Photolumineszenz von epitaktischen Cu(In,Ga)Se₂-Schichten

von Niklas Rega

Im Fachbereich Physik der Freien Universität Berlin eingereichte **Dissertation**

angefertigt am Hahn–Meitner–Institut, Berlin

Arbeit eingereicht am:	03.04.2004
Aiben eingereicht am.	05.04.2004

Tag der mündlichen Prüfung:05.05.2004

1. Gutachter:

Prof. Dr. M. Ch. Lux-Steiner

2. Gutachter:

Abstract

In this thesis I report about the photoluminescence (PL) of epitaxial CuInSe₂- and Cu(In,Ga)Se₂-layers. The motivating question is:

Why CuGaSe₂ solar cells do not even reach an efficiency of 10%, while the related solar cells made of Cu(In,Ga)Se₂ are so excellent ($\eta > 19\%$ [Ram03])? Is there a difference in the defect structure of the doping defects between the chalcopyrites CuInSe₂, Cu(In,Ga)Se₂ and CuGaSe₂, that would explain this difference?

The work starts at a former study about the PL of $CuGaSe_2$ from A. Bauknecht [Bau99]

The Cu(In,Ga)Se₂-layers are grown on (001) GaAs by metal organic vapor phase epitaxy (MOV-PE). The optimum growth temperature T_G depends on the Ga-content in the Cu(In,Ga)Se₂-layer: $T_G = 500^{\circ}C$ for [Ga]/([Ga] + [In]) < 0.3 and $T_G = 570^{\circ}C$ for [Ga]/([Ga] + [In]) > 0.3.

The (001) orientated epitaxial growth is verified by electron channeling pattern (ECP) and electron diffraction pattern (EDP). Crystalline quality of the Cu(In,Ga)Se₂-layers and the lattice parameters *a* and *c* are determined by high resolution x-ray diffraction (HRXRD) and reciprocal space mappings (RSM). Cu(In,Ga)Se₂-layers grown at a growth temperature of $T_G = 570^{\circ}C$ show a Ga-gradient in the interface region between Cu(In,Ga)Se₂ and GaAs , as well as a CuGaSe₂-intermediate layer directly at the interface, as detected by EMPA in a scanning transmission electron microscope (STEM) and in high resolution diffractograms.

The main result of the PL study is: The intrinsic doping defects in CuInSe₂, Cu(In,Ga)Se₂ and CuGaSe₂ are the same. The defect energy increases with the Ga-content of the layers according to the hydrogen model of shallow defects.

In detail the temperature dependence and excitation dependence PL-spectra of CuInSe₂-layers identify two donor acceptor pair transitions DA1 at 0.991eV and DA2 at 0.972eV. The shape of the PLspectrum and relative ratio of the emissions depends on the [Cu]/[In]-ratio in the CuInSe₂-layer. In Curich material the DA2 emission is dominant, in near stoichiometric material the DA1 emission. Cupoor CuInSe₂-layers show a red-shifted and asymmetrically broadened emission, which is due to the DA1 transition in fluctuating potentials caused by a high degree of compensation. The defect energies for the acceptors are $E_{A1} = 42 \pm 5meV$ and $E_{A2} = 56 \pm 22meV$. The corresponding donor defect energy is $E_D = 12 \pm 10meV$.

For Cu(In,Ga)Se₂ the PL-emissions shift to higher energies with increasing Ga-content as the band gap widens. One donor acceptor pair emission is detected, which broadens in layers with a medium Gacontent $[Ga]/([Ga] + [In]) \approx 0.3 - 0.7$ due to statistical disorder. The PL-spectrum for Cu(In,Ga)Se₂layers with a Ga content of $[Ga]/([Ga] + [In]) \approx$ 0.8 are overlapped by the GaAs-substrate luminescence. cathodoluminescence measurements at the layer cross section with a resolution of 30*nm* are performed to study the layer luminescence.

The defect correlated emission is caused by a DA1-like transmission. The acceptor defect energy is increasing with increasing Ga-content as for a hydrogen-like defect.

For the first time excitonic luminescence is detected by PL and CL measurements at Cu(In,Ga)Se₂-layers with small deviations from the pure ternary compositions ([Ga]/([Ga] + [In]) < 0.3 or [Ga]/([Ga] + [In]) > 0.7).

To answer the initial question: it is not a difference in the defect structure that causes the difference in efficiencies between CuGaSe2 and Cu(In,Ga)Se2 solar cells.

Kurzzusammenfassung

In dieser Arbeit werden Photolumineszenzuntersuchungen an epitaktischen Cu(In,Ga)Se₂-Schichten vorgestellt. Die Untersuchung ist durch folgende Beobachtung motiviert: CuGaSe₂ basierte Solarzellen ereichen noch nicht mal einen Wirkungsgrad von 10%, während die Effizienz von ähnlichen Solarzellen aus Cu(In,Ga)Se₂ mehr als 19% erreicht [Ram03]. Es stellt sich also die Frage: Gibt es fundamentale Unterschiede in der Defektstruktur der Chalkopyrite CuInSe₂, Cu(In,Ga)Se₂ und CuGaSe₂, die diesen Unterschied erklären können? Die Arbeit basiert auf den Ergebnissen einer früheren Untersuchung von A. Bauknecht [Bau99] an CuGaSe₂.

Die Cu(In,Ga)Se₂-Schichten sind auf (001)-GaAs mittels metallorganischr Gasphasen Epitaxie abgeschieden worden. Die optimale Wachstumstemperatur ist dabei abhängig vom Ga-Gehalt: $T_G = 500^{\circ}C$ für [Ga]/([Ga] + [In]) < 0.3 und $T_G = 570^{\circ}C$ für [Ga]/([Ga] + [In]) > 0.3.

Das (001)-orientierte epitaktische Wachstum ist mit *electron channeling pattern* (ECP) und *electron diffraction pattern* (*EDP*) nachgewiesen worden. Die kristalline Qualität und die Gitterkonstanten *a* und *c* sind durch hochauflösende Röntgenbeugung (HRXRD) und *reciprocal space mappings* (RSM) bestimmt worden. Die Cu(In,Ga)Se₂-Schichten, die bei $T_G = 570^{\circ}C$ abgeschieden worden sind, weisen einen Ga-Gradienten im Bereich der Grenzfläche zum GaAs auf, sowie eine CuGaSe₂-Zwischenschicht direkt an der Grenzfläche, wie zum einen mit EDX an einem *scanning transmission electron mircoscope* (STEM) als auch in hochauflösenden Diffraktogrammen detektiert worden ist.

Das wichtigste Resultat der PL-Untersuchungen ist: Die intrinsischen dotierenden Defekte in CuInSe₂, Cu(In,Ga)Se₂ und CuGaSe₂ sind die gleichen. Die Defektenergie nimmt mit steigendem Ga-Gehalt zu, wie es für wasserstoffartige Defekte erwartet wird.

Temperatur- und Anregungsleistungsabhängige PL-Messungen zeigen, dass die beobachteten Emissionen in CuInSe₂-Schichten zwei Donator-Akzeptor-Paar Übergängen DA1 bei 0.991*eV* und DA2 bei 0.972*eV* zugeordnet werden können. Der Verlauf des PL-Spektrums und das Verhältnis der Intensitäten der Emissionen hängt vom [Cu]/[In]-Verhältnis in der CuInSe₂-Schicht ab. In Cu-reich Material ist die DA2-Emission dominant, in nah-stöchiometrischen Material die DA1-Emission. Cu-arme CuInSe₂-Schichten zeigen eine rotverschobene und asymmetrisch verbreiterte Emission, welche dem DA1-Übergang in fluktuierenden Potenzialen entspricht, die durch einen hohen Kompensationsgrad bedingt sind. Die Defektenergien der an den DAP-Übergängen beteiligten Akzeptoren sind $E_{A1} = 42 \pm 10 meV$ und $E_{A2} = 55 \pm 22meV$. Die Defektenergie des dazugehörigen Donators beträgt $E_D = 12 \pm 10 meV$. Bei Cu(In,Ga)Se₂ wird eine Verschiebung der PL-Emissionen zu höheren Energien mit steigendem Ga-Gehalt entsprechend der Bandlücke beobachtet. Es wird ein DAP-Übergang beobachtet, der für mittlere Ga-Gehalte $[Ga]/([Ga] + [In]) \approx 0.3 - 0.7$ stark verbreitert erscheint, was durch statistische Unordnung bedingt ist. Die PL-Spektren der Cu(In,Ga)Se₂ -Schichten mit einem Ga-Gehalt von $[Ga]/([Ga] + [In]) \approx 0.8$ sind von GaAs-Substrat-Lumineszenz überlagert. Kathodolumineszenzmessungen am Querschnitt der Schichten mit einer Auflösung von 30nm erlauben eine Trennung von Schicht- und Substrat-Lumineszenz.

Die defektkorrelierte Emission der Cu(In,Ga)Se₂ -Schichten ist durch einen DA1-ähnlichen Übergang verursacht. Die Defektenergie des Akzeptors nimmt mit ansteigendem Ga-Gehalt der Cu(In,Ga)Se₂-Schicht zu, wie für einen wasserstoffartigen Defekt erwartet wird.

Zum ersten Mal ist exzitonische Lumineszenz in PL- und CL-Messungen an Cu(In,Ga)Se₂-Schichten mit geringen Abweichungen von der reinen ternären Komposition beobachtet worden. ([Ga]/([Ga] + [In]) < 0.3 oder [Ga]/([Ga] + [In]) > 0.7).

Die Antwort auf die eingangs gestellte Frage ist also: Es ist kein Unterschied in der Defektstruktur, welcher den großen Unterschied in der Effizienz der CuGaSe₂ und Cu(In,Ga)Se₂ Solarzellen bewirkt. Der Unterschied der Effizienz in Cu(In,Ga)Se₂ und CuGaSe₂ Solarzellen ist nicht durch einen Unterschied in der Struktur der dotierenden Defekte verursacht.

Inhaltsverzeichnis

1	Einl	eitung		1
2	Gru	ndlage	n	3
	2.1	Das C	nalkopyrit-	
		Krista	lsystem $Cu(In,Ga)Se_2$	3
		2.1.1	Kristallstruktur	3
		2.1.2	Phasendiagramm von Cu(In,Ga)Se ₂	4
		2.1.3	Bandstruktur von Cu(In,Ga)Se ₂	5
	2.2	Hetero	expitaxie von	
		Cu(In,	$Ga)Se_2$	7
	2.3	Grund	lagen der Messmethoden	8
		2.3.1	Grundlagen der Kompositionsbestimmungen an Dünnschichten	8
		2.3.2	Röntgendiffraktometrie (XRD)	11
		2.3.3	Kristallphasenanalyse mittels $\theta - 2\theta$ Diffraktometrie	12
		2.3.4	Die Methode des 'Reciprocal Space Mappings' (RSM)	13
	2.4	Theori	e der strahlenden Übergänge in Halbleitern	14
		2.4.1	Strahlende Übergänge in schwach kompensierten Halbleitern	15
		2.4.2	Strahlende Übergänge in stark kompensierten Halbleitern	19
3	Präp	paratio	n epitaktischen CulnSe ₂ - und Cu(In,Ga)Se ₂ -Schichten auf GaAs	21
3	Prä 3.1	p aratio Der M	n epitaktischen CulnSe ₂ - und Cu(In,Ga)Se ₂ -Schichten auf GaAs OVPE Prozess	21 22
3	Präj 3.1	p aratio Der M 3.1.1	n epitaktischen CulnSe ₂ - und Cu(ln,Ga)Se ₂ -Schichten auf GaAs OVPE Prozess	21 22 22
3	Präj 3.1	p aratio Der M 3.1.1 3.1.2	n epitaktischen CulnSe ₂ - und Cu(ln,Ga)Se ₂ -Schichten auf GaAs OVPE Prozess	21 22 22 24
3	Präj 3.1	Der M 3.1.1 3.1.2 3.1.3	n epitaktischen CulnSe ₂ - und Cu(In,Ga)Se ₂ -Schichten auf GaAs OVPE Prozess	21 22 22 24 24
3	Präj 3.1	Der M 3.1.1 3.1.2 3.1.3 3.1.4	n epitaktischen CulnSe ₂ - und Cu(ln,Ga)Se ₂ -Schichten auf GaAs OVPE Prozess Prinzip des MOVPE Prozesses Metallorganische Precursor Substrat Prozessparameter	21 22 22 24 24 24
3	Prä 3.1 3.2	Der M 3.1.1 3.1.2 3.1.3 3.1.4 Einflus	n epitaktischen CulnSe ₂ - und Cu(In,Ga)Se ₂ -Schichten auf GaAs OVPE Prozess Prinzip des MOVPE Prozesses Metallorganische Precursor Substrat Prozessparameter Ses der Prozessparameter auf die Cu(In,Ga)Se ₂ -Schichten	21 22 24 24 24 24 26
3	Präj 3.1 3.2	Der M 3.1.1 3.1.2 3.1.3 3.1.4 Einflus 3.2.1	n epitaktischen CulnSe ₂ - und Cu(ln,Ga)Se ₂ -Schichten auf GaAs OVPE Prozess Prinzip des MOVPE Prozesses Metallorganische Precursor Substrat Prozessparameter Sis der Prozessparameter auf die Cu(In,Ga)Se ₂ -Schichten Kompositions- und Qualitätskontrolle der CuInSe ₂ -Schichten	21 22 24 24 24 24 26 26
3	Prä 3.1 3.2	Der M 3.1.1 3.1.2 3.1.3 3.1.4 Einflus 3.2.1 3.2.2	n epitaktischen CulnSe ₂ - und Cu(In,Ga)Se ₂ -Schichten auf GaAs OVPE Prozess Prinzip des MOVPE Prozesses Metallorganische Precursor Substrat Prozessparameter State Prozessparameter auf die Cu(In,Ga)Se ₂ -Schichten Kompositions- und Qualitätskontrolle der CuInSe ₂ -Schichten Kompositions- und Qualitätskontrolle der Cu(In,Ga)Se ₂ -Schichten	21 22 24 24 24 24 26 26 27
3	Prä 3.1 3.2 Stru	Der M 3.1.1 3.1.2 3.1.3 3.1.4 Einflus 3.2.1 3.2.2	n epitaktischen CulnSe ₂ - und Cu(In,Ga)Se ₂ -Schichten auf GaAs OVPE Prozess Prinzip des MOVPE Prozesses Metallorganische Precursor Substrat Prozessparameter Prozessparameter Ses der Prozessparameter auf die Cu(In,Ga)Se ₂ -Schichten Kompositions- und Qualitätskontrolle der CuInSe ₂ -Schichten Kompositions- und Qualitätskontrolle der Cu(In,Ga)Se ₂ -Schichten	 21 22 24 24 24 26 26 27 33
3	Präj 3.1 3.2 Stru 4.1	paratio Der M 3.1.1 3.1.2 3.1.3 3.1.4 Einflus 3.2.1 3.2.2 Ikturell Morph	n epitaktischen CulnSe ₂ - und Cu(In,Ga)Se ₂ -Schichten auf GaAs OVPE Prozess Prinzip des MOVPE Prozesses Metallorganische Precursor Substrat Prozessparameter Prozessparameter Sis der Prozessparameter auf die Cu(In,Ga)Se ₂ -Schichten Sompositions- und Qualitätskontrolle der CuInSe ₂ -Schichten Kompositions- und Qualitätskontrolle der Cu(In,Ga)Se ₂ -Schichten Eigenschaften der epitaktischen CuInSe ₂ - und Cu(In,Ga)Se ₂ -Schichten ologie und Wachstum der CuInSe ₂ - und Cu(In,Ga)Se ₂ -Schichten	 21 22 24 24 24 26 26 27 33 33
3	 Präg 3.1 3.2 Strug 4.1 	paratio Der M 3.1.1 3.1.2 3.1.3 3.1.4 Einflus 3.2.1 3.2.2 Ikturell Morph 4.1.1	n epitaktischen CulnSe ₂ - und Cu(In,Ga)Se ₂ -Schichten auf GaAs OVPE Prozess Prinzip des MOVPE Prozesses Metallorganische Precursor Substrat Prozessparameter Substrat Prozessparameter auf die Cu(In,Ga)Se ₂ -Schichten Sos der Prozessparameter auf die Cu(In,Ga)Se ₂ -Schichten Kompositions- und Qualitätskontrolle der CuInSe ₂ -Schichten Kompositions- und Qualitätschen CuInSe ₂ - und Cu(In,Ga)Se ₂ -Schichten ologie und Wachstum der CuInSe ₂ - und Cu(In,Ga)Se ₂ -Schichten Morphologie des Schichtquerschnitts	21 22 24 24 24 26 26 27 33 33 34
3	 Präj 3.1 3.2 Stru 4.1 	paratio Der M 3.1.1 3.1.2 3.1.3 3.1.4 Einflus 3.2.1 3.2.2 Ikturell Morph 4.1.1 4.1.2	n epitaktischen CulnSe ₂ - und Cu(ln,Ga)Se ₂ -Schichten auf GaAs OVPE Prozess Prinzip des MOVPE Prozesses Metallorganische Precursor Substrat Prozessparameter Prozessparameter auf die Cu(In,Ga)Se ₂ -Schichten Se der Prozessparameter auf die Cu(In,Ga)Se ₂ -Schichten Kompositions- und Qualitätskontrolle der CuInSe ₂ -Schichten Kompositions- und Qualitätskontrolle der Cu(In,Ga)Se ₂ -Schichten	21 22 24 24 24 26 26 27 33 33 34 36
3	Präj 3.1 3.2 Stru 4.1	paratio Der M 3.1.1 3.1.2 3.1.3 3.1.4 Einflus 3.2.1 3.2.2 Ikturell Morph 4.1.1 4.1.2 4.1.3	n epitaktischen CulnSe ₂ - und Cu(ln,Ga)Se ₂ -Schichten auf GaAs OVPE Prozess Prinzip des MOVPE Prozesses Metallorganische Precursor Substrat Prozessparameter Prozessparameter Ses der Prozessparameter auf die Cu(In,Ga)Se ₂ -Schichten Kompositions- und Qualitätskontrolle der CuInSe ₂ -Schichten Kompositions- und Qualitätskontrolle der Cu(In,Ga)Se ₂ -Schichten Kompositions- und Qualitätskontrolle der Cu(In,Ga)Se ₂ -Schichten Ses eEigenschaften der epitaktischen CuInSe ₂ - und Cu(In,Ga)Se ₂ -Schichten Norphologie des Schichtquerschnitts Oberflächenmorphologie Nachweis der Epitaxie mittels ECP- und EDP-Messungen	21 22 24 24 24 26 26 27 33 33 34 36 38
4	Präg 3.1 3.2 Stru 4.1	paratio Der M 3.1.1 3.1.2 3.1.3 3.1.4 Einflus 3.2.1 3.2.2 Ikturell Morph 4.1.1 4.1.2 4.1.3 Bestim	n epitaktischen CulnSe ₂ - und Cu(ln,Ga)Se ₂ -Schichten auf GaAs OVPE Prozess Prinzip des MOVPE Prozesses Metallorganische Precursor Substrat Prozessparameter Prozessparameter auf die Cu(In,Ga)Se ₂ -Schichten Ses der Prozessparameter auf die Cu(In,Ga)Se ₂ -Schichten Kompositions- und Qualitätskontrolle der CuInSe ₂ -Schichten Kompositions- und Qualitätskontrolle der Cu(In,Ga)Se ₂ -Schichten Ses der Prozessparameter auf die Cu(In,Ga)Se ₂ -Schichten Kompositions- und Qualitätskontrolle der Cu(In,Ga)Se ₂ -Schichten Ses der Prozessparameter auf die Cu(In,Ga)Se ₂ -Schichten Kompositions- und Qualitätskontrolle der Cu(In,Ga)Se ₂ -Schichten Kompositions- und Qualitätskontrolle der Cu(In,Ga)Se ₂ -Schichten Nethersen der epitaktischen CuInSe ₂ - und Cu(In,Ga)Se ₂ -Schichten Norphologie des Schichtquerschnitts Noberflächenmorphologie Nachweis der Epitaxie mittels ECP- und EDP-Messungen mung der Ga-Verteilung in Cu(In,Ga)Se ₂ -Schichten	21 22 24 24 24 26 26 26 27 33 33 34 36 38 39
4	Präp 3.1 3.2 Stru 4.1 4.2 4.3	paratio Der M 3.1.1 3.1.2 3.1.3 3.1.4 Einflus 3.2.1 3.2.2 Ikturell Morph 4.1.1 4.1.2 4.1.3 Bestin Kristal	n epitaktischen CulnSe ₂ - und Cu(In,Ga)Se ₂ -Schichten auf GaAs OVPE Prozess Prinzip des MOVPE Prozesses Metallorganische Precursor Substrat Prozessparameter Prozessparameter Ses der Prozessparameter auf die Cu(In,Ga)Se ₂ -Schichten Kompositions- und Qualitätskontrolle der CuInSe ₂ -Schichten Kompositions- und Qualitätskontrolle der Cu(In,Ga)Se ₂ -Schichten e Eigenschaften der epitaktischen CuInSe ₂ - und Cu(In,Ga)Se ₂ -Schichten ologie und Wachstum der CuInSe ₂ - und Cu(In,Ga)Se ₂ -Schichten Norphologie des Schichtquerschnitts Oberflächenmorphologie Nachweis der Epitaxie mittels ECP- und EDP-Messungen unung der Ga-Verteilung in Cu(In,Ga)Se ₂ -Schichten Iphasen in CuInSe ₂ - und Cu(In,Ga)Se ₂ -Schichten	21 22 24 24 24 26 26 27 33 33 34 36 38 39 42

	4.4	4.3.2 Untersuchung des reziproken Gitters in [224]-Richtung	45 50
5	Opt 5.1 5.2 5.3	isch-aktive Defekte in CulnSe2 und Cu(In,Ga)Se2Photolumineszenzspektroskopie an CuInSe2 und Cu(In,Ga)Se2 - Stand der Forschung5.1.1Photolumineszenz von CuInSe25.1.2Photolumineszenz von Cu(In,Ga)Se2Kompositionsabhängigkeit der Photolumineszenzspektren epitaktischer CuInSe2- undCu(In,Ga)Se2-Schichten5.2.1Photolumineszenz von Cu(In,Ga)Se2 in Abhängigkeit vom $[Cu]/[In]$ -Verhältnis5.2.2Photolumineszenz von Cu(In,Ga)Se2 in Abhängigkeit vom $[Ga]/([Ga] + [In])$ - VerhältnisVerhältnisS.3.1Exzitonische Lumineszenz	53 54 54 58 59 59 62 65 65
	5.4	5.3.2 Defektkorrelierte Lumineszenz	69 87
6	Zus	ammenfassung & Ausblick	91
Lit	eratu	urverzeichnis	95
Ar	hang	g	103
B	Lite A.1 A.2 Mes B.1 B.2 B.3	raturwerte PL von CuInSe2 PL von Cu(In,Ga)Se2 ssmethoden Experimentelle Methoden zur Elementanalyse B.1.1 Energie-Disperive-Röntgenanalyse (EDX) und Raster-Elektronen-Mikroskop (REM) B.1.2 Punkt-EDX-Messung B.1.3 Röntgen-Fluoreszenz-Analyse (RFA) Experimentelle Methoden zur Röntgenbeugung B.2.1 θ-2θ-Diffraktogramme B.2.2 Hochauflösende Röntgenbeugungsmessungen (HR-XRD) B.2.3 Reciprocal Space Map Experimenteller Aufbau und der Fehlerabschätzung der Photolumineszenz -Messung	103 103 105 107 107 107 109 109 109 109 110 111
С	Erga	änzende Tabellen	115
Sy	mbo	lliste	117
Ve	röffe	ntlichungen und Konferenzbeiträge	123
Le	bens	slauf	125
Da	nksa	agung	127

Abbildungsverzeichnis

2.1	Chalcopyrit-Einheitszelle	3
2.2	Gitterkonstanten a und $c/2$ für Cu(In,Ga)Se ₂ mit variierendem Ga-Gehalt (GGI)	4
2.3	Schematische Darstellung der Aufspaltung von Valenz- und Leitungsband für	
	$CuInSe_2$ und $CuGaSe_2$	6
2.4	Verlauf des Valenz- und Leitungsbandes in Bezug auf das feste Defektniveau N_2	7
2.5	Schematische Darstellung des durch ein hochenergetischen Elektronenstrahl angeregten	
	Volumen nach [Wil87]	9
2.6	Bragg-Bedingung: Beugung von Röntgenstrahlen an den (<i>hkl</i>)-Gitterebenen.	11
2.7	2D Projektion des reziproken Gitters von GaAs	14
2.8	Skizze der RSM um die reziproken Gitterpunkte (004) und (224) in GaAs.	14
2.9	Ursachen der Verbreiterung eines Reflexes in einer RSM	15
2.10	Optische Übergänge in Halbleitern	15
2.11	Modell der fluktuierenden Potenziale nach Shklovskij und Efros [Shk84]	20
3.1	Skizze der MOVPE Anlage.	23
3.2	Abhängigkeit der Komposition ($[Cu]/[In]$) und der Wachstumsrate der CuInSe ₂ -Schichten	
	vom Partialdruckverhältnis p_{Cu}/p_{In} im Reaktor	28
3.3	REM-Querschnittsaufnahmen an CuInSe ₂ -Schichten	29
3.4	Abhängigkeit des GGI und der Wachstumsrate der Cu(In,Ga)Se ₂ -Schichten vom	
	$p_{Ga}/(p_{Ga}+p_{In})$	30
3.5	REM-Querschnittsaufnahmen an Cu(In,Ga)Se ₂ -Schichten mit unterschiedlichem GGI .	31
4.1	REM Aufnahmen vom Querschnitt verschiedener CuInSe2-Schichten und sowie die ent-	
	sprechenden θ -2 θ -Diffraktogramme für unterschiedliche Wachstumstemperaturen T_G .	35
4.2	Schematische Darstellung der Entstehung der Kirkendale Voids	35
4.3	REM Querschnittsaufnahmen für Cu(In,Ga)Se ₂ -Schichten mit $GGI \approx 0.8$ bei verschiede-	
	nen Wachstumstemperaturen und sowie die entsprechenden θ -2 θ Diffraktogramme	36
4.4	Oberflächenmorphologie in Abhängigkeit vom $[Cu]/[In]$ -Verhältnis	37
4.5	<i>Electron Channeling Pattern</i> Aufnahme einer CuInSe ₂ -Schicht	38
4.6	<i>Electron Diffraction Pattern</i> Aufnahme einer Cu(In,Ga)Se ₂ -Schicht	39
4.7	Element-Tiefenprofil zweier Cu(In,Ga)Se ₂ -Schichten	40
4.8	Tiefenprofil des Ga-Gehalt verschiedener Cu(In,Ga)Se ₂ -Schichten	41
4.9	Split-Pseudo-Voigt-Profil-Anpassungen an ein ω -2 θ -Diffraktogramm einer	
	$Cu(In,Ga)Se_2$ -Schicht mit $GGI = 0.73$	42
4.10	HR-XRD Messungen an $Cu(In,Ga)Se_2$ -Schichten mit variierendem Ga-Gehalt (GGI)	44
4.11	<i>c</i> -Gitterkonstanten für verschiedene Cu(In,Ga)Se ₂ -Schichten in Abhängigkeit vom inte-	
	gralen $[Ga]/([Ga]+[In])$ -Verhältnis	45

4.12 4.13	Reciprocal Space Maps zweier Cu(In,Ga)Se ₂ -Schichten	46
4.14	GGI = 0.82 und $GGI = 1.0$	48
4.15	nen Ga-Gehalt	49 50
5.1	Übersicht über in der Literatur angegebene intrinsische Defekte in CuInSe ₂ und ihre elek-	57
5.2	Auf die jeweilige Maximalintensität normierte PL-Spektren von CuInSe ₂ -Schichten mit unterschiedlichem $[Cu]/[Ln]$	57
53	unterschiedlichem $[Cu]/[In]$	61
5.5 5.4	PL-Spektren dieler Cullise ₂ -schichten nit unterschiednenen $[Cu]/[In]$ -verhäums	61
5.4 5.5	PI Spektran von Cu(In Ga)See Schichten mit unterschiedlichem CCI und unterschiedli	01
5.5	cher Wachstumstemperatur	63
5.6	Auf die jeweilige Bandlücke E_{Gap} bezogene PL-Spektren von Cu(In,Ga)Se ₂ -Schichten mit unterschiedlichem GGI und unterschiedlicher Wachstumstemperatur ($T_G = 500^{\circ}C$ bzw 570°C)	64
5.7	Exzitonische Lumineszenz in CuInSe ₂ -Schichten in Abhängigkeit von der Anregungslei-	67
58	Temperatur, und Anragungeleistungsabhöngigkeit der Intensität der bendkentennehen	07
5.8	Emissionen EX1 und EX2	67
5.9	Intensität exzitonischer PL-Intensität in Abhängigkeit von der Anregungsleistung $I(P_{Exc})$ bei $T = 10K$ (links) und der Temperatur $I(T)$ (rechts) bei $P_{exc} = 100mW$ für	
	$Cu(In,Ga)Se_2$ -Schichten mit $GGI = (a) 0.08$, (b) 0.19, (c) 0.25	69
5.10 5.11	Logarithmisch skaliertes PL-Spektrum einer Cu-reichen CuInSe ₂ -Schicht	70
	in Abhängigkeit von der Anregungsleistung	71
5.12	Abhängigkeit der energetische Lage (links) und der Intensität der DA2-Emission (a+b) und der DA1-Emissionen (c+d) von der Anregungsleistung	72
5.13	Temperaturabhängigkeit des PL-Spektrums für schwach Cu-reiche und nah-	. –
0110	stöchiometrischen CuInSe ₂ -Schichten im Bereich von $10-50K$	73
5.14	PL-Intensität der DA2- und DA1-Emission in Abhängigkeit von der Temperatur	73
5.15	Position des PL-Maximums in Abhängigkeit von der Temperatur für Cu-reiche und nah-	
	stöchiometrische CuInSe ₂ -Schichten	74
5.16	PL-Spektren einer Cu-armen CuInSe ₂ -Schicht in Abhängigkeit von der Anregungsleistung	75
5.17	Temperatur- und Anregungsleistungsabhängigkeit des PL-Spektrums verschiedener	
	Cu(In.Ga)Se ₂ -Schichten	78
5.18	PL-Spektrum einer Cu-armen Cu(In.Ga)Se ₂ -Schicht mit $GGI = 0.89$ in Abhängigkeit von	
	der Anregungsleistung P_{Fxc} und der Temperatur.	79
5.19	CL-Spektren an verschiedenen Positionen auf dem Ouerschnitt der Cu(In.Ga)Se ₂ -GaAs-	
	Schichten mit unterschiedlichen GGI_{sur}	81
5.20	HR-XR-Diffraktogramme der in Abb. 5.19 abgebildeten Cu(In,Ga)Se ₂ -Schichten.	82
5.21	CL-Spektren an verschiedenen Positionen am Ouerschnitt einer Cu(In.Ga)Se ₂ -Schicht	
	mit $GGI = 0.84$ im Vergleich mit einer PL-Messung	83
5.22	CL-Spektren in Abhängigkeit der Anregungsleistung $I_{Exc} = 2 - 25nA$ einer Cu(In.Ga)Se ₂ -	
	Schicht mit $GGI = 0.84$ im Vergleich mit der PL-Messung	83
5.23	CL-Spektren einer Cu(In,Ga)Se ₂ -Schicht mit $GGI = 0.84$ an verschiedenen Positionen	
	des Querschnitts im Vergleich mit einer PL-Messung	84

5.24	CL-Spektren einer Cu(In,Ga)Se ₂ -Schicht mit $GGI = 0.84$ in Abhängigkeit der Anre-	
	gungsleistung im Vergleich mit der PL-Messung (schwarze Kreise)	84
5.25	CL-Spektren an verschiedenen Positionen in einer Cu(In,Ga)Se ₂ -Schicht mit $GGI = 0.50$	
	im Vergleich mit einer PL-Messung (schwarze Kreise)	85
5.26	Modell zur Bandkantenverbreiterung in $Cu(In,Ga)Se_2$ bei mittleren Ga-Gehalten ($GGI =$	
	0.3 – 0.75)	86
5.27	Aus den CL- und PL-Messungen bestimmte Defektenergie des Akzeptors in Abhängig-	
	keit vom Ga-Gehalt (GGI_{sur}) , sowie die Halbswertsbreite der dazugehörigen Emission .	87
5.28	Defektmodell für das in dieser Arbeit untersuchte CuInSe2 und Cu(In,Ga)Se2 im Ver-	
	gleich zum CuGaSe ₂ nach [Bau99]	89
B.1	Skizze des experimentellen Aufbaus der HRXRD-Messungen.	111
B.2	Experimenteller Aufbau für Photolumineszenzuntersuchungen.	112
B.3	Spektrale Empfindlichkeit des Photomulitpliers und der InGaAs-Photodiode	113

Tabellenverzeichnis

2.1 2.2	Die zwölf möglichen Punktdefekte in $Cu(In,Ga)Se_2$ Bandlücken E_a , E_b , E_c , Kristallfeldaufspaltung Δ_{CF} und Spin-Bahn-Kopplung Δ_{SO} in $Cu(In Ga)Se_2$	5
2.3	Thermische Ausdehnungkoeffizienten α_L , α_a und α_c von CuInSe ₂ , CuGaSe ₂ und GaAs	8
3.1 3.2 3.3	Materialeigenschaften der verwendeten PrecursorMaterialparameter der verwendeten GaAs -WaferProzessparameter der Cu(In,Ga)Se2Präparation	25 25 26
4.1 4.2 4.3	XRD-Winkellagen 20 und Gitterebenenabstände d der CuInSe ₂ -(hkl)-Reflexe Parameter der Split-Pseudo-Voigt-Profil Anpassung aus Abbildung 4.10 Aus den RSM abgeleitete Gitterkonstanten a und c , sowie die Ga-Gehalte GGI_{RSM} der verschiedenen Cu(In,Ga)Se ₂ -Phasen	36 43 49
5.1 5.2	Theoretisch berechnete Übergangsenergien (E_D, E_A) und Bildungsenthalpien (ΔH) intrinsischer Defekte in CuInSe ₂ und CuGaSe ₂ Literaturangaben zu den Parametern: effektive Elektronenmasse m_e , Lochmasse m_b , re-	55
5.3	duzierte Masse m_r in Einheiten der Elektronenmasse m_0 , sowie die statische Dielektrizi- tätskonstante ε_r für CuInSe ₂ und CuGaSe ₂ Exzitonbindungsenergie (E_{FX}) aus temperaturabhängigen Messungen und Energiela-	65
5.4 5.5	ge (hv_{FX}) des Maximums bei ToK sowie die daraus bestimmte Banducke (E_{Gap}) für CuInSe ₂ -, Cu(In,Ga)Se ₂ - und CuGaSe ₂ -Schichten	68 70 77
A.1 A.1 A.1 A.2	$\label{eq:literaturdaten} \begin{array}{llllllllllllllllllllllllllllllllllll$	103 104 105 105
A.2	Literaturdaten zur Photolumineszenz von Cu(In,Ga)Se ₂	106
B.1 B.2	Fehlerangaben zum Ga-Gehalt und der Bandlücke	108 110
C.1	Gitterkonstanten für Cu(In,Ga)Se ₂ in Abhängigkeit vom GGI	115

C.2 SPV Anpassung an $\omega - 2\theta$ Diffraktogramme für Cu(In,Ga)Se₂ -Schichten 116