals that −Hν = ∆g(t)F , where ∆g(t) represents the Laplace-Beltrami oper-
ator with respect to the induced metric g(t) on the hypersurface at time t.

1



2 1 Introduction

term on the right-hand side guarantees singularity formation in finite time, motivating a
detailed analysis of the geometric structure of the surface in high-curvature regions.

At a qualitative level, mean curvature flow shares many fundamental properties with
Hamilton’s Ricci flow of metrics on a Riemannian manifold. Ricci flow is likewise a non-
linear parabolic problem with corresponding reaction-diffusion systems controlling the evo-
lution of relevant intrinsic curvature quantities and analogous finite-time singularity results.
However, it should be pointed that the two flows of course differ in their respective quan-
titative structures.

A classical PDE approach to the study of mean curvature flow was initiated by Huisken
in [H1], where he showed that any convex hypersurface of dimension at least two must
contract smoothly to a point in finite time and in an asymptotically round fashion.2

Gage and Hamilton [GH] obtained an analogous description of the behaviour of convex
curves in the plane. Shortly thereafter, Grayson [G1] proved that any embedded closed
curve must become convex before the singular time; that is to say, the global “round point”
singularity is the inevitable fate of every embedded closed curve. However, this remarkable
classification result is peculiar to one-dimensional curves, compare [G2, A1, E1, Se2].

As we shall now proceed to describe, this behaviour is in fact just one manifestation of a
more general diffusion property, to wit: (MCF) induces an asymptotic separation of vari-
ables in high curvature regions, where the surface therefore inherits a self-similar structure
determined by an elliptic system.

Classification of Mean-Convex Singularities. The structure of singularities can
often be probed using rescaling techniques, a now-standard approach in the theory of
partial differential equations. In the context of mean curvature flow, these ideas were
pioneered by Huisken in [H2, H3] and by Huisken and Sinestrari in [HS1, HS2]. Their
work combines to produce a classification theorem in the class of mean-convex surfaces.
Roughly speaking, the only singularity profiles which can arise under mean curvature flow
and after appropriate parabolic rescaling look asymptotically like

Sn−k
t × Rk, Γ1

t × Rn−1 or Υn−k
t × Rk, 0 ≤ k ≤ n, (S)

where Sn−k
t denotes the (n−k)-dimensional shrinking sphere, Γ1

t is one of the homothetically
shrinking immersed curves in R2 introduced by Mullins [M] (see also Abresch and Langer
[AL])3 and Υn−k

t represents an (n− k)-dimensional convex translating soliton.
Historically one distinguishes between singularities based on the associated rate of cur-

vature blow-up. A singularity is by definition “type I” or “fast” if there exists a finite
constant C > 0 such that

sup
Mt

|A|2(T − t) ≤ C.

It is otherwise labelled “type II” or “slow”.

2This result has an antecedent in Ricci flow theory. Hamilton [Ha1] showed that any metric on a closed
three-manifold of positive Ricci curvature must converge after rescaling to one of constant curvature.

3This is an infinite family of curves, each of which has self-intersections with the exception of the circle.
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It is well-known (see [H1]) that sup |A|2(T − t) ≥ 1/2; the pressing question is therefore
whether there exist singularities with a corresponding upper bound C > 1/2. The archety-
pal example of a type I singularity is the shrinking sphere Sn

t , the rescaling limit produced
by the evolution of a convex surface. This can be seen as motivation for the preceding
definition since on the round sphere we have

H(t) =

(
n

2(T − t)

)1/2

.

The asymptotic profile of type I singularities has long been understood. In [H2], Huisken
introduced the now well-known monotonicity formula for mean curvature flow: the mono-
tone quantity is the area functional weighted with the backward heat kernel in Rn+1. This
can be thought of as a parabolic analogue of the monotonicity formula for minimal sur-
faces; similar ideas feature heavily in the theory of semi-linear heat equations and harmonic
map heat flow. Huisken used the monotonicity formula to prove that type I singularities
approach homothetically shrinking solutions of mean curvature flow.

There is a plethora of known self-similarly shrinking examples, but they remain beyond
classification in general. Curvature restrictions can be imposed on the initial data to
limit the range of admissible singular profiles: the only compact, mean-convex solution
is the shrinking sphere, compare [H2]. Huisken [H3] completed the mean-convex, type I
classification by proving that the only non-compact possibilities are the products

Sn−k
t × Rk and Γ1

t × Rn−1,

where Γ1
t is one of the homothetically shrinking immersed curves in R2 introduced by

Mullins [M].
Examples of type II singularities are also prevalent, compare [AAG, A2, AV, Wa].

Huisken and Sinestrari [HS1, HS2] showed that, in the mean-convex case, these behave
asymptotically like self-similarly translating solutions of mean curvature flow.

The cornerstone in the analysis of type II singularities takes the form of a one-sided
pinching estimate on the elementary symmetric polynomials of the principal curvatures.4

It dictates that the surface must become (weakly) convex near a singularity.5 White
[W2, W3] has developed an analogous theory for weak solutions of mean curvature flow
(these are discussed below) using entirely different techniques.

The rescaling procedure can be adapted to the type II setting so as to produce an “eternal
limit” (which by definition exists for all t ∈ (−∞,∞)). Furthermore the maximum of the
curvature is attained on the surface. Hamilton’s Harnack inequality for mean curvature
flow then implies that the flow moves isometrically via translations, see [Ha2]. That is,
any such limit must be a convex, eternal, translating solution Υn

t ; these are known in
the literature as “translating solitons”. Moreover, if the rescaled surfaces are not strictly

4It is apropos to remark that analogous curvature pinching results, the so-called Hamilton-Ivey estimates,
play a decisive role in the analysis of the Ricci flow (see [Ha3]).

5Angenent [A1] constructed a self-shrinking torus with mixed curvature which does not become convex.
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convex, then as in the type I case they can be decomposed into products

Υn−k
t × Rk

of flat factors with strictly convex lower-dimensional translating solitons Υn−k
t .

The classification of translating solitons is another open problem. The so-called “grim
reaper” is well-known to be the only one-dimensional example.6 In addition, there exist
unique rotationally symmetric translating solitons in all higher dimensions, compare [AW,
CSS].

Wang [Wa] showed that any translating soliton in R3 must be rotationally symmetric. A
perhaps somewhat suprising result is that there exist translating solitons without rotational
symmetry for all n > 2, see [Wa].

We refer finally to the work of Angenent and Velazquez [AV] for a detailed analysis of
the fine asymptotic structure of type II singularities.

Two-Convexity and the Flow with Surgeries. The onset of local singularities
precludes even a formal definition of the subsequent evolution in the language of differential
geometry. For topological applications, this is of course fatal. Huisken and Sinestrari
[HS3] have recently succeeded, however, in extending the classical flow in a topologically
controlled way using a surgery-based approach.

The idea is to “manually” remove the regions of large curvature from the surface before
the singular time, and continue the smooth evolution using the modified surface. The goal
is to repeat the process until a global description of the surface becomes available. Of
course, this approach does not give rise to an exact solution of the original initial value
problem (MCF) since it introduces a small “error” in the surgery regions at each surgery
time.

In [HS3] Huisken and Sinestrari studied two-convex surfaces, at each point on which the
sum of any two of the principal curvatures is non-negative. Motivation for the curvature
condition can be found in the classification described above: the only two-convex solutions
in (S) are the shrinking sphere Sn

t , the shrinking cylinder Sn−1
t ×R and the translating soliton

Υn
t .7 Each of these singular profiles is compatible with the surgery algorithm defined in

[HS3].8

We caution, however, that the foregoing heuristics provide little more than motivation;
the results discussed thus far amount to a “zero-order” description of the singular regions
and fall short of facilitating a smooth continuation of the evolution. The work of Huisken
and Sinestrari [HS3] is in fact independent of the classification of mean-convex singularities
and features just one application of rescaling techniques (in the proof of the “neck detection
lemma”).

They instead used direct a priori estimates adapted to the setting of two-convex surfaces
to obtain a detailed higher-order description of all possible singularities in dimensions

6The grim reaper solution can be written explicitly in closed form: x = log cos y + t.
7Two-convexity is preserved both by the smooth evolution and by the rescaling procedure.
8The surgery procedure employed in [HS3] is applicable to singular profiles with precisely one flat direc-

tion. For example, the three-convex solution Sn−2
t × R2 does not conform to this structure.
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n ≥ 3. Their results make precise the intuitive picture that unless the surface is uniformly
convex, any high-curvature region must contain a neck – that is, a piece of the surface which
can be represented (up to a homothety) as a graph over a cylinder with small Ck-norm for
a suitable k ≥ 1.

Huisken and Sinestrari then set forth a surgery algorithm for mean curvature flow, anal-
ogous to the program introduced by Hamilton in [Ha4] in the context of Ricci flow, ac-
cording to which the smooth evolution is interrupted shortly before the singular time by a
surgery procedure which replaces each neck with two regions diffeomorphic to discs.9 Any
connected components which are known to be diffeomorphic to Sn or Sn−1 × S1 are also
discarded at the surgery time. The smooth flow is then restarted and the whole process
is repeated. Huisken and Sinestrari proved that only finitely many surgeries are required,
leading to the complete classification of two-convex hypersurfaces in Rn+1 (n ≥ 3).

Weak Solutions. The study of mean curvature flow from a purely theoretical viewpoint
began in earnest with the work of Brakke [B]. He cast the problem in the language
of geometric measure theory and studied a weak mean curvature evolution of integral
varifolds.

There are now several treatments of weak solutions available in the literature; we note in
particular the “phase field” approach developed in [BK, ESS, I1] and based on asymptotics
of the scaled Allen-Cahn equation, and the well-known level-set approach [OS, Se2, CGG,
ES1, AAG] which we focus on here.10

Rather than defining the evolving hypersurfaces as smooth immersions, one may alter-
natively interpret the surfaces Mt as level-sets of an appropriate scalar function on Rn+1.
The idea of representing surfaces as level-sets in the context of differential geometry can
be traced back to work of Ohta, Jasnow and Kawasaki [OJK] and was used by Sethian
[Se1] and by Osher and Sethian [OS] for numerical analysis of moving interfaces.

We again restrict our attention to the mean-convex setting, allowing us to consider the
scalar function u : Ω ⊂ Rn+1 → R which assigns to each point x ∈ Ω the time t when
x ∈Mt. This ansatz reduces (MCF) to the degenerate elliptic boundary value problem

div

(
Du

|Du|

)
= − 1

|Du|
,

u
∣∣∣
∂Ω

= 0.

(?)

In order to deal with level-sets which are not regular, it is necessary to define a weak
solution of (?). This was accomplished in a more general setting by Evans and Spruck
[ES1] and independently by Chen, Giga and Goto [CGG] using viscosity techniques; in the
mean-convex case one can alternatively apply variational methods, compare [HI, MS, S].

The weak solution of the level-set flow was reconciled with Brakke’s varifold solution by
Ilmanen [I2]; see also [ES3, MS]. The regularity theory developed by Brakke has been built

9This can thought of as an artificial “fast-forwarding” of the evolution.
10See also [A3, AG] for additional proposals in the context of curve shortening flow.
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upon in the mean-convex setting by White [W1]. In [ESS], the phase field and level-set
approaches were unified (see also [I1]).

Level-set methods have played an important role in the development of various other
geometric hypersurface flows. We highlight the fundamental work of Huisken and Ilmanen
[HI] on the weak level-set formulation of inverse mean curvature flow, and the theory of
weak solutions for non-linear mean curvature flow developed by Schulze [S].

Surgery Parameters. Mean curvature flow with surgeries does not constitute a weak
solution in the traditional sense since it relies on a non-canonical modification of the surface
at each surgery time. Given a choice of surgery procedure – that is, given a precise choice
of “cutting” and “gluing” – it is then controlled by a set of parameters

1 << H0 < H1 < H2 < H3 < ∞

which determine when and where surgery is performed.
When the curvature exceeds a certain scale H0 = H0(M0), the second fundamental

form and its derivatives fit one of the profiles described above. The smooth flow is stopped
when the curvature reaches H3 >> H0, and surgery is performed away from the point
of maximum curvature at a smaller scale H1 = ξ1H3 (ξ1 = ξ1(M0) < 1) such that the
maximum of the curvature after surgery drops by a fixed amount to H2 = ξ2H3 (ξ2 =
ξ2(M0) < 1, ξ1 < ξ2).

The starting point for our work in this thesis is the observation made by Huisken and
Sinestrari in [HS3] that, for a fixed choice of H0, ξ1, ξ2, the remaining parameters H1, H2, H3

are not uniquely determined; they can in fact be made arbitrarily large.11

This prompts us to consider an increasing sequence of parameters

{H i
k}i≥1 = {H i

1, H
i
2, H

i
3}i≥1,

corresponding to a whole sequence {Mi
t}i≥1 of mean curvature flows with surgeries, along

which the surgery times grow and the necks cut out during surgery become increasingly
narrow. Huisken and Sinestrari proved that, for each set of finite parameters, only finitely
many surgeries are required. In the limit H i

k → ∞ (that is, H i
1, H

i
2, H

i
3 → ∞ with fixed

ratios ξ1, ξ2) infinitely many surgeries may be necessary.
This begs the question: how does the limiting object relate to the weak solution of mean

curvature flow?

1.2 Main Results

In this section we collect rough statements of our main results. We assume throughout
that the initial surface M0 is smooth, closed, two-convex and of dimension n ≥ 3.

11See [ACK] for a discussion of related ideas in the context of rotationally symmetric Ricci flows.
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Smooth Mean Curvature Flow. For a smooth, closed, two-convex surface evolving
according to classical mean curvature flow we establish an upper bound – which behaves
like t−1/2 for small t – on the Lp-norms of the mean curvature for all p < n−1 (see Theorem
2.5).

Theorem 1.1 (Smooth Lp Estimate) Let Mt be the smooth solution of mean curvature
flow starting from a given smooth, closed, two-convex initial hypersurface M0 in Rn+1. In
addition set p = n−1−ε. Then there exist constants C1 and C2 depending just on n, ε,M0

such that

‖H‖Lp(Mt) ≤
C1

ε1/2
exp (C2t) (exp (2C2t)− 1)−

1
2

for all ε > 0 and for all t > 0 as long as the solution remains smooth.

This should be compared with the estimates obtained by Ecker and Huisken in [EH].
Our result relies heavily on the two-convex estimates in [HS3] which give rise to the critical
exponent p = n− 1 (see Remark 2.7).

Remark 1.2 (First Singular Set) Our methods have applications to the regularity the-
ory developed in [E3], which deals with special case in which a smooth solution of mean
curvature flow develops a singularity for the first time. Let Mt, 0 ≤ t < t0, be the smooth
solution of mean curvature flow starting from a given smooth, closed, two-convex initial
hypersurface M0 in Rn+1. Our Lp estimates combine with Ecker’s theorem in [E3] to give

dim(sing(Mt0)) ≤ 1,

where dim(sing(Mt0)) denotes the Hausdorff dimension of the singular set sing(Mt0) at
time t0 (see Section 4.2 for precise definitions).

Mean Curvature Flow with Surgeries. Consider the solution of mean curvature
flow with surgeries constructed by Huisken and Sinestrari. We show that the Lp-norms
of the mean curvature are non-increasing under the surgery procedure defined in [HS3] in
order to arrive at the following result.

Theorem 1.3 (Lp Estimate for Flow with Surgeries) Let Mt, 0 ≤ t ≤ t0, be the
solution of mean curvature flow with surgeries starting from a given smooth, closed, two-
convex initial hypersurface M0 in Rn+1. Again let p = n − 1 − ε. Then there exists a
constant C = C(ε, t0,M0) such that

C

∫
M0

Hp dµ ≥
∫
Mt0

Hp dµ + p(p− 1)

∫ t0

0

∫
Mt

|∇H|2Hp−2 dµ dt

+
ε

2(n− 1)

∫ t0

0

∫
Mt

Hp+2 dµ dt

for all ε > 0.
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These quantities are of course geometric and can therefore be used to bound the required
number of surgeries using ideas developed by Huisken and Sinestrari in [HS3].

Corollary 1.4 (Number of Surgeries) For any sufficiently small ε > 0, the number of
surgeries N satisfies

N ≤ C(H i
1)

1+ε, (1.1)

where C = C(ε, n,M0).

Corollary 1.4 is crucial for the following application.

Approximating Weak Solutions. As in Section 1.1 above, we consider an increasing
sequence of surgery parameters {H i

k}i≥1 = {H i
1, H

i
2, H

i
3}i≥1 and the corresponding solutions

{Mi
t}i≥1 of mean curvature flow with surgeries. Let ui be the level-set function determined

by Mi
t (see Chapter 3 for precise definitions). We prove that the flow with surgeries in

fact agrees with the unique weak solution uL of the level-set flow in the limit H i
k →∞ in

the following sense.

Theorem 1.5 (Convergence to Weak Solution) Let Ω ⊂ Rn+1 such that M0 = ∂Ω is a
smooth, closed, two-convex initial hypersurface. Let uL be the weak solution of the level-set
flow on Ω, and denote by ui the level-set functions representing the solutions Mi

t of mean
curvature flow with surgeries starting from M0. Then

ui −→ uL

uniformly on Ω̄ as i →∞.

A different version of this result has been independently obtained by Lauer [L]. Our
proof relies on a combination of global barrier arguments and quantitative local techniques
which are well-suited to the study of necks. We obtain estimates on the rate of convergence
explicitly in terms of the surgery parameters, see Theorem 3.7.

Regularity Estimates for Weak Solution. Theorem 1.5 should be interpreted not
only as a “consistency check” for the artificial surgery construction, but in addition as a
new approximation scheme for the weak solution. In order to demonstrate the utility of
our result, let us denote by Γt the level-sets of the weak solution and by H the generalised
mean curvature of Γt. We show that at almost every time, |H| is bounded in Lp for all
p < n− 1. Moreover, we obtain convergence as H i

k →∞ (see Section 4.1):

Corollary 1.6 (Higher Convergence) We have∫
Mi

t

Hp dµ →
∫

Γt

|H|p dµ

for all p < n− 1 and for all t ≥ 0.
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1.3 Outline

The work in this thesis is laid out as follows.
Chapter 2 begins by setting up notation adapted to the context of two-convex surfaces;

this will be maintained throughout. Our first object of study is classical mean curvature
flow. We perform the central computation leading to Theorem 1.1, and point out various
features and consequences. In particular we record an appropriate statement of the result
which can be applied to the main theorem in [E3].

The chapter continues with a discussion of mean curvature flow with surgeries. While
the definitions are often lengthy, the essential ingredients from [HS3] have been included
in order to keep the presentation self-contained. The reader familiar with the surgery
construction can omit the first half of Section 2.2 and proceed immediately to the estimates
for necks. The ultimate objective of this analysis is Corollary 1.4, a new bound on the
required number of surgeries.

Chapter 3 deals with an application of the integral estimates to the “surgery limit”. We
review the relevant theory from the weak solution literature and provide an appropriate
formulation of the flow with surgeries in the language of level-sets. We then carefully ex-
plain our geometric barrier construction. The tools employed here are the familiar smooth
avoidance principle, Brakke’s “clearing out lemma” and Corollary 1.4. This approach leads
to quantitative estimates on the rate of convergence.

Chapter 4 records some preliminary consequences of our main results. In Section 4.1
we refine our global approximation theorem and extract a convergence statement for the
individual level-sets. The integral estimates in Chapter 2 can then be passed to limits.
These results make use of the regularity theory developed by White [W1].

Finally, in Section 4.2, we return to the classical mean curvature evolution and discuss
the situation in which a smooth solution develops a singularity for the first time. We
describe the application of the “smooth” estimates in Chapter 2 to the work by Ecker [E3]
on the size of the singular set at the so-called “first singular time”.

Acknowledgements. I would like to express my sincerest thanks to Gerhard Huisken for
introducing me to this problem and for his guidance throughout the preparation of this
work. I am also grateful to Klaus Ecker and Felix Schulze for many valuable discussions.





2 Integral Estimates for Classical MCF
and the Number of Surgeries

In this chapter we bound certain Lp-norms of the mean curvature (p < n − 1) for both
smooth mean curvature flow and mean curvature flow with surgeries in the two-convex
setting. We then show how these ideas can be applied to obtain a new bound on the
number of surgeries required for the flow constructed by Huisken and Sinestrari in [HS3].

Notation. We denote by g = {gij} the induced metric on the hypersurface Mt =
F (·, t)(Mn). We then denote by dµ the surface measure, by A = {hij} the second fun-
damental form and by λ1 ≤ · · · ≤ λn the ordered principal curvatures at the space-time
point (p, t) ∈Mn × [0, T ].

We assume throughout that the dimension n of the hypersurface is at least 3 and that
the initial surface is two-convex, i.e. λ1 + λ2 ≥ 0 everywhere on M0. Following [HS3, Def.
2.5], we introduce some notation which will clarify our exposition. Recall that if λ1+λ2 ≥ 0
on M0, then by the strong maximum principle λ1 + λ2 > 0 on Mt for all t > 0.

Definition 2.1 (Class of Two-Convex Surfaces, [HS3]) We denote by C(R,α), α =
(α0, α1, α2), the class of smooth, closed hypersurface immersions satisfying

λ1 + λ2 ≥ α0H, H ≥ α1R
−1, |M| ≤ α2R

n, (2.1)

for some positive constants R,α0, α1, α2.

We choose the parameter R such that |A|2 ≤ R−2 on M0 by setting

sup
M0

|A|2 = R−2.

Huisken and Sinestrari [HS3, Prop. 2.6] showed that any smooth, closed, strictly two-
convex surface belongs to C(R,α) and satisfies |A|2 ≤ R−2 for some R,α. Furthermore,
C(R,α) is invariant under both smooth mean curvature flow and standard surgery.

Since R represents the scale of the surface it will feature explicitly in the estimates below.
For later reference we point out that the surgery parameters Hk (k = 1, 2, 3) can be written
in the form H̃kR

−1 where each H̃k depends only on scale-free properties of M0 (see Section
2.2). We stress that the inequality |A|2 ≤ R−2 is not invariant under mean curvature flow
and pertains only to the initial data. This assumption is made throughout but will not be
repeated.

11
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2.1 Lp Estimates for H under Smooth MCF

Motivated by the search for an estimate on the required number of surgeries in the context
of mean curvature flow with surgery, we begin with a discussion of classical mean curvature
flow. Our starting point is the following result from [H1].

Lemma 2.2 (Evolution Equations, [H1]) The surface measure and mean curvature sat-
isfy the evolution equations

∂

∂t
dµ = −H2dµ, (2.2)

∂

∂t
H = ∆H + |A|2H, (2.3)

as long as the solution of mean curvature flow remains smooth.

Smooth Calculation. Suppose for now thatMt is a smooth solution of mean curvature
flow starting from an initial surface M0 ∈ C(R,α) for some R,α. Then we may use Lemma
2.2 to compute

d

dt

∫
Mt

Hp dµ =

∫
Mt

pHp−1
(
∆H + |A|2H

)
−Hp+2 dµ (2.4)

=− p(p− 1)

∫
Mt

|∇H|2Hp−2 dµ +

∫
Mt

Hp
(
p|A|2 −H2

)
dµ (2.5)

for all p ∈ R. We will be interested in p > 0 (an estimate for p = 0 is immediate from
(2.2)). In order to deal with the mixed term on the right-hand side we appeal to the
roundness estimate [HS3, Thm. 5.3], a result which is adapted to the two-convex geometry
(see Remark 2.7).1 While the solution currently under consideration is smooth, we state
the full result including surgeries (see Remark 2.6 below).

Theorem 2.3 (Roundness Estimate, [HS3]) i) Let M0 ∈ C(R,α). Then for any η > 0
there exists a constant Cη = Cη(M0) > 0 such that the smooth solution Mt of mean
curvature flow satisfies

|A|2 − H2

n− 1
≤ ηH2 + CηR

−2. (2.6)

ii) There exists η̃ > 0 such that the following holds. The parameters controlling the surgery
procedure can be chosen such that (2.6) holds also for a solution of mean curvature flow
with surgeries for all 0 < η < η̃.

1See also [HS1] for n = 2. Note that in this case two-convexity and mean-convexity coincide.
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Applying Theorem 2.3 to our expression (2.5) we arrive at

d

dt

∫
Mt

Hp dµ ≤− p(p− 1)

∫
Mt

|∇H|2Hp−2 dµ

+

(
pη − n− 1− p

n− 1

)∫
Mt

Hp+2 dµ + pCηR
−2

∫
Mt

Hp dµ.

We therefore restrict our attention to p < n− 1. To make this concrete, let ε > 0 and fix
p = n− 1− ε. We then make an appropriate choice of η (adapted to p) in the roundness
estimate above, say

ηε =
ε

2(n− 1)(n− 1− ε)
.

We henceforth suppress the subscript ε on η and write Cε in place of Cηε for ease of
notation. We will be most interested in small ε, but we point out that if this choice does
not satisfy η < η̃ then we may instead employ

η = min

{
ε

2(n− 1)(n− 1− ε)
,
η̃

2

}
in the roundness estimate without having to modify any of the following calculations. We
hereby obtain

d

dt

∫
Mt

Hp dµ ≤− p(p− 1)

∫
Mt

|∇H|2Hp−2 dµ

− ε

2(n− 1)

∫
Mt

Hp+2 dµ + pCεR
−2

∫
Mt

Hp dµ.

We emphasize that this holds for all ε > 0.2 Applying Hölder’s inequality we find

d

dt

∫
Mt

Hp dµ ≤− p(p− 1)

∫
Mt

|∇H|2Hp−2 dµ

− ε

2(n− 1)

(∫
Mt

Hp dµ

) p+2
p ∣∣Mt

∣∣− 2
p + pCεR

−2

∫
Mt

Hp dµ.

Finally, in view of (2.2) and Definition 2.1 we conclude

d

dt

∫
Mt

Hp dµ ≤− p(p− 1)

∫
Mt

|∇H|2Hp−2 dµ

− ε

2(n− 1)
α
− 2

p

2 R
−2n

p

(∫
Mt

Hp dµ

) p+2
p

+ pCεR
−2

∫
Mt

Hp dµ.

2When ε = 0 (that is, when η = 0) the constant Cε from the roundness estimate blows up and we lose
control on the right hand side; see Remark 2.7.
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Let

ϕ = exp

(
−pCε

R2
t

)∫
Mt

Hp dµ.

We have proved that ϕ is non-increasing under the smooth evolution in the two-convex
setting for all p < n− 1.

Lemma 2.4 (Smooth Monotonicity) Let Mt be a smooth solution of mean curvature
flow starting from M0 ∈ C(R,α) and fix p = n − 1 − ε. Then there exists a constant
Cε = Cε(M0) such that

d

dt
ϕ ≤− p(p− 1) exp

(
−pCε

R2
t

)∫
Mt

|∇H|2Hp−2 dµ

− ε

2(n− 1)
α
− 2

p

2 R
−2n

p exp

(
−pCε

R2
t

)(∫
Mt

Hp dµ

) p+2
p

for all ε > 0 as long as the solution remains smooth.

Hence any Lp-norm of the mean curvature is bounded under smooth mean curvature
flow on any finite time interval for all p < n− 1. In fact, solving the ODE

d

dt
ϕ ≤ − ε

2(n− 1)
α
− 2

p

2 R
−2n

p exp

(
2Cε

R2
t

)
ϕ

p+2
p

we conclude that

ϕ ≤ α2R
n−p

(
ε

2(n− 1)pCε

(
exp

(
2Cε

R2
t

)
− 1

))− p
2

.

This corresponds to an Lp-estimate for the mean curvature under smooth mean curvature
flow which behaves like t−1/2 for small t.3 The following result is a precise statement of
Theorem 1.1.

Theorem 2.5 (Smooth Lp Estimate) Let Mt be a smooth solution of mean curvature
flow starting from M0 ∈ C(R,α) and set p = n − 1 − ε. Then there exists a constant
Cε = Cε(M0) such that

‖H‖Lp(Mt) ≤ α
1/p
2 R(n−p)/p exp

(
Cε

R2
t

)(
ε

2(n− 1)pCε

(
exp

(
2Cε

R2
t

)
− 1

))− 1
2

for all ε > 0 and for all t > 0 as long as the solution remains smooth.

3This agrees with the scaling of the interior estimates obtained by Ecker and Huisken in [EH].
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Remark 2.6 (Surgery) The additional surgery estimate in the second part of Theorem
2.3 has not yet been used. In the next section, however, we will apply Lemma 2.4 to a
solution of mean curvature flow with surgeries, and in this setting it will be necessary to
call upon the roundness estimate (with the same constants) before and after surgeries.

We now make an informal remark on the critical norm p = n− 1.

Remark 2.7 (p = n − 1) It is in fact transparent in the calculation above that the
coefficient of H in the roundness estimate (2.6) determines the values of p which are
susceptible to our approach. The critical exponent p = n − 1 (that is, ε = 0) therefore
arises naturally from the geometric observation that on the round cylinder

|A|2 − 1

n− 1
H2 ≡ 0.

It is in this way that the two-convex geometry declares itself.

Remark 2.8 (Double Integral Estimate) As above, let p = n − 1 − ε. Another conse-
quence of Lemma 2.4 is an estimate of the form

exp
(
pCεR

−2t0
) ∫

M0

Hp dµ ≥
∫
Mt0

Hp dµ +
4

p
(p− 1)

∫ t0

0

∫
Mt

∣∣∇(H
p
2 )
∣∣2 dµ dt

+
ε

2(n− 1)

∫ t0

0

∫
Mt

Hp+2 dµ dt

for a smooth solution Mt of mean curvature flow on some time interval 0 ≤ t ≤ t0 and for
all ε > 0.

Before proceeding to apply these results to a solution of mean curvature flow with surg-
eries we point out that, in the two-convex setting, the mean curvature controls the full
norm of the second fundamental form. As was shown in [HS3, Prop. 2.7], the two-convex
inequality −λ1 ≤ λ2 implies

−λ1 ≤ λ3 ≤ λ1 + λ2 + λ3 ≤ H and λn ≤ λ1 + λ2 + λn ≤ H.

This gives rise to the estimates −H ≤ λ1 ≤ λ2 ≤ · · · ≤ λn ≤ H and the resultant inequality

|A|2 ≤ n

(
max
1≤i≤n

|λi|
)2

≤ nH2, (2.7)

which is of course false in the more general mean-convex setting.
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Theorem 2.5 is therefore equivalent in our context to an estimate on the Lp-norms of
|A|: setting p = n− 1− ε as above, we obtain

‖|A|‖Lp(Mt) ≤ n1/2α
1/p
2 R(n−p)/p exp

(
Cε

R2
t

)(
ε

2(n− 1)pCε

(
exp

(
2Cε

R2
t

)
− 1

))− 1
2

for all ε > 0 and t > 0. This will not be required for our later applications.

Applying (2.7) this time to Remark 2.8 we arrive at the following result, which has
interesting applications to recent work by Ecker [E3] on the size of the singular set at the
first singular time.

Remark 2.9 (Integrability Condition) Let Mt, 0 ≤ t < t0, be a smooth solution of
mean curvature flow starting from M0 ∈ C(R,α). Then we have shown that there exists
a constant Cε = Cε(M0) such that∫ t0

0

∫
Mt

|A|n+1−ε dµ dt ≤ C(n)

ε
exp

(
pCε

R2
t0

)∫
M0

Hn−1−ε dµ

for all ε > 0 where C(n) = 2(n− 1)np/2+1 and p = n− 1− ε.

For a description of the application to the size of the singular set at the first singular
time, the reader can immediately skip ahead to Section 4.2. In the next section, we begin
our analysis of the surgery construction developed by Huisken and Sinestrari.

2.2 Lp Estimates for H Across Surgery.

Our goal is to bound a “higher-order” geometric quantity under mean curvature flow with
surgeries and use it to improve the estimate in [HS3] on the required number of surgeries.
This section is devoted to the first task; the second is dealt with in Section 2.3. We define
and discuss the flow with surgeries as constructed by Huisken and Sinestrari [HS3], before
turning to integral estimates across surgery regions and revisiting the calculation from
Lemma 2.4 in this modified context.

We henceforth assume that the reader is familiar with the theory developed by Huisken
and Sinestrari. For the sake of completeness we have included the necessary definitions
from [HS3], but our summary is not intended to be comprehensive. The following material
is taken directly from [HS3].

Mean Curvature Flow with Surgeries. [HS3, Sect. 2] defines the solution of mean
curvature flow with surgeries starting from a smooth hypersurface immersion F0 : M1 →
Rn+1 in some class C(R,α). It consists of a sequence of
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i) intervals [0, T1], [T1, T2], . . . , [TN−1, TN ],

ii) manifolds M1,M2, . . . ,MN , and

iii) smooth mean curvature flows F i
t : Mi → Rn+1, t ∈ [Ti−1, Ti]

such that

a) the initial hypersurface for the family F 1 is given by F0 : M1 → Rn+1, and

b) the initial hypersurface for the flow F i
t : Mi → Rn+1 on [Ti−1, Ti] for 2 ≤ i ≤ N is

obtained from F i−1
Ti−1

by:

– performing standard surgery (as defined below) on finitely many disjoint necks,
replacing each of them with two spherical caps; and

– removing finitely many disconnected components (these are diffeomorphic either
to Sn or to Sn−1 × S1).

Abusing notation slightly we again write Mt for the solution of mean curvature flow with
surgeries. The surgery time TN is the “extinction” time of Mt if all connected components
ofMTN

can be identified as copies of Sn or Sn−1×S1, or alternatively if this can be achieved
after performing finitely many surgeries on MTN

.

In order to control the Lp-norms of the mean curvature under mean curvature flow with
surgeries, we therefore require estimates on the curvature of necks before and after surgery.
The following definitions from [HS3] can be omitted by the reader familiar with the surgery
theory.

Necks. A neck is a region which is geometrically close to a piece of the standard cylinder
in a precise quantitative way [HS3, Def. 3.7, 3.9]. This concept is of course independent
of mean curvature flow:

Definition 2.10 (Hypersurface Neck, [HS3]) Let F : Mn → Rn+1 be a smooth hy-
persurface with induced metric g and Weingarten map W , and let N : Sn−1 × [a, b] →
(Mn, g) ⊂ Rn+1 be a local diffeomorphism. Then N is an (ε, k)-hypersurface neck if

|r−2(z)g − ḡ|ḡ ≤ ε, |D̄j(r−2(z)g)|ḡ ≤ ε and

∣∣∣∣∣
(

d

dz

)j

log r(z)

∣∣∣∣∣ ≤ ε

uniformly for 1 ≤ j ≤ k, and if in addition

|W (q)− r−1(z)W̄ | ≤ εr−1(z) and |∇lW (q)| ≤ εr−l−1(z)

for 1 ≤ l ≤ k and for all q ∈ Sn−1 × {z} and all z ∈ [a, b]. Here ḡ is the standard metric
on the cylinder and r : [a, b] → R is the average radius of the cross-section N (Sn−1 × {z})
with respect to the pullback of g on Mn.
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In order to deal with overlapping necks Huisken and Sinestrari introduced the concept
of a maximal normal hypersurface neck. The following conditions [HS3, Def. 3.8, 3.11] are
sufficient to guarantee uniqueness of N up to isometries (see also [Ha4]).

Definition 2.11 (Maximal Normal Hypersurface Neck, [HS3]) Let N be an (ε, k)-
hypersurface neck. Then N is a maximal normal (ε, k)-hypersurface neck if

i) each cross-section Σz = N (Sn−1 × {z}) ⊂ (M, g) has constant mean curvature;

ii) the restriction of N to each Sn−1 × {z} equipped with the standard metric is a
harmonic map to Σz equipped with the metric induced by g (for n = 3 we require
the additional condition that the center of mass of the pull-back of g on S2 × {z}
considered as a subset of R3 × {z} lies at the origin {0} × {z});

iii) the volume of any subcylinder with respect to the pullback of g is given by

V ol(Sn−1 × [v, w], g) =

∫ w

v

r(z)n dz;

iv) for any Killing vector field V̄ on Sn−1 × {z} we have that∫
Sn−1×{z}

ḡ(V̄ , U) dµ = 0

where U is the unit normal vector field to Σz in (M, g) and dµ is the measure of the
metric ḡ on the standard cylinder;

v) whenever N ∗ is another neck satisfying i)-iv) with N = N ∗ ◦G for some diffeomor-
phism G, then the map G is onto.

Surgery is performed on hypersurface necks in normal form (see [HS3, Thm. 8.1] or
Theorem 2.15 below).

Surgery. Huisken and Sinestrari [HS3, Sect. 3] defined the following “standard surgery”
procedure for hypersurface necks. Let N : Sn−1 × [a, b] → M be a maximal normal
(ε, k)-hypersurface neck with appropriate parameters (ε, k). Let z0 ∈ [a, b] such that
[z0−4Λ, z0 +4Λ] ⊂ [a, b] for an appropriate constant Λ > 0. For the pair (N , z0) and given
parameters 0 < τ < 1 and B > 10Λ, surgery with parameters τ, B at the cross section
Nz0 = N (Sn−1 × {z0}) replaces the neck of length L by two spherical caps as follows.

We denote by C̄z0 : Sn−1 × R → Rn+1 the straight cylinder best approximating the
surface at the cross section Nz0 : the radius of C̄ is chosen as the mean radius r(z0) = r0,
a point on its axis if given by the center of mass of Nz0 with its induced metric, and its
axis is parallel to the average of the unit normal field to Nz0 ⊂ (M, g), taken again with
respect to the induced metric.
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To the left of z0, standard surgery leaves the collar Sn−1 × [a, z0 − 3Λ] untouched, and
replaces the cylinder N (Sn−1 × [z0 − 3Λ, z0]) by a ball attached smoothly to Nz0−3Λ. The
other side is similarly defined. For convenience we set z0 − 4Λ = 0 and consider a normal
parametrisation N : Sn−1 × [0, 4Λ] →M.

i) (Bending In) Let

u(z) ≡ r0 exp

(
− B

z − Λ

)
on [Λ, 3Λ] for B > 10Λ in Gaussian normal coordinates. For a parameter 0 < τ < 1,
define:

Ñ (ω, z) := N (ω, z)− τu(z)ν(ω, z).

ii) (Symmetrising) Denote by ϕ : [0, 4Λ] → R+ a fixed smooth transition function with
ϕ = 1 on [0, 2Λ], ϕ = 0 on [3Λ, 4Λ] and ϕ′ ≤ 0, and by C̃z0 : Sn−1 × [0, 4Λ] → Rn+1

the bent cylinder defined by

C̃z0(ω, z) := C̄z0(ω, z)− τu(z)νC̄(ω, z).

We then interpolate to obtain an axially symmetric surface

N̂ (ω, z) := ϕ(z)Ñ (ω, z) + (1− ϕ(z))C̃z0(ω, z).

The function ϕ depends only on Λ, and it can be defined in such a way that all of
its derivatives are smaller if Λ is larger. In particular, if we assume Λ ≥ 10, each
derivative of ϕ is bounded by some fixed constant.

iii) (Capping Off ) We change u on [3Λ, 4Λ] to a function û to ensure that τ û(z) →
r(z0) = r0 as z approaches some z1 ∈ (3Λ, 4Λ], such that C̃z0([3Λ, 4Λ]) is a smoothly
attached axially symmetric and uniformly convex cap. In this region there is a fixed
upper bound on the curvature and each of its derivatives, independent of Λ ≥ 10 and
the surgery parameters τ, B.

We are now ready to control the Lp-norms of the mean curvature across surgery. In par-
ticular, we show that each of these quantities drops by a controlled amount as a result of
the surgery construction.

Curvature Estimates for Necks. Since the proof of Lemma 2.4 is direct and doesn’t
rely on any auxiliary quantities, the Lp-norms of the mean curvature can be estimated
directly and will succumb to coarse techniques. These results are independent of mean
curvature flow and will be combined with the smooth calculation from the previous section
in Theorem 2.16.
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We consider an (ε, k)-hypersurface neck

N : Sn−1 × [a, b] →M

contained inM⊂ Rn+1, and we discuss the surgery corresponding to the pair (N , z0) where
z0 ∈ [a, b]. We denote by r0 the mean radius of the cross-section Nz0 = N (Sn−1 × {z0}),
that is

|Nz0| = ωn−1(r0)
n−1

where ωn−1 is the area of the standard unit (n − 1)-sphere. We refer to r0 as the scale
of the neck. We also write N+ (N−) for the neck before (after) surgery. Similarly, M+

(M−) will denote the surface before (after) surgery.

Definition 2.12 (Length Parameter, [HS3]) We define the length of a hypersurface neck
N : Sn−1 × [a, b] → Rn+1 to be b− a.

According to this definition, length is a scale-invariant quantity. The length of the neck
plays a crucial role in the sequel and will depend solely on the dimension n. The distance
(with respect to the metric) between the two ends of the standard embedded cylinder of
length L and radius r0 is r0L.

The scale-invariant surgery procedure replaces a neck N (Sn−1 × [0, L]) of length L with
two spherical caps diffeomorphic to discs. The parameters ε, k describe the quality of the
neck and the parameters τ, B control the surgery procedure itself. Λ is a length parameter
which must be sufficiently large but can otherwise be chosen freely in terms of n (we require
L ≥ 20 + 8Λ). Surgery leaves the collars [0, Λ] and [L− Λ, L] unchanged and replaces the
cylinder N (Sn−1 × [Λ, L− Λ]) with two caps attached smoothly to NΛ and to NL−Λ.

In the next lemma we suppose that M+ is obtained from M− by performing standard
surgery on finitely many disjoint hypersurface necks with scale r0.

Lemma 2.13 (Lp Estimate Across Surgery) For each p ≥ 0 the following property holds.
We can choose L = L(n) sufficiently large such that∫

M−
Hp dµ−

∫
M+

Hp dµ ≥ C(r0)
n−p (2.8)

where C = C(n, L).

Proof. Let N− : Sn−1 × [0, L] →M− → Rn+1 be an (ε, k)-hypersurface neck with scale r0

in normal form. Choosing ε sufficiently small we can arrange that

H(p) ≥ 9

10

(
n− 1

r0

)
for all p = (w, z) ∈ N− such that z ∈ [0, L].
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For ease of notation we write U− ⊂M− for the subset of M− altered by the given surgery
and U+ for the subset of M+ replacing U−. We then estimate |U−| ≥ (9/10)Lωn−1(r0)

n

so that ∫
U−

Hp dµ ≥ C1(n)Lrn−p
0 .

Let us restrict our attention for the moment to the left side of the neck. During surgery
we pinch the neck in on [Λ, 3Λ] and attach an axially symmetric convex cap on [3Λ, 4Λ].
We choose the parameter τ in the surgery construction sufficiently small so as to ensure
that the curvature remains close to that of the cylinder on [Λ, 3Λ], for example

9

10

(
n− 1

r0

)
≤ H(p) ≤ 11

10

(
n− 1

r0

)
for all p = (w, z) ∈ N+ such that z ∈ [Λ, 3Λ].

In addition, the curvature of the convex cap attached to N3Λ can be made as close as we
like to that of a standard sphere:

9

10

(
n

r0

)
≤ H(p) ≤ 11

10

(
n

r0

)
for all p = (w, z) ∈ N+ such that z ∈ [3Λ, 4Λ].

We apply the same analysis to the other end of the neck. U+ consists of two copies of
U+

1 ∪ U+
2 where U+

2 denotes the convex cap attached to N3Λ as described in step iii) of
the surgery procedure and U+

1 denotes the bent cylinder in between. We can arrange that
(9/5)Λωn−1(r0)

n ≤ |U+
1 | ≤ (11/5)Λωn−1(r0)

n and

C2(n)Λrn−p
0 ≤

∫
U+

1

Hp dµ ≤ C3(n)Λrn−p
0 .

Finally, step iii) of the surgery construction can be adapted such that (9/10)ωn(r0)
n ≤

|U+
2 | ≤ (11/10)ωn(r0)

n and

C4(n)(r0)
n−p ≤

∫
U+

2

Hp dµ ≤ C5(n)rn−p
0 .

According to the construction in [HS3], we can first choose Λ (sufficiently large and just
depending on n), and we can then choose

L = C + 8Λ ≥ 20 + 8Λ

sufficiently large in terms of n such that for each p ≥ 0 we have∫
U−

Hp dµ ≥ 2

∫
U+

Hp dµ.

This completes the proof.
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Remark 2.14 (p = 0) The p = 0 case of Lemma 2.13 is from [HS3] – see Remark 2.17.
Notice that, in view of Lemma 2.2, it implies∣∣M0

∣∣ ≥ ∣∣Mt0

∣∣+ ∫ t0

0

∫
Mt

H2 dµ dt, (2.9)

where Mt denotes the solution of mean curvature flow with surgeries on the time interval
0 ≤ t ≤ t0. The estimate (2.9) is the foundation of Brakke’s definition of weak mean
curvature flow. In the special case of smooth surfaces, Brakke’s definition requires that∫

M0

φ dµ ≥
∫
Mt0

φ dµ +

∫ t0

0

∫
Mt

φH2 + H 〈∇φ, ν〉 dµ dt

for all non-negative φ = φ(x) ∈ C1
c (Rn+1). The error terms introduced at each surgery

time can be estimated as follows,∫
U+

φ dµ−
∫
U−

φ dµ ≤ C(n, L)(r0)
n sup
U+

φ.

This error disappears as r0 → 0 (a property which is expected in light of the results in the
next chapter).

Lp Estimate for Mean Curvature Flow with Surgeries. We now arrive at our
main result for a two-convex solution of mean curvature flow with surgeries (n ≥ 3). In
what follows:

– Mt denotes the solution of mean curvature flow with surgeries;

– Tj (j = 1, 2, ..., N) are the surgery times;

– MT−j
(MT+

j
), denotes the surface at time Tj before (after) surgery has been per-

formed.

The solution Mt is determined by a set of parameters H1, H2, H3 which control the choice
of surgery times and locations. We recall the main result from [HS3].

Theorem 2.15 (Existence & Finite Extinction, [HS3]) Let M0 ∈ C(R,α) with n ≥ 3.
Then there exist constants ω1, ω2, ω3 > 1 depending only on α such that the following holds.
If we set H2 = ω2H1 and H3 = ω3H2, then for any H1 ≥ ω1R

−1 there exists an associated
mean curvature flow with surgeries on 0 ≤ t ≤ TN starting from M0 and satisfying the
properties:

i) each surgery is performed at the earliest time Tj such that max H(·, T−j ) = H3;

ii) after the two-step surgery procedure, max H(·, T+
j ) ≤ H2;

iii) all surgeries start from a cross-section of a normal hypersurface neck with mean
radius r0 = (n− 1)/H1;

iv) N < ∞.4

4In fact, N ≤ C(n)(H1)n - see Section 2.3.
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The surgery times Tj therefore depend on the choice of surgery parameters. Furthermore,
the number of surgeries N may depend on the surgery parameters; this is discussed in the
next section. We first combine the smooth calculation from the previous section with the
curvature estimates for necks to prove:

Theorem 2.16 (Lp Estimate for Flow with Surgeries) We can choose L = L(n) suffi-
ciently large such that the following property holds. Let M0 ∈ C(R,α) with n ≥ 3 and fix
p = n− 1− ε. Then the solution Mt of mean curvature flow with surgeries starting from
M0 satisfies

C(T )

∫
M0

Hp dµ ≥
∫
MT

Hp dµ + p(p− 1)

∫ T

0

∫
Mt

|∇H|2Hp−2 dµ dt

+
ε

2(n− 1)

∫ T

0

∫
Mt

Hp+2 dµ dt

for all ε > 0 and for all 0 < T ≤ TN < ∞. The constant C(T ) depends also on ε and M0.

Proof. Note that the proof of Lemma 2.4 relies just on Theorem 2.3. Since part ii) of
that result guarantees that the estimate survives surgery without any modifications to
the constants, we conclude that Lemma 2.4 holds on each smooth time interval [0, T1],
[T1, T2],...,[Tm, T ]. We can therefore integrate on each interval [Tj, Tj+1] (where T0 := 0) to
obtain

exp
(
−pCεR

−2Tj

) ∫
MTj

Hp dµ ≥ exp
(
−pCεR

−2Tj+1

) ∫
MTj+1

Hp dµ

+ p(p− 1)

∫ Tj+1

Tj

(
exp

(
−pCεR

−2t
) ∫

Mt

|∇H|2 Hp−2 dµ

)
dt

+
ε

2(n− 1)

∫ Tj+1

Tj

(
exp

(
−pCεR

−2t
) ∫

Mt

Hp+2 dµ

)
dt.

Furthermore, by Lemma 2.13,∫
M

T−
j+1

Hp dµ ≥
∫
M

T+
j+1

Hp dµ.

Note that we simply disregard any contribution made by the components discarded at the
surgery time. Since exp (−pCεR

−2t) is continuous in t, we can combine the results from
the finitely many time intervals to obtain the desired result.

In the final section of this chapter, we extract a bound on the required number of surgeries
from Lemma 2.13 and Theorem 2.16.
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2.3 Number of Surgeries

The central result obtained by Huisken and Sinestrari – see [HS3, Thm. 8.1] or Theorem
2.15 – says that, for any choice of parameters (sufficiently large), there exists a correspond-
ing mean curvature flow with surgeries which terminates after finitely many surgery times.
More precisely, Huisken and Sinestrari used an area-based argument to arrive at a bound
on N which depends explicitly on the surgery parameters H1, H2, H3. In this section we
briefly review their result and combine it with the higher order Lp-estimates from the pre-
vious section to derive a new quantitative estimate on N which will be essential for the
applications in the next chapter.

Remark 2.17 (Huisken-Sinestrari Estimate) Let Mt be the solution of mean curvature
flow with surgeries starting from some M0 ∈ C(R,α). Observe that from Lemma 2.2,
Lemma 2.13 and Definition 2.1 we have the area bound

|Mt| ≤ α2R
n.

Setting p = 0 in Lemma 2.13 we observe moreover that each surgery reduces the area of
the surface by at least some fixed multiple of (Hk)

−n (k = 1, 2, 3), where the Hk denote the
surgery parameters associated with Mt (see Theorem 2.15 above). Huisken and Sinestrari
[HS3] proved using this argument that N satisfies

N ≤ C(n)(Hk)
n. (2.10)

The estimate (2.10) is sufficient to establish that mean curvature flow with surgeries must
terminate after a finite number of surgery times for each finite choice of Hk.

We will see in the proof of Theorem 3.7 below, however, that (2.10) is not strong enough
for our later applications (see Remark 3.17). We therefore exploit the property that each
surgery consumes a fixed multiple of (Hk)

n−p for p > 0 to extract a sharper bound on N .

Corollary 2.18 (Number of Surgeries) We can choose L = L(n) sufficiently large such
that the following property holds. Let M0 ∈ C(R,α) with n ≥ 3 and consider the solution
Mt, t ∈ [0, TN ], of mean curvature flow with surgeries starting from M0 with parameters
Hk (k = 1, 2, 3). For any sufficiently small ε > 0 there exists a constant C = C(ε, n, L,M0)
such that

N ≤ C(H1)
1+ε. (2.11)

Here, as above, N denotes the number of surgeries.

Proof. It follows from the proof of Theorem 2.15 in [HS3] that, given any choice of length
parameter L (sufficiently large), we can find a set of finite constants {ω1, ω2, ω3} depending
only on α such that for all H1 ≥ ω1R

−1 there exists a mean curvature flow with surgeries
satisfying the desired properties.
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We then apply the argument in Remark 2.17 to the higher Lp-norms of the mean cur-
vature. It follows from Theorem 2.16 that for any ε > 0 we have∫

MT

Hn−1−ε dµ ≤ C(ε,M0, T )

at any finite time T . In addition, for any ε > 0, Lemma 2.13 guarantees that at each
surgery time ∫

M
T−

j

Hn−1−ε dµ−
∫
M

T+
j

Hn−1−ε dµ ≥ C(n)(Hk)
−(1+ε).

This is again independent of any contribution made by the components discarded at the
surgery time. This completes the proof.

In the next chapter we consider the object produced by letting Hk →∞. In fact, we use
Corollary 2.18 to reconcile the solution provided by the non-canonical surgery construction
with the unique weak solution of mean curvature flow studied in [CGG, ES1].





3 Approximating Weak Solutions using
MCF with Surgeries

Mean curvature flow with surgeries and the theory of weak solutions are independent
attempts at a geometrically reasonable model of mean curvature flow which exists for all
time. The primary goal of the present chapter is to effect a reconciliation between the two
approaches. The central result, Theorem 3.7 below, is that the solution of mean curvature
flow with surgeries converges to the weak solution in an appropriate limit of the surgery
parameters. Moreover, we obtain quantitative estimates on the rate of convergence using
Corollary 2.18 and Brakke’s “clearing out lemma”. A different version of this result was
independently obtained by Lauer [L].

3.1 Convergence to the Weak Solution

In order to set up a precise statement of our main theorem, we rapidly recall some basic
definitions and results from the well-developed theory of weak solutions. For further details
we refer to [B, CGG, ES1, I2, W2]. The main result appears in Theorem 3.7.

Remark 3.1 (Curvature Assumptions) We will assume throughout this chapter that
M0 is the mean-convex, connected boundary of a bounded, open subset of Rn+1. The
curvature assumption is unnecessary from the point of view of existence results for weak
solutions, but our main intention is to discuss the corresponding flow with surgeries, which
restricts us further to domains with two-convex boundaries of dimension at least three.

Level-Set Ansatz. Let Ω ⊂ Rn+1 be open and bounded such that M0 = ∂Ω has
non-negative mean curvature. By the strong maximum principle, H is strictly positive on
the smooth solution Mt of mean curvature flow for all t > 0 as long as it exists. The
hypersurfaces Mt can therefore be represented as the level-sets

Mt = {x ∈ Ω
∣∣ u(x) = t} (3.1)

of a continuous scalar “time” function u : Ω̄ → R satisfying the degenerate elliptic boundary
value problem 

div

(
Du

|Du|

)
= − 1

|Du|
,

u
∣∣∣
∂Ω

= 0.

(?)

27
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If u is smooth at a point x ∈ Ω with Du(x) 6= 0, then (?) simply states that the level-sets
of u near x solve (MCF) in the classical sense.

Weak Solutions. We briefly recall one way [HI, MS, S] to define a weak concept of
solutions to (?) in the mean-convex case using the energy functional

Ju(v) :=

∫
Ω

|Dv| − v

|Du|
dx.

For more general formulations we refer to [CGG, ES1] and to [B, I2] (see also Remark 3.4).

Definition 3.2 (Weak Solution) Given u ∈ C0,1(Ω̄) such that |Du|−1 ∈ L1(Ω), we say
that u is a weak solution of (?) on Ω if

Ju(u) ≤ Ju(v) (3.2)

for any Lipschitz continuous function v on Ω such that {u 6= v} ⊂⊂ Ω, and if u satisfies
u > 0 on Ω and {u = 0} = ∂Ω.

Notation. We hereafter write uL for the weak solution of the level-set flow and we
define

Γt :=

{
∂
{
x ∈ Ω

∣∣ uL(x) > t
}

for all t ≤ T

∅ for all t > T

to be the t-slices of uL, where the extinction time T is given by

T := sup
Ω

uL.

We will often have occasion to consider the regions Ωt := {uL > t} enclosed by the level-
sets Γt = ∂Ωt of the weak solution.

Properties. With the preceding definitions in hand, we turn now to the geometric
properties the weak solution. The next result is well-known and can be found for example
in [CGG, ES1].

Theorem 3.3 (Properties of Weak Solution, [ES1]) Let Ω ⊂ Rn+1 be open and bounded
such that ∂Ω has non-negative mean curvature. Then there exists a unique weak solution
uL of (?) on Ω such that

i) Γt agrees with the smooth solution Mt of mean curvature flow starting from M0 = ∂Ω
if and so long as the latter exists, and

ii) if Mt, t1 ≤ t ≤ t2, is any smooth, compact mean curvature flow with positive mean
curvature then

Mt1 ∩ Γt1 = ∅ =⇒ Mt ∩ Γt = ∅
for all t1 ≤ t ≤ t2.
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It is straightforward to verify that property ii) is equivalent to the statement

d

dt
dist(Mt, Γt) ≥ 0.

Remark 3.4 (Weak Solutions via Smooth Avoidance, [I2]) The weak solution of the
level-set flow can in fact be defined using Theorem 3.3 ii) as the unique maximal set
graph(uL) ⊂ Rn+1 × R+ such that the slices

∂Kt := {x ∈ Rn+1
∣∣ (x, t) ∈ graph(uL)}

satisfy the avoidance principle for t ≥ 0. Here Kt = {x ∈ Ω |uL(x) ≥ t}.

Associated with the variational structure of Definition 3.2 is a fundamental one-sided
area minimisation property. We write ∂∗ for the reduced boundary of a set.

Definition 3.5 (Outward Minimising) Let U ⊂ Rn+1 be an open set. We say that the
set E ⊂ Rn+1 is outward minimising in U if

|∂∗E ∩K| ≤ |∂∗F ∩K| (3.3)

for any F ⊃ E such that F \ E ⊂⊂ U and any compact set K ⊃ (F \ E).

This concept also plays a decisive role in the theory of weak solutions for various other
hypersurface flows, compare [HI, S].

Proposition 3.6 (Outward Minimising, [W1]) Let Ω ⊂ Rn+1 be open and bounded and
suppose ∂Ω has non-negative mean curvature. Then the sets Ωt = {uL > t} enclosed
by the level-sets of the weak solution of mean curvature flow generated by Ω are outward
minimising in Ω.

It is well-known [ES1] that uL can be approximated uniformly in C0 by smooth, non-
compact solutions of mean curvature flow. Indeed, one establishes existence of a weak
solution satisfying (3.2) using functions uε solving the regularised boundary value problem

div

(
Duε√

ε2 + |Duε|2

)
= − 1√

ε2 + |Duε|2
,

uε
∣∣∣
∂Ω

= 0,

compare [ES1, MS]. From a geometric point of view, these are (after rescaling) higher-
dimensional, translating, graphical solutions of mean curvature flow. In this chapter we
set forth an alternate approximation scheme based on closed solutions of mean curvature
flow with surgeries.
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Mean Curvature Flow with Surgeries. We henceforth restrict our attention to do-
mains Ω in Rn+1, n ≥ 3, such that ∂Ω is two-convex. Our first task is to interpret the
solution of mean curvature flow with surgeries in the language of level-sets.

Given ∂Ω = M0 ∈ C(R,α), we have the solution Mt, t ∈ [0, TN ], of the flow with surg-
eries corresponding to a choice of parameters {H1, H2, H3}. Consider the level-set function
u which assigns to each x ∈ Ω the time t such that x ∈ Mt. When t /∈ {T1, . . . , TN}, we
have

Mt = {x ∈ Ω
∣∣ u = t}

and the smoothness of the classical solution implies smoothness of the time function.

Now consider any surgery time Tj; let ET−j
be the closed domain in Rn+1 bounded by

MT−j
and let FT+

j
be the open set in Rn+1 enclosed by MT+

j
. Note that since we are in the

mean-convex setting the surgery procedure gives rise to points x ∈ Ω such that x /∈ Mt

for any t. In order to produce a continuous function on Ω̄ we therefore define

u(x) :=

{
t for all x ∈Mt

Tj for all x ∈ ET−j
\ FT+

j

for each region ET−j
\ FT+

j
overlooked due to surgery. These regions are therefore by

definition plateaus in graph(u) and the level-sets {u = Tj} (j = 1, . . . , N) may not be
smooth hypersurfaces. Clearly u ∈ C0,1(Ω̄) and we have

MT−j
= ∂ (int{x ∈ Ω

∣∣ u ≥ Tj}) and MT+
j

= ∂ {x ∈ Ω
∣∣ u > Tj}.

For convenience we define the sets Σt := {u > t} and Σ̃t := int{u ≥ t} so thatMT+
j

= ∂ΣTj

and MT−j
= ∂Σ̃Tj

. Away from the surgery times, Mt = ∂Σt = ∂Σ̃t. Finally, Mt := ∅ for

all t > TN .

Approximating Sequence. Theorem 2.15 produces a set of parameters ω1, ω2, ω3

which depend only on α and which produce a flow with surgeries starting from ∂Ω and
satisfying properties i)-iv) for any choice H1 ≥ ω1R

−1 with H2 = ω2H1 and H3 = ω3H2.

We therefore consider any increasing sequence of parameters {H i
k}i≥1 = {H i

1, H
i
2, H

i
3}i≥1,

corresponding to a sequence {Mi
t}i≥1 of mean curvature flows with surgeries, along which

the surgery times grow and the necks removed at these times become increasingly thin.1

The ratios ω2, ω3 are fixed along the sequence – that is, H i
2 = ω2H

i
1 and H i

3 = ω3H
i
2 for

each i. The following is a precise statement of Theorem 1.5.

1Recall that each Mi
t exists on a time interval 0 ≤ t ≤ TN where N and TN depend on i.
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Theorem 3.7 (Convergence to Weak Solution) Let M0 ∈ C(R,α) with n ≥ 3 such
that M0 = ∂Ω for some open, bounded Ω ⊂ Rn+1. Let uL be the weak solution of the
level-set flow on Ω, and denote by ui the level-set functions representing the solutions Mi

t

of mean curvature flow with surgeries starting from M0 with parameters H i
1, H

i
2, H

i
3. For

all sufficiently small ε > 0 we have

sup
Ω̄

|ui − uL| ≤ C(H i
1)
−1+ε

where C = C(n, ε,M0).

The primary tools from the weak theory will be the clearing out lemma (Theorem 3.12
below) and the smooth avoidance principle; the necessary estimates will come from Propo-
sition 3.6. The theorem will follow from Corollary 2.18, Lemma 3.10 and Proposition 3.11.

We first use Theorem 3.3 ii) to show that ui is bounded above by uL for each i. Then, in
Section 3.3, we use the clearing out lemma to show that the weak solution can be used in
addition as a lower barrier after an appropriate time-translation which depends explicitly
on the parameters H i

k and converges to zero as i →∞.

3.2 A Barrier Result

This section is concerned with a global barrier result for the level-set functions ui and uL.
We use the avoidance principle to show that, for each set of parameters H i

k, the resultant
mean curvature flow with surgeries respects the weak solution as an “external” barrier.
This is a natural consequence of the fact that the surgery procedure does not interfere
with surfaces outside the neck on which it is performed.

We recall the concept of the “solid tube” [HS3, Prop. 3.25] enclosed by a hypersurface
neck:

Proposition 3.8 (Solid Tube, [HS3]) Given a normal (ε, k)-hypersurface neck N :
Sn−1 × [0, L] → Mn ⊂ Rn+1 with parameters L ≥ 20 + 8Λ ≥ 100, 0 < ε ≤ ε0 and
k ≥ k0 depending on n, there exists a unique local diffeomorphism

G : B̄n
1 × [0, L] → Rn+1

such that

i) G (restricted to the cylinder) agrees with N ;

ii) each cross-section G(B̄n
1×{z0}) ⊂ Rn+1 is an embedded area minimising hypersurface;

iii) G restricted to each slice B̄n
1 × {z0} is a harmonic diffeomorphism; and

iv) G is ε-close in Ck+1-norm to the standard isometric embedding of a solid cylinder in
Rn+1.
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We want to compare the flow with surgeries to the weak evolution. Before the first
surgery time, Mi

t and Γt agree – indeed they correspond to the smooth solution for 0 ≤
t < T1, compare Theorem 3.3. At the first surgery time, Mi

T−1
= ΓT1 and, by construction

(see Section 2.2 and proof of Lemma 3.10),

Mi
T+
1
⊂ ET−1

= Ω̄T1 .

The pressing question is therefore: what happens for t > T1? The following is general
result which is quintessentially parabolic in nature. It dictates that two surfaces which
agree except on some subset must separate instantaneously under the smooth evolution.

Lemma 3.9 (Tearing Apart, [ES2]) Let W ⊂ Rn+1 be open and bounded and consider a
subset Ŵ ⊂ W . Suppose that M0 = ∂W and M̂0 = ∂Ŵ are smooth and mean-convex with
M̂0 ⊂ W̄ and M̂0 6= M0. Then the corresponding solutions Mt,M̂t of mean curvature
flow satisfy

M̂t ∩Mt = ∅
for t > 0 as long as they remain smooth.

We conclude therefore that Mi
t is trapped inside Ωt for all t > T1. This corresponds

to the following global barrier result; we present a simply proof using only the smooth
avoidance principle.

Lemma 3.10 (Upper Barrier) Let Ω, ui and uL be as in Theorem 3.7. Then for each i
we have

ui(x) ≤ uL(x) (3.4)

for all x ∈ Ω̄.

Proof. Observe that Mi
0 = Γ0 = ∂Ω implies Mi

δ ⊂⊂ Ω for all δ > 0. By Theorem 3.3,

d

dt
dist(Mi

t+δ, Γt) ≥ 0

as long as Mi
t+δ remains smooth. However, it is straightforward to see that this property

is preserved by the surgery construction.
Each standard surgery is performed on an (ε, k)-hypersurface neck N0 of length L which

encloses a solid tube G0 : B̄n
1 × [0, L] → Rn+1. As in Chapter 2, we denote by U+ the

two regions (diffeomorphic to discs) introduced by each standard surgery (see Section 2.2
above). By construction, U+ ⊂ G0(B̄

n
1 × [0, L]) and therefore

Mi
T+

j
⊂ ET−j

(this is property is clearly respected by step two of the surgery procedure in which finitely
many components are discarded). It follows that

Mi
T−j + δ

⊂⊂ ΩTj
=⇒ Mi

T+
j + δ

⊂⊂ ΩTj
.
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In fact, dist(Mi
t+δ, Γt) is non-decreasing across each surgery time Tj (j = 1, . . . , N) and

Mi
t+δ ∩ Γt = ∅ and Mi

t+δ ⊂⊂ Ωt

for all t ≥ 0.
Since there are only finitely many surgery times, and since ui and uL are continuous,

this yields the desired result.

3.3 Time-Shifting the Weak Solution

In this section we complete the proof of Theorem 3.7. Having established that ui ≤ uL on
Ω̄ for each i, our goal now is translate uL “vertically” in time until it sits below ui. We
use the “clearing out lemma” to analyse the behaviour of the weak solution locally within
hypersurface necks and control the construction in a quantitative way.

“Time-Shifting”. The heuristic idea can be described as follows. As before we have
∂Ω = M0 ∈ C(R,α) and the flow with surgeries Mi

t for a given choice of parameters. At
the first surgery time T1, more precisely at T−1 , Mi

t agrees with the classical and weak
solutions. We therefore freeze Mi

T−1
and run the weak solution a little longer, until

ΓT1+tw ⊂⊂ ΣT1 .

That is, we give the weak solution enough time to vacate the regions modified by surgery.
This must happen for some constant tw in light of the two-convex assumption on the
initial data, and we will show that tw can be controlled explicitly in terms of the surgery
parameters with the expected parabolic scaling. We then perform surgery on Mi

T−1
, after

which
Mi

T+
1
∩ ΓT1+tw = ∅.

We can then restart the two evolutions. Suppose that at any surgery time Tj we have

Mi
T+

j
∩ ΓTj+jtw = ∅ and ΓTj+jtw ⊂⊂ ΣTj

.

It follows from the avoidance principle that

Mi
t ∩ Γt+jtw = ∅

on the interval [T+
j , T−j+1] until the next surgery time. Note that we need not keep track

of the information on the precise distance between the two solutions. At each subsequent
surgery time Tj+1, we again freeze Mi

T−j+1

and apply an additional translation tw to the

weak solution. Since only finitely many surgeries are required, this process need be re-
peated only finitely many times. The fundamental quantity to control is therefore the
combined scaling of the estimates on tw and N . The length parameter L again plays a
decisive role.

This is the geometric foundation of the following barrier principle.



34 3 Approximating Weak Solutions using MCF with Surgeries

Proposition 3.11 (Lower Barrier) Let Ω, ui and uL be as in Theorem 3.7. We can
choose L = L(n) sufficiently large such that for each i we have

uL(x)−Ntw ≤ ui(x)

for all x ∈ Ω̄, where tw satisfies

tw ≤ C(n)L2(H i
1)
−2. (3.5)

The proof of Proposition 3.11 requires techniques which take into account the local ge-
ometry of necks.

Clearing Out. The “clearing out lemma” is due originally to Brakke [B, Sect. 6.3].2 It
dictates that if the surface has small area ratio with respect to a ball of given radius, then
the solution of mean curvature flow must clear out of a smaller concentric ball in a precise
quantitative way – that is, it must vacate the ball of half the radius, for example, after a
waiting time proportional to the square of that radius:

Theorem 3.12 (Clearing Out Lemma, [B]) There exist constants θ, C > 0 depending
only on n such that, for any x0 ∈ Rn+1 and ρ > 0, the estimate

|Γt0 ∩Bρ(x0)| ≤ θρn

implies
Γt ∩Bρ/2(x0) = ∅

where
t− t0 ≤ Cρ2. (3.6)

The parabolic scaling of the estimate on the waiting time is crucial; it leads to a refined
upper bound on the time tw required by the weak solution to vacate the regions modified
by surgery.

Proposition 3.11 will follow from the next two results, which we state and prove sepa-
rately, in combination with Theorem 3.12. We require a detailed description of the structure
of the regions altered by surgery.

Surgery Regions. In [HS3, Pf. of Thm. 8.1] Huisken and Sinestrari established that
at each surgery time, all points with mean curvature exceeding H i

2 are contained in one of
finitely many disjoint regionsAl, each of which either covers an entire connected component
of known topology or has a boundary ∂Al consisting of either one or two cross-sections
with mean radius

ri
∂ =

2(n− 1)

H i
1

.

More precisely, each Al must assume one of five possible structures:

2See also [ES2, Thm. 7.3], as well as [E1, Prop. 4] for a streamlined proof of the “smooth” clearing out
lemma.
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a) ∂Al = ∅

– Al is uniformly convex and diffeomorphic to Sn;

– Al is the union of a hypersurface neck N0 with two regions diffeomorphic to
discs and forms a connected component diffeomorphic to Sn;

– Al is a maximal hypersurface neck N0 which covers an entire connected compo-
nent of Mi

T−j
and is diffeomorphic to Sn−1 × S1;

b) ∂Al 6= ∅

– Al is the union of a hypersurface neck N0 with a region diffeomorphic to a disc,
and has one boundary component with mean radius ri

∂;

– Al is a hypersurface neck N0 with two boundary components (each of which has
mean radius ri

∂) and is therefore diffeomorphic to Sn−1 × [0, 1].

We denote by Gl the region enclosed by Al. According to the construction in [HS3] (see
Section 2.2 above), all connected components Al of known topology are discarded at the
surgery time. In addition, one standard surgery is performed at the nearest cross-section
to each boundary component (whenever they arise) with mean radius ri

0 = (n − 1)/H i
1,

forming a connected component diffeomorphic to Sn which is also discarded.

The points modified at a surgery time Tj therefore belong either to hypersurface necks –
these include in particular the pieces of the surface on which surgery is actually performed
– or to components of known topology which are disconnected from the rest of the surface.

The spheres and tori discarded at the surgery time are referred to in [HS3] as “compo-
nents removed afterwards”. These may contain pieces which are not cylindrical, but any
such region is also precisely controlled and will be dealt with in Lemma 3.16.

Area Estimates. We first consider the regions in which the surgery procedure takes
place. Let Tj be a surgery time and consider a hypersurface neck N0 ⊂ Mi

T−j
on which

surgery is performed. Let G0 be the associated solid tube. In the next lemma, we show
that the hypothesis (3.12) in the clearing out lemma is satisfied if we choose ρ proportional
to the surgery scale ri

0. Note that Γt = ∂∗Ωt for a.e. 0 ≤ t ≤ T – see Proposition 4.3 below.

Lemma 3.13 (Area Bound) We can choose L = L(n) sufficiently large such that the
following property holds. Let t0 be such that Γt0 = ∂∗Ωt0 and Γt0 ⊂ Σ̃i

Tj
. Then there exists

C = C(n) such that, setting
ρ0 = CL(H i

k)
−1,

we have the estimate
|Γt0 ∩Bρ0(x)| ≤ θρn

0 (3.7)

at each x ∈ G0 which is modified by the surgery procedure. Here θ = θ(n) is the constant
from Theorem 3.12.
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Proof. We are given a hypersurface neck N0 ⊂ Al on which surgery is to be performed.
Let G0 : B̄n

1 × [0, L] → Rn+1 and let x be a point in G0 which is altered by surgery; by
assumption, x ∈ G0(B̄

n
1 × [Λ, L − Λ]). Since G0 can be made as close as we wish to the

standard isometric embedding of a piece of the solid cylinder in Rn+1, we can therefore
arrange that at each such x we have

|N0 ∩B(Λri
0)(x)| ≤ 4Λωn−1(r

i
0)

n.

We choose Λ (and therefore L) sufficiently large such that

ωn−1

Λn−1
≤ θ

4

which in turn implies that

|N0 ∩B(Λri
0)(x)| ≤ θ(Λri

0)
n. (3.8)

Given this choice of Λ we set

ρ0 =
(n− 1)Λ

H i
1

.

We now verify that a weak solution trapped inside N0 satisfies (3.7) with this choice of ρ0.

In order to show that

|(Γt0 ∩G0) ∩Bρ0(x)| ≤ θρn
0 ,

we use Proposition 3.6, the area minimisation property of the weak solution. In fact, direct
comparison of the set Ωt0 ∩G0 with the perturbation Ωt0 ∪G0 yields the estimate

|(Γt0 ∩G0) ∩Bρ0(x)| ≤ |N0 ∩Bρ0(x)|

courtesy of the outward minimising property (3.3).

To complete the proof, it is necessary to confirm that no other part of the surface can
interfere with Bρ0(x) - that is,

Bρ0(x) ∩ (Ω̄t0 \G0) = ∅.

To this end, let Bg(t)(p, r) ⊂ Mn be the closed ball of radius r > 0 around p ∈ Mn with
respect to the metric g(t):

Bg(t)(p, r) = {q ∈Mn
∣∣ dg(t)(p, q) ≤ r}.

Consider a space-time point (p0, Tj) such that p0 lies at the center of the neck N0 ⊂Mi
Tj

and set

R0 =
n− 1

H(p0, Tj)
and B0 = Bg(Tj)(p0, R0L).
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Following [HS3], we define

P(p, t, r, ω) :=
{
(q, s)

∣∣ q ∈ Bg(t)(p, r), s ∈ [t− ω, t]
}

(3.9)

to be the “backward parabolic neighbourhood” of (p, t). In the context of smooth mean
curvature this definition is unambiguous, but in the setting of mean curvature flow with
surgeries further explanation is required: recall that the solution of the flow with surgeries
is a family of smooth flows

F j : Mj × [Tj−1, Tj] → Rn+1.

Away from the surgery times, the ball Bg(t)(p, r) belongs to the manifold Mj corresponding
to the interval [Tj−1, Tj] containing t. When t corresponds to a surgery time, it is necessary
to distinguish between the manifolds before and after surgery.

Assume for the moment that no point in Bg(Tj)(p0, R0L) belongs to a region which has
been modified by surgery between Tj − r2

0ω and Tj. That is, any surgery which has
occurred during this time interval only interferes with parts of the surface disjoint from
Bg(Tj)(p0, R0L).

Huisken and Sinestrari [HS3, Lem. 7.4] showed that at any point in P(p0, Tj, R0L, R2
0ω)

the Weingarten operator of the surface and its spacial derivatives (up to order k and
after appropriate rescaling) are ε-close to the corresponding quantities associated with the
standard shrinking cylinder. Furthermore, for any t ∈ [Tj − ωR2

0, Tj], they showed [HS3,
Lem. 7.9] that the point (p0, t) lies at the center of an (ε, k0−1)-hypersurface neck Nt ⊂ B0

of length at least L− 2 (here k0 ≥ 2). Let

%(r, s) =
(
r2 − 2(n− 1)s

)1/2

for s ≤ 0. Note that %(r, s) is the radius at time s of a standard n-dimensional cylinder
(with initial radius r) evolving (in s) by mean curvature flow. Then in addition the mean
radius r(z) of every cross-section of Nt is given by

%(R0, t− Tj)(1 + O(ε))

and there exists a unit vector χ ∈ Rn+1 such that

| 〈ν(p, t), χ〉 | ≤ ε

for all p ∈ Nt.
It is clear that we can therefore choose ω = C(n)L2 sufficiently large (see Remark 3.14

below) to ensure that Bρ0(x) is completely contained within the solid tube enclosed by the
hypersurface neck at the earlier time Tj − ωr2

0. Notice that no surgery can interfere with
Nt on the time interval [Tj − ωR2

0, Tj] since the curvature there is below the surgery scale
H i

1. By the curvature assumption on the initial data, each point x ∈ Rn+1 satisfies x ∈ Γt

for at most one t. This ensures that the ball does not touch any part of the weak solution
outside the neck N0 and therefore completes the proof.
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Remark 3.14 (The Parameter ω) In [HS3, Lem. 7.9] there is an additional requirement
that ω ≤ ω0 for some ω0 = ω0(n). The restriction ω0 arises from an application of the
pointwise gradient estimate [HS3, Thm. 6.1]

|∇A|2 ≤ C1|A|4 + C2

where C1 = C1(n) and C2 = C2(M0) > 0. However, careful examination of the proofs of
the gradient estimate in Chapter 6 and the neck detection results in Chapter 7 reveals that
ω0 can be ignored. This is pointed out also in [HS3, Rem. 6.2], where it is explained that
[HS3, Pf. of Thm. 6.1] is sufficient to establish the stronger estimate

|∇A|2 ≤ C1δ|A|4 + Cδ

for any δ > 0 where now Cδ = Cδ(δ,M0). Choosing δ smaller corresponds to increasing
ω0, and since δ can be made as small as we wish, this justifies our claim in the proof of
Lemma 3.13 that ω can be chosen freely.

Remark 3.15 (Alternative Proofs3) We outline an alternative approach. Let x =
(x1, . . . , xn+1) ∈ Rn+1. Ecker [E1] observed that(

d

dt
−∆

)
(|x|2 − (n− β)x2

n+1 + 2βt) ≤ 0

for 0 ≤ β ≤ n (see Dierkes [D] for the elliptic case). He therefore obtained the following
hyperboloidal barrier courtesy of the maximum principle: if

Mt0 ⊂
{
(n− 1− β)x2

n+1 ≥ x2
1 + · · ·+ x2

n − ι2
}

then
Mt+t0 ⊂

{
(n− 1− β)x2

n+1 ≥ x2
1 + · · ·+ x2

n − ι2 + 2β(t− t0)
}

for t− t0 ≤ ι2/(2β) and where 0 ≤ β < n−1. Returning to the setting of necks, we observe
that ι must be made proportional to ri

0 and therefore that the scaling of this estimate
agrees with the scaling of the estimate on the waiting time provided by the clearing out
lemma. Note that the barriers here could be constructed locally within the neck, allowing
one to circumvent the argument on the length of the backward parabolic neighbourhood.

We are now able to deal with points x ∈ Gl which do not sit inside a hypersurface neck.

Components Removed Afterwards. Let Tj be a surgery time. Consider any Al ⊂
Mi

Tj
and the corresponding domain Gl ⊂ Rn+1. Let S ⊂ Gl be the open set in Rn+1

enveloped by a component removed at the surgery time Tj. We state and prove a general
result which gives an upper bound on the extinction time

T ∗ = sup { t ≥ 0
∣∣ Γt 6= ∅ }

of the weak solution generated by any component discarded at the surgery time.

3The self-similarly shrinking torus constructed by Angenent [A1] is another well-known barrier which can
be used to estimate the time required for a neck to pinch off under mean curvature flow.
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Lemma 3.16 (Extinction of Discarded Components) Let Ω and Mi
t be as in Theorem

3.7, and let H i
1, H

i
2, H

i
3 be the corresponding parameters. Consider a discarded component

S produced by Mi
t at a surgery time (as described above) and let u∗L be the weak solution

of the level-set flow generated by S. There exists a constant C = C(n) such that

T ∗ ≤ C(H i
1)
−2 (3.10)

where T ∗ denotes the extinction time of u∗L on S.

Proof. Components removed afterwards must be diffeomorphic either to Sn or to Sn−1×S1.
The only way a copy of Sn−1 × S1 can occur is in the form of a maximal normal (ε, k)-
hypersurface neck without boundary. An argument similar to the proof of Lemma 3.13 in
combination with the clearing out lemma implies that T ∗ ≤ C1(n)(H i

k)
−2. Indeed the same

argument can be applied to any neck which arises as a subset of a discarded component.

In the remaining cases ∂S is diffeomorphic to Sn. Hence ∂S can arise (1) as a uniformly
convex component, (2) as the union of a hypersurface neck with two regions diffeomorphic
to discs or (3) as a component which becomes disconnected from the rest of the surface as
a result of surgery.

If two surgeries are performed on a region Al with two boundary components then the
resultant connected component satisfies T ∗ ≤ C1(n)(H i

k)
−2 by the argument above. The

only other regions are therefore enclosed by uniformly convex connected components or
by pieces of the surface which are diffeomorphic to discs and which border a hypersurface
neck on one side.

In case (1) we can use the curvature bound on any uniformly convex connected compo-
nent [HS3, Thm. 7.14] in combination with Myer’s theorem and an appropriate spherical
barrier to obtain T ∗ ≤ C2(n)(H i

k)
−2. To complete the proof, we must deal with the re-

maining convex regions which are diffeomorphic to discs.

Huisken and Sinestrari [HS3, Thm. 8.2] showed that a neck can either close up and end
with a convex cap or border a disc which was inserted by a previous surgery [HS3, Lem.
7.12]. In either situation we can apply the avoidance principle, this time using a straight
cylinder as a smooth barrier.

By [HS3, Pf. of Thm. 8.2] the curvature of this cylinder is bounded below by H i
1 up to

a constant. We have already established that after a time bounded above by C1(n)(H i
k)
−2

the weak solution must clear out of the bordering neck. By the curvature assumption, it
cannot re-enter the collar of the neck. Then by comparison with the smooth evolution of
a standard cylinder the weak solution (if not already empty) disappears completely after
an additional time bounded above by C3(n)(H i

k)
−2. Choosing C = max{C1, C2} + C3

completes the proof.

Proof of Proposition 3.11. Starting off as in the proof of Lemma 3.10 above, we haveMi
0 =

Γ0 = ∂Ω and therefore Ωδ ⊂⊂ Ω for all δ > 0. Theorem 3.3 gives

ΩT1+δ ⊂⊂ Σ̃i
T1
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for all δ > 0. Applying Proposition 4.3, Lemma 3.13, the clearing out lemma and Lemma
3.16 we obtain

ΩT1+δ+tw ⊂⊂ Σi
T1

for all δ > 0 and for some tw satisfying (3.5). Repeating the argument on each smooth
time interval we conclude

Ωt+δ+Ntw ⊂⊂ Σi
t

for all δ > 0 and for all t ≥ 0, and the result follows from the continuity of the level-set
functions.

Proof of Theorem 3.7. Combine Lemma 3.10, Proposition 3.11 and Corollary 2.18.

Remark 3.17 (Number of Surgeries) We emphasize the need for the estimates in Chap-
ter 2. If we replace the bound from Corollary 2.18 with the estimate

N ≤ C(H i
1)

n,

the size of the time-translation Ntw blows up as H i
1 →∞.



4 Remarks on Regularity Estimates for
MCF

Here we assemble some preliminary consequences of our undertaking in the previous chap-
ters. We begin by investigating the finer properties of our approximation result: we borrow
heavily from [S] to make precise the sense in which the surfaces Mi

t approximate the level-
sets Γt, and pass the estimates from Chapter 2 to limits. Our approach makes use of the
regularity theory developed by White [W1]. Finally, we point out an application of Remark
2.9 to recent work by Ecker [E3] on the size of the singular set at the first singular time.

4.1 Regularity Estimates for Weak Solutions

As a first consequence of Theorem 3.7 we show that the convergence of the level-set func-
tions implies convergence, in the sense of Radon measures, of the individual level-sets at
almost every time. The Lp estimates from Chapter 2 can then be passed to limits.

Preliminaries. As in Chapter 3, we have an increasing sequence of parameters {H i
k}i≥1 =

{H i
1, H

i
2, H

i
3}i≥1 and corresponding sequence Mi

t of mean curvature flows with surgeries.

Definition 4.1 (Radon Measures) We define the Radon measures

i) µi
t := Hn L ∂Σi

t ≡ Hn L ∂{ui > t},

ii) µ̃i
t := Hn L ∂Σ̃i

t ≡ Hn L ∂(int{ui ≥ t}),

iii) µt := Hn L ∂∗Ωt ≡ Hn L ∂∗{uL > t}.

It is well-known that the family of Radon measures µt is a Brakke flow [B].

Theorem 4.2 (No Mass Drop, [MS]) Let Ω ⊂ Rn+1 be open and bounded such that ∂Ω
is and smooth and has non-negative mean curvature. Then µt is continuous in time for all
0 ≤ t ≤ T .

In fact, [MS, Cor. 1.2] assumes only that ∂Ω is C1 and mean-convex with respect to the
generalised mean curvature. We recall the following properties of the level-set flow.

41
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Proposition 4.3 (Further Properties, [ES3, MS]) We have:

i) Hn+1({DuL = 0}) = 0 and in particular Hn+1({uL = t}) = 0 for all t ≥ 0;

ii) for a.e. t ≥ 0, Γt = ∂∗Ωt Hn-a.e.;

iii) for a.e. t ≥ 0, Γt is a unit density, n-rectifiable varifold with generalised mean
curvature H.

Property i) is commonly referred to as “non-fattening” and implies that

∂∗{uL > t} = ∂∗Kt

for all t ≥ 0 (recall from Remark 3.4 that Kt = {uL ≥ t}). Since u ∈ C0,1(Ω̄) ⊂ BV (Ω),
comparison of the respective co-area formulas yields∫ T

0

∣∣ {uL = t} \ ∂∗{uL > t}
∣∣ dt = 0.

We therefore have

∂∗{uL > t} = {uL = t} Hn-a.e. (4.1)

for a.e. t ≥ 0. Following [S, MS], this leads us to a natural definition.

Definition 4.4 (Set of Good Times) We denote by I ⊂ [0, T ] of the set of times such
that (4.1) holds.

That is, µt = Hn L Γt for all t ∈ I. The set I has full L1 measure and we begin by
establishing convergence for each t ∈ I.

In order to refine this result, we will require an estimate on the size of the singular set
for mean curvature flow.

Definition 4.5 (Singular Points, [W1]) A point (x, t) ∈ graph(uL) is called a regular
point if

i) there exists a neighbourhood around (x, t) in Rn+1 ×R in which the set enclosed by
graph(uL) is a smooth manifold with boundary, and

ii) the tangent plane to graph(uL) is not Rn+1 × {0}.

If (x, t) is not a regular point then it is by definition a singular point.

The set of singular points is then called the singular set sing(uL) of the weak solution.
The following result is White’s famous theorem controlling the size of the singular set, see
[W1].
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Theorem 4.6 (Singular Set, [W1]) The singular set

sing(uL) ⊂ graph(uL)

has parabolic Hausdorff dimension at most n − 1. In particular, sing(Γt) is closed and
satisfies

Hn(sing(Γt)) = 0

for all t > 0. Here sing(Γt) = {x ∈ Ω | (x, t) ∈ sing(uL)} ⊂ Rn+1 denotes the t-level-set of
sing(uL).

Remark 4.7 (Projection onto Rn+1) If we denote by ΩS the projection of sing(uL) onto
Ω, then ΩS is closed and satisfies

Hn(ΩS) = 0.

Finally, for convenient reference, we include a statement of Brakke’s local regularity
theorem [B, 6.11] (see also [I2, Thm. 12.1]). In the following form it applies only to
smooth solutions Mt of mean curvature flow and can be found in [E2, Sect. 3].

Theorem 4.8 (Brakke’s Regularity Theorem, [B]) There exist constants θ, C > 0 de-
pending only on n such that if for some ρ > 0 and for all t ∈ [T − Cρ2, T ] we have

i) |Mt ∩Bρ(x0)| ≤
3

2
ωnρ

n,

ii)
ωn

2

(ρ

2

)n

≤ |Mt ∩Bρ/2(x0)| ≤
3ωn

2

(ρ

2

)n

, and

iii)

∫
A

(x− x0)
2
n+1 dµ ≤ θρn+2,

where A = MT−Cρ2 ∩Bρ(x0), then x0 is a regular point.

Mass Bounds and Weak Compactness. From Remark 2.17 we have the uniform
area bound

|Mi
t| ≤ |M0| ≤ α2R

n (4.2)

for all 0 ≤ t ≤ T . By the weak compactness theorem for Radon measures there exist
subsequences {µij

t }j≥1, {µ̃
ij
t }j≥1 and Radon measures µ, µ̃ such that

µ
ij
t → µ as measures, (4.3)

µ̃
ij
t → µ̃ as measures, (4.4)

for all 0 ≤ t ≤ T . Theorem 3.7 then implies that

spt(µ) ⊂ {uL = t} and spt(µ̃) ⊂ {uL = t}. (4.5)
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We now want to establish that µ = µ̃ = µt for all t ∈ I and that this property is in-
dependent of the choice of subsequence. We will follow Schulze [S, Pf. of Prop. 5.10] –
this requires us to prove that the solution of mean curvature flow with surgeries remains
outward minimising after each surgery time.

Outward Minimising. Recall from Definition 3.5 that a set E ⊂ U is outward min-
imising in some open set U if

|∂∗E ∩K| ≤ |∂∗F ∩K|

for any F ⊃ E such that F \ E ⊂⊂ U and any compact set K ⊃ (F \ E). The proof is
not quite straightforward, however, since the condition is global in nature and the solution
of mean curvature flow with surgeries will in general become disconnected after the first
surgery time. Our approach makes use of well-known non-existence results for minimal
surfaces and the length parameter L again plays a crucial role.

Proposition 4.9 (Outward Minimising) Let Ω ⊂ Rn+1 be an open bounded set such
that ∂Ω ∈ C(R,α) is connected and consider the solution Mi

t of mean curvature flow with
surgeries starting from M0 = ∂Ω. We can choose L = L(n) sufficiently large such that the
sets

Σ̃i
t = int{ui ≥ t} and Σi

t = {ui > t}
are outward minimising in Ω for all 0 ≤ t ≤ TN .

Proof. It is well known that the solution of classical mean curvature flow starting from
any mean-convex initial data ∂Ω preserves the outward minimising property for as long as
it exists (this follows from smoothness, (?), the curvature assumption and the divergence
theorem).

Hence Mi
T−1

is outward minimising and we now want to show that this property is

preserved by surgery and again holds true for Mi
T+
1

. Since Mi
T−1

is a valid comparison set,

we must first check that the area of the surface Mi
T+
1

after surgery is strictly less than that

of Mi
T−1

. To this end we recall from [HS3] (see p = 0 case of Lemma 2.13 above) that∣∣Mi
T−1

∣∣− ∣∣Mi
T+
1

∣∣ ≥ C(H i
k)
−n.

Now Mi
T+
1

is obtained from Mi
T−1

by performing surgery on finitely many independent

hypersurface necks and by subsequently discarding finitely many connected components of
known topology. Since Mi

T−1
is outward minimising, any F ⊃ Σi

T1
with |F | ≤ |Mi

T+
1

| must

in turn satisfy
F ⊂ (Σ̃i

T1
∪Mi

T−1
)

and ∂∗F must agree with Mi
T−1

outside the regions altered at the surgery time.

Consider any hypersurface neck N0 ⊂ Mi
T−1

in normal form enclosing a solid tube G0,

and suppose that F minimises area among all surfaces outside Mi
T+
1

. Then F ∩ G0 is a
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properly embedded minimal surface in G0 \ Ū+ where Ū+ represents the closed domain
bounded by the surgery caps U+ introduced during the surgery procedure.

We claim that there exists no connected minimal surface joining the two surgery caps.
This follows from well-known non-existence results for minimal surfaces joining two suffi-
ciently separated boundary components. We again must choose our length parameter L
sufficiently large (but depending only on n), and the claim then follows for example from
the elliptic result of Dierkes [D], or from Ecker’s parabolic generalisation as described in
Remark 3.15.

Finally, to see that no minimal surface can extend from U+ into G0 \ Ū+ without joining
the two ends, we note that G0 can be foliated by surgery caps and that this would produce
a contradiction with the maximum principle.

Since, by assumption, M0 is connected, the only way that a component can become
disconnected from the rest of the surface is as a result of surgery (unless the entire surface
is discarded at the first surgery time). Removing any such component therefore preserves
the outward minimising property. We can then repeat our argument a finite number of
times on each smooth time interval and at each subsequent surgery time.

Remark 4.10 (Limits of Outward Minimising Sets) Schulze [S, Lem. 5.6] showed that
the outward minimising property is preserved by L1

loc convergence. Note that the uniform
convergence ui → uL implies L1 convergence Σi

t, Σ̃
i
t → Ωt courtesy of Proposition 4.3.

Weak Convergence. We now have the necessary estimates – namely Theorem 3.7 and
Proposition 4.9 – to follow [S, Pf. of Prop. 5.10] and establish that µi

t, µ̃
i
t → µt. We briefly

review the argument for µi
t (the same approach of course works for µ̃i

t).

It follows from (4.3) and Proposition 4.9 that µ is absolutely continuous with respect
to Hn-measure. Then in view of (4.5) and (4.1), the differentiation theorem for Radon
measures gives

µ = µt L f

where

f(x) = lim
ρ→0

µ(Bρ(x))

µt(Bρ(x))
Hn-a.e.

Lower semi-continuity implies f ≥ 1 Hn-a.e. x ∈ Γt. Futhermore, a rescaling argument
can be combined with the outward minimising property to show that f ≤ 1 for Hn-a.e.
x ∈ ∂∗Ωt. These estimates are independent of the subsequence and therefore

µi
t → µt and µ̃i

t → µt (4.6)

for all t ∈ I in the sense of measures.

We obtain the desired convergence for all t ∈ [0, T ] courtesy of Theorem 4.2 .



46 4 Remarks on Regularity Estimates for MCF

Allard’s Compactness Theorem. We denote by δV the first variation of a varifold
V . Note that if V is the multiplicity-one varifold associated with a smooth, embedded
manifold M (possibly with boundary) and if U ⊂ Rn+1 is an open, bounded set then

|δV |(U) = Hn−1(∂M ∩ U) +

∫
M∩U

|H| dµ.

We recall Allard’s compactness theorem for integral varifolds (see [I2, 1.9]).

Theorem 4.11 (Allard’s Compactness Theorem) Let {µi}i≥1, where µi = µVi
= |Vi|, be

a sequence of integer n-rectifiable Radon measures with corresponding integer n-rectifiable
varifolds Vi = Vµi

satisfying

sup
i≥1

(µi(U) + |δVi|(U)) < ∞

for each U ⊂⊂ Rn+1. Then there exists an integer n-rectifiable Radon measure µ = µV

and associated integer n-rectifiable varifold V = Vµ such that

i) µij → µ as Radon measures,

ii) Vij → V as varifolds,

iii) δVij → δV as vector-valued Radon measures,

iv) |δV | ≤ lim infij→∞ |δVij | as Radon measures,

for some subsequence ij.

We want to apply Theorem 4.11 to the special case in which each Vi is the multiplicity-
one varifold corresponding to a smooth, closed manifold. From Theorem 2.16 we have∫

Mi
t

Hp dµ ≤ C(T )

for all t ≥ 0 and all p < n− 1. Applying Hölder’s inequality and (4.2) we obtain∫
Mi

t

H dµ ≤ (α2R
n)

p−1
p

(∫
Mi

t

Hp dµ

) 1
p

(4.7)

≤ C(T ), (4.8)

for all t ≥ 0. Using Allard’s compactness theorem and (4.6) we can find a subsequence

{∂Σ
ij
t }j≥1, {∂Σ̃

ij
t }j≥1 such that

∂Σ
ij
t → Γt as varifolds,

∂Σ̃
ij
t → Γt as varifolds.

This is again independent of the choice of subsequence.
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Corollary 4.12 (Weak Convergence) For all 0 ≤ t ≤ T we have

µi
t → µt as Radon measures,

µ̃i
t → µt as Radon measures,

∂Σi
t → Γt as varifolds,

∂Σ̃i
t → Γt as varifolds.

This will allow us in particular to pass the regularity estimates from Chapter 2 to limits.

Regularity Estimates. Recall that if the total first variation |δV | is a Radon measure
and is absolutely continuous with respect to µ, then the generalised mean curvature vector
H = Hµ is defined by

δV (X) = −
∫
〈H, X〉 dµ

for all X ∈ C1
c (Rn+1, Rn+1). Theorem 2.16, Hölder’s inequality and Theorem 4.11 imply

that Γt carries a generalised mean curvature vector H for all 0 ≤ t ≤ T .

We therefore have from Allard’s compactness theorem and Corollary 4.12 that

µi
t L ~Hi → µt LH as vector-valued Radon measures, (4.9)

where ~Hi(p, t) = −Hi(p, t)νi(p, t) denotes the mean curvature vector associated with Mi
t.

We hereafter suppress the subscript i.

Again following [S], we can therefore quote Hutchinson [Hu, Thm. 4.4.2] to obtain the
lower semi-continuity property∫

Γt

|H|p dµ ≤ lim inf
i→∞

∫
Mi

t

Hp dµ, 0 ≤ t ≤ T, (4.10)

for all p < n− 1. We have arrived at the following result:

Proposition 4.13 (Lp Estimate for Weak Solution) We have∫
Γt

|H|p dµ ≤ C(T ), 0 ≤ t ≤ T, (4.11)

for all p < n− 1.
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Remark 4.14 (p > n and Allard’s Regularity Theorem) Also from Theorem 2.16 we
have the uniform double integral estimate∫ T

0

∫
Mi

t

Hp+2 dµ dt ≤ C(T )

for all p < n− 1. Fatou’s lemma yields

lim inf
i→∞

∫
Mi

t

Hp+2 dµ < ∞, a.e. 0 ≤ t ≤ T.

Then from (4.9) and [Hu, Thm. 4.4.2] we find∫
Γt

|H|p+2 dµ ≤ lim inf
i→∞

∫
Mi

t

Hp+2 dµ, a.e. 0 ≤ t ≤ T.

Applying Fatou’s lemma once more gives∫ T

0

∫
Γt

|H|p+2 dµ dt ≤ lim inf
i→∞

∫ T

0

∫
Mi

t

Hp+2 dµ dt

≤ C(T ).

Since this holds for all p < n− 1 we can invoke Allard’s regularity theorem.

The estimate (4.10) can in fact be turned into an equality using Theorems 4.6 and 4.8 –
or alternatively using the additional estimates available in Theorem 2.16 (see Remark 4.17).

Higher Convergence. In a first step we show that, away from the singular set, the
surfaces Mi

t converge smoothly to Γt.

Lemma 4.15 (Smooth Convergence) We have

Mi
t → Γt smoothly

away from ΩS.

Proof. We follow [MS, Pf. of Lem. 3.3]. Definition 4.5 says that for each x0 ∈ Ω\ΩS there
exists a ball Bρ(x0) such that the level-sets {uL = t} evolve smoothly inside Bρ(x0).

We can therefore apply Corollary 4.12 and Brakke’s local regularity theorem in combi-
nation with a rescaling argument similar to [E2, Pf. of Prop. 3.3] to obtain the lemma.
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Corollary 4.16 (Lp Convergence) We have∫
Mi

t

Hp dµ →
∫

Γt

|H|p dµ, 0 ≤ t ≤ T,

for all p < n− 1.

Proof. By Hölder’s inequality,

∫
Mi

t∩A

Hp dµ ≤
∣∣Mi

t ∩ A
∣∣1− p

q

(∫
Mi

t∩A

Hq dµ

) p
q

for any p < q < n − 1 and for all 0 ≤ t ≤ T . Given any δ > 0, we can therefore use
Theorem 4.6 and Theorem 2.16 to find a neighbourhood B of sing(Γt) such that

lim
i→∞

∫
Mi

t∩B

Hp dµ ≤ Cδ (4.12)

for all p < n− 1 and for all 0 ≤ t ≤ T . Lemma 4.15 then gives the desired result.

Note that the same approach in combination with Remark 4.14 gives∫
M

ij
t

Hp+2 dµ →
∫

Γt

|H|p+2 dµ, a.e. 0 ≤ t ≤ T,

for all p < n− 1 with respect to a subsequence ij.

Remark 4.17 (Rellich’s Theorem) Recall from Theorem 2.16 that∫ T

0

∫
Mi

t

∣∣∣∇(H p
2

)∣∣∣2 dµ dt ≤ C(T ).

Fatou’s lemma yields

lim inf
i→∞

∫
Mi

t

∣∣∣∇(H p
2

)∣∣∣2 dµ < ∞ a.e. 0 ≤ t ≤ T.

For each such t, there is a subsequence ij such that

sup
j≥1

∫
M

ij
t

∣∣∣∇(H p
2

)∣∣∣2 dµ < ∞.

We can therefore combine Rellich’s theorem with Remark 4.14, Allard’s regularity theorem
and (4.12) as in [S] to obtain the desired convergence with respect to a subsequence for
a.e. t.



50 4 Remarks on Regularity Estimates for MCF

4.2 The Size of the Singular Set at the First Singular
Time

This final section is concerned with the special circumstance in which a smooth solution of
mean curvature flow develops a singularity for the first time. We describe an application of
Remark 2.9 to recent work by Ecker [E3] on the size of the singular set at the first singular
time.

The First Singular Time. Let Mt be a smooth solution of mean curvature flow on
some time interval 0 ≤ t < t0. We adapt Definition 4.5 to this setting:

Definition 4.18 (First Singular Set, [E3]) The space-time point (x0, t0) is singular if

i) there is a sequence of times tj ↗ t0 and points xj ∈Mtj such that xj → x0, and

ii) there is no smooth extension of Mt beyond t0 in any neighbourhood of x0.

We denote by sing(Mt0) ⊂ Rn+1 the set of points x ∈ Rn+1 such that (x, t0) is a singular
point. If sing(Mt0) 6= ∅, we call t0 the first singular time.

In [E3, Thm. 1.1], Ecker showed that the integrability condition∫ t0

0

∫
Mt

|A|p dµ dt < ∞

implies

Hn+2−p(sing(Mt0)) = 0

for all 2 ≤ p ≤ n + 2 and

sing(Mt0) = ∅

for p ≥ n + 2.

Now let M0 ∈ C(R,α) and consider the smooth solution Mt of mean curvature flow on
0 ≤ t < t0. From Remark 2.9 we have∫ t0

0

∫
Mt

|A|n+1−ε dµ dt ≤ C(n)

ε
exp

(
pCε

R2
t0

)∫
M0

Hn−1−ε dµ

for all ε > 0 where C(n) = 2(n − 1)np/2+1 and Cε = Cε(M0). Applying Ecker’s theorem
we find in particular that

H1+ε(sing(Mt0)) = 0

for all ε > 0. This gives rise to the following corollary [E3, Cor. 1.7].



4.2. The Size of the Singular Set at the First Singular Time 51

Corollary 4.19 (First Singular Set, [E3]) Let M0 ∈ C(R,α) and consider the smooth
solution Mt, 0 ≤ t < t0, of mean curvature flow starting from M0. Then we have

dim(sing(Mt0)) ≤ 1

where dim(sing(Mt0)) denotes the Hausdorff dimension of the set sing(Mt0).

Remark 4.20 (Examples) It is useful to review relevant known examples. In dimension
two, the symmetric torus of positive mean curvature collapses onto a circle at a finite
extinction time T . In this case,

H1(sing(MT )) < ∞.

Turning briefly to the non-compact setting, it is of course well-known that the round
cylinder Sn−1

r0
× R with initial radius r0 contracts to a line at time

T =
r2
0

2(n− 1)
.

In the closed case, however, the precise description of the structure of singular regions
provided by Huisken and Sinestrari [HS3] leads one to speculate that the H1-measure of
the singular set is in fact finite.



.
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