
Ext on affine toric varieties

Lars Kastner

Dissertation

⇒

eingereicht am

Fachbereich Mathematik und Informatik
der Freien Universität Berlin

2015

Die vorliegende Dissertation wurde von Prof. Dr. Klaus Altmann betreut.

Eidesstattliche Erklärung

Ich versichere, diese Dissertation selbständig verfaßt, alle verwendeten Hilfsmittel
sowie Hilfen angegeben und die Arbeit nicht in einem früheren Promotionsverfahren
eingereicht zu haben.

Lars Kastner, Berlin, 3. Juni 2015.

Die Vorliegende Arbeit wurde von Prof. Dr. Klaus Altmann betreut.

1. Gutachter: Prof. Dr. Klaus Altmann

2. Gutachter: Prof. Dr. Lutz Hille

Die Disputation fand am 16.12.2015 statt.

Abstract

We want to compute Exti of two T -invariant Weil divisors D and D′ on an normal affine
toric variety. Our goal is a combinatorial criterion for maximal Cohen-Macaulayness
of D. The main tool is a generalization of the Taylor resolution of monomial ideals
in polynomial rings to monomial ideals in toric rings. Then the question translates to
computation of Exti of two divisorial ideals. We arrive at a spectral sequence giving
both a sufficient criterion for vanishing of higher Exti and a superset of the support of
Ext1 in combinatorial terms.

After the general construction we restrict to the case of cyclic quotient singularities.
Here we can give an explicit combinatorial description of Ext1(D,D′). Furthermore we
show a relationship between the continued fraction giving the cyclic quotient singularity
and the dimensions of the Ext1(D,D′). We conclude by giving a homogeneous basis of
the algebra Ext(D), giving rise to a combinatorial description of the multiplication.

Contents

1 Introduction 9

2 Preliminaries 13
2.1 Toric geometry . 13
2.2 Commutative algebra . 18

3 Generalizing the Taylor resolution 25
3.1 The generalized Taylor complex . 25
3.2 Building a spectral sequence from S(D) 29

4 Cyclic quotient singularities 37
4.1 Toric construction . 37
4.2 Invariant construction . 40

5 Resolving torus invariant divisors on CQS 41
5.1 A short exact sequence . 41
5.2 The resolution quiver . 45
5.3 Comparing R, the AR-quiver, and the McKay-quiver 49

6 Ext1 51
6.1 A combinatorial formula for Ext1 . 51
6.2 First consequences of the Ext1 formula 55
6.3 A recursive formula for dim Ext1 . 60

7 First applications of the combinatorial method 75
7.1 The dimension dim Exti for higher i . 75
7.2 Ext and Tor . 76
7.3 The boundary cases q = 1 and q = n− 1 79
7.4 Classification of special MCM divisors 81

8 The Ext-algebra 83
8.1 Yoneda’s interpretation of Ext . 83
8.2 The homogeneous elements of Extk(D,D′) 84
8.3 Ext1 as short exact sequences . 86
8.4 Higher Extn as exact sequences . 91
8.5 The multiplication . 92
8.6 Generators of the Ext algebra . 103
8.7 Example: n = 7, q = 3 . 105

A Code 107
A.1 Running example with n = 7 and q = 3 107

7

0 Contents

A.2 Finiteness of P̄ (D) . 110

B Index of notation 129

C Bibliography 131

D Acknowledgements 135

E Summary 137

F Zusammenfassung 139

8

Introduction

On smooth varieties, all Weil divisors are Cartier. On singular varieties this is no longer
true and translates to the fact that the sheaf O(D) does not have to be locally free
anymore, for D a Weil divisor.

Our goal is to investigate those sheaves for a normal affine toric variety X. In particular,
we are interested in finding a combinatorial answer for the question, whether the divisorial
ideal corresponding to a T -invariant Weil divisor is maximal Cohen-Macaulay (MCM),
or even special MCM (sMCM) for surfaces. Both properties can be expressed via the
vanishing of certain Ext-modules: MCM is equivalent to the vanishing of Exti(D,KX)
for i > 0, and by a result of Wemyss and Iyama ([IW10]) sMCM means being MCM
and an additional vanishing of Ext1(D,OX). Our Ansatz to compute Exti(D,D′) is to
resolve D projectively. Hence, the main task is to resolve certain monomial ideals in
semigroup rings.

As a prototype we use the Taylor resolution ([Tay66]) of monomials ideals. In the
smooth case, the Taylor resolution gives a finite free resolution of any monomial ideal,
due to existence of a least common multiple in a polynomial ring.

In the singular case, the result is a complex with at least one free module. All other
appearing modules are direct sums of divisorial ideals. Applying the Taylor resolution
to the single summands yields an algorithmic way to obtain a resolution of D, which is
free up to any desired length. Now we take a projective Cartan-Eilenberg resolution of
the Taylor resolution of D. Applying Hom(•, D′) yields a spectral sequence, which then
allows us to study the support of Ext1(D,D′). Furthermore, we can derive a sufficient
criterion for the vanishing of Exti(D,D′) for i > 0.

Main Result 1 (Proposition 3.8). Let X be an affine toric variety and D, D′ two Weil
divisors. Then there is a subset P (D) of the T -invariant Weil divisors such that

ExtiX(G,D′) = 0 ∀G ∈ P (D), i = 1, . . . , n(G) ⇒ ExtiX(D,D′) = 0 for i > 0.

In the case of X coming from a simplicial cone, the set P (D) modulo linear equivalence
is finite. Furthermore, the number n(G) only depends on the class of G in Cl(X).

The last part is easy to deduce, since for simplicial X the class group is finite. An
example for X and D such that P (D) modulo linear equivalence is infinite is unknown
to us.

The first interesting class of normal affine toric varieties are cyclic quotient singularities
(CQS). On the algebro-geometric side, these are just quotients of C2 by finite groups.
On the side of toric geometry, one starts with a two dimensional cone. Here, our
generalization of the Taylor resolution yields a set of short exact sequences and a

9

1 Introduction

description of Ext1(D,D′) as a certain set of lattice points. Furthermore we obtain
a recursive representation of Extn as a direct sum of Ext1’s and a duality with the
Tor-modules.

Main Result 2 (Theorem 6.11, Theorem 7.5). For D and D′ being two T -invariant
Weil divisors on a CQS X we have the following two equations:

ExtiX(D,KX −D′) = ExtiX(D′,KX −D)

and

(TorXi (D,D′))∗ = Exti+2
X (D,KX −D′),

where (•)∗ = Hom(•,C) and i > 0.

An interesting feature of these varieties is their close relationship with continued
fractions. For example Stevens ([Ste91]) and Christophersen ([Chr91]) used these to
analyze the deformation theory of CQS, by building certain continued fractions repres-
enting zero. These represent the components of the versal deformation. Furthermore,
in [Ste91] Stevens describes a correspondence between the P-resolutions, that Kollár
and Shepherd-Barron introduced in [KS88] for the purpose of studying the deformation
theory of CQS as well. Thus it comes to no surprise that continued fractions yield an
easy way for computing dimC Ext1 in the case of CQS.

Main Result 3 (Theorem 6.26, Algorithm 6.30). Starting with a CQS X coming from
a continued fraction a, denote by

E1(a) := (dimC Ext1
X(D,D′))D,D′∈Cl(X).

Then there are two other continued fractions ã and a′ such that we can compute E1(a)
from E1(ã) and E1(a′). In particular, ã and a′ are ”smaller” than a, yielding a recursive
algorithm to compute E1(a).

The combinatorial description of Ext for CQS culminates in a combinatorial description
of the algebra Ext(D) = ⊕i≥0 Exti(D,D). We provide an explicit basis of Ext(D) as a
C-vector space, consisting of homogeneous elements. Then we use Yoneda’s description
of Ext to formulate the multiplication in Ext(D) in discrete mathematics.

Main Result 4 (Theorem 8.11, Corollary 8.22). The homogeneous basis of Ext(D)
mentioned above allows a fast combinatorial algorithm for computing the product of two
elements of Ext(D).

Let us give an overview of the structure of this thesis:

The preliminaries contain a brief overview on the toric objects and methods we use.
We show how to obtain generators for divisorial ideals. Furthermore we describe the link
between Ext-modules and MCM’ness in more detail.

Before restricting to CQS, we introduce a generalization of the taylor resolution for
toric rings in Chapter 3. This generalization gives rise to a spectral sequence containing
descriptions of all Exti(D,D′) in terms of direct sums of Extj(G,D′), with j < i and G
some other Weil divisor. In particular we can now state the vanishing condition of Main
Result 1. Furthermore we provide a basic description of the support of Ext1(D,D′).

10

The remaining chapters deal with the case of CQS exclusively. First we describe the
toric construction of CQS and T -invariant divisors on CQS in Chapter 4. Furthermore
we introduce the notion of continued fraction expansions and explain its relation to CQS.
In Chapter 5 we come back to the generalized Taylor resolution and apply it to the case
of torus invariant divisors on CQS. We arrive at a quiver, which completely encodes the
information to freely resolve any divisorial ideal.

In Chapter 6 we describe the finite-dimensional multigraded vector spaces Ext1(D,D′)
combinatorially. Since there are only finitely many Weil divisors on a CQS up to linear
equivalence, we can write down the respective dimensions dimC Ext1(D,D′) in a matrix.
We then proceed by constructing this matrix from the sole knowledge of the continued
fraction representation of n/q.

We go on in Chapter 7 by explaining how to compute the dimensions of higher
Exti(D,D′) modules using the combinatorial description of Chapter 6 and the quiver
of Section 5.2. Since the Tori(D,D

′) modules exhibit a very similar behaviour as the
Exti(D,D′) modules it is naturally to compare these in greater detail. Finally we arrive
at the second formula of Main Result 2.

In Chapter 8 we investigate the structure of the algebras Ext(D) closer. These have
a Z ×M grading. We describe a homogeneous basis of Ext(D) as a C-vector space,
as mentioned above. We finish the chapter with the combinatorial description of the
multiplication.

Many experiments and examples were computed using the software framework polymake
([GJ00]) and the computer algebra system Singular ([Dec+15]). In Appendix A we
give sample code for some of the experiments and provide code to test possible counter-
examples to conjectures within the thesis. Furthermore we give an overview of the
functionality of the code now contained in polymake that has been written in context of
this thesis.

11

Preliminaries

In this chapter we will give the necessary definitions from both algebraic and toric
geometry, and commutative algebra to develop the methods of the latter chapters. Since
our main focus is on translating Ext from commutative algebra into combinatorics in
the toric setting, the first part is about toric geometry. We then provide some context
on how the Ext-functor may be used to find maximal Cohen-Macaulay modules.

Throughout this thesis we will work over the complex numbers C.

2.1. Toric geometry

In this section we will define the rings and modules that we will work with throughout
the remaining chapters.

Affine toric varieties

First we fix a lattice N and the corresponding Q-vector space NQ := N ⊗Z Q. The dual
lattice M of N is given via M := HomZ(N,Z). We denote the pairing by

〈•, •〉 : M ×N → Z
(u, v) 7→ 〈u, v〉 := u(v)

.

The pairing extends linearly to NQ ×MQ → Q. Whenever we use coordinates we will
denote the elements of N in parentheses (•) and the elements of M in square brackets
[•].

For a given cone σ ⊆ NQ, we can build its dual cone σ∨ via

σ∨ := {u ∈MQ | 〈u, x〉 ≥ 0 ∀x ∈ σ}.

This enables to give the basic definition of a normal affine toric variety:

Definition 2.1 (Normal affine toric variety). The toric variety associated to a cone σ is
given as

TV(σ) := Spec(C[σ∨ ∩M]).

This definition turns TV into a covariant functor from cones to varieties which is
described in more detail in for example [Ful93] or [CLS11].

The interesting part for us is the ring R := C[σ∨ ∩M]. It is an M -graded C-algebra.
Let us assume that σ is pointed and full-dimensional. Then the dual cone σ∨ will have
these properties as well. Thus the semigroup σ∨ ∩M has a unique minimal finite system
of generators H ⊆ σ∨ ∩ M which translate into a minimal system of homogeneous
generators of R as a C-algebra.

13

2 Preliminaries

Definition 2.2 (Hilbert basis). The minimal generating set H of the semigroup σ∨ ∩M
is called the Hilbert basis of σ∨.

Hence, for H = {h1, . . . , hn} we have a surjection

ϕ : C[x1, . . . , xn] � R
xi 7→ xhi

.

Definition 2.3 (Toric ideal). The toric ideal of H is defined to be the kernel of ϕ.

Example 2.4. We identify N and M with Z2 via the usual scalar product in order for
them to have the same picture. Subsequently we have NQ = Q2 = MQ. Take the cone

σ := cone{(1, 0), (−3, 7)} ⊆ Q2.

The dual cone is then spanned by the vectors [0, 1] and [7, 3], i.e. the rays orthogonal to
one one of the rays of σ and evaluating positively on the other.

The green cone denotes σ and the red cone denotes σ∨. The Hilbert basis of σ∨ consists
of the points

{[0, 1], [1, 1], [2, 1], [7, 3]},
as depicted in Example 4.1, and for the toric ideal we get

I = (y4 − xz, x7 − w4z, xy3 − wz, x3y2 − w2z, x5y − w3z,−x2 + wy) ⊆ C[w, x, y, z].

Torus invariant divisors

The modules we want to examine come from torus invariant Weil divisors. Such a divisor
D allows us to define a sheaf O(D). Taking global sections we end up with an R-module.
We follow the notation of [CLS11] closely. Let us recall the basic construction and facts
of [CLS11] and [Ful93].

Assume that σ is given via primitive ray generators

σ = cone{v1, . . . , vn}, with vi ∈ N,

and take R = C[σ∨ ∩M] and X := TV(σ) = SpecR. Furthermore denote by ρi the ray
spanned by vi. The rays of σ yield exactly the codimension one torus orbits of X and,
taking the closure thereof, we obtain the torus invariant prime divisors Dρi . Now any
T -invariant Weil divisor D on X may be written as

D =
∑
ρ∈σ[1]

aρDρ =

n∑
i=1

aiDρi

14

2.1 Toric geometry

with ai ∈ Z. Taking the polyhedron

PD := {u ∈MQ | 〈u, vi〉 ≥ −ai}

we obtain an M -graded R-module via taking the global sections of the sheaf O(D)
according to [CLS11, Prop. 4.3.3]:

H0(X,D) = Γ(X,O(D)) = C · {xu | u ∈ PD ∩M} ⊆ C[M],

where the multiplication is induced via the inclusion R ⊆ C[M]. This module is a
so-called fractional ideal. Furthermore, H0(X,D) is a divisorial ideal, as described in
[BG09; BH98], i.e. it is reflexive of rank 1 as an R-module, or, equivalently, it comes
from a Weil divisor.

Thus there are three ways to describe a T -invariant Weil divisor D:

1. As an element D ∈ Z#σ[1],

2. as the divisorial ideal H0(X,D) ⊆ C[M], and

3. as the polyhedron PD described above.

We assume σ to be full-dimensional and pointed, thus, the dual cone σ∨ has these
properties as well. This implies that PD has σ∨ as its tailcone and hence PD 6= ∅. Thus,
we get a one-to-one correspondence between all three representations. We will denote
all of these by the same letter D. Furthermore for PD ⊆ σ∨ the module H0(X,D)
even becomes an honest ideal of R. Additionally we can always move PD inside σ∨

adding some lattice vector. Hence every H0(X,D) is isomorphic to an ideal of σ∨ via an
M -graded isomorphism.

Please be aware that the addition of divisors does not become the multiplication of
divisorial ideals in C[M]. In general it is true that

H0(X,D +D′) ⊇ H0(X,D) ·H0(X,D′).

Equality does not hold in general, take for example the divisors of Example 4.7.

Remark 2.5. The sheaf O(D) is coherent, because we work on an affine variety, thus we
may use [Har83, III, Exercise 6.7] to deduce

ExtiR(D,D′) := ExtiX(O(D),O(D′)) = ExtiR(H0(X,D), H0(X,D′)).

However, keep in mind that the sheaves O(D) are not necessarily locally free.

In order to compute Ext it is necessary to resolve the modules H0(X,D) injectively
or projectively. In our setting we go for the free and hence projective resolution. Thus
we need a way to compute generators of H0(X,D). We are especially interested in
homogeneous generators, since we want to translate everything to discrete mathematics.

In our affine setting we can obtain a homogeneous generating set for H0(X,D) in the
following way:

Proposition 2.6. Let CD be the cone

CD := cone
{
{0} × σ∨, {1} × PD

}
⊆ Q×MQ.

Then we obtain a minimal homogeneous generating set of H0(X,D) by taking {xu}
where (1, u) is an element of the Hilbert basis of CD.

15

2 Preliminaries

Proof. We obtain homogeneity by construction and minimality follows from the Hilbert
basis property. Since D is canonically embedded in CD at height one and since there are
no elements with negative height, a lattice point w ∈ D ∩M can be written as sum

(1, w) = (1, u) +

r∑
i=0

ai · (0, vi), u, vi ∈M, ai ∈ Z≥0,

and all the right hand side elements are in the Hilbert basis of CD. The vi correspond
to monomials in R, thus xw is just an R-multiple of xu and we are done.

Definition 2.7 (Minimal set of generators). We will denote the minimal set of generators
computed by Proposition 2.6 as G(D). We define its set of exponents to be

Supp(G(D)) := {u ∈M | xu ∈ G(D)}.

For the two-dimensional case, Supp(G(D)) consists of the lattice points on the compact
edges of conv(D ∩M). This is not true in higher dimension or for arbitrary monomial
ideals, though.

By the previous convention we obtain the equality

D ∩M = Supp(G(D)) + σ∨ ∩M = {u ∈M | xu ∈ D},

where of course the left hand side D refers to the polyhedron D, while the left hand side
D denotes the submodule of C[M] and the middle one is the divisor D. This notation
extends the definition of the support of a graded module given later in Definition 2.11 to
G(D) in a natural way. We will often omit the Supp in front of G(D) and instead write
G(D) for the lattice points and for the generators of the divisorial ideal, synonymously.

Example 2.8. Let us continue the example from above. There the cone σ was spanned
by two primitive vectors

v1 :=

(
1
0

)
and v2 :=

(
−3
7

)
.

We pick the following two divisors:

E1 = −1 · [〈v1〉Q≥0
] and E3 := −3 · [〈v1〉Q≥0

].

Then the polyhedra of global sections are just

PE1 =

[
1,

3

7

]
+ σ∨ and PE1 =

[
3,

9

7

]
+ σ∨.

For a picture we refer to Example 4.7.

Graded commutative algebra

In the setting with R := C[σ∨ ∩ M] =
⊕

u∈σ∨∩M C · xu being a M -graded algebra,
the divisorial ideals H0(X,D) for T -invariant D on X := SpecR become M -graded
R-modules. Thus let us fix some notation regarding M -graded modules.

We start with defining the shift of an M -graded module. This definition differs from
the usual definition by sign, as for example in [BG09], but it allows us not to worry
about the sign of the shifting parameter anymore.

16

2.1 Toric geometry

Definition 2.9 (M -graded module, shift). An M -graded R-module is an R-module W
equipped with a grading W = ⊕u∈MWu such that Rv ·Wu ∈Wv+u for all u, v ∈M . For
an element u ∈M we define the shifted module W [u] piecewise by W [u]v := Wv−u.

Example 2.10. Of course R itself is an M -graded R-module. Since σ is full-dimensional,
σ∨ becomes pointed and thus R0 = k. Shifting by u here corresponds to adding u to σ∨.

As claimed before the H0(X,D) are M -graded modules as well.

We can view D as a polyhedron and hence we can add a vector to it using Minkowski-
addition, for example a lattice vector u ∈M . We denote this by D+u. Instead we could
also shift D by u, because it is M -graded and obtain D[u]. Luckily the shift is designed
in such a way that both procedures yield the same, i.e. shifting the module by u and
then considering the associated polyhedron is the same as adding u to the polyhedron
D. We write

xu ·D = D[u] = D + u.

To switch from M -graded modules to polyhedra one uses the support:

Definition 2.11 (support). The support of an M -graded module W is the set

SuppW := {u ∈M | Wu 6= 0}.

This is not to be confused with the support in the sense of commutative algebra, i.e.
all those prime ideals p ∈ SpecR such that Wp 6= 0. We will only use the latter in
Proposition 2.28.

Remark 2.12. For the ring R itself we have SuppR = σ∨ ∩M . For the divisors D we
obtain

Supp(H0(X,D)) = PD ∩M.

There is a one-to-one correspondence between M -graded fractional ideals I and their
supports Supp(I). If there exists a polyhedron P ⊆ MQ with the same facet vectors
as σ∨ such that Supp(I) = P ∩M , then I is divisorial and hence, reflexive. Otherwise
finding the inclusion-wise smallest such P that contains Supp(I) corresponds to finding
the reflexive hull of I on the algebraic side.

Shifts provide a great tool to describe how standard commutative algebra operations
preserve the M -grading on modules. But first let us explain how Hom obtains a grading.

Definition 2.13 (homogeneous morphism). Let f : W → V be an R-module ho-
momorphism of M -graded R-modules. Then f is homogeneous of degree u ∈ M if
f(Wv−u) ⊆ Vv for all v ∈M .

In general HomR(W,V) will not be graded, i.e. not every morphism decomposes as a
finite sum of homogeneous morphisms, but for W finitely generated this is true, see for
example [BG09, 6.B]. Since we will deal with finitely generated modules exclusively, we
may assume HomR(W,V) to be canonically M -graded.

Remark 2.14. Let V and W be a finitely generated M -graded R-modules. Then we have
the isomorphism

HomR(W [u], V [v]) = HomR(W,V)[v − u] for all u, v ∈M

of M -graded R-modules.

17

2 Preliminaries

A finitely generated free M -graded R-module is an R-module of the form W =
⊕ri=0R[wi], with wi ∈ M . Denote by {eiW } the standard generators of W . Then the
degree of eiW is exactly deg(eiW) = wi ∈M . A homogeneous element w ∈W of degree
degw = u ∈M can be written in the following way:

w =

r∑
i=0

ai · xu−deg eiW · eiW =

r∑
i=0

ai · xu−w
i · eiW , ai ∈ k.

Hence w is completely determined by its degree u and its coefficient vector a =
(a0, . . . , ar) ∈ kr+1. For a given homogeneous morphism of degree 0 of finitely gen-
erated free M -graded R-modules

f : W := ⊕ri=0R[wi]→ ⊕sj=0R[vj] =: V,

the image of a homogeneous element is completely determined by the coefficient vector
of the image, i.e. for the standard generators {eiW } of W and {ejV } of V we have

f(eiW) =
s∑
j=0

aji · xw
i−vj · ejV .

Thus, it is enough to write down the matrix A := (aji) with entries in C, and aji = 0 if
wi − vj /∈ σ∨, i.e. if a suitable monomial does not exist in R.

Example 2.15. In Example 5.9 consider the matrix d1. With

R = C[y, xy, x7y3] = C[x[0,1], x[1,1], x[7,3]]

it describes a map

d1 : R[[4, 3]]⊕R[[5, 3]]⊕R[[10, 5]]⊕R[[7, 4]]⊕R[[8, 4]]⊕R[[11, 5]]→ R[[3, 2]]⊕R[[4, 2]]⊕R[[7, 3]]

given by the following matrix in the ’usual’ notation: xy xy2 x7y3 0 0 0
−y −xy −x6y3 x3y2 x4y2 x7y3

0 0 0 −y −xy −x4y2

 ,

i.e. the entries of this matrix are aji x
wi−vj . Setting x = y = 1 yields the easier format, as

depicted in Example 5.9. The loss of information in the resulting matrix is compensated
by the M -grading of the modules and by knowing that d1 is a morphism of degree 0.

We now know that HomR(W,V) is canonically graded. It is easy to see that quotients
of graded modules are again graded. Hence, ExtiR(W,V) inherits a canonical grading as
well.

2.2. Commutative algebra

First we recall the notion of (maximal) Cohen-Macaulayness. In the second part we
discuss an Ext based criterion for Cohen-Macaulayness of torus invariant divisors.

18

2.2 Commutative algebra

CM and MCM

Our notation follows the book [BH98]. Throughout this section we denote by R = (R,m)
a Noetherian local ring. We will summarize some basic properties of and results on
Cohen-Macaulay modules along the lines of [BH98] and [Yos90].

First let us deal with the notions of Cohen-Macaulay (CM) and maximal Cohen-
Macaulay (MCM). These involve the depth and the dimension of R-modules. The depth
of a module M is defined as the maximum length of a M -regular sequence in R and the
dimension of M is the Krull dimension of the quotient ring R/Ann(M). We obtain the
following chain of inequalities ([BH98, Prop 1.2.12])

depthM ≤ dimM ≤ dimR,

giving rise to the following definition:

Definition 2.16 (CM,MCM [BH98]). An R-module M is called Cohen-Macaulay (CM)
if and only if

depthM = dimM.

If M is CM and furthermore dimM = dimR, then M is called maximal Cohen-Macaulay
(MCM).

The ring R is called CM (MCM) if and only if it is CM (MCM) as an module over
itself.

Let R be a CM ring. For such an R we have the notion of a canonical module ωR:

Definition 2.17. [Yos90, Def. 1.10] The canonical module ωR is a CM module over R
such that

ExtiR(k, ωR) =

{
0 i 6= d

k i = d
,

with k = R/m and d = dimR.

Sometimes this is denoted as R = (R,m, ωR). If R has a canonical module, then ωR is
unique up to isomorphism ([BH98, Thm 3.3.4]), which is why we define ’the’ canonical
module, instead of ’a’ canonical module.

Provided R admits a canonical module, we have the following proposition linking CM
modules with Ext:

Proposition 2.18. [Yos90, Cor. 1.13] Let M be a CM module over the CM ring
R = (R,m) with canonical module ωR. Then HomR(M,ωR) is a CM module as well and
there is an isomorphism M ∼= HomR(HomR(M,ωR), ωR). Moreover ExtiR(M,ωR) = 0
for all i > 0.

In particular, M being MCM implies vanishing of ExtiR(M,ωR) for all i > 0. If we
assume M to be finitely generated, the converse becomes true as well, i.e. M is MCM if
ExtiR(M,ωR) = 0 for all i > 0. This is a consequence of the following proposition:

Proposition 2.19. [BH98, Cor. 3.5.11] Let (R,m, k = R/m) be a CM local ring of
dimension n with canonical module ωR, and M a finitely generated R-module of depth t
and dimension d. Then

19

2 Preliminaries

(a) ExtiR(M,ωR) = 0 for i < n− d and i > n− t,

(b) ExtiR(M,ωR) 6= 0 for i = n− d and i = n− t,

(c) dim ExtiR(M,ωR) ≤ n− i for all n− d ≤ i ≤ n− t.

To prove the last part of Proposition 2.18, insert n = d = t in Proposition 2.19.
Conversely if ExtiR(M,ωR) = 0 for all i > 0, we use Proposition 2.19 as well. Inserting

that i = 0 is the only possibility for ExtiR(M,ωR) 6= 0 we obtain

i = 0 = dimM − depthM = dimR− depthM.

Proposition 2.19 itself is a consequence of Grothendiecks local duality theorem. In the
setting of this theorem the canonical module exists, since R is additionally assumed to
be complete ([BH98, Cor. 3.3.8]). Please note that in the following theorem k denotes
the residue field R/m.

Theorem 2.20. [BH98, Thm 3.5.8] Let (R,m, k) be a local complete CM-ring of di-
mension d. Then for all finite R-modules M and all integers i there exist natural
isomorphisms

H i
m(M) ∼= HomR(Extd−iR (M,ωR), E(k))

ExtiR(M,ωR) ∼= HomR(Hd−i
m (M), E(k)).

Here E(k) denotes the injective hull of k and Hd−i
m is the local cohomology with respect

to m. For (R,m) with dimR = 0 we have E(k) ∼= ωR ([Eis95, Prop. 21.1]). Since ωR
and Exti commute with completion in our setting one can easily deduce Proposition 2.19.
Furthermore we see how Ext and local cohomology are related.

Remark 2.21. Additionally we can deduce the following alternative formula for computing
the depth of a module over R = (R,m, k) from Proposition 2.19:

depthM = dimR− sup{i ≥ 0 | ExtiR(M,ωR) 6= 0},

which is used for example in [IW10].

(s)MCM for torus invariant divisors

As before, let σ ⊆ NQ be a full-dimensional, pointed cone and let R = C[σ∨ ∩M] be the
associated semigroup algebra. Let D be a torus invariant Weil divisor on SpecR, to be
precise, denote by D the corresponding fractional ideal D ⊆ C[M].

Since the annihilator Ann(D) of a torus invariant divisor D is zero, we immediately
have the equation

dim(D) = dim(R/Ann(D)) = dim(R)

and hence for D being Cohen-Macaulay and maximal Cohen-Macaulay is the same.
Divisors that are Q-Cartier, i.e. who have a non-zero multiple that is Cartier, are

automatically MCM. Since we work with torus invariant divisors exclusively, we will use
the following formulation:

Definition 2.22 (Q-Cartier). We call the divisor D Q-Cartier if and only if PD = v+σ∨

for some v ∈MQ.

20

2.2 Commutative algebra

This property implies being ’conic’ in the sense of [BG09], though conic is weaker:
A divisor is conic if we replace MQ by MR in the above definition. The classes of the
Q-Cartier divisors are exactly the torsion elements in Cl Spec(R).

Remark 2.23. According to [BG09, Cor. 6.68] conic fractional ideals are automatically
Cohen-Macaulay, i.e. a conic divisor D is automatically MCM. The idea is to use
Hochster’s theorem (Theorem 2.25) and then display D as a direct summand of a finitely
generated CM R-module.

However the converse is not true. Thus, for σ being simplicial all divisors will be conic.
Hence, we cannot expect any two-dimensional examples of non-conic MCM divisors. Still
[BG09, Remark after Thm 6.69, Fig. 6.5] gives an example of MCM non-conic divisors
in higher dimension.

Remark 2.24. Another interesting non-trivial fact is [BG09, Cor 6.72], stating that the
number of CM divisor classes is finite, and hence, the number of MCM divisor classes is
finite as well. The proof relies on [BG09, Thm 6.71], stating that for given m ∈ Z≥0 there
are only finitely many divisor classes with at most m generators, and Serre’s numerical
Cohen-Macaulay criterion.

We want to demonstrate how the toric setting fits into the setting of Section 2.2. The
first important thing here is Hochster’s theorem:

Theorem 2.25. [BG09, Thm 6.10] Let S be a normal affine monoid. Then k[S] is
Cohen-Macaulay for every field k.

In particular the M -graded C-algebra R = C[σ∨ ∩M] is Cohen-Macaulay. Since we
assume σ∨ to be pointed and full-dimensional, R has a unique homogeneous maximal
ideal

m := (xu | u ∈ σ∨ ∩M\{0}).

Following the thoughts of [BH98], the ring R is closely related to a local ring, since it
has a unique homogeneous maximal ideal m. Thus one can introduce the homogeneous
equivalent of a local ring, namely R is *local with *maximal ideal m. Furthermore the
ideal generated by the interior int(σ∨) ∩M gives us the *canonical module ωR.

Localization at m yields the ring (Rm,m) which is a local Cohen-Macaulay C-algebra
with canonical module ωRm , and thus it fits into the setting of Proposition 2.19, as well
as the localized toric divisors Dm.

Remark 2.26. Let D be a toric divisor on SpecR. Since R is not local we say that D is
CM/MCM, if Dm is CM/MCM. Usually one would have to check all localizations, but
since D is a M -graded module it is enough only to check m ([BG09, Prop. 6.7]).

Of course, vanishing of ExtiR(D,D′) implies vanishing of ExtiRm
(Dm, D

′
m), since D and

D′ are finitely generated and localization is a flat functor (see [Eis95, Prop 2.10]) and
hence

(ExtiR(D,D′))m = ExtiRm
(Dm, D

′
m).

Conversely, at first glance, it is not necessarily true that ExtiR(D,D′) vanishes if
ExtiRm

(Dm, D
′
m) = 0.

However, since D and D′ are T -invariant, ExtiR(D,D′) is M -graded. Thus, the
annihilator Ann(ExtiR(D,D′)) is a monomial ideal. In particular it will always be

21

2 Preliminaries

contained in m. Thus m will always be in the support of ExtiR(D,D′), unless it is zero.
Therefore, ExtiR(D,D′) = 0 is equivalent to ExtiRm

(Dm, D
′
m) = 0.

Before we give our final proposition on Ext for an isolated singularity, let us make a
few remarks on the completion R̂ of R with respect to m. Since R is CM R̂ is a complete
local Cohen-Macaulay ring with maximal ideal m̂ = m⊗R R̂ (see [BH98, Cor. 2.1.8, Thm.
2.1.9]). Since ωR and D are finitely generated we obtain their completed counterparts
by tensoring with R̂ over R (see [AM69, Prop. 10.13] and [BH98, Thm. 3.3.5]). In
particular ωR ⊗R R̂ is the canonical module of R̂. Furthermore R̂ is a flat R-module and
this allows us to state the following lemma:

Lemma 2.27.
Exti

R̂
(D̂, D̂′) = ExtiR(D,D′)⊗R R̂.

Proof. Let
F• : . . .→ Rn2 → Rn1 → Rn0 � D → 0

be a free resolution of D. As mentioned above, R̂ is a flat R-module and thus

F• ⊗R R̂ : . . .→ R̂n2 → R̂n1 → R̂n0 � D̂ → 0

is a free resolution of D̂ = D ⊗R R̂ over R̂. Now we apply HomR̂(•, D̂′) to this complex
and take cohomology. The result is the left hand side of the equation. To link this with
the right hand side we use [Eis95, Prop. 2.10]: For a ring R, S a flat R-algebra and M ,
N finitely generated R-modules we have

HomR(M,N)⊗R S ∼= HomS(M ⊗R S,N ⊗R S).

Insert S := R̂ to obtain

HomR(F•, D
′)⊗R R̂ ∼= HomR̂(F• ⊗R R̂, D̂′).

as complexes of R̂-modules. Taking cohomology concludes the proof.

Let SpecR be an isolated singularity, i.e. assume that all proper faces of σ are smooth.
This allows us to identify Ext with its completed counterpart as R-modules:

Proposition 2.28. Let σ be the cone of an isolated toric singularity. Let R = C[σ∨∩M]
and m the unique homogeneous maximal ideal. Let D and D′ be two torus invariant
Weil divisors. Then, for i > 0,

1. dimk ExtiR(D,D′) <∞; and

2. ExtiR(D,D′) = Exti
R̂

(D̂, D̂′) as R-modules.

Proof. Localization in a maximal ideal m′ ∈ SpecR is an exact functor and thus

(ExtiR(D,D′))m′ = ExtiRm′
(Dm′ , D

′
m′).

Since σ is an isolated singularity, we know that Rm′ is regular for all maximal ideals
m′ 6= m. Hence Dm′

∼= Rm′ and

(ExtiR(D,D′))m′ ∼= ExtiRm′
(Rm′ , R

′
m′) = 0 ∀m′ 6= m.

22

2.2 Commutative algebra

Thus ExtiR(D,D′) is only supported in m and the formula ([AM69, p46 19.])

{m} = Supp ExtiR(D,D′) = V (Ann ExtiR(D,D′))

yields
√

Ann ExtiR(D,D′) = m. Consequently there must be an integer n > 0 such that

mn ⊆ Ann ExtiR(D,D′), i.e. mn · ExtiR(D,D′) = 0.

This yields the first part of the proposition.
Denote by A := ExtiR(D,D′) and use the first part to pick n > 0 such that mn ·

ExtiR(D,D′) = 0. Following the construction of the completion via projective limits as
in [AM69] we build the chain

A ⊆ m ·A ⊆ m2 ·A ⊆ . . . ⊆ mn ·A = 0 = mn+1A = . . .

and thus taking quotients yields

0← A/m ·A← A/m2 ·A← . . .← A = A/mn ·A = A = . . .

Hence, the projective limit lim←−k A/m
k ·A must be A.

23

Generalizing the Taylor resolution

The aim of this chapter is to generalize the construction of [Tay66] for monomial ideals in
toric rings. We will develop the notation along the lines of [Eis95, p443, exercise 17.11.].

3.1. The generalized Taylor complex

Let σ ⊆ NQ be a pointed full-dimensional cone. Let R := C[σ∨ ∩M] be the associated
semigroup ring. Let D be a Weil divisor on X = TV(σ) = SpecR and assume that
D = H0(X,D) is an ideal of R. Then D is generated by monomials, thus take

D = (xu
0
, xu

1
, . . . , xu

r
) ⊆ R

with the ui obtained by the method described in Proposition 2.6.
If we assume σ∨ 6∼= (Z≥0)d, i.e. σ is not smooth, then by the graded version of

the Auslander-Buchsbaum-Serre theorem ([Eis95, Thm. 19.12]) there are ideals with
infinite free resolutions. In fact most divisorial ideals H0(X,D) will have an infinite
free resolution. The goal of this chapter is to give finite polyhedral data encoding these
infinite free resolutions. In the case of cyclic quotient singularities this data will become
a finite quiver, as we will discuss in Section 5.2. The vertices of this quiver correspond to
the elements of the class group of the cyclic quotient singularity. For higher dimensions
a quiver does not encode enough information and since there might be infinitely many
divisor classes, we also loose finiteness again. Still we conjecture that for completely
encoding a graded free resolution of a divisorial ideal one only needs finitely many divisor
classes, see Conjecture 3.10.

Now remember that R is M -graded, and that an element u ∈M allows to shift R by
u. We denote the divisorial ideal R[u] ⊆ C[M] as (xu). For u ∈ σ∨ ∩M , then (xu) ⊆ R
is even an honest ideal of R.

The first part of a free resolution of D typically looks like

F0(D) :=

r⊕
i=0

R[ui]� D → 0.

Now take I ⊆ {0, . . . , r} and define

P ID :=
⋂
i∈I

(ui + σ∨) and mI :=
⋂
i∈I

(xu
i
) = (xu | u ∈ P ID ∩M).

Furthermore we set P ∅D := PD. In the setting of σ being smooth, R is isomorphic to
the polynomial ring in d variables. Then mI becomes a principal ideal generated by

25

3 Generalizing the Taylor resolution

lcm{xui | i ∈ I}. For singular σ, mI does not have to be a principal ideal. One can think
of mI as generalizing the concept of the least common multiple.

Next for each k = 0, . . . , r we define

Sk :=
⊕

I⊆{0,...,r}, #I=k+1

mI .

Every Sk is a direct sum of homogeneous ideals. In particular, Sk is an M -graded
R-module corresponding to the set of polyhedra {P ID | #I = k + 1}. Denote by xuI ,
#I = k + 1 the element of degree u ∈ M in the I-component of Sk, i.e. xuI is xu in
mI . Assume I = {i0, . . . , ik} with ascending entries i0 < . . . < ik. For J ⊆ {0, . . . , r},
#J = k, define

cI,J :=

{
0 J 6⊂ I
(−1)m I = J ∪ {im} for some m.

Finally we define M -graded morphisms

dk : Sk → Sk−1, x
u
I 7→

∑
J

cI,J x
u
J .

Definition 3.1 (generalized Taylor complex). The generalized Taylor complex of a Weil
divisor D is the sequence

S(D) : 0→ Sr → Sr−1 → . . .→ S1 → S0 → 0.

This complex is quasiisomorphic to the complex with D at position zero and zero
everywhere else. Sometimes we will write Si(D) for the module Si, if several D’s are
being resolved simultaneously.

Remark 3.2. Of course the generalized Taylor complex exists for arbitrary monomial
ideals. All ideals mI in the resolution come from Weil divisors. To see this directly take
[BH98, p 315]. The toric way is to consider the support polyhedra: We get Supp(mI) by
intersecting the polyhedra ui + σ∨ for i ∈ I. This intersection has the same facet vectors
as σ∨ and hence it corresponds to a T -invariant Weil divisor.

This even holds if we resolve an arbitrary monomial ideal instead of a divisorial one:
Only S0 = m∅ will then not be divisorial and for computation of derived functors we
forget exactly this part.

Some easy observations are:

1. The sequence S(D)� D, i.e. . . . S1 → S0 � D → 0, is exact. This can be proven
along the lines of the proof of the usual Taylor resolution, by induction over the
number of generators. Additionally to replacing the lcm, one needs to replace the
expression mi/ gcd(m,mi) by the quotient of ideals (mi : m), for mi and m being
monomial ideals. Furthermore, all monomials appearing should be considered as
divisorial ideals. One then recognizes the Taylor complex as the mapping cylinder
of a map of certain Taylor complexes with one generator less.

2. If σ = Qn
≥0 we obtain the traditional Taylor resolution.

3. The module S1 is always a free R-module and we have F0(D) ∼= S1.

26

3.1 The generalized Taylor complex

4. The modules Sk do not have to be free for k > 1.

Observation 4 demonstrates the main flaw of this construction. Of course we would
like all Sk to be free, but this already fails in the case of cyclic quotient singularities, as
we will see later (Section 5.2): There the minimal free resolutions will be infinite, while
S(D) is finite.

Since Sk is a direct sum of ideals mI which again come from Weil divisors DI one
approach is to replace mI with S(DI), and subsequently to replace Sk by ⊕S(DI). Then
the problem becomes the map dk+1 : Sk+1 → Sk, which does not necessarily lift to a
map Sk+1 → ⊕F0(DI). i.e. Sk+1 might not be projective. There is one exception: We
can always replace Sr, the last non-zero module, with its generalized Taylor resolution,
since Sr+1 = 0. This leads to the algorithmic approaches described after the example.

Example 3.3. Take σ∨ to be generated by a 2× 1 rectangle at height 1, i.e.

R = C[x[0,0,1], x[1,0,1], x[0,1,1], x[1,1,1], x[0,2,1], x[1,2,1]].

The generators are the lattice points inside the green rectangle in the height one picture
below.

Take D the Weil divisor such that D = (xa := x[0,1,1], xb := x[1,1,1], xc := x[0,2,1], xd :=
x[1,2,1]). To illustrate this, we compute σ:

σ = cone{(1, 0, 0), (0, 1, 0), (−1, 0, 1), (0,−1, 2)}.

Then D corresponds to moving the hyperplane given by (0, 1, 0) inside σ by one, i.e. in
the language of [CLS11] D = −D(0,1,0). This hyperplane is indicated by as a red line in
the height one picture below, the halfspace 〈•, (0, 1, 0)〉 > 1 is the shaded area above this
hyperplane.

The rectangle is normal, i.e. lattice points in multiples of the rectangle are sums of
lattice points of the rectangle. Thus we can compute the intersection ideals by attaching
the rectangle to each point and calculating the lattice points in the intersection of these
rectangles, while carefully accounting for the height. Let us demonstrate this for a and
b, i.e. the first two generators of D:

height 1 : height 2 :

〈•, (0, 1, 0)〉 = 1
a b

c d

a+ e3 b+ e3

,

where we denote by e3 := [0, 0, 1]. The points of the intersection yield that m{1,2} =

(xa) ∩ (xb) = (x[1,1,2], x[1,2,2], x[1,3,2]). Thus we can construct the map

m{1,2} → (xa{1})⊕ (xb{2})⊕ (xc{3})⊕ (xd{4}) = S0(D)

xu{1,2} 7→ xu{1} − x
u
{2}.

27

3 Generalizing the Taylor resolution

Obviously the composition of this map with the surjection (xa{1}) ⊕ (xb{2}) ⊕ (xc{3}) ⊕
(xd{4})� D is zero.

In the same manner we can construct the other direct summands of S1(D) and build
the map d1 : S1(D) → S0(D) from its restriction to the direct summands of S1(D).
Taking higher intersections gives the other parts of the generalized Taylor resolution
S(D).

One can imagine several approaches to utilize the above setting for algorithmically
resolving D freely up to any given (finite) point. Let us briefly discuss one possibility:

Assume Sn to be a free module. We want to build a complex S′(D) which is quasiiso-
morphic to S(D), has D at position −1 and a free module at position n−1. Unfortunately
the new complex might not have a free module at position n anymore. Let Sn−1 = ⊕IDI .
We take

S′(D)i =


S(D)i i = 0, . . . , n− 2

⊕IS0(DI) i = n− 1

S(D)i ⊕I Si−n+1(DI) else

.

As differentials d′i in S′(D) we take the direct sums of the differentials in the respective
complexes. Since Sn is assumed to be free, we may lift dn : Sn → Sn−1 to a morphism
Sn → ⊕IS0(DI). For d′n−1 we take the composition ⊕IS0(DI)� Sn−1 → Sn−2.

Starting with turning Sr into a free module and then applying this principle, one can
turn S1 into a free module. Since the complex stays bounded at all times, we may now
again start at its end and turn S2 into a free module and so on. Repeatedly applying
this principle, we can construct a free resolution up to any given (finite) length, with the
drawback of this becoming huge and far from minimal.

Remark 3.4. One can get a little algorithmic speedup if one is just interested in the
free resolution up to a certain position, lets say n. In that case, one cuts the resolution
behind n, i.e. while applying the principle above, one would add

S′′(D)i =

{
S′(D)i i ≤ n
0 else

.

A maybe more promising approach is given in Section 3.2: Since the sequence S(D) is
not a short exact sequence, we cannot build the long exact sequence of cohomology to
compute Ext. Instead we turn it into a spectral sequence, taking its Cartan-Eilenberg
resolution. This allows some interesting statements about the support of Ext1(D,D′).

Reduction and the Scarf complex

Combinatorially the generalized Taylor complex corresponds to mapping the vertices of the
r−1-simplex onto the r generators of D and taking the lcm mI for faces conv(I) ⊆ ∆r−1.

This approach is described in more detail in [BPS98] for the case of R being the
polynomial ring: For every simplicial complex with r vertices one can build a sequence
as in Definition 3.1. However, this sequence needs not be exact as for the full simplex.
In [BPS98, Lemma 2.1] the authors state a criterion for a simplicial complex yielding an
exact sequence for a given monomial ideal in the polynomial ring. This criterion can be
simplified for the case of a simplicial tree as described in [Far14]. These criteria may

28

3.2 Building a spectral sequence from S(D)

be generalized to our setting of toric rings if one replaces the term ”mI divides m” by
mI ⊇ m for our generalized lcm. The subsequent paper [BS98] generalizes this approach
for so-called monomial modules and for lattice ideals.

Thus, the topic of reducing the size of this complex is well-covered and we will only
describe how to reduce the size of the complex S(D) for a very specific case: Pick three
generators xu

1
, xu

2
and xu

3
of D. Furthermore assume

m{1,3} ⊆ m{1,2} ∩m{2,3} = m{1,2,3}.

Then all relations of xu
1

and xu
3

decompose into relations of xu
1

with xu
2

and xu
2

with
xu

3
. Hence, one does not need m{1,3} as a direct summand of S2(D). This corresponds

to removing the edge conv{1, 3} from the r-simplex and consequently also dropping
all faces of ∆r−1 that contained conv{1, 3}. We will omit the proof at this point since
this case will be treated in greater detail in Theorem 5.8 for the two-dimensional case.
Assuming the above equation everything can easily be generalized for higher dimensions.

Remark 3.5. Note that we only need one edge-path in the two-dimensional case, i.e. all
> 2-dimensional faces disappear via Lemma 5.2. Thus S3 = 0 and we obtain the exact
sequence

0→ S2 → F0(D)→ D → 0,

which is exactly the sequence described in Theorem 5.8.

We can apply the same principle to the so-called Scarf complex (see [MS05]). One
obtains this complex by taking the subsets I of {1, . . . , n} such that the least common
multiple is unique, i.e. if we have mI = mJ , then I = J . By [MS05, Proposition 6.12]
every free resolution contains the Scarf complex as a subcomplex, in the case of resolving
a monomial ideal in a polynomial ring. This corresponds to the case of a smooth toric
variety, where we replace D by an arbitrary monomial ideal. Taking the generalized
Taylor resolution, it will always contain the generalized version of the Scarf complex. In
the two-dimensional case the Scarf complex is exactly the short exact sequence of the
above remark.

3.2. Building a spectral sequence from S(D)

We follow the notation of spectral sequences found in [Wei94]. In the case of S(D) having
length 1 and giving a short exact sequence

0→ S1 → S0 � D → 0,

the following construction of a spectral sequence will result in a long exact sequence of
cohomology, yielding a statement like Theorem 5.16 for this specific divisor D.

Let

0→ Sn → Sn−1 → . . .→ S1 → S0 � D → 0

be the generalized Taylor resolution of D. Take the projective Cartan Eilenberg resolution

29

3 Generalizing the Taylor resolution

P•,• of S(D)� D:

...
...

.
...

...
...

0 Pn,3 Pn−1,3 . . . P3,3 P2,3 P1,3 P0,3 0

0 Pn,2 Pn−1,2 . . . P3,2 P2,2 P1,2 P0,2 0

0 Pn,1 Pn−1,1 . . . P3,1 P2,1 P1,1 P0,1 0

0 Pn,0 Pn−1,0 . . . P3,0 P2,0 P1,0 P0,0 0

0 Sn Sn−1 . . . S2 S1 S0 D 0
,

where we denote as dv the vertical differentials and dh the horizontal ones. In particular,
the complex Pi,• is a projective resolution of Si. Now we apply the functor Hom(•, D′)
to P•,• with the vertical differentials and obtain a spectral cohomology sequence with

Ep,q0 := Hom(Pp,q, D
′), d := Hom(dv, D′).

Taking cohomology we find the next layer modules to be

Ep,q1 = Exti(Pp,q, D
′),

giving rise to the following diagram:

...
...

...
... . .

.

0 Ext3(D,D′) 0 Ext3(S1, D
′) Ext3(S2, D

′) . . .

0 Ext2(D,D′) 0 Ext2(S1, D
′) Ext2(S2, D

′) . . .

0 Ext1(D,D′) 0 Ext1(S1, D
′) Ext1(S2, D

′) . . .

0 Hom(D,D′) Hom(S0, D
′) Hom(S1, D

′) Hom(S2, D
′) . . .

,

where we already included the information that S0 is free. This spectral sequence
converges to the hypercohomology of the complex S(D). But S(D) was exact and

30

3.2 Building a spectral sequence from S(D)

bounded which means that the hypercohomology is zero. With this information we go
on to analyze the next layer:

...
...

...
...

... . .
.

0 0 Ext3(D,D′) 0 ker d1
2,3 E3,3

2
. . .

0 0 Ext2(D,D′) 0 ker d1
2,2 E3,2

2
. . .

0 0 Ext1(D,D′) 0 ker d1
2,1 E3,1

2
. . .

0 0 E0,0
2 E1,0

2 E2,0
2 E3,0

2
. . .

0 0 0 0 0 0 . . .

By vanishing of the hypercohomology we immediately obtain E0,0
2 = 0 and E1,0

2 = 0.
The basis for computing Ext1(D,D′) though, is the following proposition:

Proposition 3.6. In the spectral sequence developed above we have

Ext1(D,D′) ∼= E2,0
2 .

Proof. Take the map

d0,1
2 : Ext1(D,D′)→ E2,0

2 .

The next layer yields the equations

E0,1
3 = ker d0,1

2 and E2,0
3 = coker d0,1

2 .

Since the spectral sequence lives in the first quadrant only, we obtain

E0,1
3 = E0,1

4 = . . . = E0,1
∞

and the same holds for E2,0
3 . Thus vanishing of the hypercohomology yields E0,1

3 =

E2,0
3 = 0. Hence d0,1

2 must be an isomorphism.

Remark 3.7. In the case that n = 2 we get exactly the recursion described in Theorem 5.16.

We want to have a criterion for Exti(D,D′) to vanish for i > 0. This can be derived
using the spectral sequence of page 30. Fix a divisor D, then we have the generalized
Taylor complex S(D) of Remark 3.2. Now we collect all involved divisors in a set R(D):

R(D) := {H | ∃i : H is a direct summand of Si(D)}.

31

3 Generalizing the Taylor resolution

We continue this recursively:

P (D) := R(D) ∪
⋃

H∈R(D)

P (H).

Having this we can state the following proposition:

Proposition 3.8. Assume Exti(H,D′) = 0 for all H ∈ P (D) and i = 1, . . . , n(H), where
n(H) is the length of S(H), i.e. n(H) := maxj{j | S(H)j 6= 0}. Then Exti(H,D′) = 0
for all i > 0 and all H ∈ P (D).

Proof. Fix one divisor H and insert zero rows in the spectral sequence of 30 at heights
1, . . . , n(H). Then we see that in no layer of the spectral sequence there is a morphism
connecting a non-zero entry of the zeroth row with a non-trivial entry of a row > n(H).
In particular, the sequence

0→ S(H)n(H) → . . .→ S(H)0 � H → 0

must be exact, by vanishing of hypercohomology. Thus, we can deduce that

Extn(H)+1(H,D′) = 0.

Now pick H with n(H) minimal of all H ∈ P (D). Using the above arguments, we
may deduce that the (n(H) + 1)-th row in the spectral sequence of 30 for H and D′

vanishes. Proceeding inductively in this manner finishes the proof.

Of course we can restate the proposition for just one divisor.

Corollary 3.9. Assume Exti(H,D′) = 0 for all H ∈ P (D) and i = 1, . . . , n(H). Then
Exti(D,D′) = 0 for all i > 0.

In general P (D) will be infinite, which can already be seen in the two-dimensional case.
This reflects the fact that free resolutions become infinite. However P (D) considered
modulo linear equivalence may be finite:

Conjecture 3.10. The set
P̄ (D) = P (D)/ ∼,

where ∼ denotes linear equivalence, is finite.

In Section A.2 we have some code snippets for testing whether for a given D the set
P̄ (D) is finite.

The finiteness of P̄ (D) in the two-dimensional case is reflected in the quiver of
Definition 5.10. For σ being simplicial the class group is finite and hence P̄ (D). So far
we do not know an example where P̄ (D) has been proven infinite.

Example 3.11. Going back to Example 3.3, we notice that given any D 6∼ 0 the convex
hull of the generators conv(G(D)) ⊆ MQ always assumes one of the following three
shapes:

...0 < b

. . .

. . .

0 < a

. . .

0 < a

32

3.2 Building a spectral sequence from S(D)

Considering the intersections for building the generalized Taylor resolution of Defini-
tion 3.1, one gets a restriction on the size (i.e. length and width) of the involved divisors.
Thus we can deduce that in this case P̄ (D) is finite for any D. This is noteworthy, since
the cone over the rectangle yields a toric variety with infinite class group. Please also see
subsection A.2.1 and the picture on the titlepage for the divisor generated by a square
at height one.

The support of Ext1

We can now use Proposition 3.6 in order to compute the support of Ext1(D,D′). Let D
be generated by

D = (xu
1
, . . . , xu

n
) ⊆ C[M]

and denote by (•)∗ := Hom(•, D′). By Remark 3.2 we have the exact sequence

n⊕
1=i<j<k

Dijk →
n⊕

1=i<j

Dij →
n⊕
i=1

Di,

where we set
Di := (xu

i
) ⊆ C[M] and DI :=

⋂
i∈I

Di.

Applying (•)∗ to this sequence we get

n⊕
1=i<j<k

D∗ijk ←
n⊕

1=i<j

D∗ij ←
n⊕
i=1

D∗i (3.1)

and by Proposition 3.6 the cohomology in the middle is exactly Ext1(D,D′). Now as
polytopes we have

D∗I = {x ∈MQ | x+DI ∈ D′}.

We will use this description together with the sequence above to derive some facts about
the support of Ext1(D,D′). Let us assume that n ≥ 2, since for n = 1 we have D ∼= R
as R-module and thus Ext1(D,D′) = 0.

For n = 2 we only have to consider the three ideals D1, D2 and D12. Writing down
the sequence of Equation 3.1 we obtain for the support

Supp Ext1(D,D′) = SuppD∗12\(SuppD∗1 ∪ SuppD∗2).

We now proceed by constructing the sequence of Equation 3.1 inductively, i.e. we
assume we have the sequence for n− 1 generators and show what happens when adding
an n-th generator. Define the following matrices

An :=


An−1 0

Id

−1
...
−1

 and Bn :=

(
Bn−1 0

Id −An−1

)
,

where we set
A2 := (1 − 1) and B3 = (1 − 1 1).

33

3 Generalizing the Taylor resolution

Then the sequence of Equation 3.1 can be viewed as

 ⊕n−1
1=i<j<kD

∗
ijk

⊕⊕n−1
1=i<j D

∗
ijn

  ⊕n−1
1=i<j D

∗
ij

⊕⊕n−1
i=1 D

∗
in

  ⊕n−1
i=1 D

∗
i

⊕
D∗n

AnBn

Definition 3.12. Let

I ⊆ {(i, j) | 1 ≤ i < j ≤ n}

be a subset of the edges of the simplex ∆n−1. Then we define BI
n to be the matrix with

columns

col(ij)(B
I
n) =

{
col(ij)(B) (ij) ∈ I
0 else

.

Lemma 3.13. Assume that we can decompose I ⊆ ∆n−1[1] into I = J ∪ J ′ such that

conv(J) ∩ conv(J ′) = ∅.

Then we have

rk(BI
n) = rk(BJ

n) + rk(BJ ′
n).

Proof. The condition on J and J ′ yields that there is no 2-face of ∆n−1 containing an
edge of both J and J ′: Since a 2-face is a triangle it has to contain an edge from the
conv(J) to conv(J ′) and vice versa. This shows that two of the three edges cannot be
contained in either of the two polytopes. This results in the non-zero rows of BJ

n being
disjoint to the non-zero rows of BJ ′

n . The non-zero columns were already disjoint by
default, since J ∩ J ′ = ∅. This results in a decomposition of BI

n into two blocks of the
respective non-zero parts, and hence we are done.

Lemma 3.14. Let I ⊆ ∆n−1[1] such that dim conv(I) < n, i.e. conv(I) is strictly
contained in a face of ∆n−1. Then BI

n has rank #I.

Proof. Assume that conv(I) is contained in the facet of ∆n−1 opposite of the vertex n.
Then the only non-zero columns of BI

n come from the first
(
n
2

)
columns of Bn. This is

exactly the part of Bn with Id at the bottom. This yields the desired result for conv(I)
being contained in the facet opposite of the vertex n. Considering permutations of the
vertices results in the lemma.

Now we can derive the final theorem on the support of Ext1
R(D,D′):

Theorem 3.15. Take u ∈M and let

I := {(i, j) ∈ ∆n−1[1] | u ∈ Supp(D∗ij)}.

Then either of the three conditions implies that u /∈ Supp(Ext1
R(D,D′)):

1. conv I 6= ∆n−1.

2. I = J ∪ J ′ such that conv(J) ∩ conv(J ′) = ∅ with J, J ′ 6= ∅.

34

3.2 Building a spectral sequence from S(D)

3. u ∈ Supp(D∗i) for all i = 1, . . . , n.

Proof. The assumption of 1 yields that conv I is contained in a proper face of ∆n−1.
Thus we use Lemma 3.14 and obtain that the rank of BI

n is exactly #I. But this is
also the number of direct summands that have u in their support. Hence the number of
independent equations and the number of variables is the same.

The second claim can be derived from the first, considering J and J ′ separately, by
using Lemma 3.13. The assumption of 2 now says that both conv(J) and conv(J ′) are
contained in proper faces of ∆n−1. Thus we are in the setting of 1.

For an element u ∈M as in 3 we consider the matrices An and Bn as maps between
C-vector spaces. Since taking the dual of a sequence of finite dimensional vector spaces
is exact, we know that the degree u cohomology vanishes.

We can derive a corollary and a remark from this theorem. Take again u ∈M and let
I be as in the theorem. Then I is also a subset of the edges of the complete graph on n
points.

Corollary 3.16. Assume that u ∈ Supp(Ext1
R(D,D′)). Then the set of edges I is

connected and contains a spanning tree.

Proof. This is an easy consequence of 1 and 2 of the theorem.

The remark verifies that Ext1
R(D,D′) is concentrated in the general orbit:

Remark 3.17. Let s ∈ Ext1
R(D,D′) be a homogeneous element of degree u ∈M . Then

there exists v ∈ int(σ∨) ∩M such that xv · s = 0.
One just needs to choose v such that u+ v ∈ Supp(D∗i) for all i = 1, . . . , n. This is

possible since σ∨ is full-dimensional and all Supp(D∗i) have σ∨ as their tailcone. Then
use 3 of the theorem.

35

Cyclic quotient singularities

4.1. Toric construction

Fix two integers n and q, such that gcd(n, q) = 1 and 0 < q < n. Let σ = 〈ρ0, ρ1〉 be the
cone belonging to X = Yn,q, where ρ0 = (1, 0) and ρ1 = (−q, n). Take the coordinate ring
R = R(n, q) = C[σ∨ ∩ Z2] of X. Then R is generated as an C-algebra by the elements
{xh | h ∈ H}, where H denotes the Hilbert basis of σ∨.

Example 4.1. Let n = 7 and q = 3. Then the Hilbert basis of the cone σ∨ has four
elements, indicated by the dots in the picture.

σ∨

Thus R(7, 3) = C[x[0,1], x[1,1], x[2,1], x[7,3]] or, if we label the axes x and y, R(7, 3) =
C[y, xy, x2y, x7y3].

Continued fractions

In the two-dimensional case a Hilbert basis of σ∨ can easily be obtained, using continued
fractions:

Definition 4.2 (Continued fraction expansion). The continued fraction expansion of a
rational number p

q > 0, p, q ∈ Z>0, is a sequence a = [a1, . . . , as] of integers ai ≥ 2 such
that

p

q
= a1 −

1

[a2, . . . , as]
, where [a1] := a1.

Let a := [a1, . . . , as] be the continued fraction expansion of n
n−q , and let H = {b0 =

[0, 1], b1, . . . , bs+1 = [n, q]} be the Hilbert basis of σ∨ ordered by ascending first coordinate.
Then we have the equations

bi−1 + bi+1 = ai · bi ∀i = 1, . . . , s.

Equivalently the continued fraction expansion of n
q corresponds to the Hilbert basis of σ.

37

4 Cyclic quotient singularities

Example 4.3. In the example we have

7

7− 3
= [2, 4] and

7

3
= [3, 2, 2].

For σ∨ we obtain the following equations:

[0, 1] + [2, 1] = 2 · [1, 1] and [1, 1] + [7, 3] = 4 · [2, 1].

Remark 4.4. The relationship of continued fractions and cyclic quotient singularities
has already been thoroughly studied: Stevens ([Ste91]) and Christophersen ([Chr91])
discovered their relationship with the versal deformation of a cyclic quotient singularity.
In [Alt98] Altmann relates so-called P-resolutions to cyclic quotient singularities and
[Ilt08] uses these observations to calculate Milnor numbers. Thus for proofs of the above
claims we refer to these discussions. Of course the strong relationship suggests that
continued fractions play an important role for computing Ext as well.

The class group of a CQS

Having fixed the rays ρ0 = (1, 0) and ρ1 = (−q, n) of σ, we can now explicitly write
down the class group sequence [CLS11, Thm. 4.1.3]:

0 M Z2 ClX 0
A :=

(
1 0
−q n

)

(4.1)

Hence we obtain that Cl(X) ∼= Z/nZ. Additionally we see that the images of (−j, 0),
j = 0, . . . , n−1, form a system of representatives of the class group Cl(X). We will denote
the corresponding divisors by Ej = (−j, 0). The advantage of this set of generators is
that Ej ⊆ σ∨, in particular H0(X,Ej) is an ideal of R. Using Proposition 2.6 we can
compute the generators G(Ej).

Remark 4.5. Just a reminder to be careful in this case: Since D can be expressed as
an element of Z2 it is tempting just to add an element u ∈ M = Z2 to it coordinate
wise. This is wrong. The correct way is to take for the divisor D −Au, for the module
D[u] and for the polyhedron D + u. Most of the time we will use the last two notations,
so keep in mind, never to add D and u as vectors, but instead add the polyhedron D
and the point u ∈ Z2 by Minkowski summation. To stress this we will denote by [a, b]
elements of M = Z2 and divisors D as (a, b).

The two-dimensional case yields another advantage:

Definition 4.6 (vertex of D). Let D be a T -invariant Weil divisor, then D is Q-Cartier
which means that we can write the polyhedron D as ν(D) + σ∨ with ν(D) ∈ Q2. The
vector ν(D) is called the vertex of D.

Remember that Q-Cartier implies conic in the sense of [BG09], and essentially yields
that such a divisor is MCM. It also simplifies Minkowski summation as in D + u:

D + u = ν(D) + σ∨ + u = (ν(D) + u) + σ∨.

This observation will be used implicitly throughout Section 5.1 and following chapters,
since it gives rise to an easy method of determining which Ei is linearly equivalent to a
given D.

38

4.1 Toric construction

Example 4.7. We will consider the divisors E1 and E3. First we draw the corresponding
polyhedra of global sections.

ν(E1)

ν(E3)

[7, 3]

Then we compute the generators of H0(X,E1) and H0(X,E3). They are denoted as
dots of the respective colors. Both modules are generated by 3 elements. To compute the
different Ext-modules ExtiR(E3, E1) we will either have to find an injective resolution
of H0(X,E1) or an projective resolution H0(X,E3). We choose the second possibility,
since there is a straight forward way to build a free resolution of such a module that also
provides several other insights.

Generators and Inequalities

Using Proposition 2.6 we can calculate a generating system G for D as an R-module
for D = a · [ρ0] + b · [ρ1] = (a, b) an arbitrary Weil divisor. Since σ is pointed G(D) =
{xu0 , . . . , xur} is unique. Furthermore we assume that G(D) is ordered with respect to
the first coordinate of the ui, i.e. from the left to the right. Since [0, 1] ∈ σ∨ it is safe to
say that all ui have different first coordinate, justifying this assumption.

Thus we obtain:

Proposition 4.8. Let G(D) be the generating set of D ordered as above, i.e. we have
ui = [ai, bi] and

a0 < a1 < . . . < ar.

Then we obtain

〈ρ0, u0〉 < 〈ρ0, u1〉 < . . . < 〈ρ0, ur〉

and

〈ρ1, ur〉 < 〈ρ1, ur−1〉 < . . . < 〈ρ1, u0〉,

where ρ0 = (1, 0) and ρ1 = (−q, n) are the primitive ray generators of σ.

Proof. By Proposition 2.6 we know ui /∈ uj + σ∨ for all i 6= j. Since we sorted the ui by
ascending first coordinate the first chain of inequalities is trivial.

For the second chain assume that 〈ρ1, u0〉 ≤ 〈ρ1, u1〉. This immediately implies
u1 ∈ u0 + σ∨, a contradiction. The other inequalities can be obtained in the same
manner.

39

4 Cyclic quotient singularities

The canonical divisor

Let D = a[ρ0] + b[ρ1], a, b ∈ Z be a torus invariant Weil divisor. Proposition 4.8 yields a
handy way for to find i such that D and Ei are linearly equivalent. First we observe that
it is enough to know the first and the last generator u0 and ur to uniquely determine
the polyhedron of global sections. Second observation is that there is only one Ei with
same horizontal distance between first and last generator. Hence we obtain

D = En−ar−a0 + ([n, q]− ur).

In particular we can explicitly compute the vertex of the canonical divisor KX :=
−[ρ0]− [ρ1].

Remark 4.9. By the inequalities of Proposition 4.8 we immediately see that b1 = [1, 1]
and bs := [a, b] are the first and last generator of the ideal corresponding to KX . Thus
we have

ν(KX) = [1,
q + 1

n
].

One way to see this is to use the hyperplanes of σ∨:

〈ν(KX), ρ0〉 = 1 = 〈b1, ρ0〉.

By construction we have the equation 〈[a, b], (−q, n)〉 = −qa+ bn = 1 and we get for ρ1:

〈ν(KX), ρ1〉 = −q + n · q + 1

n
= 1 = 〈bs, ρ1〉.

4.2. Invariant construction

Another viewpoint on the cyclic quotient singularities Yn,q is as quotient of C2 by the
group

G := 〈
(
ξn 0
0 ξqn

)
〉,

with ξn being an n-th root of unity. It is well-known ([Ful93]) that taking invariants we
get

C[x, y]G = C[σ∨ ∩ Z2].

Remark 4.10. The articles [Nak13] and [Wun87] work with the completed version. Since
G is a finite reductive subgroup of GL(2,C), taking G-invariants becomes an exact
functor and we get

C[[x, y]]G = (C[x, y]G)∧ = C[[σ∨ ∩ Z2]]

if we take the completion in the *maximal ideal m.

The discussion of Section 2.2 now shows that computing Ext on the completed rings
is the same as working with the toric rings.

40

Resolving torus invariant divisors
on CQS

We stay in the two-dimensional setting: Let 0 < q < n be two coprime integers and let
σ ⊆ Q2 be the cone generated by the rays through (1, 0) and (−q, n). Then we denote by
R the ring R := C[σ∨ ∩ Z2] and by X the associated toric variety X = SpecR = TV(σ).

5.1. A short exact sequence

Let D = a · [ρ0]+b · [ρ1], a, b ∈ Z be an arbitrary Weil divisor on X. In this section we will
apply the construction of the generalized Taylor resolution developed in Section 3.1. This
will result in a resolution of D, which is *minimal, i.e. for the differentials di : Fi → Fi−1

we have di(Fi) ⊆ mFi−1. If we localize at m, this resolution becomes minimal in the
usual sense.

Let us start with an example demonstrating the main point of the generalized Taylor
resolution, namely the generalized lcm:

Example 5.1. We stay in the setting of n = 7 and q = 3. We want to consider the
elements y and xy in C[σ∨ ∩ Z2]. The intersection of the two principal ideals generated
by these elements is generated by the monomials corresponding to the purple dots in the
picture.

But considering the lcm as the generators of the intersection ideal also solves our
problem as we will see in a moment. The syzygies of homogeneous elements can be
decomposed into homogeneous summands. Hence, it is enough to give a generating set
for the homogeneous relations.

Another key observation is that it is enough to consider relations for neighbouring
elements of the generating set G.

41

5 Resolving torus invariant divisors on CQS

Lemma 5.2. Let G = {xui | i = 0, . . . , r} generate the module D. Let a ∈ Rr+1 be a
syzygy, i.e.

r∑
i=0

aix
ui = 0.

We call the vector (a0, a1, . . . , ar) ∈ Cr+1 the coefficient vector of a. Then a can be
decomposed into a sum of homogeneous elements of Rr+1 whose coefficient vectors are
exactly (ei − ei+1), i = 0, . . . , r − 1, i.e. the coefficient vector is (0, . . . , 0, 1,−1, 0, . . . , 0).

Proof. Recall that Rr+1 is M -graded via deg ei = ui. Since the xu
i

are homogeneous
of deg xu

i
= ui a can be decomposed into its homogeneous parts, thus without loss

of generality we assume that a is homogeneous. Hence, let deg a = u ∈ M . We will
explicitly decompose a homogeneous relation of three elements, relations of more elements
can then be decomposed inductively with the same principle. Thus, let

a = a · e0 + b · e1 + c · e2, with a, b, c ∈ R\{0}, i.e. a · xu0 + b · xu1 + c · xu2 = 0.

Each summand is homogeneous of degree u, thus we can determine the degrees of a, b
and c and since there is exactly one monomial of each degree in R. For example we have
deg axu

0
= u and thus deg a = u− u0. Therefore a must be a multiple of xu−u

0
.

We can now write

a = a′ · xu−u0 · e0 + b′ · xu−u1 · e1 + c′ · xu−u2 · e2, with a′, b′, c′ ∈ k\{0}.

Now we want to cut off a′ · xu−u0 · e0, thus we just subtract the relation a′ · xu−u0 ·
e0 − a′ · xu−u1 · e1. Using this principle we can decompose nearly all relations into the
conjectured elements, except relations with zero entries between non-zero entries. In the
above case this corresponds to b′ = 0 and the problem becomes to determine whether
u− u1 still corresponds to a monomial of R.

Thus, assume

a = a′ · xu−u0 · e0 + c′ · xu−u2 · e2, with a′, c′ ∈ k\{0}.

First we show that u ∈ u1 + σ∨. We already know that u ∈ (u0 + σ∨) ∩ (u2 + σ∨). By
Proposition 4.8 we obtain the following chains of inequalities

〈ρ0, u0〉 < 〈ρ0, u1〉 < 〈ρ0, u2〉 < 〈ρ0, u〉

since u ∈ u2 + σ∨ and

〈ρ1, u2〉 < 〈ρ1, u1〉 < 〈ρ1, u0〉 < 〈ρ1, u〉

since u ∈ u0 + σ∨. This immediately yields u ∈ u1 + σ∨ and thus the monomial xu−u
1

exists in R. Therefore we may subtract the relation a′ · xu−u0 · e0 − a′ · xu−u1 · e1 from a,
thus closing the gap.

Using the above principles one can decompose any relation.

Remark 5.3. This lemma relies heavily on the observation of Proposition 4.8, i.e. that
we can sort the generators of our ideal/module. Thus being in dimension 2 is crucial.

42

5.1 A short exact sequence

Example 5.4. We illustrate the above proof with a picture. A relation (or rather its
degree) of the three elements y, xy and x2y has to lie in the red cone and thus also lies
in the green cone and the blue cone. Hence, it can be decomposed into a sum of two
relations of the desired form.

This picture fails in higher dimensions, take for example the divisor of Example 3.3.

Finally we state how to explicitly compute the relations for two elements.
Let xu and xv with u, v ∈ σ∨∩M . Then their homogeneous relations correspond exactly

to the lattice points of the polyhedron Q := (u+ σ∨) ∩ (v + σ∨). Using the observations
of subsubsection 4.1 we want to recognize Q as some shifted Ej . Of course, this is only
a technical detail, but for later algorithms it will obliterate several computations of
intersections of polyhedra and lead to a significant speed-up. Remember that

Ej = σ∨ ∩ ([j, 0] + σ∨) = [j,
jq

n
] + σ∨, i.e. ν(Ej) = [j,

jq

n
].

Hence, to find j for Q, only the distance of the x-coordinates of u and v matters:

Proposition 5.5. Let xu, xv ∈ R, with u = [u0, u1] and v = [v0, v1] such that 0 <
v0 − u0 < n and v /∈ u+ σ∨. In the setting of the above lemma we obtain

Q = u+ Ev0−u0 = Ev0−u0 [u].

Thus the syzygy module of xu and xv is equal to H0(X,Ev0−u0 [u]) as an M -graded
module.

Proof. We can describe Q as

Q = {w ∈M | 〈x,w〉 ≥ 〈x, u〉 and 〈x,w〉 ≥ 〈x, v〉 ∀x ∈ σ}.

Using the assumption on u and v we can reduce this to

Q = {w ∈M | 〈ρ0, w〉 ≥ 〈ρ0, v〉 and 〈ρ1, w〉 ≥ 〈ρ1, u〉}
= {[w0, w1] ∈M | w0 ≥ v0 and − qw0 + nw1 ≥ −qu0 + nu1}.

On the other hand we have

Ev0−u0 = {[w0, w1] ∈M | w0 ≥ v0 − u0 and − qw0 + nw1 ≥ 0}.

Adding [u0, u1] to all points of this polyhedron obviously yields the desired equation.

43

5 Resolving torus invariant divisors on CQS

Remark 5.6. Of course one can generalize the above proposition to situations where
v0 − u0 > n by computing modulo n at the appropriate places. However the sorted
generators of D satisfy this condition.

Now we join all the above preliminaries into one theorem on how to build a free
resolution of D.

Let G := {xu0 , . . . , xur} ⊆ D be the minimal sorted homogeneous generating set of D
as an R-module. Let ui = [ai, bi]. Then we have 0 < aj − ai < n for all i < j, since a
further distance of two neighbouring generators would violate the convexity of D.

Hence we can describe the syzygies of neighbouring generators in the following way:

Definition 5.7. Let G := G(D) denote the generators of D. Define by

F0(D) := RG :=

r⊕
i=0

R[ui]

the first module in the graded free resolution of D. Furthermore for i = 1, . . . , r define a
map

Eai−ai−1 [ui−1]→ F0(D), xu 7→ xu−u
i−1
ei−1 − xu−uiei.

By construction this morphism is homogeneous of degree 0 ∈M .

The next natural step is now to take the direct sum of all these maps into F0(D). This
yields a short exact sequence giving us complete understanding and control over the free
resolutions of any D. The following theorem redefines the generalized Taylor resolution
torus invariant Weil divisors on a CQS. It can be seen as a generalization of the so-called
cellular resolutions of Sturmfels and Miller ([MS05]) to two-dimensional toric rings.

Theorem 5.8. For D as above we have the short exact sequence

S(D) : 0→
r⊕
i=1

Eai−ai−1 [ui−1]→ F0(D)→ D → 0.

Proof. The proof serves as a nice summary of the above results: First we obtain by
Lemma 5.2 that it is enough to consider two-term relations of neighbouring elements xu

i

and xu
i−1

for determining the syzygies of D. Proposition 5.5 describes the syzygies of
the elements xu

i
and xu

i−1
as

lcm(xu
i
, xu

i−1
) = Eai−ai−1 [ui−1].

Thus we have proven that the first map is surjective onto the kernel of the second map.

Injectivity is a consequence of Lemma 5.2, since an element xu of lcm(xu
i
, xu

i−1
) maps

to an element of the same degree in F 0(D) with coefficient vector ei−1 − ei and thus the
different coefficient vectors for varying i are linearly independent, turning the whole map
injective.

We will derive several consequences of this theorem: In Section 5.2 we describe its use
in computing free resolutions and in Section 6.1 we describe its application in computing
Ext1 of two Weil divisors.

44

5.2 The resolution quiver

5.2. The resolution quiver

For a Weil divisor D the short exact sequence of Theorem 5.8 also encodes its free
resolution completely. For sake of simplicity let us denote the sequence as

S(D) : 0→
r⊕
i=1

Di → F0(D)→ D → 0.

Then we can replace the Di by their free resolutions and set

Fk(D) :=
r⊕
i=1

Fk−1(Di), k ≥ 2, with F0(Di) =
⊕

u∈G(Di)

R[u]

as initial data, where we again assume G(Di) to be sorted as in Proposition 4.8.

Example 5.9. In our example D = E3 is an ideal of R, generated by x3y2, x4y2 and
x7y3. We obtain the following sequence

ν(E3)

[7, 3]

F1(E3) = F0(E1[3, 2])⊕ F0(E3[4, 2])→ F0(E3)� H0(X,E3)→ 0

with

d1 =

 1 1 1 0 0 0
−1 −1 −1 1 1 1
0 0 0 −1 −1 −1

 , d0 =
(

1 1 1
)

The upper matrix already appeared in Example 2.15 in the usual notation. One also
recognizes the intersections of the cones at neighbouring generators as the shifted Ei we
described above.

By computing the short exact sequence of Theorem 5.8 for every Weil divisor D and
inserting arrows from Di → D we obtain a quiver. If we only consider divisor classes,
identifying multiple arrows, this quiver becomes finite. This finiteness comes with a
price: We lose the information about the grading.

We fix this problem in the following way: Apply Theorem 5.8 to all our Ei, i = 1, . . . , n
and obtain

S(Ei) : 0→ ⊕rij=1E
kj [uj]→ F0(Ei)� Ei → 0.

Now build a quiver R with vertices Ei and arrows Ekj → Ei and label these arrows with
the corresponding shifting degree uj . This procedure partly reverses the identification of
multiple arrows, as there can be several arrows between two vertices with different labels.

45

5 Resolving torus invariant divisors on CQS

Definition 5.10. We call R the resolution quiver of Yn,q.

As we will see later, the quiver R possibly contains loops and multiple arrows. If there
are multiple arrows, they cannot carry the same label by construction.

Remark 5.11. Every other Weil divisor D is linearly equivalent to some Ei and can be
written as D = Ei + u for some u ∈ Z2. Thus one can just resolve Ei and shift the
resolution by u afterwards. Applying the recursive definition from above we see that R
completely controls the minimal multigraded resolution of any Weil divisor. In a compact
formula this means:

Fn+1(Ei) =

ri⊕
j=1

Fn(Ekj)[uj],

in the setting of the above exact sequence.

One can even resolve arbitrary monomial ideals (xv
0
, . . . , xv

r
), vi ∈ σ∨∩M of R: First

assume the set of generators ordered and minimal. Now each intersection (vi−1 + σ∨) ∩
(vi + σ∨) corresponds to the section polyhedron of some shifted Ei.

Example 5.12. In the running example with n = 7 and q = 3 the quiver R looks as
follows:

E7

E1

E2

E3

E4

E5

E6

[6, 3]

[5, 3][6, 3][4, 2]

[3, 2]

[4, 2]

[2, 1]

[1, 1]

[2, 1]

One immediately recognizes the decomposition of F1(E3) given in Example 5.9. Using
this quiver we can for example provide a formula for F2(E3):

F2(E3) = F1(E1)[3, 2]⊕ F1(E3)[4, 2]

=
(
F0(E1)[1, 1]⊕ F0(E5)[2, 1]

)
[3, 2]⊕

(
F0(E1)[3, 2]⊕ F0(E3)[4, 2]

)
[4, 2]

As one can see, R is never connected, since E0 ∼ En corresponds to R which can be
resolved trivially. Also R can have multiple edges and loops. To simplify notation in the
future, we have the following definition:

Definition 5.13. For a Weil divisor D we denote by inR(D) the sources of arrows of
R that end in the vertex of R which is linearly equivalent to D. I.e. if D = Ei[u] and
there are arrows Ekj → Ei labelled by uj ∈M for j = 1, . . . , r, then

inR(D) = {Ekj [u+ uj] | j = 1, . . . , r}.

46

5.2 The resolution quiver

Remark 5.14. By construction we have the following relation between the number of
generators r + 1 of D and the number of elements of inR(D):

inR(D) = r = G(D)− 1.

Example 5.15. Have a look at the quiver in Example 5.12. We can now easily write
down inR(D) for e.g. E1 and E3:

inR(E1) = {E1[1, 1], E5[2, 1]}, inR(E3) = {E1[3, 2], E3[4, 2]}.

Theorem 5.16. For Ei denote by Ek1 , . . . , Ekr the sources of the incoming arrows.
Then for any Weil divisor D on X

Extm+1
R (Ei, D) =

r⊕
j=1

ExtmR (Ekj , D)[−ukj], m ≥ 1.

The formula remains valid if replacing D by an arbitrary R-module.

Proof. Collecting the sources Ek1 , . . . , Ekr of the incoming arrows together with their
shifts ukj yields the short exact sequence of Theorem 5.8 for Ei. Now one applies the
functor Hom(•, D) and takes the long exact sequence of cohomology. Since the middle
module F0(Ei) is free we have Extn(F0(Ei), D) = 0 for n ≥ 1. This yields isomorphisms

Extn+1
R (Ei, D) ∼= ExtnR

 ri⊕
j=1

Ekj [uj], D

 for n ≥ 1.

Since Ext commutes with direct sums and since we know how to compute Hom of graded
modules, we can transform the right hand side into the desired form.

Remark 5.17. Using Definition 5.13, Theorem 5.16 becomes the following for general D
and D′:

Extn+1
R (D,D′) =

⊕
G∈inR(D)

ExtnR(G,D′), n ≥ 1.

From an algorithmic perspective it is more efficient to have the shifts outside of Extn(•, •).
One needs just compute Ext1(Ei, Ej) for all i, j = 1, . . . , n. Then we use shifts and the
recursion from above to compute arbitrary Extn(D,D′).

We will examine two special cases here, namely the case of q = n− 1 and the case of
q = 1.

Example 5.19. Let 0 < q = 1 < n ∈ Z, i.e. Yn,q is the cone over a rational normal
curve. Then it is easy to see that the generators of the ideal Ei are exactly

[i, 1], [i+ 1, 1], . . . , [n, 1].

Thus neighbouring generators have difference 1 on the x-axis and by Proposition 5.5 we
deduce that the syzygies of these generators are isomorphic to E1. Hence we have for a
fixed Ei exactly n− i arrows from E1 to Ei which are labeled by

[i, 1], [i+ 1, 1], . . . , [n− 1, 1].

47

5 Resolving torus invariant divisors on CQS

Algorithm 5.18: Computing the resolution quiver R
Input: n, q ∈ Z with 0 < q < n and gcd(n, q) = 1
Output: The quiver R for Yn,q as described above
Initialize R as a new quiver with vertices {E0, . . . , En−1} and no edges;
for i = 1, . . . , n− 1 do

Let G = {u0, . . . , ur} be the generators of Ei;
for j = 1, . . . , r do

source := uj0 − u
j−1
0 ;

shift := uj−1;
Add the edge Esource → Ei with label shift to R;

return R

To give a sample picture we pick n = 5:

E5

E1

E2

E3

E4

[1, 1]

[2, 1]

[3, 1]

[4, 1]

[2, 1]

[3, 1]

[4, 1]
[3, 1]

[4, 1]

[4, 1]

Example 5.20. Let 0 < q = n − 1 < n ∈ Z, then Yn,q is a An−1-singularity. In
particular, Yn,q is a hypersurface, which is reflected in the fact that the Hilbert basis of
σ∨ consists of three elements.

We proceed as in the previous case. The divisor Ei is generated by the two elements

[i, i] and [n, n− 1]

for i 6= n. Thus there is an arrow from En−i to Ei labeled with [i, i]. Applying the
principle to En−i we also get an arrow from Ei to En−i labeled with [n− i, n− i]. If n
is even we have a loop at En/2, otherwise the quiver R consists of n−1

2 disjoint 2-cycles.

48

5.3 Comparing R, the AR-quiver, and the McKay-quiver

Consider the following two examples:

n = 4 n = 5

E4

E1

E2

E3

[2, 2]

[3, 3]

[1, 1]

E5

E1

E2 E3

E4

[4, 4]

[1, 1]

[3, 3]

[2, 2]

5.3. Comparing R, the AR-quiver, and the McKay-quiver

Starting with the associated local ring (Rm,m) to the cyclic quotient singularity Yn,q =
SpecR one can define Auslander-Reiten sequences (AR-sequences), see for example
[Yos90, Chapter 2]. These are short exact sequences of the following shape

0→ N → E →M → 0,

with both N and M indecomposable. Since the sequences of Section 5.1 have N being a
direct sum with more than one summand in most cases, it is already clear at this point
that they will mostly not be AR-sequences.

This becomes even more imminent considering the Auslander-Reiten-quiver (AR-
quiver): The AR-quiver has isomorphism classes of indecomposable modules for its
vertices and the number of edges between two vertices [N] and [M], with N and M as
above may be read of from E ([Yos90, Lemma 5.5]). For an isolated singularity this
yields a finite quiver. In the case of cyclic quotient singularities this yields at most one
edge from [N] to [M] (see [Nak13]).

On the other hand we have the description of cyclic quotient singularities via a finite
group acting on V = C2, given in Section 4.2. This gives rise to the McKay quiver.
Let us briefly recall the construction given in [Yos90]. The vertices are the classes of
non-isomorphic irreducible representations of G. Taking two such representations Vi and
Vj we have exactly

dimC HomCG(Vi, V ⊗C Vj)

arrows from Vi to Vj .
In the case of CQS, the McKay quiver and the AR-quiver become the same. This is

due to a result by Auslander ([Aus86, Section 2], which we state in a slightly reformulated
way:

Theorem 5.21. [Yos90, Thm. 10.14] If G ⊂ GL(2,C) has no pseudo-reflection but the
identity, then the invariant subring R = C{x, y}G is always of finite representation type,
and the AR-quiver of R coincides with the McKay quiver of (V,G).

49

5 Resolving torus invariant divisors on CQS

Let us have a look at the example:

Example 5.22. In the case n = 7 and q = 3 the AR-quiver looks like

E7

E1

E2

E3E4

E5

E6

.

Comparing this to R in Example 5.12 we already see the differences: The AR-quiver
is connected, while R has an isolated vertex. Also R lacks the high symmetry of the
AR-quiver.

Thus the AR-quiver is fundamentally different from the quiverR. In fact the AR-quiver
of a cyclic quotient singularity will always consist of two directed cycles involving all
MCM-modules. This is due to [Wun87] and explained in our notation in [Nak13]. On
the other side, R will always have the isolated point En and in most cases also has sinks.
In the case q = 1, R looks like a star with E1 at the center, see Example 5.19. In the
Gorenstein case, R is disconnected, for q > 2, see Example 5.20.

This difference is also caused by the way in which R and the AR-quiver arise. While
we can build the AR-quiver for higher dimensional toric singularities as well, the short
exact sequences of Section 5.1 tend not to be short for higher dimensions, see Chapter 3.
This indicates that a quiver is not the right object for R, only in the very specific
case of two-dimensional varieties. Additionally the class group becomes infinite in the
non-simplicial case. Thus R has infinitely many vertices. On the other side the AR-quiver
stays finite, since there are only finitely many MCM-classes.

There are different possible categories for R that all have quivers as a subcategory.
But before making a choice one needs to solve the problem of getting the minimal free
resolution from the generalized Taylor complex of Chapter 3, i.e. one has to reduce
the exact sequence S(D). This step is crucial, because only then we get short exact
sequences in the two-dimensional case. Having R a quiver will then be a property of the
underlying toric variety.

50

Ext1

6.1. A combinatorial formula for Ext1

Computing Ext1 is now very easy using Theorem 5.8.
For a Weil divisor D we obtain the short exact sequence

S(D) : 0→
⊕

G∈inR(D)

G→ F0(D)→ D → 0

and we apply Hom(•, D′) to it, with D′ a second Weil divisor. We obtain a long exact
sequence of cohomology of which we will only consider the first part at this point. Since
F0(D) is a free module, Ext1(F0(D), D′) = 0 and we have

0→ Hom(D,D′)→ Hom(F0(D), D′)→ Hom(
⊕

G∈inR(D)

G,D′)→ Ext1(D,D′)→ 0.

For the second to last summand we have

Hom(
⊕

G∈inR(D)

G,D′) =
⊕

G∈inR(D)

Hom(G,D′).

Thus we have the following formula

Ext1(D,D′) =

⊕
G∈inR(D)

Hom(G,D′)/
Hom(F0(D), D′) ,

where the denominator refers to the image of the third map. We can use this description
to obtain a combinatorial formula for Ext1:

Theorem 6.1. To two Weil divisors D and D′ on Yn,q define the following set

ext(D,D′) :=

 ⋃
G∈inR(D)

(− ν(G) +D′)

 \ ((−u0 +D′) ∪ (−ur +D′)
)
,

where u0, u1, . . . , ur ∈ M denote the sorted generators G(D) of D. Then we have the
following isomorphism

Ext1
R(D,D′) =

⊕
u∈ext(D,D′)∩M

C · x̄u

51

6 Ext1

of M -graded C-vector spaces, where the multiplication is given as

xv · x̄u =

{
x̄v+u v + u ∈ ext(D,D′)

0 else,

with xv ∈ R.

Proof. We start by examining the module of homomorphisms between two divisorial
ideals D and D′. We claim that it is completely determined by its support hom(D,D′),
i.e.

Hom(D,D′)) =
⊕

hom(D,D′)∩M

C · xu, where hom(D,D′) = −ν(D) + ν(D′) + σ∨.

Since both D and D′ are finitely generated M -graded modules, their module of homo-
morphisms is canonically M -graded as well. Both are divisorial ideals contained in C[M].
Assume we are given a non-trivial homogeneous morphism f : D → D′, sending an
element xu ∈ D to f(xu) = a·xw ∈ D′, with a ∈ C∗. In particular, we have deg f = w−u.
Taking any other element xv ∈ D, we may write down the following equation:

f(xv) = f(xu · xv−u) = xv−u · f(xu) = a · xv−u+w.

This does not follow by R-linearity of f alone, rather one has to take the relations of the
elements of both D and D′into account. In particular this implies that v − u+ w ∈ D′,
otherwise we can construct torsion in the image of D under f , but D′ has no torsion.
Thus we deduce for the polyhedra that

(D ∩M) + w − u ⊆ (D′ +M).

Take u0 and ur to be the first and last generators of D, and name those of D′ v0 and vs.
Then this implies

〈v0, ρ0〉 ≤ 〈u0, ρ0〉 and 〈vs, ρs〉 ≤ 〈ur, ρ1〉.

Since the hyperplanes through these points are the bounding hyperplanes of D, D′

respectively, the containment remains valid when omitting the intersection with M .
Hence it is enough to find all lattice points u ∈ M such that D + u ⊆ D′. But these
are exactly the lattice points of hom(D,D′). In particular, Hom(D,D′) is a divisorial
ideal itself, corresponding to the polyhedron − ν(D) + D′. Hence we can speak of
xu ∈ Hom(D,D′).

Using this observation, we construct

Supp

 ⊕
G∈inRD

Hom(G,D′)

 =
⋃

G∈inRD

hom(G,D′)∩M =

 ⋃
G∈inRD

− ν(G) + ν(D′) + σ∨

∩M.

This motivates the first term of ext(D,D′).
Next we compute the denominator in the representation of Ext1(D,D′) as a quotient:

Hom(F 0(D), D′) = Hom(
⊕

u∈G(D)

R[u], D′) =
⊕

u∈G(D)

Hom(R[u], D′) =
⊕

u∈G(D)

D′[−u].

52

6.1 A combinatorial formula for Ext1

Take G(D) to be u0, u1, . . . , ur ∈ M . The numerator in the quotient representation
has exactly r terms, these are the Hom(G,D′) for G ∈ inR(D). Our claim is that the
D′[−ui] glue two of the Hom(G,D′) together for i = 1, . . . , r − 1, while the boundary
D′[−u0] and D′[−ur] are torsion. This explains the formula for ext(D,D′) completely.

For the sake of simplicity, we will prove this in the case r = 2. Here, we have

F0(D) = R[u0]⊕R[u1]⊕R[u2], and inR(D) = {G1, G2}.

As described in Section 5.1 we obtain Gi by intersecting

Gi = (ui−1 + σ∨) ∩ (ui + σ∨) = ν(Gi) + σ∨.

Let us illustrate the situation using a picture. The red shifted cone depicts our divisor
D, the red dots depict the generators ui.

σ∨

D

u0 u1 u2

ν(G1) ν(G2)

−u0−u1−u2

− ν(G1)− ν(G2)

The picture already illustrates the main point of the first part, namely

(− ν(G1) + ν(D′) + σ∨) ∩ (− ν(G2) + ν(D′) + σ∨) = −u1 + ν(D′) + σ∨.

All one needs is to multiply the equation

u1 = ν(G1)− a · [0, 1] = ν(G2)− b · [n, q], with a, b > 0

by (−1) to immediately obtain that u1 lies on the extremal rays of both polyhedra
− ν(Gi) + σ∨.

Next we compute the image of the direct summand Hom(R[u1], D′) in Hom(G1, D
′)⊕

Hom(G2, D
′). As discussed above, a homogeneous morphism R[u1]→ D′ is determined

by an element u ∈ D′[−u1] ∩M , i.e. 1 7→ xu+u1 ∈ D′. Now we take the composition of
morphisms

G1 ⊕G2 → R[u0]⊕R[u1]⊕R[u2]→ D′,

i.e. we embed f in Hom(F0(D), D′) and then compose it with the differential. Concretely
this yields for the homogeneous elements

(xv, xw) 7→ (xv−u
0
, xw−u

1 − xv−u1 ,−xw−u2) 7→ xu+w − xu+v.

53

6 Ext1

If we restrict this composed map to either G1 or G2, it yields a morphism Gi → D′ of
degree u in both cases. Thus for the points we get

D′[−u1] → Hom(G1, D
′)⊕Hom(G2, D

′)
xu 7→ (xu,−xu)

.

Hence, in Ext1(D,D′) xu ∈ Hom(G1, D
′) is the same as xu ∈ Hom(G2, D

′), since
(xu,−xu) is zero. This explains the glueing part.

We will finish this proof by discussing the image of D′[−u0] = Hom(R[u0], D′) in
Hom(G1, D

′)⊕Hom(G2, D
′). Proceeding as in the previous part we obtain

D′[−u0] → Hom(G1, D
′)⊕Hom(G2, D

′)
xu 7→ (xu, 0)

.

This completely cuts off D′[−u0] from Hom(G1, D
′).

We may proceed analogously for D′[−ur].
For r > 2 we obtain several gluings. Then every D′[−uk] for 0 < k < r glues with its

respective neighbours as D′[−u1]. Again, D′[−u0] and D′[−ur] are cut off.

Remark 6.2. For sake of completeness one can recognize the degrees of Hom(D,D′) as
the lattice points of D′[−u0] ∩D′[−ur]. This explains the first term in the long exact
cohomology sequence.

Example 6.3. We continue our example with q = 3 and n = 7 from above and compute
Ext1

R(E3, E1) and Ext1
R(E3, E2). Let us first identify all variables needed for the theorem:

u0 =

[
3
2

]
, u1 =

[
4
2

]
, u2 =

[
7
3

]
.

The quiver of Example 5.12 gives

inR(E3) = {G1 := E1[3, 2], G2 := E3[4, 2]}

and thus, we have

v1 := ν(G1) =

[
4
17
7

]
, v2 := ν(G2) =

[
7
23
7

]
.

The polyhedra of global sections are

E1 =

[
1
3
7

]
+ σ∨, E2 =

[
2
6
7

]
+ σ∨.

Now we draw the corresponding point sets ext(E3, E1) and ext(E3, E2):

−v1

0

−v2

−u0

−u2 −v1

0

−v2

−u0

−u2

54

6.2 First consequences of the Ext1 formula

Thus we obtain

Ext1
R(E3, E1) = C · x̄[−4,−2]⊕C · x̄[−3,−2] and Ext1

R(E3, E2) = C · x̄[−4,−2]⊕C · x̄[−2,−1].

As an immediate observation we may complement the first part of Proposition 2.28 with
a combinatorial explanation in our case of cyclic quotient singularities in the following
two remarks:

Remark 6.4. Since a cyclic quotient singularity is isolated, Proposition 2.28 implies
that for two Weil divisors D, D′ on a cyclic quotient singularity the C-dimension of
Ext1

R(D,D′) as a C-vector space is finite.

We verify this by showing that ext(D,D′) in Theorem 6.1 is bounded. The ordering
on {u0, . . . , ur} implies the same ordering on {v1, . . . , vr}. Multiplying with −1 just
reverses the ordering. Thus we obtain

〈ρ0, ur〉 = 〈ρ0, vr〉 and 〈ρ1, u0〉 = 〈ρ1, v1〉,

which results in cutting off everything above the hyperplanes at these values given by
ρ0 and ρ1. Since ext(D,D′) was bounded from below by default, we obtain the desired
result. For an illustration please see Example 6.3.

This explains Ext1 and via Theorem 5.16 we extend Remark 6.4 to general n:

Remark 6.5. In full generality, the first part of Theorem 6.1 states that the R-module
ExtnR(D,D′) is a finite dimensional C-vector space for any n ≥ 1.

One can now use induction: Theorem 5.16 yields the step, since every higher Exti is
just a direct sum of Ext1’s, and Remark 6.4 is the anchor.

6.2. First consequences of the Ext1 formula

A helpful observation is that we can relate the set ext(D,D′) to a combinatorial invariant
of D. This invariant is the following:

Definition 6.6. For a divisorD with generators {u0, . . . , ur} = G(D) define the following
subset

below(D) := int(D)\
r⋃
i=0

int(ui + σ∨),

where int(•) denotes the relative interior.

One may think of below(D) measuring how far D is from being lattice-equivalent to
σ∨. If below(D) is empty, then D ∼ En. Let us illustrate this using a picture:

Example 6.7. We draw the sets below(Ei) for E3 and E2 in the running example with

55

6 Ext1

n = 7 and q = 3:

Please remember that the leftmost and the bottom boundary do not belong to the below
sets, this is indicated by the dashed lines. Since E2 only has two generators, its below
set looks like a parallelepiped. On the other hand, E3 is generated by three elements
and hence, its below set has one ’dent’.

Now let us link the sets below(D) and ext(D,D′):

Proposition 6.8. We have the following two equations:

ext(D,D′) = ext(D, 0) + ν(D′), and − ext(D, 0) = below(D).

Proof. The first equation follows immediately from the definition of ext(D,D′) in The-
orem 6.1. Please also look at the diagram in the proof of Theorem 6.1 for an illustration
of the situation.

For the second equation we start on the left hand side:

− ext(D, 0) =

 ⋃
G∈inR(D)

(ν(G)− σ∨)

 \ ((u0 − σ∨) ∪ (ur − σ∨)
)

This means that all the rays of the ν(G) − σ∨ point ”downwards”, in particular they
pass through the generators ui. For u0 and ur being the first and last generator of D is
equivalent to

(u0 − σ∨) ∩ (ur − σ∨) = ν(D)− σ∨.

When we cut off (u0−σ∨)∪(ur−σ∨) from a ν(G)−σ∨, the remaining part will live in the
parallelepiped spanned by ν(G), u0, ur and ur + u0 − ν(G). Thus, the set resulting after
the cutoff will not contain any boundary of D. Hence, cutting off (u0 − σ∨) ∪ (ur − σ∨)
becomes the same as intersecting with int(D) for ν(G)− σ∨.

Next consider the ordered elements {G1, . . . , Gr} = inR(D). Analogously to the
previous observation we have

(ν(Gi)− σ∨) ∩ (ν(Gi+1)− σ∨) = ui − σ∨.

56

6.2 First consequences of the Ext1 formula

Using this intersection point, we conclude that

− ext(D, 0) ⊆ int(D)\(ui + int(σ∨)).

Taking the intersection on the right hand side for all i yields − ext(D, 0) ⊆ below(D).
By construction we already know

(ui + σ∨) ∩ (ui+1 + σ∨) = ν(Gi+1) + σ∨ = Gi+1.

This yields that below(D) is covered by the ν(Gi+1)− σ∨ and thus, we get equality.

Additionally we can give a generator free description of below(D):

below(D) = int(D)\
⋃

u∈int(D)∩Z2

int(u+ σ∨).

To determine the dimension of Ext1(D,D′) we count the lattice points of

ext(D,D′) = ν(D′) + ext(D, 0) = −(below(D)− ν(D′)).

Since such a ν(D′) will always have an integral first coordinate we just need to analyze
the behaviour of below(D) when moving it up and down in steps of q

n or 1
n , since

gcd(n, q) = 1. We will proceed in this direction in Section 6.3.

Proposition 6.9. By construction, below(D) does not contain any lattice points in its
interior and we obtain

dim Ext1(D, 0) = #(below(D) ∩ Z2) = r − 2

since all generators except u0 and ur are contained in the boundary of below(D).

The following lemma is already known ([BG09]) since our divisors or ideals are Q-
Cartier (or ’conic’ in [BG09]), i.e. they come from rational translates of the original cone
σ∨. Nevertheless the proof of the proposition serves as a check for correctness of our
construction.

Lemma 6.10. For any Weil divisor D on Yn,q we have

Ext1(D,K) = 0.

Proof. From Remark 4.9 we already know that the vertex of K is [1, q+1
n]. Thus all we

have to show is that

(below(D)− ν(K)) ∩M = ∅.

57

6 Ext1

Let us start by illustrating the situation:

The red area depicts below(D) and the green area is below(D)− ν(K). We will proceed
in two steps: First we argue that below(D) − ν(K) cannot contain any lattice points
other than the generators of D using Proposition 6.9. Second we show explicitly that
below(D)− ν(K) does not contain any generator of D.

For the first step we need the golden area. This is exactly

G := {u ∈MQ | 〈ν(D), ρ0〉 − 1 < 〈u, ρ0〉 < 〈ν(D), ρ0〉}
∪ {u ∈MQ | 〈ν(D), ρ1〉 − 1 < 〈u, ρ1〉 < 〈ν(D), ρ1〉}.

Remember that ρ0 = (1, 0), ρ1 = (−q, n) are the primitive ray generators of σ. Thus
G ∩M is empty. Furthermore, we have the containment equation

(below(D)− ν(K))\below(D) ⊂ G,

where the line denotes the closure, i.e. including the leftmost and the bottom boundary.
Thus any lattice points of below(D)− ν(K) must be contained in below(D). But the
lattice points of below(D) must be generators of D by Proposition 6.9 and thus, taking
the closure, we get

below(D) = {u0, . . . , ur} = G(D).

If there was another lattice point on the leftmost or bottom boundary of below(D) this
would contradict the statement that {u0, . . . , ur} generate D. Hence we get

(below(D)− ν(K)) ∩M = G(D) ∩ (below(D)− ν(K)).

All that is left is to observe closely what happens with the generators when moving
below(D). We start by moving the below(D) to the left parallel to its top and bottom
edge directions, i.e. consider

below(D)− [1,
q

n
].

This set does not contain ur. It does contain u0, . . . , ur−1, but since we moved below(D)
to the left, parallel to the bottom and top edge directions, these points are now on the
top boundary. In particular, these points do not form the inverse apexes of below(D)

58

6.2 First consequences of the Ext1 formula

anymore. Thus, by moving the new set down by [0,− 1
n] we loose all those points, and

since

below(D)− [1,
q

n
]− [0,

1

n
] = below(D)− ν(K)

we obtain the desired result.

The previous lemma yields an interesting symmetry or duality of certain Ext1. From a
combinatorial point of view this is remarkable, because the sets below(Ei) and below(Ej)
can vary widely in size and still contain the exact same lattice points under certain shifts.

Theorem 6.11. For given D and D′ we have

Ext1(D,K −D′) = Ext1(D′,K −D).

Proof. Since it simplifies notation, we will show

Ext1(Ei,K − Ej) = Ext1(Ej ,K − Ei),

and the claim follows, because the Ei form a system of representatives for the class group.
We do not have to worry about shifts, because of the minus sign in the second argument.

We can express both sides in terms of the below sets introduced above. Ultimately we
have to show that

(below(Ei) + ν(Ej)− ν(K)) ∩M = (below(Ej) + ν(Ei)− ν(K)) ∩M.

For simplicity denote by Cij := below(Ei) + ν(Ej). We want to show that lattice points
of the above sets can only appear in the intersection, i.e.

(Cij − ν(K)) ∩M = ((Cij − ν(K)) ∩ (Cji − ν(K))) ∩M,

where we may interchange i and j.
Thus let us take everything but the intersection and cover it in a nice way:

(Cij ∪ Cji)\(Cij ∩ Cji) ⊆

 ⋃
u∈G(Ei)

(u+ below(Ej))

 ∩
 ⋃
u∈G(Ej)

(u+ below(Ei))

 .

Now the right hand side consists entirely of lattice shifts of below(Ei) and below(Ej)
and thus shifting those using ν(K) will turn them empty when intersecting with Z2 by
Lemma 6.10. Hence lattice points of Cij + ν(K) live in the intersection Cij ∩ Cji.

Definition 6.12 (Ext matrix). Let X := Yn,q be given by the continued fraction
a = [a0, . . . , ar]. Then we define a matrix

Ek(a) :=
(
mij := dim ExtkR(Ej ,KX − Ei)

)
for i, j = 1, . . . , n and k > 0.

Remark 6.13. Utilizing Theorem 6.11 and Lemma 6.10 we can already examine part
of the structure of E1(a): Theorem 6.11 tells us that the matrix is symmetric and thus
Lemma 6.10 yields that the last row and column must be zero. The reason why we let E1

depend on the continued fraction rather than on n and q lies in the next chapter where
we give an explicit algorithm for computing E1.

59

6 Ext1

Example 6.14. We finish this chapter with an example for the previous remark. Namely
if we know the E1 for a′ and a′′, where we obtain a′ and a′′ by omitting or decreasing
the last entry of a, respectively, we can reconstruct E1(a).

In our ongoing example for n = 7 and q = 3 we have a = [2, 4] and for E1([2, 4]) we get

2 1 2 1 2 1 0
1 1 1 1 1 0 0
2 1 3 2 2 1 0
1 1 2 1 1 0 0
2 1 2 1 2 1 0
1 0 1 0 1 0 0
0 0 0 0 0 0 0


=



1 1 1 1 1 1 0
1 1 1 1 1 0 0
1 1 1 1 0 0 0
1 1 1 0 0 0 0
1 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0


+



1 0
0 0

1 0 1 0 0
0 0 0 0 0

1 0
0 0
1 0
0 0
0 0

2 1 2 1 0
1 1 1 0 0
2 1 2 1 0
1 0 1 0 0
0 0 0 0 0


where we recognize E1([2, 3]) and E1([2]) on the right hand side.

Large scale tests reveal a recursive way to compute E1(a) which will be proven and
discussed in Section 6.3. In fact this recursion does not only hold on the level of computing
dimensions, but even of the level of computing the lattice points of the shifted below-sets,
or the degrees of Ext1.

6.3. A recursive formula for dim Ext1

We already observed that in this setting all appearing Exti were finite dimensional
C-vector spaces. If just the dimension matters, the formula given in Theorem 6.1 can be
simplified and yields a very fast algorithm to determine dimensions of arbitrary Exti.

In particular we will give a recursive algorithm for computation of the E1 depending
only on the continued fraction a = [a1, . . . , as] associated to the given cyclic quotient
singularity. One has to treat two different cases, depending on the last entry of the
continued fraction, namely the case as > 2 and as = 2.

The strategy in both cases is the same: First we show that a subsquare of the matrix
E1(a) already determines the matrix completely, these are the statements of Lemma 6.19
and Lemma 6.23. Then we show that this subsquare is exactly the E1(ã) of another
continued fraction ã, these are Theorem 6.22 and Theorem 6.25.

For the notation: There will be two rings, Λ and Γ. What we want to compute is
always ExtΛ while we assume that ExtΓ is known. Everything with an˜on top lives
on the Γ side and everything without lives on the side of Λ. Since Λ and Γ appear as
subscripts we decided against using Λ̃ for the sake of readability.

Before we start, we simplify the notation a little:

Definition 6.15. Let R := R(n, q), then we define

ER(i, j) := belowR(Ei)− ν(KR) + ν(Ej).

We can even make this more concrete by inserting the corresponding vertices:

ER(i, j) = belowR(Ei)− [1,
q + 1

n
] + [j,

jq

n
].

60

6.3 A recursive formula for dim Ext1

To relate this with the formulas for Ext discussed in Section 6.1, especially in Theorem 6.1,
observe that

−ER(i, j) = −belowR(Ei) + ν(KR)− ν(Ej) = ext(Ei,KR − Ej)

and hence we have

Ext1
R(Ei,KR − Ej) =

⊕
u∈ER(i,j)∩Z2

C⊗ x̄−u.

Of course we can also relate these sets to our matrix E1 via

mij = #(ER(i, j) ∩ Z2).

as > 2

The goal of this part is to reduce the last entry of our continued fraction by 1. Let us
first give an overview on how we will proceed: First we state all the details of the setup
which we want to work within. Second we show that it is enough to consider only a part
of the matrix E1, which we call the lower right square. And third we prove a theorem
relating this quadrant of the E1 with the E1 associated to the continued fraction ã which
only differs from a in the last entry.

The setup

Computing E1 from a recursively corresponds to changing a. On the algebraic side this
corresponds to changing the ring. Let us make clear in what way our ring changes:

The continued fraction a corresponds to the Hilbert basis

H(n, q) = {b0 = [0, 1], b1, . . . , bs, bs+1 = [n, q]}

of σ∨ via the equations

bi−1 + bi+1 = ai · bi for i = 1, . . . , r.

Since n > q we immediately obtain b1 = [1, 1]. Now take ã = [a1, . . . , as−1, as − 1]. This
defines a new cyclic quotient singularity which in turn can be given by two numbers ñ
and q̃. Of course we will again want ñ > q̃ > 0 with gcd(ñ, q̃) = 1. Thus we have a cone

σ̃∨ = cone([0, 1], [ñ, q̃])

and we already know most of its Hilbert basis

H(ñ, q̃) = {b̃0 = b0, b1, . . . , b̃r = bs, b̃s+1 = [ñ, q̃]},

except for the last vector b̃s+1. Taking the equation

b̃s−1 + b̃s+1 = (as − 1) · b̃r

and inserting b̃r = bs, b̃s−1 = bs−1 we obtain

b̃s+1 = as · bs − bs − bs−1.

61

6 Ext1

But we already know
bs+1 + bs−1 = as · bs

and thus obtain
[ñ, q̃] = [n, q]− bs.

Since {[n, q], bs} was a lattice basis, {[ñ, q̃], bs} will be a lattice basis as well, which proves
that [ñ, q̃] is primitive. In particular we obtain that the pairwise determinants of the
vectors bs, bs+1 and b̃s+1 are ±1 which yields that the corresponding parallelepipeds do
not contain any lattice points in the interior.

We obtain an inclusion σ∨ ↪→ σ̃∨ and this yields an injection of rings

Λ := R(n, q) ↪→ R(ñ, q̃) =: Γ.

From now on we will have to deal with Ei’s living in Λ or in Γ and thus they receive an
additional label, i.e. EiΛ and EiΓ. A consequence of the observation that the parallelepiped
of bs+1 and b̃s+1 does not have any lattice points in the interior is illustrated below:

[n, q]

[ñ, q̃]

bs = [2, 1]

i.e. for n− ñ < i ≤ n we have

G(EiΛ) = bs +G(Ei−n+ñ
Γ).

which really means that the ideals corresponding to EiΛ and Ei−n+ñ
Γ + bs in the respective

rings are generated by the same monomials of C[Z2]. As an initial observation we
immediately obtain

dim Ext1
Λ(EiΛ, E

0
Λ) = dim Ext1

Γ(Ei−n+ñ
Γ , E0

Γ)

by the observations at the beginning of Section 6.2.

Example 6.16. In our running example with n = 7 and q = 3 we know bs = [2, 1] and
thus obtain ñ = 5 and q̃ = 2. The following picture illustrates the situation by depicting
the weight cones of Λ and Γ:

62

6.3 A recursive formula for dim Ext1

We have Λ = R(7, 3) and Γ = R(5, 2). The associated continued fractions are

7

7− 3
= [2, 4] =: a and

5

5− 2
= [2, 3] =: ã.

Reduction to the lower right square

The ring Γ will not play a role during the reduction part, so it is ok to ignore the subscript
at the Ei’s.

As one might already have guessed, the lower right square of E1(a) is the square
corresponding to n − ñ < i, j ≤ n. Thus assume that we are given 1 ≤ i ≤ n − ñ and
1 ≤ j ≤ n. Naturally the set G(EiΛ) will contain both bs and bs+1.

Example 6.17. Let us analyze the set below(EiΛ) for our running example:

= ∪

−[5, 2]

The red sets indicates belowE6
Λ and the translate belowE6

Λ − [5, 2]. The yellow subset
S of below(EiΛ) is exactly the difference of belowE1

Λ and belowE6
Λ − [5, 2]. Indeed we

obtain the following equation:

belowE1
Λ = S ∪ (belowE6

Λ − [5, 2]).

Requiring this equation to hold also defines exactly which boundaries should be contained
in S and which boundaries should be open. Thus the union on the right hand side is
even a disjoint one. Hence we obtain

dim Ext1(E1
Λ, E

j
Λ) = dim Ext1(E6

Λ, E
j
Λ) + #[(S − ν(EjΛ)) ∩ Z2].

We denote this S as S(1). Similarly one can obtain the formula

dim Ext1(E2
Λ, E

j
Λ) = dim Ext1(E7

Λ, E
j
Λ) + #[(S(2)− ν(EjΛ)) ∩ Z2].

Of course this formula can be generalized, but first let us have a closer look at the set
S or S(i). By construction or namely the equation we impose on S(i), the upper and
the right boundary belong to S(i), the left and the lower boundary do not. But what
we want to look at now is the height of S(i), i.e. the distance between two boundary
points with the same x-coordinate. We already know that the upper boundary contains
bs = [n− ñ, q− q̃]. The point below it on the lower boundary is [n− ñ, (n− ñ) · qn]. Thus
for the height we have

q − q̃ − (n− ñ) · q
n

=
qn− q̃n− nq + ñq

n
=
〈[−ñ,−q̃], (−q, n)〉

n
=

1

n
.

This means that S(i) is the thinnest slice we can build using the hyperplane (−q, n) and
since we also know its wideness, we can easily control its behaviour under translations
by ν(EjΛ)):

63

6 Ext1

Proposition 6.18 (The behaviour of the thin slice S). Let 0 < i, j ≤ n. Now take

S(i) := {u ∈ Q2 | i < 〈u, ρ0〉 ≤ n and 0 < 〈u, ρ1〉 ≤ 1}.

the half open parralelepiped with vertices [i, iqn], [n, q], [n, q + 1
n], [i, iq+1

n]. Then we have
the following formula

[
S(i)− ν(KΛ) + ν(EjΛ)

]
∩ Z2 =

{
[n, q] j ≤ n− i
∅ else.

Proof. Denote by

S(i, j) := S(i)− ν(KΛ) + ν(EjΛ) = S(i)− [1,
q + 1

n
] + [j,

jq

n
].

For j = 1 the upper right vertex becomes

[n, q +
1

n
]− [1,

q + 1

n
] + [1,

q

n
] = [n, q].

Now for increasing j the top edge of S(i, j) will slide along this lattice point in the
direction [1, q/n], i.e. the point on the top edge of S(i, 1) which is one step to the left of
[n, q] has exactly [n− 1, q − q

n] as coordinates and adding [1, q/n] to S(i, 1) turns it into
a lattice point:

S(i, 1)

[n, q]
1
n

1

1

1

q
n

q
n

q
n

Thus two questions remain: How often can we increase j and keep [n, q] inside S(i, j)?
And: Why can there not be any other lattice point in S(i, j)?

The first question can be answered, knowing that the length of S(i, j) in terms of the
x-coordinate is n− i. This implies that there are n− i+ 1 possible positions for [n, q] on
the top edge of S(i, 1). But since the right boundary does not belong to S(i, 1), we have
to exclude one point and thus obtain j ≤ n− i.

For the second question we first observe that any lattice point in S(i, j) must of course
evaluate to an integer with both ρ0 and ρ1. Thus candidates for such points must be on
the boundary. Since the lower and the right boundary are excluded this only leaves the
top edge. On the top edge the x-distance between two lattice points is always n and
thus there cannot be another lattice point, since n− i ≤ n− 1.

64

6.3 A recursive formula for dim Ext1

Coming from this we obtain the following lemma for our below-sets:

Lemma 6.19. Let 1 ≤ i ≤ n− ñ and 1 ≤ j ≤ n. Then the following formula holds

EΛ(i, j) ∩ Z2 =

{
(EΛ(i+ ñ, j)− [ñ, q̃]) ∩ Z2 ∪ {[n, q]} j ≤ n− i
(EΛ(i+ ñ, j)− [ñ, q̃]) ∩ Z2 else

Proof. We have
below(Ei) = S(i) t (below(Ei+ñ − [ñ, q̃]).

Applying Proposition 6.18 yields the desired formula.

Remark 6.20. As a small remark we have the inequality

n− (n− ñ) > n− ñ

by the equations induced from the continued fractions. Essentially this means that the
square of E1 corresponding to n− ñ < i, j ≤ n is bigger than the square 1 ≤ i, j ≤ n− ñ.

A consequence of this is that we can compute the whole matrix E1 by just knowing
the lower right square. We can express the columns 1 ≤ i ≤ n − ñ by the columns
ñ ≤ i + ñ ≤ n. By the symmetry of Theorem 6.11 we can do the same thing for the
columns. In particular, if we have 1 ≤ i, j ≤ n− ñ, i.e. an entry of the upper left square,
we obtain

#(EΛ(i, j) ∩ Z2) =


#(EΛ(i+ ñ, j + ñ) ∩ Z2) + 2 i+ j ≤ n− ñ
#(EΛ(i+ ñ, j + ñ) ∩ Z2) + 1 n− ñ < i+ j ≤ n
#(EΛ(i+ ñ, j + ñ) ∩ Z2) else

Example 6.21. We illustrate this principle in our running example:

E1 =

n− ñ

n− ñ

+0

symmetry

+1

m77

m22 m27

m72

The lower right square theorem

Theorem 6.22 (Lower right square for as > 2). Let n− ñ < i, j ≤ n, then the following
formula holds

EΛ(i, j) ∩ Z2 =

{
(EΓ(i− n+ ñ, j − n+ ñ) + 2bs) ∩ Z2 ∪ {[n, q]} i+ j ≤ n
(EΓ(i− n+ ñ, j − n+ ñ) + 2bs) ∩ Z2 else.

65

6 Ext1

Proof. The strategy of the proof is the following: First we want to choose j such that
belowΓ(Ei−n+ñ

Γ) + bs ⊆ belowΛ(EiΛ), i.e. all other terms should cancel out. Then we
observe what happens if we move our below-sets from that position by in- and decreasing
j such that we cover the whole spectrum needed.

Thus let us determine j such that −ν(KΛ) + ν(EjΛ) ∈ Z2. Since we now know that
bs = [n− ñ, q − q̃] we can use the observations of Remark 4.9 to find that

KΛ = E
n−(n−ñ)+1
Λ − [n, q] + [n− ñ, q − q̃] = Eñ+1

Λ − [ñ, q̃].

Hence, our j should be ñ+ 1. For further computation we also need KΓ which can be
determined in the same manner:

KΓ = E
ñ−(n−ñ)+1
Γ − [ñ, q̃] + [n− ñ, q − q̃] = E2ñ−n+1

Γ − [2ñ− n, 2q̃ − q].

Now we utilize the equation [n, q] = [ñ, q̃] + bs to determine where the points [n, q] on
the Λ-side and the point [ñ, q̃] on the Γ-side are mapped to, for j = ñ+ 1:

Λ:

[n, q]−[1,
q + 1

n
]+[ñ+1,

(ñ+ 1)q

n
] = [n+ñ,

qn− 1 + ñq − q̃n+ q̃n

n
] = [n+ñ, q+q̃].

Γ:

[ñ, q̃] + 2bs − [1,
q̃ + 1

ñ
] + [ñ+ 1− n+ ñ,

(ñ+ 1− n+ ñ)q̃

ñ
]

= [n+ ñ,
2qñ+ q̃ñ− q̃n− 1

ñ
]

= [n+ ñ,
2qñ+ q̃ñ− q̃n+ q̃n− qñ

ñ
]

= [n+ ñ, q + q̃]

Thus we see that for j = ñ+ 1 we have

EΛ(i, ñ+ 1) ∩ Z2 = [EΓ(i− n+ ñ, 2ñ− n+ 1) + 2bs] ∩ Z2

In particular the left hand side is contained in the right hand side before intersecting
with Z2. This is our starting point, we will now in- and decrease j and observe the
difference of the below-sets.

66

6.3 A recursive formula for dim Ext1

Let us visualize the situation:

[n+ ñ, q + q̃]

[ñ, q̃]

[n, q]

i− (n− ñ)

First we calculate how far we have to move in each direction. The situation is illustrated
for j = ñ+ 1 and we want j to run from n− ñ up to n. This means we have to decrease
j 2ñ− n times and we have to increase it n− ñ− 1 times.

Decreasing j in the picture means that the blue set corresponding to the right hand
side of the equation will move to the left along the blue dashed lines and the red set
will move along the red lines. If we increase j the sets will move to the right along the
dashed lines.

The important thing is that we can measure the difference of the translated sets in
terms of the parallelepiped

P := conv{[0, 0], [n, q], [ñ, q̃], [n+ ñ, q + q̃]}.

shifted by lattice points of Z2. By difference we mean the complement of the intersection
of the sets in their union. As an example we have illustrated this difference in the picture
for j = ñ + 1 + 2. One immediately observes that every segment of this difference is
contained in a translation of P .

Let us do an example calculation: Starting from the lattice point [n+ ñ, q + q̃] the
next (to the right) lattice point on the blue line is [n+ 2ñ, q+ 2q̃] and on the red line we
have [2n+ ñ, 2q + q̃]. Since we know that 2ñ > n we have

n+ ñ+ (n− ñ) = 2n < n+ 2ñ,

which means that by moving n − ñ − 1 to the right we will never reach any of those
lattice points. It also means that the difference below our red and blue set will always
be contained in P + [n+ ñ, q + q̃] for increasing j up to n and since P does not contain
any lattice points besides its vertices we will not get any new lattice points in the blue
set that lie below the red set.

One can apply similar arguments to the differences occurring above our sets for both
increasing and decreasing j.

67

6 Ext1

The only pitfall happens at the point [n, q]: If we decrease j enough it will be on
the boundary of the blue set which means that it is not contained. Since the blue sets
boundary moves below the blue dashed line, it will contain [n, q]. After decreasing j by
i − (n − ñ) the point is on the boundary of both sets, decreasing j further will move
[n, q] inside the red set and these j can be described by

j ≤ ñ+ 1− (i− (n− ñ))− 1 = n− i ⇐⇒ i+ j ≤ n.

Further points cannot occur for decreasing j by arguing with translates of P again.

as = 2

The setup

In this case we again have a continued fraction a = [a1, . . . , as = 2] and this time we want
to forget about the last entry, i.e. ã = [a1, . . . , as−1]. Thus it is immediately obvious
that [ñ, q̃] = bs. But the inclusion of rings now goes in the other direction:

Γ := R(ñ, q̃) ↪→ R(n, q) =: Λ

as one can easily observe on the level of cones. For the Hilbert bases this of course
implies

H(ñ, q̃) = H(n, q)\{bs+1}.

An immediate observation is that for i ≤ ñ we have

G(EiΛ) = G(EiΓ) ∪ {bs+1}.

The strategy to follow is closely related to the as > 2 methods. First we can reduce to
the upper left square of the matrix E1. Second we can translate the entries of the upper
left square from the ring Λ to the ring Γ.

Reduction to the upper left square

Interestingly we can use Proposition 6.18 in this case as well. But this time we use it in
the other direction, i.e. we want to reduce to the upper left square of the matrix E1. We
obtain the following lemma:

Lemma 6.23. Let ñ < i ≤ n and 1 ≤ j ≤ n. Then the following formula holds

(EΛ(i, j)−[n−ñ, q−q̃])∩Z2 =

{
(EΛ(i− (n− ñ), j)) ∩ Z2\{[n, q]} j ≤ n− (i− (n− ñ))

(EΛ(i− (n− ñ), j)) ∩ Z2 else.

Proof. We have

belowΛ(EiΛ)− [n− ñ, q − q̃] = (belowΛ(E
i−(n−ñ)
Λ)\S(i− (n− ñ)).

Applying Proposition 6.18 yields the desired formula.

68

6.3 A recursive formula for dim Ext1

Example 6.24. We illustrate this lemma with a new example which we will use through-
out the remaining section. Of course this example has as = 2: As continued fraction we
chose n

n−q = a = [2, 3, 2] and obtain n = 8 and q = 3. The Hilbert basis of the cone σ∨

has the elements [0, 1], [1, 1], [2, 1], [5, 2] and [8, 3]. To illustrate the situation consider
E6 and E6 − [3, 1]:

−[3, 1] = −

The upper left square theorem

Theorem 6.25 (upper left square for as = 2). Let 1 ≤ i, j ≤ ñ, then we have the formula

EΛ(i, j) ∩ Z2 =

{
EΓ(i, j) ∩ Z2 ∪ {bs+1 = [n, q]} i+ j ≤ n
EΓ(i, j) ∩ Z2 else.

Proof. First we again want to move both sides into a position such that containment
becomes obvious. Thus we choose j such that ν(KΛ) = ν(EjΛ). The generators of KΛ

are [1, 1] and bs = [ñ, q̃]. Hence we get j = n− ñ+ 1. Keeping the equation

〈[ñ, q̃, (−q, n)]〉 = −qñ+ q̃n = 1

in mind, let us compute where the generator bs, which must be contained in both below
sets, is mapped:

Λ:

[ñ, q̃]− [1,
q + 1

n
] + [n− ñ+ 1,

(n− ñ+ 1)q

n
] = [n,

q̃n+ q − 1 + nq − ñq + q

n
]

= [n,
q̃n+ qñ− q̃n+ nq − ñq

n
] = [n, q]

Γ:

[ñ, q̃]− [1,
q̃ + 1

ñ
] + [n− ñ+ 1,

(n− ñ+ 1)q̃

ñ
] = [n,

q̃ñ− q̃ − 1 + nq̃ − ñq̃ + q̃

ñ
]

= [n,
qñ− q̃n+ nq̃

ñ
] = [n, q]

In this situation the below-sets on both sides are simply shifted by a lattice vector and
we are in the situation of Section 6.2. We only have to look at the generators and we
observe that on the Λ-side there is one more generator and hence bs is contained in the
right hand side and not in the left hand side.

The rest of the proof is analogous to the proof of Theorem 6.22: One has the paral-
lelepiped

P := conv{[0, 0], [ñ, q̃], [n, q], [ñ+ n, q̃ + q]}

which does not contain any lattice points in the interior. The difference when shifting to
one or the other side can be observed in terms of P shifted by lattice vectors. The only

69

6 Ext1

lattice point which is contained in the Λ side sometimes, but never in the Γ side, is bs.
Let us illustrate this with a picture in the example for i = 1:

[n, q]

[n− ñ, q − q̃]

Again the dashed red lines mark the rails on which the red set moves when changing j
and the same for the blue lines. Once again one can compute how much we need to in-
and decrease j and then deduce that the appearing differences can be reformulated as
subsets of P shifted by some u ∈ Z2 and thus the only difference will always be the point
[n, q]. Then analogously to the proof of Proposition 6.18 one controls the behaviour of
this point to be the one stated in the theorem.

Summary and the algorithm

First we observe that Lemma 6.19 and Lemma 6.23 allow us to cover the matrix E1(a)
completely in both cases, namely as > 2 and as = 2. Second and surprisingly we see
that in order to apply Theorem 6.25 we never needed the as = 2 condition. This is only
necessary if we want the theorem to cover all of E1(a), but if as > 2 we can still use
Theorem 6.25 to determine what the upper left square looks like. Of course we run into
a problem if s = 1, i.e. if there is only one entry in the continued fraction.

Equivalently we are allowed to apply Theorem 6.22 to the as = 2 case to determine
the lower right square. However, taking as − 1 in the new continued fraction turns it
invalid, since it does not correspond to the Hilbert basis of the cone spanned by [0, 1] and
bs+1 − bs anymore. But we can read off the desired continued fraction from the actual
Hilbert basis of this cone. One could of course also just ’collapse’ the 1 at the end of the
continued fraction onto the previous entry:

[a1, . . . , as−1, 1] = a1 −
1

a2 − 1
. . .− 1

as−1−
1
1

= [a1, . . . , as−1 − 1].

On the cone level this corresponds to having the equation

bn−1 + bn+1 = bn bn+1 = bn − bn−1

70

6.3 A recursive formula for dim Ext1

and thus bn is not needed for the Hilbert basis anymore. One can check that the theorem
stays true. Still we run into a problem if our continued fraction consists only of 2’s.

To solve both problems we define E1([]) = E1([1]) = (0) to be the 1× 1 zero matrix.
The first case corresponds to our Hilbert basis having only two generators, namely
n = 1 > q = 0 and thus the cone is smooth and the only divisor to consider is the
trivial one. Applying the previous considerations, [1] corresponds to taking [2] and then
modifying the Hilbert basis such that the last element becomes [2, 1] − [1, 1] = [1, 0].
Again [1, 1] becomes superfluous and we are in the smooth case.

Thus we obtain the following theorem:

Theorem 6.26. Let a = [a1, . . . , as] = n
q−n be the continued fraction expansion of n

q−n .
Then the matrix E1(a) can be determined as

E1(a) =

(
E1([a1, . . . , as−1]) A

AT E1([a1, . . . , as − 1])

)
+


1 · · · 1 0
... . .

.
. .
. ...

1 . .
. ...

0 · · · · · · 0

 ,

where the matrix A is completely determined by the larger quadratic matrix, see The-
orem 6.28.

Proof. The upper left matrix is a consequence of Theorem 6.25 and the lower right is a
consequence of Theorem 6.22.

Definition 6.27 (D(n)). To have a short notation we define the second summand of
this theorem to be D(n), where n denotes the size of this quadratic matrix.

Theorem 6.28. In the setting of Theorem 6.26, denote by

n′

n′ − q′
= [a1, . . . , as−1] and

n′′

n′′ − q′′
= [a1, . . . , as − 1],

where we set
1

1− 0
=: [] =: [1].

Assume that as = 2, then

A = (E1([a1, . . . , as−1]−D(n′))ij), where i = 1, . . . , n′, j = n′ − n′′, . . . , n′.

Otherwise if, as > 2

A = (E1([a1, . . . , as − 1])ij), where i = n′′ − n′, . . . , n′′, j = 1, . . . , n′′.

Proof. This is a direct consequence of Theorem 6.25 and Theorem 6.22 as well, in
combination with Lemma 6.23 and Lemma 6.19. Please note that both E1([a1, . . . , as−1])
and E1([a1, . . . , as − 1]) will always give a part of A. The bigger one is then able to give
all entries of A. In particular, one finds that(

n
q

)
=

(
n′

q′

)
+

(
n′′

q′′

)
.

One can deduce this for example by looking at the corresponding cones and their Hilbert
bases.

71

6 Ext1

Example 6.29. The simplest example is n = 2 and q = 1. We obtain

E1([2]) =

(
1 0
0 0

)
+

(
E1([]) A
AT E1([1])

)
.

Both quadratic matrices on the diagonal have the same size, since we are in both boundary
cases (Section 7.3) q = 1 and q = n− 1 at the same time. Luckily they agree on that A
should be zero and we get

E1([2]) =

(
1 0
0 0

)
.

Having this we can extend this example in two ways: By adding a 2 as last entry or by
increasing the last entry by 1.

E1([2, 2]) =

(
E1([2]) A
AT E1([2, 1])

)
+D(3).

We notice that for the lower right corner we have to collapse the 1 onto the previous
entry.

E1([2, 2]) =

 1 0 0
0 0 0
0 0 0

+

 1 1 0
1 0 0
0 0 0

 =

 2 1 0
1 0 0
0 0 0



For the other case we obtain

E1([3]) =

(
E1([]) A
AT E1([2])

)
+D(3) =

 0 0 0
0 1 0
0 0 0

+

 1 1 0
1 0 0
0 0 0

 =

 1 1 0
1 1 0
0 0 0



We summarize this theorem in an algorithm. For the notation: If A is a matrix, then
A[•, •] denotes the submatrix of A given by lists of indices for the rows and columns.

72

6.3 A recursive formula for dim Ext1

Furthermore numRows(A) denotes the number of rows of A.

Algorithm 6.30: Computing the matrix E1(a)

Input: a = [a1, . . . , as] the continued fraction representing n
n−q

Output: E1(a)
begin

if a = [1] or a = [] then
// Recursion anchor

// Return the 1x1 zero matrix

return [[0]];

if as = 1 then
// The given continued fraction has a trailing 1 which we

collapse onto the previous entry

return E1([a1, . . . , as−1 − 1]);

upperLeft := E1([a1, . . . , as−1]);
lowerRight := E1([a1, . . . , as − 1]);

if numRows(upperLeft) > numRows(lowerRight) then
// The upper left corner matrix is bigger, i.e. as = 2
modifiedUpperLeft := upperLeft−D(size(upperLeft));
start := numRows(upperLeft)− numRows(lowerRight);
end := numRows(upperLeft)− 1;
A := modifiedUpperLeft[All, start..end];

else
// Lower right corner matrix is bigger, i.e. as > 2
start := numRows(lowerRight)− numRows(upperLeft);
end := numRows(lowerRight)− 1;
A := lowerRight[start..end,All];

size := numRows(upperLeft) + numRows(lowerRight);

result :=

(
upperLeft A

AT lowerRight

)
+D(size);

return result

Remark 6.31. Theorem 6.25 and Theorem 6.22 can also be formulated via the continued
fraction expansion of n

q = c which essentially just means switching the conditions. If
a := n

n−q as usual, then removing the last entry of a corresponds to decreasing the last
entry of c by one and vice versa. Hence also the algorithm may be formulated in terms
of c instead of a.

73

First applications of the
combinatorial method

7.1. The dimension dim Exti for higher i

Combining the algorithm of Section 6.3 and the insights of Section 5.2 we can now
compute the dimensions of higher Ext. Essentially it comes down to multiplying the
incidence matrix of the quiver R with the matrix E1 containing the Ext1-dimensions.
Since one has to be careful to keep the labeling consistent, let us be a bit more precise.
From the quiver R we obtain the following formula:

dim Ext2(Ei, D) =
n∑
j=1

#{Arrows Ej → Ei} · dim Ext1(Ej , D).

Thus let I be the matrix

I =
(
aij := #{Arrows Ej → Ei}

)
i,j=1,...,n

.

Definition 7.1. We call I the incidence matrix of the quiver R.

Now we obtain

I · E1 = E2.

Even better, replacing 2 by k + 1 and 1 by k in the above formula, with k > 0, we get in
general

Ik · E1 = Ek+1.

Thus we can compute the dimension of arbitrary Extk by just multiplying matrices.

Example 7.2. Recalling the quiver displayed in Example 5.12 we obtain in the running
example

I =



1 0 0 0 1 0 0
0 0 0 0 1 0 0
1 0 1 0 0 0 0
0 0 1 0 0 0 0
2 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0



75

7 First applications of the combinatorial method

and we can now compute

E2 = I · E1 =



4 2 4 2 4 2 0
2 1 2 1 2 1 0
4 2 5 3 4 2 0
2 1 3 2 2 1 0
4 2 4 2 4 2 0
2 1 2 1 2 1 0
0 0 0 0 0 0 0


.

7.2. Ext and Tor

Definition 7.3 (Tor matrix). Let us define by

Tk :=
(
tij := dim Tork(E

i, Ej)
)
i,j=1,...,n

,

the matrix containing the dimensions of Tor1.

In particular, Tk is symmetric for all k > 0, and higher Tork can be computed as
Tk+1 = Ik · T1 as well.

Another observation is the following corollary:

Corollary 7.4. In the special CQS setting one has

I2 · E1 = T1,

which is an immediate consequence of the following theorem:

Theorem 7.5. For two T -invariant Weil divisors D and D′ on Yn,q we have

Ext3(D,K −D′) = Tor1(D,D′)∗,

where (•)∗ := HomC(•,C) denotes the dual as graded C-vector spaces.

The strategy of the proof will be as follows: First we resolve D freely, second we
determine the kernel and image at index 1 in this resolution. Then we will tensor with D′

and compute the homology. This will culminate in a lemma combinatorially describing
Tor1(D,D′).

Take the free resolution of Section 5.2 and resolve D:

F2(D)
d2−→ F1(D)

d1−→ F0(D)� D → 0.

We want to tensor this complex with D′ and then take cohomology. This is easy, since
the Fi are free modules. Let us have a closer look at the kernels and images of the maps
involved. Take the exact sequence of Theorem 5.8 to be

0→
s⊕
j=1

Dj ↪→ F0(D)� D → 0

76

7.2 Ext and Tor

then we can rewrite the above resolution as⊕
Dj∈inRD

F1(Dj)
d2−→

⊕
Dj∈inRD

F0(Dj)
d1−→ F0(D)� D → 0.

Now we determine the kernel of the map d1 by applying the sequence of Theorem 5.8 to
each Dj separately:

0 ↪→
⊕

Dj∈inRD

 ⊕
Djk∈inRDj

Djk

→ ⊕
Dj∈inRD

F0(Dj)
d1−→ F0(D)� D → 0.

Thus the kernel of d1 is isomorphic to the direct sum of the Djk.
Now fix one Djk and assume it arises as the kernel of a map

R[u]⊕R[v]→ R, e1 7→ xu, e2 7→ xv,

which is a component of d1. Denote by u0, . . . , us the generators of Djk. We can continue
this complex

s⊕
i=0

R[ui]→ R[u]⊕R[v]→ R.

Next we tensor with D′, which just means replacing R by D′, since all modules involved
are free. In particular, the kernel of the restricted d1 ⊗D′ is just ν D′ +Djk, and the
image of d2 consists of the D′[ui] = ν D′ + R[ui], i = 0, . . . , s. In our usual notation
we would just add the vertex ν(D′) to each R. Especially the kernel now becomes
ν(D′) +Djk and we can compute the homology as[

(ν(D′) +Djk)\

(
s⊕
i=0

(ν(D′) + ui + σ∨)

)]
∩ Z2.

Factoring out ν(D′) gives us the following combinatorial invariant of a Weil divisor Q:

Definition 7.6 (abelow-set).

abelow(Q) := Q\

 ⊕
u∈Q∩Z2

u+ σ∨

 .

The abelow-set is the opposite of the below-set in the following sense: It contains the
upper ragged boundary, but not the lower and left boundary. In the following picture we
draw both the abelow and the below-set for the same divisor:

77

7 First applications of the combinatorial method

Note that in the picture we have moved the sets below and abelow in such a position
that lattice points can only appear in their intersection. This will be explained in greater
detail later and is exactly the key to the theorem.

The homology can now be rewritten as (ν(D′) + abelow(Djk)) ∩ Z2. Finally we are
ready to compute Tor1.

Lemma 7.7. Let

T (Q,D′) :=
(
ν(D′) + abelow(Q)

)
∩ Z2,

then

Tor1(D,D′) =
⊕

Dj∈inRD

 ⊕
Djk∈inRDj

 ⊕
u∈T (Djk,D′)

Cx̄u
 .

Proof. Consider the construction of abelow given above. To obtain Tor1 we need to take
the direct sum over all Djk and these are obtained recursively from the quiver R exactly
as in the Ext-case.

Proof of Theorem 7.5. Remember that for the Ext computation we could proceed as
follows:

Ext3(D,K −D′) =
⊕

Dj∈inRD

Ext2(Dj ,K −D′)

=
⊕

Dj∈inRD

 ⊕
Djk∈inRDj

Ext1(Djk,K −D′)

 .

Each of these modules can be expressed via the below(Djk)-sets. If we again define

ext(Q,K −D′) :=
(
ν(K)− ν(D′)− below(Q)

)
∩ Z2

then Ext3 is given as

Ext3(D,K −D′) =
⊕

Dj∈inRD

 ⊕
Djk∈inRDj

 ⊕
u∈ext(Djk,K−D′)

Cx̄u
 .

Now we compare summandwise and observe that

− ext(Q,K −D′) = [− ν(K) + ν(D′) + below(Q)] ∩ Z2

= [ν(D′) + abelow(Q)] ∩ Z2 = T (Q,D′).

This is due to the borders of the sets, the set abelow(Q) does contain its lower and
left border but not the upper one, while the set below(Q) contains the upper and right
border and not the lower one, since abelow was constructed from σ∨ and below was
constructed from int(σ∨). Actually that is the only difference in the construction of
these sets. What happens next is that these sets get shifted in such a way that lattice
points can only live in their intersection.

Looking at the picture after the definition of abelow, we see: Shifting both these sets
by ν(D′) comes down to moving up or down in steps of 1

n , since the first coordinate

78

7.3 The boundary cases q = 1 and q = n− 1

will always be an integer. The dashed green boundary does not belong to the sets,
neither does the dashed red boundary. Hence we can obtain the green set by subtracting
[1, 1

n] from the red set and then changing the containment of the boundaries. Thus one
deduces that any lattice point contained in either of these sets must be contained in their
intersection.

The recursion of Theorem 5.16, that also holds in the case of Ext, allows us to generalize
this result for higher i.

Corollary 7.8. In the situation of Theorem 7.5 we have

Exti+2(D,K −D′) = Tori(D,D
′)∗,

for i > 0.

Thus our algorithm for computing E1, together with the algorithm for the quiver R also
yields an efficient way to compute T1. Another interesting consequence of the theorem is
that Ek must be symmetric for all k > 2.

Remark 7.9. In Section 8.5 we will describe the multiplication of the algebra Ext(D,D).
Of course one could ask whether this is related to the algebra structure of Tor as described
in [Eis95]. There are several reasons why this does not work: First of all we would need
D ⊗D ∼= D to stay inside the algebra. Additionally if we consider the map

Tor1(D,D)× Tor1(D,D)→ Tor2(D,D)

and then insert Ext via the isomorphism of Theorem 7.5 we see that this map becomes

Ext3(D,K −D)× Ext3(D,K −D)→ Ext4(D,K −D).

The main problem now is that the first two terms are not compatible for the Ext-
multiplication and on the right hand side we need Ext6 instead of Ext4, since the
Ext-multiplication respects the grading.

7.3. The boundary cases q = 1 and q = n− 1

q = 1

Let n, q ∈ Z≥0 such that n > q = 1. The cone σ∨ is generated by the rays [0, 1] and
[n, 1] and has the Hilbert basis

H(n, 1) = {[0, 1], [1, 1], [2, 1], . . . , [n− 1, 1], [n, 1]}.

The Hilbert basis has exactly n + 1 elements and we can deduce that the continued
fraction expansion is

n

n− 1
= [2, 2, . . . , 2] =: [a1, a2, . . . , an−1] = a.

79

7 First applications of the combinatorial method

Using Theorem 6.26 we compute E1(a):

E1(a) =


1 · · · 1 0
... . .

.
. .
. ...

1 . .
. ...

0 · · · · · · 0

+


0

E1([2, . . . , 2 = an−1])
...
0

0 · · · 0 0

 ,

continuing recursively we obtain

E1(a) =



n− 1 n− 2 · · · 1 0

n− 2 . .
.

. .
.

. .
. ...

... . .
.

. .
. ...

1 . .
. ...

0 · · · · · · · · · 0


.

We can deduce the entries of the matrix I from the observations of Example 5.19:

I =


n− 1 0 . . . 0
n− 2 0 . . . 0
... 0 . . . 0
0 0 . . . 0

 .

q = n− 1

Let n, q ∈ Z≥0 such that n > q = n− 1. The cone σ∨ is generated by the rays [0, 1] and
[n, n− 1] and has the Hilbert basis

H(n, 1) = {[0, 1], [1, 1], [n, n− 1]}.

The Hilbert basis has exactly 3 elements and we can deduce that the continued fraction
expansion is

n

1
= [n] = [a1] = a

Again we compute E1(a) via Theorem 6.26:

E1([n]) =


1 · · · 1 0
... . .

.
. .
. ...

1 . .
. ...

0 · · · · · · 0

+


0 0 · · · 0

0
... E1([n− 1])
0

 ,

80

7.4 Classification of special MCM divisors

continuing recursively we obtain

E1([n]) =



1 · · · · · · · · · · · · · · · 1 0
... 2 · · · · · · · · · 2

...
...

...
...

...
...

...
...

...
... · · · · · ·

...
...

...
...

...
...

...
...

...
... 2 · · · · · · · · · 2

...
...

1 · · · · · · · · · · · · · · · 1
...

0 · · · · · · · · · · · · · · · · · · 0



.

The graph R for this case has already been discussed as Example 5.20. Hence we obtain
for I:

I =


0 · · · 1 0
... . .

. ...
...

1 · · · 0
...

0 · · · · · · 0

 .

Next we identify the divisor KX . Using Remark 4.9 we compute its vertex to be

ν(KX) = [1,
q + 1

n
] = [1,

n− 1 + 1

n
] = [1, 1]

and obtain KX ∼ En ∼ E0. Conveniently this yields

Exti(D,R) = Exti(D,KX − E0) = Exti(E0,KX −D) = 0

and thus every divisor is special MCM for q = n− 1.

7.4. Classification of special MCM divisors

On cyclic quotient singularities there is a subclass of MCM modules that are interesting,
the so-called special MCM modules.

Definition 7.10 ([Nak13; IW10]: sMCM). We call an MCM R-module special if and
only if (M ⊗R ωR)/torsion is MCM.

Again we can establish a link with the Ext functor:

Theorem 7.11 ([IW10]). For a CM R-module M the following are equivalent:

1. M is sMCM

2. Ext1
R(M,R) = 0.

81

7 First applications of the combinatorial method

If we assume D to be a torus invariant divisor on a cyclic quotient singularity, we have
the formula

dimk Ext1
R(D,R) = G(D)− 2.

Thus being sMCM for a torus invariant divisor D means having at most two generators.
If we assume D to be non-trivial, i.e. D 6∼= R, then D has exactly two generators. This
also agrees with [Wun87, Lemma 5].

Keeping in mind the Gorenstein case q = n− 1 we obtain the following classification
of special MCM divisors on cyclic quotient singularities:

Theorem 7.12. The following statements are equivalent:

1. Yn,q is Gorenstein.

2. All Weil divisors are special MCM.

Proof. The direction 1⇒ 2 has been shown in the boundary case examples.
Now assume that Yn,q is not Gorenstein. Then, by the continued fraction expansion of

subsubsection 4.1, we obtain that the Hilbert basis of σ∨ has more than three elements.
Considering the construction of Proposition 2.6 with D = E1, we see that E1 has at
least three generators, exactly the points of the Hilbert basis of σ∨ without [0, 1]. This
is due to [0, 0, 1] not being in the Hilbert basis of CD.

82

The Ext-algebra

In this chapter we want to describe the multiplication in the algebra Ext(D). We start
by repeating Yoneda’s description of Exti(D,D′) as exact sequences. Subsequently we
are able to describe the elements of Exti(D,D′) as a path in R and a degree u ∈M .

This reminds one of the construction of path algebras, though the final result Corol-
lary 8.22 shows that the condition of path algebras for paths to concatenate well becomes
a larger containment condition. Additionally the degree has to be considered as well.
Thus Ext(D) is not a path algebra. Since not every quiver is the resolution quiver of
a CQS, it is also false that the Ext(D) generalize path algebras. A concept containing
both path algebras and the algebras Ext(D) needs to generalize toric rings as well, since
C[σ∨ ∩M] = Ext(R). Furthermore it needs to take the thoughts of Section 5.3 into
account.

Finally we will have a look at how one can find generators of Ext(D) and finish our
example.

8.1. Yoneda’s interpretation of Ext

Let us first review the construction in general following the procedures of [Eis95]. Given
two R-modules M and N , and an element e ∈ ExtkR(M,N) we obtain an exact sequence
in the following manner: Take a free resolution

F• : . . .→ Fk+1 → Fk → Fk−1 → . . .→ F1 → F0 �M → 0

of M , then applying HomR(•, N) and taking the k-th cohomology yields ExtkR(M,N).
Let us name the differentials dk : Fk → Fk−1. Then e is an element of

ker(d∗k+1 : Hom(Fk, N)→ Hom(Fk+1, N))
/
im(d∗k : Hom(Fk−1, N)→ Hom(Fk, N)) .

Hence we pick a representative for e in Hom(Fk, N) which we will denote by e as well.
Now we obtain the following diagram:

Fk+1 Fk Fk−1

N

e

dk+1 dk

The morphism e being in the kernel of d∗k+1 means e ◦ dk+1 = 0. Thus e is defined on
classes modulo the image of dk+1 and we obtain by exactness of the free resolution:

Fk
/
im(dk+1) = Fk

/
ker(dk)

= im(dk) = ker(dk−1).

83

8 The Ext-algebra

Therefore e is a map e : ker(dk−1)→ N . The exact sequence associated to e is the second
row in the following diagram.

0 ker(dk−1) Fk−1 Fk−2 . . . F0 M 0

0 N coker(−e, i) Fk−2 . . . F0 M 0

e

i dk−1 dk−2 d1 d0

dk−2 d1 d0

.

Of course we chose a representative for e and other choices will yield different exact
sequences. Identifying these sequences means factoring out by Yoneda equivalence:

Definition 8.1 (Yoneda equivalence). Two exact sequences of R-modules are said to
be Yoneda equivalent if they fit into the below commutative diagram:

0 N Ak . . . A0 M 0

0 N Bk . . . B0 M 0

. . .

.

Remark 8.2. As already stated in [Eis95] Yoneda equivalence does not pose an equivalence
relation in that it is not symmetric. Instead we will consider the equivalence relation
generated by Yoneda equivalence.

One can then define an R-module structure on the space of sequences of constant
length k modulo Yoneda equivalence, yielding an isomorphism with ExtkR(M,N). Since
this has already been described thoroughly in [Eis95] we will just remark that we already
have an R-module structure on Hom(Fk, N) which translates to the space of exact
sequences of length k modulo Yoneda equivalence seamlessly via the above construction.

Next we obtain a multiplication map

µ : ExtnR(B,C)× ExtmR (A,B)→ Extn+m
R (A,C)

defined by

([0→ C → X
p→ B → 0], [0→ B

i→ Y → A→ 0]) 7→ [0→ C → X
i◦p−→ Y → A→ 0].

In particular this construction equips the direct sum

Ext(D,D) :=
⊕
i≥0

Exti(D,D)

with the structure of a C-algebra.

8.2. The homogeneous elements of Extk(D,D′)

In Section 6.1 we described Ext1(D,D′) as a Z2-graded vector space. We want to combine
this description with the recursion developed in Section 5.2. The goal is to obtain a
description of the monomials of the ring Ext(D).

84

8.2 The homogeneous elements of Extk(D,D′)

Let S ⊆ Z2 such that
Ext1(D,D′) =

⊕
u∈S

C · x̄u.

Then, for each homogeneous generator x̄u, we obtain an exact sequence

x̄u : 0→ D′ → X(x̄u)→ D → 0,

which is unique, up to Yoneda equivalence, i.e. we pick a representative and X(x̄u)
denotes a suitable module.

Knowledge of S immediately yields Ext1(D,D′), but the exact sequences contain more
information: They tell us which Ext1 they belong to. Thus we add this information by
considering (u,D,D′) instead of u. This approach immediately suggests how to represent
the generators of higher Extk(D,D′).

Take for example k = 2: There is a short exact sequence

0→
s⊕
i=1

Di → Rs � D → 0

and hence

Ext2(D,D′) =

s⊕
i=1

Ext1(Di, D′).

We already know how to describe the generators on the right hand side individually, but
they lack the information which D they correspond to, i.e. the information that they
are considered as elements of an Ext2 and not Ext1. Now each element (u,Di, D′) ∈
Ext2(D,D′) arises via a path Di → D in the graph R. Thus we add this path as
information instead of Di and obtain (u,Di → D,D′) ∈ Ext2(D,D′).

Of course D does not have to be a vertex of R. But there is an Ej that is linearly
equivalent to D and thus we write D = Ej + u. Now this Ej has incoming arrows from
several Ei that are labeled with ui ∈ Z2, respectively. These are the candidates for the
Di mentioned, but instead of storing the shift with the arrow we move it back into Ei.
Thus the arrow Ei → Ej labeled with ui translates to the arrow Di := (Ei + ui + u)→
(Ej + u) = D.

We can generalize this approach to higher Extk by taking longer paths. The description
for Ext1 fits well into this strategy: If the path has length 0 we get an element of Ext1

representing a class of short exact sequences. It all comes down to the following definition:

Definition 8.3 (Path of R). A path Dk → . . . → D1 → D of R is a sequence of
T -invariant Weil divisors such that there is the labeled path in R

Eik Eik−1 . . . Ei2 Ei1 Ei0
uik uik−1 ui3 ui2 ui1

,

where we have
D = Ei0 + u for some u := ui0 ∈ Z2

and

Dj = Eij +

j∑
i=0

uij .

85

8 The Ext-algebra

Simply put, this means that F0(Dj) is a direct summand of F1(Dj−1). Recursively we
then obtain that F0(Dj) is a direct summand of Fj(D).

Definition 8.4 (Monomial of Extk+1(D,D′)). We call the elements

(u,Dk → . . .→ D1 → D,D′) ∈ Extk+1(D,D′)

monomials of degree k + 1.

This resembles the fact that in a polynomial ring the monomials are the homogeneous
generators of the ring as a C-vector space. Since Ext0(D,D) = R we now have two
different kinds of monomials in Ext(D), namely those of R, that now live in degree 0, and
those described above. Furthermore, there is a second finer grading on Ext(D) than the
Z-grading: Since all modules Exti(D,D) are M -graded, we get a grading of Ext(D,D)
by Z×M . It is clear that the multiplication respects the Z-grading.

Thus, the question is, whether the monomials really behave like monomials in a
polynomial ring. This question splits into the following parts:

1. Is the product of two monomials again Z×M -homogeneous?

2. And, if the first answer is positive, is the product of two monomials again a
monomial?

3. Is the multiplication commutative?

Remark 8.5. Alternatively to the approach via Yoneda equivalence classes of exact
sequences one can characterize Ext in terms of derived categories, see for example
[Wei94]. There elements of Ext correspond to morphisms of complexes. For an element
to be homogeneous means for the morphisms to be homogeneous. Hence, with this
approach it immediately becomes clear that the product of homogeneous elements stays
homogeneous. However, in order to find an answer to the second question one encounters
exactly the same calculations as for the Yoneda approach.

8.3. Ext1 as short exact sequences

In order to answer these questions we will first have to find exact sequences that serve
as representatives of the equivalence classes defined by monomials. We will start with
degree 1 monomials.

Please note that Lemma 8.6 re-explains the gluing of Theorem 6.1 in terms of short exact
sequences and Yoneda equivalence. Furthermore, Example 8.8 additionally explains
the vanishing for the boundary generators u0 and us in G(D). Everything but the
construction in this section serves the purpose to demonstrate that we get the right
thing.

Assume we are given a monomial (u,D,D′). This corresponds to the element x̄u ∈
Ext1(D,D′). In order to construct a short exact sequence from this element we need to
find out which map ker(d0)→ D′ is associated to x̄u. Thus we revisit the construction
of Ext1 in 6.1

86

8.3 Ext1 as short exact sequences

First we assume D to have the sorted generators {u0, . . . , us} and receive a short exact
sequence

0→
s⊕
i=1

Di → F0(D) :=
s⊕
i=0

R[ui]� D → 0

which encodes the first step of the free resolution of D. Applying Hom(•, D′) yields the
sequence

0→ Hom(D,D′)→ Hom(F0(D), D′)→ Hom(
s⊕
i=1

Di, D′)→ Ext1(D,D′)→ 0

and thus the formula

Ext1(D,D′) =

Hom(
s⊕
i=1

Di, D′)/
Hom(F0(D), D′) .

The degree u yields x̄u which should give us a map ϕu :
⊕s

i=1D
i → D′. We already

observed that

Hom(
s⊕
i=1

Di, D′) =
s⊕
i=1

Hom(Di, D′) =
s⊕
i=1

(− ν(Di) +D′).

Let us assume for the moment that u ∈ (− ν(D1)+D′) but not in any other (− ν(Di)+D′),
i ≥ 2. The map defined by ϕu|D1 : D1 → D′ is given by multiplication with the monomial
x̄u ∈ C[Z2], in other words, by a degree shift of u. The other maps ϕu|Di : Di → D′

must be zero and this completes the construction. In particular if u is only contained in
one of the (− ν(Di) +D′) we can apply the same principle.

Let us modify this representation a little by transferring the degree from the map to
D′ and considering D′[−u] instead of D′. For such u, ϕu|D1 : D1 ↪→ D′[−u] becomes the
canonical embedding and remains zero on the other Di.

Having found a description of ϕu as a map

ϕu :

s⊕
i=1

Di = ker(d0)→ D′[−u]

we go on defining the associated short exact sequence α(ϕu)

0 ker(d0) =
⊕s

i=1D
i F0(D) D 0

α(ϕu) : 0 D′[−u] coker(−ϕu, i) D 0

ϕu

i d0

d̄0

The middle module in the sequence α(ϕu) can be computed as

coker(−ϕu, i) = D′[−u]⊕ F0(D)
/
im(−ϕu, i)

= D′[−u]⊕ F0(D)

/{
(−xu, xu−ui−1

ei−1 − xu−uiei) xu ∈ Di, ϕu|Di : Di ↪→ D′[−u]

(0, xu−u
i−1
ei−1 − xu−uiei) xu ∈ Di, all other Di

}

87

8 The Ext-algebra

We will use the following shorthand notation for future reference:

coker(−ϕu, i) = D′[−u]⊕ F0(D)
/
{(−Di, Di)} .

Keep in mind, that there is more in the denominator, namely (0, Dj) for all j 6= i.
What if u is contained in several of the (− ν(Di) +D′)? Simply choose one of these

i and set ϕu|Di : Di ↪→ D′[−u]. Then set ϕu|Dj = 0 for all other j 6= i. The following
lemma explains why this is independent of the choice of i:

Lemma 8.6. Assume u ∈ (− ν(D1) +D′) ∩ (− ν(D2) +D′). We obtain two maps

ϕu1 : D1 ⊕D2 ⊕
(⊕s

i=3D
i
)
→ D′[−u]

(a, b, c) 7→ a

and
ϕu2 : D1 ⊕D2 ⊕

(⊕s
i=3D

i
)
→ D′[−u]

(a, b, c) 7→ b
.

Then the sequences α(ϕu1) and α(ϕu2) are Yoneda equivalent.

Proof. It is enough to prove this statement for D having three generators, just as in the
proof of Theorem 6.1. Thus we have an exact sequence

0→ D1 ⊕D2 → R[u0]⊕R[u1]⊕R[u2]� D → 0.

Having the two maps ϕu1 and ϕu2 yields on the polyhedral side D1 ⊆ D′[−u] and
D2 ⊆ D′[−u]. Since D′[−u] = ν(D′)−u+σ∨ this implies R[u1] ⊆ D′[−u], because R[u1]
is the minimal translate of σ∨ containing both D1 and D2. Hence we obtain a map

f : R[u0]⊕R[u1]⊕R[u2]→ D′[−u], (a, b, c) 7→ b,

where this map is meant homogeneous of degree 0, i.e. (0, 1, 0) gets mapped to xu
1
.

Finally we can construct a map F : coker(−ϕu1 , i)→ coker(−ϕu2 , i):

F : D′[−u]⊕ F0(D)
/
{(−D1, D1)} −→ D′[−u]⊕ F0(D)

/
{(−D2, D2)}

(g, (a, b, c)) 7→ (g − f(b), (a, b, c))
.

What remains to check is the well-definedness. Fix a homogeneous element of the
denominator (−xv, (xv−u0 ,−xv−u1 , 0)).

F (−xv, (xv−u0 ,−xv−u1 , 0)) = (−xv − f(−xv−u1), (xv−u
0
,−xv−u1 , 0))

= (−xv + xv, (xv−u
0
,−xv−u1 , 0))

= (0, (xv−u
0
,−xv−u1 , 0)).

Thus homogeneous elements of (−D1, D1) get mapped to (0, D1) which is zero. The
other type of homogeneous elements are those of (0, D2).

F (0, (0, xv−u
1
,−xv−u2)) = (−f(xv−u

1
), (0, xv−u

1
,−xv−u2))

= (−xv, (0, xv−u1 ,−xv−u2)).

88

8.3 Ext1 as short exact sequences

Therefore elements of type (0, D2) get mapped to elements of type (−D2, D2) which are
zero on the right hand side. Hence we have proven that F is well-defined. It is obvious
that F commutes with the identities of the Yoneda equivalence diagram and we are
done.

Of course it was already clear on an abstract level that the sequences associated
to ϕu1 and ϕu2 had to be Yoneda equivalent by construction of Ext1. To be precise,
considering the difference map ϕu1 − ϕu2 , this map is exactly f concatenated with the
embedding D1⊕D2 ↪→ R[u0]⊕R[u1]⊕R[u2]. Hence ϕu1 −ϕu2 is an element of the image
Hom(F0(D), D′) and thus becomes zero in Ext1.

We illustrate some details of this proof in Example 8.8.

Remark 8.7. The lemma does not depend on the particular indices D1 and D2. We can
apply it for different Di and Di+1 as well as for u being contained more than two Di.

The lemma demonstrates that the map that associates to a degree u ∈ Ext1(D,D′)
an equivalence class of short exact sequences α(u) = [α(ϕu)] is well-defined, which we
already knew beforehand, by Yoneda’s description of Ext.

The situation described in the lemma can indeed occur. Let us have a look at an
example and illustrate the Yoneda equivalence of the sequences we obtain if we find a
degree u satisfying the precondition of the lemma.

Example 8.8. Take n = 3, q = 1. Furthermore fix D = E1 and D′ = E0. Then D is
generated by three monomials

xu
0
, xu

1
and xu

2
, with u0 = [1, 1], u1 = [2, 1], u2 = [3, 1].

Set D1 := E1[1, 1] and D2 := E1[2, 1], then we obtain an exact sequence

0→ D1 ⊕D2 → R[1, 1]⊕R[2, 1]⊕R[3, 1]� D → 0.

The situation is illustrated in the following picture.

With the method of 6.1 we obtain

Ext1(E1, E0) = C · x̄[−2,−1]

and hence we pick u = [−2,−1]. Now we calculate the vertices of all divisors involved.

ν(E1) = [1,
1

3
]

ν(D1) = ν(E1) + [1, 1] = [2,
4

3
]

ν(D2) = ν(E1) + [2, 1] = [3,
4

3
].

89

8 The Ext-algebra

Adding the degree u to the last two vertices clearly demonstrates that both D1 and D2

are contained in E0[−u]. We are in the situation which allows us two choose between
two different maps for building the exact sequence α(u). Thus we demonstrate that both
choices yield Yoneda equivalent short exact sequences. First define the two maps:

ϕu1 : D1 ⊕D2 → D′[−u]
(a, b) 7→ a

and
ϕu2 : D1 ⊕D2 → D′[−u]

(a, b) 7→ b
.

One immediately notices that the difference of these two maps lifts to a map F0(D)→
E0[2, 1] and thus we write down the following diagram to demonstrate the Yoneda-
equivalence of the two resulting exact sequences:

α(ϕu1) : 0 E0[2, 1] E0[2, 1]⊕ F0(D)
/
{(−D1, D1)} D 0

α(ϕu2) : 0 E0[2, 1] E0[2, 1]⊕ F0(D)
/
{(−D2, D2)} D 0

Id
(a, b0e

0 + b1e
1 + b2e

2)7→

(a− b1xu
1
, b0e

0 + b1e
1 + b2e

2)
Id

,

where we denote by b0e
0 + b1e

1 + b2e
2 an element of F0(D) with deg(ei) = ui. The only

thing left to check is the well-definedness of the map in the center. For example we have
(xu,−xu0−ue0 + xu

1−ue1) = 0 for u ∈ D1 in the first row. The image under the central
map is

(xu,−xu0−ue0 + xu
1−ue1) 7→ (xu − xu1−uxu,−xu0−ue0 + xu

1−ue1)

= (0,−xu0−ue0 + xu
1−ue1),

which is zero in the second row.

Another thing we want to demonstrate is that α(u) splits for choices outside of
Ext1(D,D′). If u /∈ (− ν(D1) + D′) ∪ (− ν(D2) + D′) this is easy, since then ϕu = 0.
Hence we pick u = [−1,−1]. This choice yields the inclusion D1 ↪→ E0[1, 1]. Looking at
the picture from the beginning of this example, we realize that even R[−u0] ⊆ E0[1, 1].
Hence we can define the map

E0[1, 1]⊕ coker dD1
E0[2, 1]⊕ F0(D)

/
{(−D1, D1)}

(a, b0e
0 + b1e

1 + b2e
2) (a− b0xu

0
, b0e

0 + b1e
1 + b2e

2)
.

Again we have to check well-definedness. As an example take

(0,−xu−u0e0 + xu−u
1
e1) 7→ (xu,−xu−u0e0 + xu−u

1
e1).

90

8.4 Higher Extn as exact sequences

8.4. Higher Extn as exact sequences

Given a monomial

(u,Dn → . . .→ D1 → D,D′) ∈ Extn+1(D,D′)

we want to find a representative of the associated Yoneda equivalence class of exact
sequences. We want to proceed inductively along the path Dn → . . .→ D1: In Section 8.3
we constructed a representative for the monomial (u,Dn, D′) ∈ Ext1(Dn, D′) which is
our induction hypothesis. The construction involved a map ϕu : ker dD

n

0 → D′[−u].
Having a path Dn → Dn−1 tells us that F0(Dn) is a direct summand of F 1(Dn−1) and
we canonically get a projection F 1(Dn−1)� F0(Dn). Applying this principle repeatedly
produces a diagram

0 ker dDn Fn(D) Fn−1(D) Fn−2(D) . . . F1(D) F0(D) D 0

0 ker dD
1

n−1 Fn−1(D1) Fn−2(D1) Fn−3(D1) . . . F0(D1) D1 0

...
...

...
...

... . .
.

0 ker dD
n−1

1 F1(Dn−1) F0(Dn−1) Dn−1 0

0 ker dD
n

0 F0(Dn) Dn 0

0 D′[−u] coker(−ϕu, iDn) Dn 0

0 D′[−u] coker(−ϕun, iD
n
) Fn−1(D) Fn−2(D) . . . F1(D) F0(D) D 0

ϕu1

ϕu2

ϕun

ϕun−1

πD
1

πD
2

πD
n−1

πD
n

ϕu

0 ker dDn Fn(D) Fn−1(D) Fn−2(D) . . . F1(D) F0(D) D 0

0 ker dD
1

n−1 Fn−1(D1) Fn−2(D1) Fn−3(D1) . . . F0(D1) D1 0

...
...

...
...

... . .
.

0 ker dD
n−1

1 F1(Dn−1) F0(Dn−1) Dn−1 0

0 ker dD
n

0 F0(Dn) Dn 0

0 D′[−u] coker(−ϕu, iDn) Dn 0

0 D′[−u] coker(−ϕun, iD
n
) Fn−1(D) Fn−2(D) . . . F1(D) F0(D) D 0

This means we construct ϕun recursively:

ϕu0 := ϕu, and ϕui+1 := ϕui ◦ πD
n−i
.

Hence we have found a representative for the monomial (u,Dn → . . .→ D1 → D,D′).
But with this description we can derive even more.

Lemma 8.9. The monomials

(u,Dn → . . .→ D1 → D,D′) and (v,Hm → . . .→ H1 → D,D′)

are Yoneda equivalent if and only if the following conditions hold

1. m = n,

91

8 The Ext-algebra

2. H i = Di for all i = 1, . . . , n and

3. (u,Dn, D′) and (v,Hn, D′) are Yoneda equivalent.

Proof. The proof already follows by construction of the exact sequences. Alternatively
one has the observation of Section 8.2 that the monomials form a C-basis of the Ext-
modules.

Remark 8.10. Of course the monomials

(u,Dn, D′) and (v,Hn, D′)

are Yoneda equivalent if and only if u = v and Dn = Hn. The third condition just means
for both monomials to be contained in same Ext1(Dn, D′).

8.5. The multiplication

Throughout this chapter we will work with maps representing elements of certain Ext1’s.
One should keep in mind that Yoneda equivalence will always flatten out any choices we
make.

Ext1×Ext1

Theorem 8.11. Let (w,B,C) and (u,A,B) be two monomials of degree 1. Assume
there exists E ∈ inR(A) such that

u+ w ∈ Ext1(E,C) and E ⊆ B[u].

Then

(w,B,C) · (u,A,B) = (w + u,E → A,C).

Otherwise the product is zero.

Assume we are given two elements x̄u ∈ Ext1(A,B) and x̄w ∈ Ext1(B,C). The
corresponding exact sequences arise via maps ϕu : ker dA0 → B[−u] and ϕw : ker dB0 →
C[−w] as described in Section 8.3. Hence we obtain sequences

α(ϕu) : 0 B[−u] coker(ϕu, i) A 0

and

α(ϕw) : 0 C[−w] coker(ϕw, i) B 0
.

The goal is now to study the map

µ : Ext1(B,C)× Ext1(A,B) → Ext2(A,C)
([α(ϕw)], [α(ϕu)]) 7→ [α(ϕw)] · [α(ϕu)]

92

8.5 The multiplication

Figure 8.12.: General construction.

0 ker dA1 F1(A) F0(A) A 0

ker dA0

0 ker d
B[−u]
0

F0(B[−u]) B[−u] 0

0 C[−u− w] coker(−h, iA) F0(A) A 0

0 C[−u− w] coker(−ϕw[−u], iB[−u]) coker(−ϕu, iA0) A 0

dA1

τ

σ

ϕu

ϕw

iA1

iA0

iB[−u]

dA0

π

d
B[−u]
0

ϕu ◦ π

h

h′ Φ

a b

0 ker dA1 F1(A) F0(A) A 0

ker dA0

0 ker d
B[−u]
0

F0(B[−u]) B[−u] 0

0 C[−u− w] coker(−h, iA1) F0(A) A 0

0 C[−u− w] coker(−ϕw[−u], iB[−u]) coker(−ϕu, iA0) A 0

93

8 The Ext-algebra

in combinatorial terms. In particular the product should be homogeneous of degree
u+ w. Since the degree-(u+ w)-homogeneous elements of Ext2(A,C) arise from maps
h : ker dA1 → C[−u− w] we want to construct such a map from ϕu and ϕw. Hence we
get a diagram as depicted in Figure 8.12.

The golden maps are maps we need to construct in order to get to the desired
h : ker dA1 → C[−u− w]. At this point only commutative algebra is needed. Let us walk
through them in the order they arise.

ϕu ◦ π: The free module F1(A) surjects onto the kernel of dA0 via π, and composition with
the given map ϕu : ker dA0 → B[−u] yields this map.

Φ: Since F1(A) is a free module, and thereby projective, any map f : M → B[−u]
gives rise to a map Φ : F 1(A)→M such that f ◦ Φ = ϕu ◦ π. In this case we pick

as f the map d
B[−u]
0 : F0(B[−u]) � B[−u] and obtain a Φ : F1(A) → F0(B[−u])

making the diagram commute. The map Φ does not have to be unique.

h′: Let k ∈ ker dA1 , then π ◦ iA1 (k) = 0. This implies by commutativity of the diagram

ϕu ◦ π ◦ iA1 (k) = 0 = d
B[−u]
0 ◦ Φ ◦ iA1 (k).

Exactness of the middle row yields a unique preimage of Φ ◦ iA1 (k) under iB[−u]

and we set h′(k) to be this preimage, i.e.

h′ := (iB[−u])−1 ◦ Φ ◦ iA1 .

h: At this point the hardest part is already done and we simply set h = ϕw ◦ h′.

Next we construct the purple maps a and b in order to verify that the sequence originating
from h is indeed Yoneda equivalent to the product sequence. The product sequence is
the last row in the diagram, the row above it is the sequence defined by h. Let us write
down a detailed version of the box in the center of the last two rows:

C[−u− w]⊕ F1(A)
/

im(−h, iA)
F0(A)

C[−u− w]⊕ F0(B[−u])
/

im(−ϕw[−u], iB[−u])
B[−u]⊕ F0(A)

/
im(−ϕu, iA0)

(
idC[−u−w] 0

0 Φ

)
a

(
0

idF0(A)

)
b

(0, dA1)

τ

σ(
0 d

B[−u]
0

0 0

)

Firstly we prove the well-definedness of a. Take an element k ∈ ker dA1 , map it to
(−h(k), iA1 (k)) in the upper left corner and apply a:

a(−h(k), iA1 (k))) = (−h(k),Φ ◦ iA1 (k)) = (−ϕw ◦ h′(k), iB[−u] ◦ h′(k))

94

8.5 The multiplication

which is zero in the lower left corner.
For commutativity of the diagram take an element (d, f) in the upper left corner and

follow its path:

σ ◦ a(d, f) = (d
B[−u]
0 ◦ Φ(f), 0) = (ϕu ◦ π(f), 0)

= (0, iA0 ◦ π(f)) = (0, dA1 (f))

= b ◦ τ(d, f).

This procedure yields no information on whether the product [α(ϕw)] · [α(ϕu)] is a
monomial or not, and, if yes, which one. We need to supplement the single steps with
the combinatorial details of ϕu and ϕw.

At first we write down the exact sequence of Theorem 5.8 for A:

0 ker dA0 =
⊕s

i=1D
i F0(A) A 0.

The initial considerations of Section 8.3 imply that we can pick ϕu : ker dA0 → B[−u] in
such a way that it is zero on all the summands but one, on which it is just the canonical
injection. Let this summand be E. As described above we construct several maps, all of
which fit into the diagram Figure 8.13.

The golden maps come from above and can be obtained as composition of the other
maps in the diagram. Since the diagram commutes, any choice will yield the same map.

What remains is the construction of the two green maps. Since F0(E) is free and
the third row is exact, we can deduce existence as above. Moreover h0 is completely
determined by Φ0. Of course Φ0 will not be unique. Still we require Φ0 to be homogeneous
of degree 0. In particular, we want ei to be mapped to an element of the form xu · ej
with deg ei = u+ deg ej . Since we have E ⊆ B[−u] these requirements can certainly be
satisfied, but they still leave us with a choice.

Assume we are given two divisors D and E with sorted generators

Supp(G(D)) = {u0, . . . , us(D)} and Supp(G(E)) = {v0, . . . , vs(E)}

Furthermore, assume E ⊆ D. Then naturally each vl is contained in some R[ui]. Now
we shrink D by moving its bounding hyperplanes. Thus we may assume v0 ∈ R[u0] and
vs(E) ∈ R[us(D)]. This setting allows discussing the distribution of the vl in the R[ui].

Lemma 8.14. Let E ⊆ D and v0 ∈ R[u0], vs(E) ∈ R[us(D)]. Then for every i =
0, . . . , s(D) there exists l ∈ 0, . . . , s(E) such that vl ∈ R[ui].

Proof. By assumption it is clear that the statement is true for i = 0 and i = s(D). Thus
assume 0 < i < s(D). We want to verify the statement by contradiction, hence assume
that no vl ∈ R[ui] for the chosen i. Now choose l such that

〈vl, ρ0〉 < 〈ui, ρ0〉 ≤ 〈vl+1, ρ0〉.

Since vl+1 /∈ R[ui] and since vl ∈ R[uk] for some k < i we also get

〈vl+1, ρ1〉 < 〈ui, ρ1〉 ≤ 〈vl, ρ1〉.

This immediately implies ui ∈ belowD′ for D′ the divisor generated by vl and vl+1,
which contradicts Proposition 6.9.

95

8 The Ext-algebra

Figure 8.13.: Construction for CQS.

0 ker dA1 F1(A) F0(A) A 0

ker dA0

0
⊕s(A)

i=1 ker dA
i

0

⊕s(A)
i=1 F0(Ai)

⊕s(A)
i=1 Ai 0

0
⊕s(E)

i=1 Ei F0(E) E 0

0 ker d
B[−u]
0

F0(B[−u]) B[−u] 0

⊕s(B)
i=1 Bi

F

0 C[−u− w] coker(−h, iA) F0(A) A 0

dA1

ϕu

ϕw

iA

iB[−u]

dA0

π

d
B[−u]
0

pEpEpE

pF

h

Φ

Φ0h0

0 ker dA1 F1(A) F0(A) A 0

ker dA0

0
⊕s(A)

i=1 ker dA
i

0

⊕s(A)
i=1 F0(Ai)

⊕s(A)
i=1 Ai 0

0
⊕s(E)

i=1 Ei F0(E) E 0

0 ker d
B[−u]
0

F0(B[−u]) B[−u] 0

⊕s(B)
i=1 Bi

F

0 C[−u− w] coker(−h, iA) F0(A) A 0

96

8.5 The multiplication

Remark 8.15. One should note that Lemma 8.14 does not imply s(E) = s(D), since a vl

may be contained in several of the R[ui].

Now we are finally in the position to discuss the lemmata leading to the construction
of Φ0. Let us fix generators for B[−u] and E such that

F0(B[−u]) =

s(B[−u])⊕
k=0

R[uk] and F0(E) =

s(E)⊕
l=0

R[vl],

with the ordering of Proposition 4.8.

Lemma 8.16. Let F be a direct summand of ker d
B[−u]
0 such that F ⊆ C[−u − w].

Furthermore, let u + w ∈ Ext1(E,C). Then ker dE0 has a direct summand El that is
contained in F .

Proof. The assumption u+ w ∈ Ext1(E,C) and w ∈ Ext1(B[−u], C[−u]) implies that
the elements v0, vs(E), u0, us(B[−u]) must not be contained in C[−u−w] by Theorem 6.1.
Otherwise we could map for example R[v0] into C[−u−w] and the sequence of degree u+w
would become trivial just as in Example 8.8. By Yoneda equivalence this would eliminate
the degree u+ w from the support of Ext1(E,C) which contradicts the assumption.

This yields the inequalities

〈u0, ρ0〉 < 〈C[−u−w], ρ0〉 < 〈us(B[−u]), ρ0〉 and 〈us(B[−u]), ρ1〉 < 〈C[−u−w], ρ1〉 < 〈u0, ρ1〉

and the same set of inequalities for v0 and vs(E).

Next assume that F is the intersection

F = (uk−1 + σ∨) ∩ (uk + σ∨) for some k ∈ {1, . . . , s(B[−u])}.

The containment F ⊆ C[−u− w] yields the inequalities

〈C[−u− w], ρ0〉 ≤ 〈uk, ρ0〉 and 〈C[−u− w], ρ1〉 ≤ 〈uk−1, ρ1〉.

Using Lemma 8.14 we choose l − 1 such that vl−1 ∈ R[uk−1]. Furthermore we may
require that vl /∈ R[uk−1] since we know

〈vs(E), ρ1〉 ≤ 〈C[−u− w], ρ1〉 ≤ 〈uk−1, ρ1〉.

This immediately implies 〈vl, ρ0〉 ≥ 〈uk, ρ0〉, since vl has to be contained in some R[uk
′
]

for k′ > k − 1. Thus pick

El = (vl−1 + σ∨) ∩ (vl + σ∨)

to obtain

〈El, ρ0〉 = 〈vl, ρ0〉 ≥ 〈F , ρ0〉 = 〈uk, ρ0〉 and

〈El, ρ1〉 = 〈vl−1, ρ1〉 ≥ 〈uk−1, ρ1〉 = 〈F , ρ1〉.

97

8 The Ext-algebra

Lemma 8.17. In the setting of Lemma 8.16 we may pick El such that

El = (vl−1 + σ∨) ∩ (vl + σ∨), and

F = (uk−1 + σ∨) ∩ (uk + σ∨),

with vl−1 ∈ R[uk−1] and vl ∈ R[uk].

Proof. By Lemma 8.14 there must be an vl−1 ∈ R[uk−1]. If it is not unique, pick the
right-most one in terms of the first coordinate, i.e. such that vl /∈ R[uk−1]. Furthermore,
it is safe to assume that vl /∈ R[uk], because w ∈ Ext1(B[−u], C[−u]). In the case that
k = s(B[−u]) this immediately yields a contradiction and we are done. Otherwise we
know there must be some vi ∈ R[uk] and we obtain vl−1 ∈ R[uk]. In the same way we
assume vl−2 /∈ R[uk−1] in order to get a contradiction. Now take D′ to be the divisor
generated by D′ = (vl−2, vl−1, vl). Then

uk−1, uk, vl−1 ∈ below(D′)

which is a contradiction to Proposition 6.9. The situation is illustrated in the following
picture:

uk−1 uk
vl−2

vl−1

vl

The red area denotes the set below(D′). As one can see it contains at least the three
lattice points uk−1, uk and vl−1, but according to Proposition 6.9 it should only contain
vl−1.

Lemma 8.18. Assume El as in Lemma 8.16 is unique. Then

El = (vl−1 + σ∨) ∩ (vl + σ∨), and

F = (uk−1 + σ∨) ∩ (uk + σ∨),

with vl−1 ∈ R[uk−1]\R[uk] and vl ∈ R[uk]\R[uk−1].

Proof. The trick is that if a generator vl is contained in F , then both neighbouring
intersections are contained in F and thus El was not unique.

Finally we are in the situation that we can construct the map Φ0, and thus, we prove
the main theorem:

98

8.5 The multiplication

Proof of Theorem 8.11. Let El, uk−1, uk, vl−1 and vl as in Lemma 8.17. By assumption
there is a map

ϕu+w :

s(E)⊕
i=1

Ei → C[−u− w],

which is the inclusion on El and zero on the other summands. This map, concatenated
with pE , yields the monomial on the right hand side of the equation.

We want to construct

Φ0 : F0(E) =

s(E)⊕
l=0

R[vl] → F0(B[−u]) =

s(B[−u])⊕
k=0

R[uk],

such that

ϕu+w ◦ pE = ϕw ◦ h0 ◦ pE = h.

The main requirement is that Φ0 is homogeneous of degree 0. Thus we pick

Φ0(xv
l−1

) := xv
l−1−uk−1 · xuk−1

and Φ0(xv
l
) := xv

l−uk · xuk .

Furthermore we send xv
i

for i < l− 1 into R[uj], where j ≤ k − 1. For i > l we send xv
i

into R[uj], where j ≥ k.
Thus h0 sends El into F . By construction no other intersection will be send to any

element of F . Hence the composition ϕw ◦ h0 is the canonical injection on El and zero
on the other direct summands.

Theorem 8.19. Assume u+ w /∈ Ext1(E,C). Then

(w,B,C) · (u,A,B) = 0.

Proof. We still assume E ⊆ C[−u]. Hence we can still construct all maps appearing in
the diagram Figure 8.13. The easiest case is when we are able to choose Φ0 such that
we completely miss one of the direct summands R[uk−1] and R[uk]. Then the image of
ker dE0 under h0 completely avoids F and the map h becomes zero.

For the other cases we may construct Φ0 exactly as in the proof of Theorem 8.11.
Again we have the formula

ϕu+w ◦ pE = ϕw ◦ h0 ◦ pE = h.

Hence as a result of the multiplication we get an honest homogeneous element of
Ext1(E,C). Even better: It is constructed exactly as Section 8.4 suggests. Thus, since
we already know that there is no degree u + w in Ext1(E,C), this element must be
Yoneda equivalent to zero.

Remark 8.20. Remember that one might have a choice if several of the summands Ai

are contained in B[−u]. Thus assume we are given Ai and Ai+1, such that both are
contained in B[−u]. According to Theorem 8.11 the product (w,B,C) · (u,A,B) now
has the choice to either be

(w + u,Ai → A,C) or (w + u,Ai+1 → A,C).

99

8 The Ext-algebra

But those live in different direct summands of

Ext2(A,C) =

s(A)⊕
i=1

Ext1(Ai, C)

which is a contradiction. Hence the degree w + u ceases to exist in both summands.

To provide a more thorough explanation for this phenomenon fix Ai and assume
i : Ai ↪→ B[−u] to be the injection. Since also Ai+1 is contained, we know that the
direct summand R[ui+1] of F0(A) is contained in B[−u]. This yields the following chain
inclusions of polyhedra:

Ai ⊆ R[ui+1] ⊆ B[−u].

Since ui+1 is a lattice point of B[−u] there is a direct summand of F0(B[−u]) containing
ui+1. Thus we may choose Φ0 : F0(Ai)→ F0(B[−u]) to map everything into this direct
summand. But this implies for the composition

[ker(dA
i

0) ↪→ F0(Ai)] ◦ Φ0 = 0.

Thus the map h0 is zero as well as the resulting map h. Therefore neither Ext1(Ai, B),
nor Ext1(Ai+1, B) are supported in degree u+ w.

Extn×Extm

Theorem 8.21. Let

(u,A,B) ∈ Ext1(A,B),

(v,Bn−1 → . . .→ B,C) ∈ Extn(B,C).

If there is an element

(u+ v,An → . . .→ A,C) ∈ Extn+1(A,C)

such that

Ai ⊆ Bi−1[−u] for all i = 1, . . . , n,

where we set B0 := B. Then

(v,Bn−1 → . . .→ B,C) · (u,A,B) = (u+ v,An → . . .→ A,C).

Otherwise the product is zero.

Proof. We need to expand the diagram of Figure 8.13 for the sequence

0→ kerdAn−1
↪→ Fn−1(A)→ . . .→ F0(A)� A→ 0.

Thus assume E to be a direct summand of ker dA0 yielding the element (u,A,B) ∈
Ext1(B,A). By the containment condition we know that A1 is such a summand, hence
we pick E := A1.

100

8.5 The multiplication

The containment condition ensures that we may lift the map ϕu : A1 ↪→ B[−u] along
the following chain:

. . . Fi(A) Fi−1(A) . . .

Ai+1 Ai

Bi[−u] Bi−1[−u]

. . . Fi−1(B[−u]) Fi−2(B[−v]) . . .

ϕiϕi+1

,

where we assume ϕi to be zero on all components of Fi−1(A) that do not contribute to
Ai. On the two components R[uk] and R[uk+1] of Fi−1(A), whose intersection is Ai, ϕi

may be any homogeneous map that makes the diagram commute.
Next we may construct ϕi+1 inductively: By the construction of ϕi we only need to

worry about F0(Ai) inside of Fi−1(A). We map this to F0(Bi−1[−u]) by again mapping
every direct summand that does not belong to Ai+1 to zero. We can now map the two
direct summands generating Ai+1 into the direct summands generating Bi[−u] via the
containment condition.

At the end of the chain we may use the same arguments as in the proof of Theorem 8.11.
For the beginning of the chain take the inclusion of A1 ⊆ B[−u]. Since there are
no commutativity conditions at this position of the chain, we may choose the map
ϕ1 : F0(A) → B[−u] in the desired way, i.e. zero on all direct summands that do not
contribute to A1. The two direct summands with intersection A1 are mapped in such a
way that they restrict to the inclusion A1 ↪→ B[−u].

This formula explains the multiplication with an Ext1-element from the right. As a
last step we may lift this theorem quite canonically to the general case via the direct
sum decomposition of higher Extn explained in Theorem 5.16.

Corollary 8.22. Let

(u,Am−1 → . . .→ A,B) ∈ Extm(A,B),

(v,Bn−1 → . . .→ B,C) ∈ Extn(B,C)

and assume that there exists

(u+ v,An+m−1 → . . .→ A,C) ∈ Extn+m(A,C)

such that
Ai ⊆ Bi−m[−u] for all i = m, . . . , n+m− 1,

where we set B0 := B. Then

(v,Bn−1 → . . .→ B,C) · (u,Am−1 → . . .→ A,B) = (u+ v,An+m−1 → . . .→ A,C).

Otherwise the product is zero.

101

8 The Ext-algebra

Remark 8.23. From an algorithmic perspective it is very interesting that the product
monomial must be unique. This means given the the path

Bn−1 → . . .→ B

of the first factor we may construct the product starting at Am−1, following the unique
path yielding the product, i.e. satisfying the containment condition. If we have a choice
at any point, the product must be zero. This extends Remark 8.20.

Example 8.24. The first and simplest example is of course n = 2, q = 1. Here we
only have one non-trivial divisor to consider, namely D = E1. The only monomial in
Ext1(E1, E1) is

([−1,−1], E1, E1) ∈ Ext1(E1, E1).

To determine the quiver R we just need the short exact sequence

0→ E1[1, 1] ↪→ R2 � E1 → 0

and thus we compute

Extn(E1, E1) = Extn−1(E1[1, 1], E1) = . . . = C · x̄[−n,−n]

for n ≥ 1. Hence we have monomials

([−n,−n], E1[n, n]→ E1[n− 1, n− 1]→ . . .→ E1, E1).

The only thing left to do is to compute the product

([−n,−n], E1[n, n]→ E1[n− 1, n− 1]→ . . .→ E1, E1) · ([−1,−1], E1, E1).

By Theorem 8.21 this is exactly

([−(n+ 1),−(n+ 1)], E1[n+ 1, n+ 1]→ E1[n, n]→ . . .→ E1, E1).

We even have equality for all inclusions Ai ⊆ Bi−1[−v] of the theorem. Thus the algebra
Ext(E1, E1) is generated in degree 0 and 1 and we can describe it as

Ext(E1, E1) = C[y, xy, x2y, a]
/
(ya, ay) ,

with a having degree [−1,−1]. In this case the ring is even commutative. This is not
true in general, as we will see in Section 8.7.

Using Corollary 8.22 we can formulate Algorithm 8.25 to compute the product of two
monomials. Applying the appropriate shifts as discussed in Definition 8.3 is important

102

8.6 Generators of the Ext algebra

here.

Algorithm 8.25: Computing the product of two monomials of Ext(D)

Input: a := (u,Am−1 → . . .→ A,B) ∈ Extm(A,B),
b := (v,Bn−1 → . . .→ B,C) ∈ Extn(B,C) two elements of Ext(D), and
the quiver R.

Output: The product b · a ∈ Extn+m(A,C).
begin

resultPath := Am−1 → . . .→ A;
last := Am−1;
for i = 0, . . . , n− 1 do

S := {D ∈ VR | There is a path D → last and D ⊆ Bi[−u]};
if #S > 1 then

return 0

else
Take D the only element of S;
resultPath = D → resultPath;
last = D;

if u+ v ∈ Ext1(last, C) then
return (u+ v, resultPath,C)

else
return 0

8.6. Generators of the Ext algebra

Based on Theorem 8.21 and the recursion of Theorem 5.16 we can now give a sufficient
criterion for finite generation of the algebra Ext(D) as a C-algebra.

Fix a Weil divisor D then we can define the subquiver R(D):

Definition 8.26. The subquiver R(D) of R is the quiver with vertices

V(R(D)) := {E ∈ V(R) | There is a path from E to D}

and all labelled edges of R in between those vertices.

The vertices are exactly the divisors that may appear while resolving D recursively.
For our purposes these are still too many. We only need those that appear repeatedly.
Hence we define R(D)∞:

Definition 8.27. The subquiver R(D)∞ is the quiver with vertices

V(R(D)∞) := {E ∈ V(R(D)) | E is part of a cycle of R(D)}

and all labelled edges of R(D) in between those vertices.

Basically both R(D) and R(D)∞ continue the ideas of Conjecture 3.10. The vertices
V(R(D)) are exactly the same as the elements of P̄ (D).

103

8 The Ext-algebra

Example 8.28. In the running example with n = 7 and q = 3, let us draw R(E3) and
R(E6):

E7

E1

E2

E3

E4

E5

E6

[6, 3]

[5, 3][6, 3][4, 2]

[3, 2]

[4, 2]

[2, 1]

[1, 1]

[2, 1]

As one can easily see we have

V(R(E3)∞) = {E3, E1, E5} and V(R(E6)∞) = {E1, E5}.

Furthermore we have

V(R(E3)∞) = V(R(E4)∞), V(R(E6)∞) = V(R(E2)∞) = V(R(E5)∞) = V(R(E1)∞).

Thus it is not true that R(D)∞ is the same independently of D. This becomes
especially clear for the two extremal cases:

Remark 8.29. For the extremal cases q = n− 1 and q = 1 we have

1. If q = n − 1, then V(R(Ei)) = V(R(En−i)) = V(R(Ei))∞ = {Ei, En−i} for all
i ∈ {1, . . . , n− 1};

2. If q = 1, then V(R(Ei)) = {Ei, E1} and V(R(Ei))∞ = {E1} for all i ∈ {1, . . . , n−
1}.

Remark 8.30. An useful observation is that R(E) is a subquiver of R(D) if there is a
path from E to D. This is also true for R(•)∞.

Corollary 8.31. Assume there exists n ∈ Z>0 such that

Extn(D,D)× Ext1(E,D)� Extn+1(E,D)

is surjective for all E ∈ R(D)∞. Then Ext(D) is finitely generated and the generators
have degree ≤ n.

Proof. Assume that there exist n0 and m0 in Z>0 such that the multiplication map

Extn(D,D)× Extm(D,D)� Extn+m(D,D)

is surjective for all n ≥ n0 and m ≥ m0. Then Ext(D) is finitely generated, and the
generators are among the elements of Exti(D,D) for 0 ≤ i ≤ max(m0, n0). Now we
apply the recursion of Theorem 5.16 to the second factor and display it as a direct
sums of Ext1(E,D) with E ∈ R(D). If we choose m0 big enough, we get the desired
E ∈ R(D)∞ by Remark 8.30.

104

8.7 Example: n = 7, q = 3

8.7. Example: n = 7, q = 3

Let us consider the running example with n = 7, q = 3. We want to compute the algebra
Ext(E3, E3). We already discussed the quiver R in Example 8.28 and thus we observe
that we only need to compute the three Ext-modules

Ext1(E3, E3) = C · {[−1,−1], [−4,−2], [−2,−1]},
Ext1(E1, E3) = C · {[1, 0], [−2,−1]}, and

Ext1(E5, E3) = C · {[−3,−2], [−4,−2]}.

Now for Ext2(E3, E3) we have

Ext2(E3, E3) = Ext1(E3[4, 2], E3)⊕ Ext1(E1[3, 2], E3)

= Ext1(E3, E3)[−4,−2]⊕ Ext1(E1, E3)[−3,−2]

= C · {[−5,−3], [−8,−4], [−6,−3]} ⊕ C · {[−2,−2], [−5,−3]}.

Next we describe the basis of the 5-dimensional C-vector space Ext2(E3, E3) in terms of
Section 8.2:

Ext2(E3, E3) =

〈 ([−5,−3], E3[4, 2]→ E3, E3),
([−8,−4], E3[4, 2]→ E3, E3),
([−6,−3], E3[4, 2]→ E3, E3),
([−2,−2], E1[3, 2]→ E3, E3),
([−5,−3], E1[3, 2]→ E3, E3)

〉
C

.

We want to compute the products of the three basis elements

a := ([−1,−1], E3, E3), b := ([−4,−2], E3, E3), and c := ([−2,−1], E3, E3)

of Ext1(E3, E3) with each other. Just considering the degrees by Theorem 8.19 we
already know

c2 = ac = ca = 0.

Let us consider the remaining squares first. For a2 we have to check the following
condition according to Theorem 8.11:

E1[3, 2] ⊆ E3[1, 1].

This is true, as well as E3[4, 2] ⊆ E3[4, 2] for b2. This yields

a2 = ([−2,−2], E1[3, 2]→ E3, E3), and

b2 = ([−8,−4], E3[4, 2]→ E3, E3).

Now let us check the products ab and ba. We check the following two conditions,
respectively:

E3[4, 2] ⊆ E3[4, 2] and E1[3, 2] ⊆ E3[1, 1].

Again these are true giving us the formulas

ab = ([−5,−3], E3[4, 2]→ E3, E3), and

ba = ([−5,−3], E1[3, 2]→ E3, E3).

105

8 The Ext-algebra

Thus a and b do not commute with each other. As expected, we see that there really
was no choice to be made, since

E3[4, 2] 6⊆ E3[1, 1] and E1[3, 2] 6⊆ E3[4, 2].

Otherwise the product would be zero. For the remaining products we get

bc = ([−6,−3], E3[4, 2]→ E3, E3) and cb = 0.

Thus we see that the multiplication map

Ext1(E3, E3)× Ext1(E3, E3)→ Ext2(E3, E3)

is surjective. Using the criterion above and the algorithm for the multiplication on a
computer, one finds that Ext(E3) is generated by the elements a, b, c as an R-algebra.
Unfortunately there is no software able to compute the relations of the generators of a
non-commutative ring of our format. One problem is that Groebner bases do not have
to be finite in the non-commutative case.

Please do also have a look at Section A.1 to see how to use polymake to compute the
product in Ext(D).

106

Code

For the implementation we use polymake ([GJ00]) for the combinatorial aspects and
Singular ([Dec+15]) for algebro-geometric tasks. Many experiments were also done
using Macaulay2 ([GS]). For the concrete implementation we settled for polymake, since
our algorithms are purely combinatorial in nature.

Most of the code on toric varieties, interfacing Singular, and cyclic quotients has
already been incorporated in the polymake core. The code provided at the end of this
chapter is especially for experiments within the topics of this thesis. It is experimental
and possibly still unstable.

A.1. Running example with n = 7 and q = 3

The following code shows how to reproduce the results of the running example n = 7,
q = 3.

polytope > a p p l i c a t i o n ” f u l t o n ” ;

f u l t o n > $cqs = new Cyc l i cQuot ient (N=>7, Q=>3) ;

f u l t o n > pr in t $cqs−>WEIGHT CONE−>HILBERT BASIS ;
7 3
0 1
2 1
1 1

f u l t o n > pr in t $cqs−>CONTINUED FRACTION;
3 2 2
f u l t o n > pr in t $cqs−>DUAL CONTINUED FRACTION;
2 4
f u l t o n > $e1 = $cqs−>add (”DIVISOR” ,COEFFICIENTS=>new Vector

(−1 ,0)) ;

f u l t o n > $e3 = $cqs−>add (”DIVISOR” ,COEFFICIENTS=>new Vector
(−3 ,0)) ;

f u l t o n > $canon i ca l = $cqs−>add (”DIVISOR” ,COEFFICIENTS=>new
Vector (−6 ,0)) ;

107

A Code

f u l t o n > pr in t $cqs−>EXT1 MATRIX;
2 1 2 1 2 1 0
1 1 1 1 1 0 0
2 1 3 2 2 1 0
1 1 2 1 1 0 0
2 1 2 1 2 1 0
1 0 1 0 1 0 0
0 0 0 0 0 0 0

f u l t o n > pr in t $e1−>MODULE GENERATORS;
7 3
1 1
2 1

f u l t o n > pr in t $e3−>MODULE GENERATORS;
7 3
3 2
4 2

f u l t o n > pr in t $canonica l−>MODULE GENERATORS;
6 3
7 3

f u l t o n > pr in t $cqs−>ext1 ($e1 , $canon i ca l) ;

f u l t o n > pr in t $cqs−>ext1 ($e3 , $canon i ca l) ;

f u l t o n > pr in t $cqs−>ext1 ($e1 , $e1) ;
−1 −1
−2 −1

f u l t o n > pr in t $cqs−>ext1 ($e3 , $e3) ;
−1 −1
−4 −2
−2 −1

f u l t o n > $ext1e3e3 = $cqs−>ext1 ($e3 , $e3) ;

f u l t o n > $e3c = $e3−>COEFFICIENTS;

f u l t o n > $a = new ExtMonomial (DEGREE=>$ext1e3e3 −>[0] , PATH=>new
Matrix ([$e3c]) , SOURCE=>$e3c) ;

f u l t o n > $b = new ExtMonomial (DEGREE=>$ext1e3e3 −>[1] , PATH=>new
Matrix ([$e3c]) , SOURCE=>$e3c) ;

108

A.1 Running example with n = 7 and q = 3

f u l t o n > $c = new ExtMonomial (DEGREE=>$ext1e3e3 −>[2] , PATH=>new
Matrix ([$e3c]) , SOURCE=>$e3c) ;

f u l t o n > $aa = $cqs−>mult ip ly ($a , $a) ;

f u l t o n > $ab = $cqs−>mult ip ly ($a , $b) ;

f u l t o n > $ac = $cqs−>mult ip ly ($a , $c) ;

f u l t o n > $ba = $cqs−>mult ip ly ($b , $a) ;

f u l t o n > $bb = $cqs−>mult ip ly ($b , $b) ;

f u l t o n > $bc = $cqs−>mult ip ly ($b , $c) ;

f u l t o n > $ca = $cqs−>mult ip ly ($c , $a) ;

f u l t o n > $cb = $cqs−>mult ip ly ($c , $b) ;

f u l t o n > $cc = $cqs−>mult ip ly ($c , $c) ;

f u l t o n > $cqs−>pr in t monomia l n i c e ly ($aa) ;
([−2 ,−2] , E1[3 ,2]−>E3 [0 , 0] , E3 [0 , 0])

f u l t o n > $cqs−>pr in t monomia l n i c e ly ($ab) ;
([−5 ,−3] , E3[4 ,2]−>E3 [0 , 0] , E3 [0 , 0])

f u l t o n > $cqs−>pr in t monomia l n i c e ly ($ac) ;
0

f u l t o n > $cqs−>pr in t monomia l n i c e ly ($ba) ;
([−5 ,−3] , E1[3 ,2]−>E3 [0 , 0] , E3 [0 , 0])

f u l t o n > $cqs−>pr in t monomia l n i c e ly ($bb) ;
([−8 ,−4] , E3[4 ,2]−>E3 [0 , 0] , E3 [0 , 0])

f u l t o n > $cqs−>pr in t monomia l n i c e ly ($bc) ;
([−6 ,−3] , E3[4 ,2]−>E3 [0 , 0] , E3 [0 , 0])

f u l t o n > $cqs−>pr in t monomia l n i c e ly ($ca) ;
0

f u l t o n > $cqs−>pr in t monomia l n i c e ly ($cb) ;
([−6 ,−3] , E3[4 ,2]−>E3 [0 , 0] , E3 [0 , 0])

f u l t o n > $cqs−>pr in t monomia l n i c e ly ($cc) ;
0

109

A Code

A.2. Finiteness of P̄ (D)

In this section we will compute the set P̄ (D) defined in Section 3.2. As stated in
Conjecture 3.10, we believe it to be finite for all σ and D. This is trivial for simplicial σ,
since the class group is finite in this case. Thus this is not interesting for CQS. We have
prepared two examples, both are given as the cone over a polytope at height one. The
first example even appears on the titlepage and is given by a rectangle of length 2× 1 at
height one. The second is given as the cone over a hexagon.

Unfortunately, the computation of P̄ (D) becomes very slow for more complicated σ.
Additionally the code we provide is not suitable for checking the finiteness of P̄ (D), it
only compute P̄ (D) and hence, it only terminates if P̄ (D) is finite.

A.2.1. Rectangle example

In this example we will take σ∨ to be generated by a rectangle at height one. We
will identify divisors up to linear equivalence by the shape of the convex hull of their
generators.

f u l t o n > $ r e c t a n g l e = new Cone (INPUT RAYS
= > [[1 , 0 , 0] , [1 , 1 , 0] , [1 , 1 , 2] , [1 , 0 , 2]]) ;

f u l t o n > $tv = new Aff ineNormalTor icVar iety (new Cone (RAYS=>
$rec tang l e−>FACETS)) ;

f u l t o n > pr in t $tv−>WEIGHT CONE−>HILBERT BASIS ;

1 0 0
1 1 0
1 1 2
1 0 1
1 1 1
1 0 2

f u l t o n > $div1 = $tv−>add (”DIVISOR” , COEFFICIENTS=>new Vector
(−1 ,0 ,0 ,0)) ;

The method check finiteness takes two arguments. The first are the facets of σ∨.
The second are the coefficients of the divisor. We proceed by calculating P̄ (D) for D
having the square at height one as generators. We receive a lot of output, namely the
generators of every new divisors, and the divisors we do not need to add to the list, since
their class was already found.

f u l t o n > pr in t j o i n (”\n” , c h e c k f i n i t e n e s s ($ rec tang l e−>FACETS,
new Vector (−1 ,0 ,0 ,0))) ;

1 : −1 0 0 0 Remembering .
Gens f o r : −1 0 0 0
1 0 1
1 1 1
1 0 2

110

A.2 Finiteness of P̄ (D)

1 1 2

11 : −2 −1 −1 −1 Remembering .
Gens f o r : −2 −1 −1 −1
2 1 2
2 1 3

11 : −3 −1 −2 −1 Dropping . −1 0 0 0
10 : −2 −1 −1 −1 Dropping . −2 −1 −1 −1
9 : −2 −1 −1 −1 Dropping . −2 −1 −1 −1
8 : −2 −1 −1 −1 Dropping . −2 −1 −1 −1
7 : −2 −1 −1 −1 Dropping . −2 −1 −1 −1
6 : −2 −1 0 −1 Remembering .
Gens f o r : −2 −1 0 −1
2 1 2
2 1 3
2 1 4

9 : −4 −1 −2 −1 Remembering .
Gens f o r : −4 −1 −2 −1
3 1 4
3 2 4

9 : −4 −2 −2 −2 Dropping . −2 −1 0 −1
8 : −4 −1 −1 −1 Dropping . −1 0 0 0
7 : −4 −1 −2 −1 Dropping . −4 −1 −2 −1
6 : −3 −1 −2 −1 Dropping . −1 0 0 0
5 : −2 −1 −1 0 Dropping . −1 0 0 0
4 : −2 −1 −1 −1 Dropping . −2 −1 −1 −1
3 : −2 −1 −1 −1 Dropping . −2 −1 −1 −1
2 : −2 0 −1 −1 Dropping . −1 0 0 0
1 : −1 −1 −1 −1 Dropping . −2 −1 0 −1
−1 0 0 0
−2 −1 −1 −1
−2 −1 0 −1
−4 −1 −2 −1

As one can see, there are four elements in the resulting P̄ (D). These are the vertical
lines of length one and two, the horizontal line of length one, and the square itself.

Let us choose a bigger divisor, namely take the rectangle of (horizontal) length two:

f u l t o n > pr in t j o i n (”\n” , c h e c k f i n i t e n e s s ($ rec tang l e−>FACETS,
new Vector (−3 ,0 ,0 ,0))) ;

1 : −3 0 0 0 Remembering .
Gens f o r : −3 0 0 0
2 0 3
2 1 3
2 2 3

111

A Code

2 0 4
2 1 4
2 2 4

57 : −4 −2 −1 −2 Remembering .
Gens f o r : −4 −2 −1 −2
4 2 4
4 2 7
4 2 5
4 2 6

67 : −7 −2 −4 −2 Dropping . −3 0 0 0
66 : −7 −2 −3 −2 Remembering .
Gens f o r : −7 −2 −3 −2
5 2 7
5 3 7

66 : −7 −3 −3 −3 Remembering .
Gens f o r : −7 −3 −3 −3
6 3 7
6 3 8
6 3 9

69 : −9 −3 −5 −3 Dropping . −7 −2 −3 −2
68 : −9 −3 −4 −3 Remembering .
Gens f o r : −9 −3 −4 −3
7 3 9
7 4 9
7 3 10
7 4 10

78 : −10 −4 −5 −4 Remembering .
Gens f o r : −10 −4 −5 −4
8 4 10
8 4 11

78 : −11 −4 −6 −4 Dropping . −9 −3 −4 −3
. . .
35 : −4 −2 0 −2 Remembering .
Gens f o r : −4 −2 0 −2
4 2 4
4 2 8
4 2 5
4 2 6
4 2 7

60 : −8 −2 −4 −2 Remembering .

112

A.2 Finiteness of P̄ (D)

Gens f o r : −8 −2 −4 −2
6 4 8
6 3 8
6 2 8

63 : −8 −4 −4 −4 Dropping . −4 −2 0 −2
. . .
1 : −3 −1 −1 −2 Dropping . −7 −3 −3 −3
−3 0 0 0
−4 −2 −1 −2
−7 −2 −3 −2
−7 −3 −3 −3
−9 −3 −4 −3
−10 −4 −5 −4
−4 −2 0 −2
−8 −2 −4 −2
f u l t o n >

In this case there are eight elements in P̄ (D). Namely the vertical lines of length one
to four, the horizontal lines of length one to two, the square and the rectangle itself.

A.2.2. Hexagon example

We proceed just as in the previous case of a rectangle at height one. Looking at the
generators in between, we see that even though σ was generated at height one, just like
D, this does not have to be true for the other elements of P̄ (D).

po lytope > a p p l i c a t i o n ” f u l t o n ” ;

f u l t o n > $c = new Cone (INPUT RAYS
= > [[1 , 0 , 0] , [1 , 1 , 0] , [1 , 2 , 1] , [1 , 2 , 2] , [1 , 1 , 2] , [1 , 0 , 1]]) ;

f u l t o n > $m = $c−>FACETS;

f u l t o n > $d = −dense (u n i t v e c t o r (6 , 1)) ;

f u l t o n > @pd = c h e c k f i n i t e n e s s ($m, $d) ;
1 : 0 −1 0 0 0 0 Remembering .
Gens f o r : 0 −1 0 0 0 0
1 0 1
1 2 2
1 1 1
1 1 2
1 2 1

26 : −2 −2 −2 −2 −1 −2 Remembering .
Gens f o r : −2 −2 −2 −2 −1 −2
2 2 2

113

A Code

3 4 5

26 : −4 −5 −4 −2 −2 −2 Remembering .
Gens f o r : −4 −5 −4 −2 −2 −2
4 4 5
4 5 5
4 4 6
4 5 6
4 6 6

51 : −6 −6 −6 −4 −3 −4 Remembering .
Gens f o r : −6 −6 −6 −4 −3 −4
6 6 6
5 6 7

51 : −6 −7 −6 −6 −6 −6 Dropping . 0 −1 0 0 0 0
50 : −6 −6 −6 −4 −3 −4 Dropping . −6 −6 −6 −4 −3 −4
49 : −6 −6 −6 −4 −3 −4 Dropping . −6 −6 −6 −4 −3 −4
48 : −5 −6 −6 −4 −3 −4 Remembering .
Gens f o r : −5 −6 −6 −4 −3 −4
5 6 6
5 6 7

48 : −6 −7 −6 −5 −4 −4 Remembering .
Gens f o r : −6 −7 −6 −5 −4 −4
6 7 7
6 6 7
6 8 8
6 7 8

58 : −7 −8 −8 −6 −5 −6 Dropping . −5 −6 −6 −4 −3 −4
57 : −7 −8 −8 −6 −5 −6 Dropping . −5 −6 −6 −4 −3 −4
56 : −7 −8 −8 −6 −5 −5 Remembering .
Gens f o r : −7 −8 −8 −6 −5 −5
7 8 8
7 8 9
7 9 9

59 : −8 −9 −9 −7 −6 −6 Dropping . −7 −8 −8 −6 −5 −5
58 : −8 −9 −9 −7 −5 −6 Remembering .
Gens f o r : −8 −9 −9 −7 −5 −6
8 9 9
8 9 10
8 10 10
8 10 11

68 : −9 −11 −10 −8 −7 −7 Remembering .

114

A.2 Finiteness of P̄ (D)

Gens f o r : −9 −11 −10 −8 −7 −7
9 10 11
9 11 11

68 : −10 −11 −11 −9 −7 −8 Dropping . −8 −9 −9 −7 −5 −6
67 : −9 −11 −10 −8 −6 −7 Remembering .
Gens f o r : −9 −11 −10 −8 −6 −7
9 10 11
9 11 11
9 11 12

70 : −10 −12 −11 −9 −7 −8 Dropping . −9 −11 −10 −8 −6 −7
69 : −10 −12 −11 −9 −7 −7 Dropping . −6 −7 −6 −5 −4 −4
68 : −10 −12 −11 −8 −7 −8 Remembering .
Gens f o r : −10 −12 −11 −8 −7 −8
10 11 12
10 12 12
10 11 13
10 12 13

78 : −12 −13 −12 −10 −8 −9 Remembering .
Gens f o r : −12 −13 −12 −10 −8 −9
11 12 13
11 13 14

78 : −12 −14 −13 −10 −9 −10 Dropping . −10 −12 −11 −8 −7 −8
. . .
45 : −6 −6 −6 −4 −2 −4 Remembering .
Gens f o r : −6 −6 −6 −4 −2 −4
6 6 6
6 8 10
5 6 7

48 : −8 −10 −8 −6 −6 −6 Remembering .
Gens f o r : −8 −10 −8 −6 −6 −6
8 8 10
8 10 10
8 9 10

51 : −10 −10 −10 −8 −6 −8 Dropping . −6 −6 −6 −4 −2 −4
. . .
1 : −2 −2 −2 −1 −1 −2 Dropping . −5 −6 −6 −4 −3 −4

f u l t o n > $n = @pd ;

f u l t o n > pr in t $n ;
14

115

A Code

f u l t o n >

The calculation takes about 30 Minutes for this example.

A.2.3. polymake code

CQS code

use L i s t : : MoreUti ls qw(uniq) ;

d e c l a r e ob j e c t ExtMonomial ;

ob j e c t ExtMonomial{

property DEGREE : Vector ;

property PATH : Matrix ;

property SOURCE : Vector ;

}

d e c l a r e ob j e c t Resolut ionData ;

ob j e c t Resolut ionData {

property WEIGHTED EDGES : Map<Pair<Vector , Vector>, Matrix>;

property LABELS : St r ing ;

property QUIVER : Graph<Directed >;

property INCIDENCE MATRIX : Matrix ;

}

ob j e c t Cyc l i cQuot ient {

property CLASS GROUP REPRESENTATIVES : Matrix ;

r u l e CLASS GROUP REPRESENTATIVES : N, Q{
my $n = $th i s−>N;
my $q = $th i s−>Q;
my @class group = map((new Vector(−$, 0)) , 1 . . (conver t to

<Int>($n))) ;

116

A.2 Finiteness of P̄ (D)

$ th i s−>CLASS GROUP REPRESENTATIVES = new Matrix<Rational
>(@c lass group) ;

}

property RESOLUTION : Resolut ionData ;

property EXT1 MATRIX : Matrix ;

property TOR1 MATRIX : Matrix ;

r u l e TOR1 MATRIX : EXT1 MATRIX, RESOLUTION.INCIDENCE MATRIX{
my $ext1 = $th i s−>EXT1 MATRIX;
my $ inc idence mat r i x = $th i s−>RESOLUTION−>

INCIDENCE MATRIX;
$th i s−>TOR1 MATRIX = $ inc idence mat r i x ∗

$ inc idence mat r i x ∗ $ext1 ;
}

r u l e EXT1 MATRIX : DUAL CONTINUED FRACTION{
my $dc f = $th i s−>DUAL CONTINUED FRACTION;
$th i s−>EXT1 MATRIX = ext1 mat f rom dcf ($dc f) ;

}

r u l e RESOLUTION.INCIDENCE MATRIX : N, RESOLUTION.
WEIGHTED EDGES{
my $n = $th i s−>N;
my $weighted edges = $th i s−>RESOLUTION−>WEIGHTED EDGES;
my $ inc idence mat r i x = new Matrix ((conver t to<Int>($n)) ,

(conver t to<Int>($n))) ;
foreach my $edge (keys %$weighted edges) {

my $source = $edge −> [0];
my $ ta rge t = $edge −> [1];
#p r i n t $source ,” ” , $ t a r g e t ,”\n ” ;
my $row = −$target −>[0]−1;
my $co l = −$source −>[0]−1;
$ inc idence matr ix−>($row , $co l) = $weighted edges−>{

$edge}−>rows ;
}
$th i s−>RESOLUTION−>INCIDENCE MATRIX = $ inc idence mat r i x ;

}

r u l e RESOLUTION.WEIGHTED EDGES : CLASS GROUP REPRESENTATIVES
, N, Q {
my $G = $th i s−>CLASS GROUP REPRESENTATIVES;
my $n = $th i s−>N;
my $weighted edges = new Map<Pair<Vector , Vector>, Matrix

>() ;

117

A Code

foreach my $ c o e f f i c i e n t s (@$G) {
my $ d i v i s o r = $th i s−>DIVISOR(COEFFICIENTS=>

$ c o e f f i c i e n t s , temporary) ;
my $gene ra to r s = s o r t m a t r i x r o w s b y f i r s t c o o r d i n a t e (

$d iv i s o r−>MODULE GENERATORS) ;
p r i n t $generators ,”\n ” ;
my $ ta rge t = $ c o e f f i c i e n t s ;
for (my $ j = 1 ; $j<$generators−>rows ; $ j++){

my $inbetween = $generators −>[$ j]−>[0] −
$generators −>[$j −1]−>[0];

my $source = new Vector(−$inbetween , 0) ;
my $edge = new Pair<Vector , Vector>($source , $ ta rge t

) ;
my $ s h i f t = $generators −>[$j −1] ;
i f (! defined $weighted edges−>{$edge }) {

$weighted edges−>{$edge} = new Matrix ($ s h i f t) ;
} else {

my $ o l d s h i f t = $weighted edges−>{$edge } ;
$weighted edges−>{$edge} = $ o l d s h i f t / $ s h i f t ;

}
}

}
$th i s−>RESOLUTION−>WEIGHTED EDGES = $weighted edges ;

}

r u l e RESOLUTION.QUIVER.ADJACENCY, RESOLUTION.QUIVER.
NODE LABELS : CLASS GROUP REPRESENTATIVES, N, RESOLUTION.
WEIGHTED EDGES{
my $ c l a s s g r o u p = $th i s−>CLASS GROUP REPRESENTATIVES;
my $graph = new common : : Graph<Directed>($c l a s s g roup−>

rows) ;
my $weighted edges = $th i s−>RESOLUTION−>WEIGHTED EDGES;
my $numbering = new Map<Vector , Int >() ;
my $k = 0 ;
foreach my $g (@$c lass group) {

$numbering−>{$g} = $k ;
$k++;

}
foreach my $edge (keys %$weighted edges) {

my $source = $edge −> [0];
my $ ta rge t = $edge −> [1];
$graph−>edge ($numbering−>{$source } , $numbering−>{

$ ta rge t }) ;
}
$th i s−>RESOLUTION−>QUIVER−>NODE LABELS = @$class group ;
$th i s−>RESOLUTION−>QUIVER−>ADJACENCY = $graph ;

}

118

A.2 Finiteness of P̄ (D)

user method ext1 (TDivisor , TDivisor) {
my($cqs , $d1 , $d2) = @ ;
my $rho1 = new Vector<Rational >(1 , new Rat iona l ($cqs−>Q,

$cqs−>N)) ;
my $d1Gens = new Matrix<Rational>(

s o r t m a t r i x r o w s b y f i r s t c o o r d i n a t e ($d1−>
MODULE GENERATORS)) ;

my $annVertex = −$d1Gens−>[$d1Gens−>rows−1] + ($d1Gens−>[
$d1Gens−>rows−1]−>[0] − $d1Gens−>[0]−>[0])∗$rho1 ;

$annVertex = $annVertex − $rho1 − (new Vector<Rational
>(0 ,new Rat iona l (1 , $cqs−>N))) ;

p r i n t ”Ann : ” , $annVertex ,”\n ” ;
my $d2Vertex = $d2−>SECTION POLYTOPE−>VERTICES−>[0]−>

s l i c e (1) ;
$annVertex += $d2Vertex ;
my $ann = new Polytope (POINTS=>[[1 , @$annVertex

] , [0 , 0 , −1] , [0 , − $cqs−>N,−$cqs−>Q]]) ;
p r i n t $d1Gens ,”\n” , $d2Vertex ,”\n ” ;
my @resu l t = () ;
for (my $ i =1; $i<$d1Gens−>rows ; $ i++){

my $ i n t e r s e c t i o n V e r t e x = $d1Gens−>[$ i −1] + ($d1Gens−>[
$ i]−>[0] − $d1Gens−>[$ i −1]−>[0])∗$rho1 ;

p r i n t ” i n t : ” , $ i n t e r s e c t i o n V e r t e x ,”\n ” ;
$ i n t e r s e c t i o n V e r t e x ∗= (−1) ;
$ i n t e r s e c t i o n V e r t e x += $d2Vertex ;
my $ i n t e r s e c t o r = new Polytope (POINTS=>[[1 ,

@$ inte r s ec t i onVer tex] , [0 , 0 , 1] , [0 , $cqs−>N, $cqs−>Q]])
;

my $ i n t e r s e c t i o n = i n t e r s e c t i o n ($ann , $ i n t e r s e c t o r) ;
p r i n t ”LP:\n” , $ i n t e r s e c t i o n−>LATTICE POINTS,”\n ” ;
@resu l t = (@result , @{ $ i n t e r s e c t i o n−>LATTICE POINTS−>

minor (All , ˜ [0]) }) ;
}
return new Matrix (uniq (@resu l t)) ;

}

user method mult ip ly (ExtMonomial , ExtMonomial) {
my($cqs , $b , $a) = @ ;
my $weightedEdges = $cqs−>RESOLUTION−>WEIGHTED EDGES;
my $ f a c e t s = new Matrix<Rational>(p r i m i t i v e ($cqs−>RAYS)) ;
my $re su l tPath = $a−>PATH;
p r i n t ”Path i s :\n” , $ resu l t Pa th ,”\n ” ;
my $ l a s t = $resu l tPath−>[$ resu l tPath−>rows − 1] ;
for (my $ i = 0 ; $i<$b−>PATH−>rows ; $ i++){

my $bi = ve r t ex f r om ineq ($b−>PATH−>[$ i] , $ f a c e t s) ;
$b i = $bi − $a−>DEGREE;

119

A Code

$bi = ineq f r om ve r t ex ($bi , $ f a c e t s) ;
p r i n t ” b i : ” , $bi ,”\n ” ;
my @S = f ind incoming ar rows ($ l a s t , $weightedEdges ,

$ f a c e t s) ;
p r i n t ”S :\n” , j o i n (”\n” ,@S) ,”\n\n ” ;
@S = grep (($ −>[0] <= $bi −>[0]) && ($ −>[1] <= $bi
−>[1]) ,@S) ;

p r i n t ”S :\n” , j o i n (”\n” ,@S) ,”\n\n ” ;
i f (@S == 1) {

$ l a s t = pop @S;
$re su l tPath = $resu l tPath / $ l a s t ;

} else {
return 0 ;

}
}
my $d1 = $cqs−>add (’DIVISOR ’ ,COEFFICIENTS=>$ l a s t) ;
my $d2 = $cqs−>add (’DIVISOR ’ ,COEFFICIENTS=>$b−>SOURCE) ;
my $pos s i b l eDeg r e e s = $cqs−>ext1 ($d1 , $d2) ;
p r i n t ” P o s s i b l e Degrees :\n” , $p o s s i b l e D e g r e e s ,”\n ” ;
my $re su l tDegree = $a−>DEGREE + $b−>DEGREE;
i f (grep ($ == $resu l tDegree , @$poss ib leDegrees) == 1) {

return new ExtMonomial (DEGREE=>$resu l tDegree , PATH=>
$resu l tPath , SOURCE=>$b−>SOURCE) ;

} else {
return 0 ;

}
}

user method pr in t monomia l n i c e ly (ExtMonomial) {
my($cqs , $monomial) = @ ;
i f ($monomial == 0) {

print ”0\n” ;
return ;

}
my $ f a c e t s = new Matrix<Rational>(p r i m i t i v e ($cqs−>RAYS)) ;
my $n = $cqs−>N;
print ” ([” , join (” , ” ,@{$monomial−>DEGREE}) , ”] , ” ;
for (my $ i=$monomial−>PATH−>rows−1; $i>=0; $i−−){

my $current = $monomial−>PATH−>[$ i] ;
my($e i , $ s h i f t) = f i n d l i n e q e i ($current , $ f a c e t s , $n)

;
my $index = −$e i −> [0];
print ”E” , $index , ” [” , join (” , ” , @$sh i f t) , ”] ” ;
i f ($i >0){

print ”−>” ;
}

}

120

A.2 Finiteness of P̄ (D)

print ” , ” ;
my($sourceEi , $ s o u r c e S h i f t) = f i n d l i n e q e i ($monomial−>

SOURCE, $ f a c e t s , $n) ;
print ”E”,−$sourceEi −>[0] , ” [” , join (” , ” , @$sourceSh i f t) , ”])
\n” ;

}

}

u s e r f u n c t i o n ext1 mat f rom dcf (Vector<Integer >){
my($dc f) = @ ;
$dc f = new Vector<Integer >($dc f) ;
my $ length = $dcf−>dim ;
i f (($ l ength == 0) | | ($dc f == ones vec tor<Integer >(1))) {

return ze ro matr ix (1 , 1) ;
}
i f ($dcf−>[$ length −1] == 1) {

$dc f = $dcf−>s l i c e (0 , $ length −1) ;
$dcf−>[$dcf−>dim − 1]−−;
return ext1 mat f rom dcf (new Vector<Integer >($dc f)) ;

}
$dcf−>[$ length −1]−−;
my @dcf = @$dcf ;
my $ u p p e r l e f t d c f = 0 ;
i f ($ length >1){

$ u p p e r l e f t d c f = new Vector<Integer >($dcf−>s l i c e (0 ,
$ length −1)) ;

} else {
$ u p p e r l e f t d c f = ze ro vec to r<Integer >(0) ;

}
my $ l o w e r r i g h t d c f = new Vector<Integer >(\@dcf) ;
my $ u p p e r l e f t = ext1 mat f rom dcf ($ u p p e r l e f t d c f) ;
my $ l o w e r r i g h t = ext1 mat f rom dcf ($ l o w e r r i g h t d c f) ;
my $A ;
i f ($ u p p e r l e f t−>rows > $ l ower r i gh t−>rows) {

my $ s t a r t = $ u p p e r l e f t−>rows − $ l ower r i gh t−>rows ;
$A = $ u p p e r l e f t−>minor (All , [$ s t a r t . . ($ u p p e r l e f t−>rows
−1)]) ;

} else {
my $ s t a r t = $ lower r i gh t−>rows − $ u p p e r l e f t−>rows ;
$A = $ lower r i gh t−>minor ([$ s t a r t . . ($ l ower r i gh t−>rows−1)

] , A l l) ;
}
my $ r e s u l t = ($ u p p e r l e f t | $A) / (t ranspose ($A) |

$ l o w e r r i g h t) ;

121

A Code

$ r e s u l t = $ r e s u l t + u p p e r t r i a n g u l a r o n e s m a t r i x ($ r e s u l t−>
rows) ;

return new Matrix ($ r e s u l t) ;
}

sub ve r t ex f r om ineq {
my($val , $ f a c e t s) = @ ;
my $p = new Polytope (INEQUALITIES=>($va l | $ f a c e t s)) ;
return $p−>VERTICES−>[0]−> s l i c e (1) ;

}

sub i n eq f r om ve r t ex {
my($vertex , $ f a c e t s) = @ ;
return −$ f a c e t s ∗ $vertex ;

}

sub a r e l i n e a r l y e q u i v a l e n t {
my($div1 , $div2 , $ f a c e t s) = @ ;
my $v1 = ve r t ex f r om ineq ($div1 , $ f a c e t s) ;
my $v2 = ve r t ex f r om ineq ($div2 , $ f a c e t s) ;
return i s i n t e g r a l ($v1−$v2) ;

}

sub f i n d l i n e q e i {
my($div , $ f a c e t s , $n) = @ ;
for (my $ i =0; $i<$n ; $ i++){

my $candidate = new Vector(−$i , 0) ;
i f (a r e l i n e a r l y e q u i v a l e n t ($div , $candidate , $ f a c e t s)) {

my $ s h i f t = ve r t ex f r om ineq ($div , $ f a c e t s) −
ve r t ex f r om ineq ($candidate , $ f a c e t s) ;

return ($candidate , $ s h i f t) ;
}

}
die ”No f i t t i n g candidate . ” ;

}

sub f i nd incoming ar rows {
my($div , $weightedEdges , $ f a c e t s) = @ ;
my @se lected = grep ($ −>[1] == $div , keys %$weightedEdges) ;
p r i n t ” S e l e c t i o n done .\n ” ;
my @resu l t = map{

my $sourceVertex = ve r t ex f r om ineq ($ −>[0] , $ f a c e t s) ;
p r i n t ”Have source v e r t e x .\n ” ;
my $degrees = $weightedEdges−>{$ } ;
map($ +$sourceVertex , @$degrees) ;

}@se lected ;
return map(i n eq f r om ve r t ex ($, $ f a c e t s) , @resu l t) ;

122

A.2 Finiteness of P̄ (D)

}

sub u p p e r t r i a n g u l a r o n e s m a t r i x {
my($n) = @ ;
return new Matrix (map(one s ve c to r ($n−$) | z e r o v e c t o r ($) ,

1 . . $n)) ;
}

sub s o r t m a t r i x r o w s b y f i r s t c o o r d i n a t e {
my($matrix) = @ ;
i f ($matrix−>rows == 1) {

return $matrix ;
}
my @rows = @$matrix ;
my @sorted rows = sort{$a−>[0] <=> $b−>[0]} @rows ;
return new Matrix (@sorted rows) ;

}

Interfacing Singular

ob j e c t TDivisor {

property SINGULAR IDEAL : St r ing ;

property SINGULAR SYZYGIES : St r ing ;

}

ob j e c t Af f ineNormalTor icVar iety {

property SINGULAR TORIC RING : St r ing ;

r u l e SINGULAR TORIC RING : WEIGHT CONE {
my $monoid = $th i s−>WEIGHT CONE;
my $ringname = get random str ing () ;
my @var iab le s = map(”x (” . $. ”) ” , 1 . . $monoid−>HILBERT BASIS
−>rows) ;

my $ t o r i c i d e a l = t o r i c i d e a l a s s t r i n g ($monoid ,
@var iab le s) ;

s i n g u l a r e v a l (” r ing R ” . $ringname . ” = 0 , (” . join (” , ” ,
@var iab le s) . ”) , dp ; ”) ;

s i n g u l a r e v a l (” i d e a l t o r i c i d e a l = ” . $ t o r i c i d e a l . ” ; ”) ;
s i n g u l a r e v a l (” qr ing r ” . $ringname . ” = std (t o r i c i d e a l) ; ”

) ;
$ th i s−>SINGULAR TORIC RING = $ringname ;

123

A Code

}
precond i t i on : AFFINE;

r u l e DIVISOR .SINGULAR SYZYGIES : SINGULAR TORIC RING,
DIVISOR .SINGULAR IDEAL{
my $ringname = $th i s−>SINGULAR TORIC RING;
my $idealname = $th i s−>DIVISOR−>SINGULAR IDEAL;
s i n g u l a r e v a l (” s e t r i n g r ” . $ringname . ” ; ”) ;
s i n g u l a r e v a l (”module syz ” . $idealname . ” = syz (d iv ” .

$idealname . ”) ; ”) ;
$ th i s−>DIVISOR−>SINGULAR SYZYGIES = $idealname ;

}
precond i t i on : AFFINE;

r u l e DIVISOR .SINGULAR IDEAL : SINGULAR TORIC RING,
WEIGHT CONE, DIVISOR .MODULE GENERATORS{
my $ringname = $th i s−>SINGULAR TORIC RING;
my $gene ra to r s = $th i s−>DIVISOR−>MODULE GENERATORS;
p r i n t ”Gens : ” , $generators ,”\n ” ;
my $monoid = $th i s−>WEIGHT CONE;
my $mod vector = f i n d v e c t o r m o v i n g p o i n t s i n s i d e c o n e (

$generators , $monoid) ;
p r i n t ”Mod v e c t o r : ” , $mod vector ,”\n ” ;
my @var iab le s = map(”x (” . $. ”) ” , 1 . . $monoid−>HILBERT BASIS
−>rows) ;

my $mod gens = new Matrix (map($mod vector + $,
@$generators)) ;

my $mod gens monomial exponents =
r e p r e s e n t v e c t o r s i n H i l b e r t b a s i s ($mod gens , $monoid
−>HILBERT BASIS , $monoid−>FACETS) ;

my @mod gens monomials = map(v e c to r to monomia l s t r i ng ($
, @var iab le s) , @$mod gens monomial exponents) ;

my $idealname = get random str ing () ;
s i n g u l a r e v a l (” s e t r i n g r ” . $ringname . ” ; ”) ;
s i n g u l a r e v a l (” i d e a l d i v ” . $idealname . ” = ” . join (” , ” ,

@mod gens monomials) . ” ; ”) ;
s i n g u l a r e v a l (” d iv ” . $idealname . ” = std (d iv ” . $idealname .

”) ; ”) ;
$ th i s−>DIVISOR−>SINGULAR IDEAL = $idealname ;

}
precond i t i on : AFFINE;

user method s i n g u l a r e x t i d i m e n s i o n ($, TDivisor , TDivisor)
{
my $ t o r i c v a r i e t y = $ [0] ;
my $ i = $ [1] ;
my $ d i v i s o r 1 = $ [2] ;

124

A.2 Finiteness of P̄ (D)

my $ d i v i s o r 2 = $ [3] ;
my $ringname = $ t o r i c v a r i e t y−>SINGULAR TORIC RING;
my $ syzyg i e s1 = $d iv i s o r1−>SINGULAR SYZYGIES ;
my $ syzyg i e s2 = $d iv i s o r2−>SINGULAR SYZYGIES ;
s i n g u l a r e v a l (” s e t r i n g r ” . $ringname . ” ; ”) ;
l o a d s i n g u l a r l i b r a r y (”homolog . l i b ”) ;
s i n g u l a r e v a l (”module M = Ext (” . $ i . ” , s y z ” . $ syzyg i e s1 . ” ,

syz ” . $ syzyg i e s2 . ”) ; ”) ;
s i n g u l a r e v a l (”M = std (M) ; ”) ;
s i n g u l a r e v a l (” i n t d = vdim (M) ; ”) ;
s i n g u l a r e v a l (” i n t vd = vdim (M) ; ”) ;
return new Vector (s i n g u l a r g e t v a r (”d”) , s i n g u l a r g e t v a r

(”vd”)) ;
}

user method s i n g u l a r t o r i d i m e n s i o n ($, TDivisor , TDivisor)
{
my $ t o r i c v a r i e t y = $ [0] ;
my $ i = $ [1] ;
my $ d i v i s o r 1 = $ [2] ;
my $ d i v i s o r 2 = $ [3] ;
my $ringname = $ t o r i c v a r i e t y−>SINGULAR TORIC RING;
my $ syzyg i e s1 = $d iv i s o r1−>SINGULAR SYZYGIES ;
my $ syzyg i e s2 = $d iv i s o r2−>SINGULAR SYZYGIES ;
s i n g u l a r e v a l (” s e t r i n g r ” . $ringname . ” ; ”) ;
l o a d s i n g u l a r l i b r a r y (”homolog . l i b ”) ;
s i n g u l a r e v a l (”module M = Tor (” . $ i . ” , s y z ” . $ syzyg i e s1 . ” ,

syz ” . $ syzyg i e s2 . ”) ; ”) ;
s i n g u l a r e v a l (”M = std (M) ; ”) ;
s i n g u l a r e v a l (” i n t d = vdim (M) ; ”) ;
s i n g u l a r e v a l (” i n t vd = vdim (M) ; ”) ;
return new Vector (s i n g u l a r g e t v a r (”d”) , s i n g u l a r g e t v a r

(”vd”)) ;
}

}

ob j e c t Cyc l i cQuot ient {

user method s i n g u l a r e x t 1 m a t r i x () {
my $cqs = $ [0] ;
my $ c a n o n i c a l d i v i s o r = new Vector (−1 , −1) ;
my @div i so r s= () ;
my @canon i ca l m inus d iv i s o r s= () ;
for (my $ i =1; $i<=$cqs−>N; $ i++){

my $ d i v i s o r c o e f f i c i e n t s = new Vector(−$i , 0) ;

125

A Code

push @div i sors , $cqs−>add (”DIVISOR” ,COEFFICIENTS=>
$ d i v i s o r c o e f f i c i e n t s) ;

push @canon i ca l minus d iv i so r s , $cqs−>add (”DIVISOR” ,
COEFFICIENTS=>$ c a n o n i c a l d i v i s o r −
$ d i v i s o r c o e f f i c i e n t s) ;

}
my @resu l t = () ;
foreach my $ d i v i s o r (@d iv i so r s) {

my @ext vector = map($cqs−>s i n g u l a r e x t i d i m e n s i o n (1 ,
$d iv i s o r , $) , @canon i ca l m inus d iv i s o r s) ;

my $ e x t v e c t o r = new Vector (map($ −>[1] , @ext vector))
;

push @result , $ e x t v e c t o r ;
}
return new Matrix (@resu l t) ;

}

user method s i n g u l a r e x t 3 m a t r i x () {
my $cqs = $ [0] ;
my $ c a n o n i c a l d i v i s o r = new Vector (−1 , −1) ;
my @div i so r s= () ;
my @canon i ca l m inus d iv i s o r s= () ;
for (my $ i =1; $i<=$cqs−>N; $ i++){

my $ d i v i s o r c o e f f i c i e n t s = new Vector(−$i , 0) ;
push @div i sors , $cqs−>add (”DIVISOR” ,COEFFICIENTS=>

$ d i v i s o r c o e f f i c i e n t s) ;
push @canon i ca l minus d iv i so r s , $cqs−>add (”DIVISOR” ,

COEFFICIENTS=>$ c a n o n i c a l d i v i s o r −
$ d i v i s o r c o e f f i c i e n t s) ;

}
my @resu l t = () ;
foreach my $ d i v i s o r (@d iv i so r s) {

my @ext vector = map($cqs−>s i n g u l a r e x t i d i m e n s i o n (3 ,
$d iv i s o r , $) , @canon i ca l m inus d iv i s o r s) ;

my $ e x t v e c t o r = new Vector (map($ −>[1] , @ext vector))
;

push @result , $ e x t v e c t o r ;
}
return new Matrix (@resu l t) ;

}

user method s i n g u l a r t o r 1 m a t r i x () {
my $cqs = $ [0] ;
my @div i so r s= () ;
for (my $ i =1; $i<=$cqs−>N; $ i++){

my $ d i v i s o r c o e f f i c i e n t s = new Vector(−$i , 0) ;

126

A.2 Finiteness of P̄ (D)

push @div i sors , $cqs−>add (”DIVISOR” ,COEFFICIENTS=>
$ d i v i s o r c o e f f i c i e n t s) ;

}
my @resu l t = () ;
foreach my $ d i v i s o r (@d iv i so r s) {

my @tor vector = map($cqs−>s i n g u l a r t o r i d i m e n s i o n (1 ,
$d iv i s o r , $) , @d iv i so r s) ;

my $ t o r v e c t o r = new Vector (map($ −>[1] , @tor vector))
;

push @result , $ t o r v e c t o r ;
}
return new Matrix (@resu l t) ;

}

}

Checking finiteness of P (D)

u s e r f u n c t i o n c h e c k f i n i t e n e s s (Matrix , Vector) {
my($ f a c e t s , $d) = @ ;
my @toAdd = ($d) ;
my @resu l t = () ;
while (@toAdd > 0) {

my $m = @toAdd ;
my $current = pop @toAdd ;
print $m, ” : ” , $current , ” ” ;
my @equiva lents = grep (a r e e q u i v a l e n t ($ f a c e t s , $current ,

$) , @resu l t) ;
my $ e q u iv a l e n t s = @equiva lents ;
i f ($ e q u i v a l en t s == 0) {

print ”Remembering .\n” ;
@toAdd = (@toAdd , a l l i n t e r s e c t i o n s ($ f a c e t s , $current)

) ;
push @result , $current ;

}
else { print ”Dropping . ” , join (” ” , @equiva lents) , ”\n” ;}

}
return @resu l t ;

}

sub a l l i n t e r s e c t i o n s {
my($ f a c e t s , $d) = @ ;
my @resu l t ;
my $ineq = $d | $ f a c e t s ;
my $p = new Polytope (INEQUALITIES=>$ineq) ;
my $gens = l o w e r l a t t i c e p o i n t s ($p) ;
$gens = $gens−>minor (All , ˜ [0]) ;

127

A Code

print ”Gens f o r : ” , $d , ” \n” ;
print $gens , ”\n” ;
$gens = −$gens ∗ t ranspose ($ f a c e t s) ;
my $n = $gens−>rows ;
for (my $ i =2; $i<=$n ; $ i++){

my @indices = a l l s u b s e t s o f k ($i , 0 . . ($n−1)) ;
foreach my $index (@indices) {

my $subgens = $gens−>minor ($index , Al l) ;
push @result , componentwise minimum ($subgens) ;

}
}
return @resu l t ;

}

sub componentwise minimum{
my($vec to r s) = @ ;
my @columns = @{ t ranspose ($vec to r s) } ;
my @maxValues = map(minimum($) , @columns) ;
return new Vector (@maxValues) ;

}

sub a r e e q u i v a l e n t {
my($ f a c e t s , $d1 , $d2) = @ ;
my $eq = ($d1−$d2 | $ f a c e t s) ;
my $ineq = new Matrix (u n i t v e c t o r ($ f a c e t s−>c o l s +1 ,0)) ;
my $p = new Polytope (EQUATIONS=>$eq , INEQUALITIES=>$ineq) ;
return $p−>N LATTICE POINTS > 0 ;

}

128

Index of notation

Terms of general part

D A torus invariant divisor on X 14,
Ep,qi Spectral sequence coming from the generalized Taylor

resolution S(D)
30,

H The Hilbert basis of σ∨ 14,
P (D) Divisors needed to resolve D 32,
PD Polyhedron of global sections of D 15,
P ID Support of the module of relations between the ele-

ments xu
i

of D, i ∈ I
25,

R The semigroup ring associated to σ, R := C[σ∨ ∩M] 13,
S(D) generalized Taylor resolution of D, i.e. of its module

of global sections
26,

Sk k-th module in generalized Taylor resolution 26,
W [u] The shift of the M -graded R-module W by u ∈ M ,

different from the usual shift!
17,

X X := TV(σ) = SpecR 14,
∆n−1 The (n− 1)-dimensional simplex 34,
∆n−1[1] The edges of the (n− 1)-dimensional simplex 34,
O(D) Sheaf associated to D 15,
TV(σ) Toric variety associated to cone σ 13,
P̄ (D) P (D) module linear equivalence 32,
depthM The depth of an R-module 19,

R̂ D̂ Completion of the corresponding R-modules 22,
N A lattice 13,
NQ The vector space from N , NQ := N ⊗Z Q 13,
M The dual lattice of N , i.e. M = HomZ(N,Z) 13,
MQ The vector space from M 13,
Supp(G(D)) The exponents generators of the R-module of global

sections of O(D), often we will denote this and the
above set as G(D)

16,

m The homogeneous maximal ideal of R, m := (xu | u ∈
σ∨ ∩M\{0})

21,

G(D) The generators of the R-module of global sections of
O(D)

16,

〈•, •〉 Pairing of N and M 13,

129

B Index of notation

σ A rational polyhedral cone σ ⊆ NQ 13,
σ∨ The dual cone of σ 13,
SuppW The support of W 17,

CQS specific definitions

Fk(D) k-th free module in resolution of D 45,
KX The canonical divisor of X 40,
S(D) Short exact sequence resolving D partially 44,
X = Yn,q A (two-dimenisonal) cyclic quotient singularity 37,
Cl(X) The class group of X 38,
abelow(D) Set below the lattice points with opposite boundary

containment as below; used to compute Tor
77,

below(D) Set below lattice points in the polyhedron of global
sections of D

55,

ER(i, j) Set such that −ER(i, j) = ext(Ei,KR − Ej) 60,
a The continued fraction expansion of n

n−q 37,

ext(D,D′) Support of Ext1
R(D,D′) 51,

Ek(a) Matrix with entries mij := dim ExtkR(Ej ,KX − Ei) 59,
hom(D,D′) Support of Hom(D,D′)) 52,
I Incidence matrix of the quiver R 75,
inR(D) Sources of arrows into class of D in R 46,
N = Z2 Lattice for the two-dimensional case
NQ = Q2 Vector space for the two-dimensional case 41,
M = Z2 Dual lattice for the two-dimensional case; Identified

via usual scalar product
37,

MQ = Q2 Dual vector space for two-dimensional case
R The resolution quiver 46,
R(D) Subquiver of R of paths to D 103,
R(D)∞ Subquiver of cycles of R(D) 103,
ρ0 The ray ρ0 = (1, 0) 37,
ρ1 The ray ρ1 = (−q, n) 37,
σ The cone spanned by ρ0 and ρ1, σ = 〈ρ0, ρ1〉 37,
σ∨ The dual cone of σ, spanned by [0, 1] and [n, q] 37,
Tk Matrix with entries tij := dim Tork(E

i, Ej) 76,
ν(D) The vertex of PD, i.e. ν(D) ∈ Q2 such that ν(D) +

σ∨ = PD

38,

q, n Two coprime non-negative integers giving a cyclic
quotient singularity

37,

130

Bibliography

[Alt98] Klaus Altmann. “P-resolutions of cyclic quotients from the toric viewpoint.”
English. In: Singularities. The Brieskorn anniversary volume. Proceedings of
the conference dedicated to Egbert Brieskorn on his 60th birthday, Oberwolfach,
Germany, July 1996. Basel: Birkhäuser, 1998, pp. 241–250. isbn: 3-7643-
5913-7/hbk (cit. on p. 38).

[AM69] Michael F. Atiyah and I.G. Macdonald. Introduction to commutative algebra.
English. 1969 (cit. on pp. 22, 23).

[Aus86] Maurice Auslander. “Rational singularities and almost split sequences.”
English. In: Trans. Am. Math. Soc. 293 (1986), pp. 511–531. issn:
0002-9947; 1088-6850/e. doi: 10.2307/2000019 (cit. on p. 49).

[BPS98] Dave Bayer, Irena Peeva and Bernd Sturmfels. “Monomial resolutions.”
English. In: Math. Res. Lett. 5.1-2 (1998), pp. 31–46. issn: 1073-2780;
1945-001X/e. doi: 10.4310/MRL.1998.v5.n1.a3 (cit. on p. 28).

[BS98] Dave Bayer and Bernd Sturmfels. “Cellular resolutions of monomial modules.”
English. In: J. Reine Angew. Math. 502 (1998), pp. 123–140. issn: 0075-
4102; 1435-5345/e. doi: 10.1515/crll.1998.083 (cit. on p. 29).

[BG09] Winfried Bruns and Joseph Gubeladze. Polytopes, rings, and K-theory.
English. New York, NY: Springer, 2009. isbn: 978-0-387-76355-2/hbk;
978-0-387-76356-9/ebook. doi: 10.1007/b105283 (cit. on pp. 15–17, 21, 38,
57).

[BH98] Winfried Bruns and Jürgen Herzog. Cohen-Macaulay rings. Rev. ed. English.
Rev. ed. Cambridge: Cambridge University Press, 1998, pp. xiv + 453.
isbn: 0-521-56674-6/pbk (cit. on pp. 15, 19–22, 26).

[Chr91] Jan Arthur Christophersen. “On the components and discriminant of the
versal base space of cyclic quotient singularities.” English. In: Symmetric
Lagrangian singularities and Gauss maps of theta divisors. 1991, pp. 81–92
(cit. on pp. 10, 38).

[CLS11] David A. Cox, John B. Little and Henry K. Schenck. Toric varieties. English.
Providence, RI: American Mathematical Society (AMS), 2011. isbn: 978-0-
8218-4819-7/hbk (cit. on pp. 13–15, 27, 38).

[Dec+15] Wolfram Decker, Gert-Martin Greuel, Gerhard Pfister and Hans Schönemann.
Singular 4-0-2 — A computer algebra system for polynomial computations.
http://www.singular.uni-kl.de. 2015 (cit. on pp. 11, 107).

131

http://dx.doi.org/10.2307/2000019
http://dx.doi.org/10.4310/MRL.1998.v5.n1.a3
http://dx.doi.org/10.1515/crll.1998.083
http://dx.doi.org/10.1007/b105283
http://www.singular.uni-kl.de

C Bibliography

[Eis95] David Eisenbud. Commutative algebra. With a view toward algebraic geo-
metry. English. Berlin: Springer-Verlag, 1995. isbn: 3-540-94269-6/pbk;
3-540-94268-8/hbk (cit. on pp. 20–22, 25, 79, 83, 84).

[Far14] Sara Faridi. “Monomial resolutions supported by simplicial trees.” English.
In: J. Commut. Algebra 6.3 (2014), pp. 347–361. issn: 1939-2346. doi:
10.1216/JCA-2014-6-3-347 (cit. on p. 28).

[Ful93] William Fulton. Introduction to toric varieties. The 1989 William H. Roever
lectures in geometry. English. Princeton, NJ: Princeton University Press,
1993, pp. xi + 157. isbn: 0-691-00049-2/pbk (cit. on pp. 13, 14, 40).

[GJ00] Ewgenij Gawrilow and Michael Joswig. “polymake: a Framework for Analyz-
ing Convex Polytopes”. In: Polytopes — Combinatorics and Computation.
Ed. by Gil Kalai and Günter M. Ziegler. Birkhäuser, 2000, pp. 43–74 (cit. on
pp. 11, 107).

[GS] Daniel R. Grayson and Michael E. Stillman. Macaulay2, a software system for
research in algebraic geometry. Available at www.math.uiuc.edu/Macaulay2/
(cit. on p. 107).

[Har83] Robin Hartshorne. Algebraic geometry. Corr. 3rd printing. English. Gradu-
ate Texts in Mathematics, 52. New York-Heidelberg-Berlin: Springer- Verlag.
XVI, 496 p. DM 64.00; $ 24.00 (1983). 1983 (cit. on p. 15).

[Ilt08] N.O. Ilten. “Calculating Milnor Numbers and Versal Component Dimensions
from P-Resolution Fans”. In: Arxiv preprint arXiv:0801.2900 (2008) (cit. on
p. 38).

[IW10] Osamu Iyama and Michael Wemyss. “The classification of special Cohen–
Macaulay modules”. In: Mathematische Zeitschrift 265.1 (2010), pp. 41–83
(cit. on pp. 9, 20, 81).

[KS88] J. Kollár and N.I. Shepherd-Barron. “Threefolds and deformations of surface
singularities.” English. In: Invent. Math. 91.2 (1988), pp. 299–338. issn:
0020-9910; 1432-1297/e. doi: 10.1007/BF01389370 (cit. on p. 10).

[MS05] Ezra Miller and Bernd Sturmfels. Combinatorial commutative algebra. English.
New York, NY: Springer, 2005, pp. xiv + 417. isbn: 0-387-22356-8/hbk.
doi: 10.1007/b138602 (cit. on pp. 29, 44).

[Nak13] Yusuke Nakajima. “Dual F -signature of special Cohen-Macaulay modules
over cyclic quotient surface singularities”. In: arXiv preprint arXiv:1311.5967
(2013) (cit. on pp. 40, 49, 50, 81).

[Ste91] Jan Stevens. “On the versal deformation of cyclic quotient singularities.”
English. In: Symmetric Lagrangian singularities and Gauss maps of theta
divisors. 1991, pp. 302–319 (cit. on pp. 10, 38).

[Tay66] Diana Kahn Taylor. “Ideals generated by monomials in an R-sequence”.
PhD thesis. University of Chicago, Department of Mathematics, 1966 (cit. on
pp. 9, 25).

[Wei94] Charles A. Weibel. An introduction to homological algebra. English. Cam-
bridge: Cambridge University Press, 1994, pp. xiv + 450. isbn: 0-521-43500-
5/hbk (cit. on pp. 29, 86).

132

http://dx.doi.org/10.1216/JCA-2014-6-3-347
http://www.math.uiuc.edu/Macaulay2/
http://dx.doi.org/10.1007/BF01389370
http://dx.doi.org/10.1007/b138602

[Wun87] Jürgen Wunram. “Reflexive modules on cyclic quotient surface singularities”.
In: Singularities, representation of algebras, and vector bundles. Springer,
1987, pp. 221–231 (cit. on pp. 40, 50, 82).

[Yos90] Yuji Yoshino. Maximal Cohen-Macaulay Modules over Cohen-Macaulay Rings.
Vol. 146. Cambridge University Press, 1990 (cit. on pp. 19, 49).

133

Acknowledgements

This thesis would not have been possible without the support of many people. First
of all I would like to thank my advisor, Klaus Altmann, for constant encouragement,
motivation and many helpful discussions. Many mathematicians helped me through
discussions and answering my many questions. Thus, I would like to thank Winfried
Bruns, Jan Christophersen, Lutz Hille, Andreas Hochenegger, David Ploog, Karl Schwede
and Michael Wemyss.

I am very grateful to Nikolai Beck, Alexandru Constantinescu, Marianne Merz, Irem
Portakal and Anna-Lena Winz for proofreading this thesis. I also wish to thank my
workgroup for their constant interest in my work, their mathematical input, and their
talent to cheer me up when I felt lost. This thesis would not have been possible without
the supportive and encouraging atmosphere created by the members of both AG Altmann
and Schmitt. Many thanks also to Mary Metzler-Kliegl for helping me with many non-
mathematical tasks. Benjamin Lorenz helped me a lot with programming in polymake,
many experiments would have been impossible without his expertise and support.

I wish to thank my friends and family in Berlin for their support. Finally, I thank
Anna-Lena for her patience and love.

135

Summary

The topic of this thesis are the Ext modules of T -invariant Weil divisors on a normal
affine toric variety. Such divisors can be described by a polyhedron with the same facet
vectors as the cone describing the variety. Hence, using these combinatorial descriptions
of the involved objects, we want to derive a combinatorial description of the Ext-modules.
In particular, we want to give a criterion for D being maximal Cohen-Macaulay.

Denote by X a normal affine toric variety and let D and D′ be two T -invariant Weil
divisors. We want to compute ExtiX(D,D′). Since X = SpecR is affine this is the same
as computing ExtiR(M,M ′) for M and M ′ being the divisorial ideals over R, given by
the global sections of D, D′ respectively.

The structure of this thesis is the following:
First we give a short introduction into the toric geometry used, and describe the

relationship of Ext and maximal Cohen-Macaulayness.
The modules M and M ′ are isomorphic to certain monomial ideals in R. Hence,

we want to resolve M freely. Thus, we use a generalization of the Ansatz of Taylor
for resolving monomial ideals in polynomial rings. This results in a spectral sequence,
providing a sufficient criterion for the vanishing of higher Ext. Furthermore we give a
superset of the combinatorial support of Ext1(D,D′).

Next we restrict to the case of X being a cyclic quotient singularity (CQS). In this
case the class group is finite. Furthermore, the generalized Taylor resolution becomes
a short exact sequence. Hence, we can encode all free resolutions in a quiver. Higher
Exti(D,D′) become direct sums of Ext1(G,D′), where we read off the necessary G from
the quiver.

Thus, we are interested in understanding Ext1(D,D′). The combinatorial data of D
and D′ results in the desired combinatorial description of Ext1(D,D′). If one is interested
in the dimension of Ext1(D,D′) as a vector space, the key is the relationship of CQS
with continued fractions. These have already proven useful in the deformation theory of
CQS, as shown by Stevens and Christophersen. Here we can construct the matrix with
entries dim Ext1(D,D′), [D], [D′] ∈ ClX, recursively from the continued fraction.

The last part concerns the algebra Ext(D). We construct a homogeneous basis of
Ext(D) as a vector space, which then allows us to formulate a combinatorial description
of the multiplication.

137

Zusammenfassung

Diese Arbeit beschäftigt sich mit Ext-Moduln T -invarianter Weil-Divisoren auf normalen
affinen torischen Varietäten. Solche Weil-Divisoren lassen sich durch Polyeder beschreiben,
die dieselben Facetten-Vektoren haben, durch die auch der Kegel gegeben ist, der die
torische Varietät beschreibt. Das Ziel ist es daher, diese kombinatorische Beschreibung
auf die Ext-Moduln zu übertragen, um damit zu bestimmen, ob ein Weil-Divisor maximal
Cohen-Macaulay ist.

Ziel ist es ExtiX(D,D′) zu gegebenen T -invarianten Weil-Divisoren D und D′ auf
der normalen affinen torischen Varietät X zu berechnen. Da X = SpecR affin ist, ist
das äquivalent zur Berechnung von ExtiR(M,M ′), wobei M und M ′ die R-Moduln der
globalen Schnitte von D, bzw. D′, bezeichnen.

Die Arbeit gliedert sich nun wie folgt:
Zuerst geben wir eine kurze Einführung in die torische Geometrie, die wir verwenden,

und beschreiben den Zusammenhang von Ext und maximal Cohen-Macaulay.
Die Moduln M und M ′ sind sogenannte divisorielle Ideale und sind in unserem Fall

isomorph zu bestimmten Monomidealen in R. Um Ext zu berechnen, konstruieren
wir eine freie Auflösung von M . Dazu verallgemeinern wir den Ansatz von Taylor zur
Auflösung von Monomidealen in Polynomringen auf Halbgruppenringe. Dies mündet in
eine Spektralsequenz, die es uns erlaubt, ein hinreichendes Kriterium für das Verschwin-
den aller höherer Ext-Moduln anzugeben. Außerdem können wir eine Obermenge des
kombinatorischen Trägers von Ext1(D,D′) angeben.

Danach schränken wir uns auf den Fall ein, dassX eine zyklische Quotienten-Singularität
(ZQS) ist. In diesem Fall ist die Klassengruppe endlich und die Verallgemeinerung der
Taylor-Auflösung mündet in eine kurze exakte Sequenz für jeden Divisor. Dies erlaubt es
uns alle freien Auflösungen als einen Köcher darzustellen. Höhere Exti(D,D′) sind nun
direkte Summen von Ext1(G,D′), wobei die benötigten G aus dem Köcher gewonnen
werden.

Als nächstes interessieren wir uns daher für die Berechnung von Ext1(D,D′). Wir
können aus den kombinatorischen Daten von D und D′ eine kombinatorische Beschrei-
bung von Ext1(D,D′) gewinnen. Falls wir nur an der Dimension der Ext1(D,D′) für alle
Äquivalenzklassen aus der Klassengruppe interessiert sind, gibt es ein weiteres hilfreiches
Datum auf ZQS. ZQS sind eng verbunden mit Kettenbrüchen, z.B. beschrieben Stevens
und Christophersen die Komponenten der versellen Deformation einer ZQS durch be-
stimmte Kettenbrüche. Die Matrix mit den Dimensionen der Ext1(D,D′) lässt sich nun
rekursiv aus dem Kettenbruch gewinnen, der auch die ZQS beschreibt.

Zuletzt widmen wir uns der Algebra Ext(D). Anhand der bisherigen Überlegung entwi-
ckeln wir eine Basis von Ext(D) als Vektorraum, die eine kombinatorische Beschreibung
der Multiplikation erlaubt.

139

	Introduction
	Preliminaries
	Toric geometry
	Commutative algebra

	Generalizing the Taylor resolution
	The generalized Taylor complex
	Building a spectral sequence from S(D)

	Cyclic quotient singularities
	Toric construction
	Invariant construction

	Resolving torus invariant divisors on CQS
	A short exact sequence
	The resolution quiver
	Comparing G, the AR-quiver, and the McKay-quiver

	Ext1
	A combinatorial formula for Ext1
	First consequences of the Ext1 formula
	A recursive formula for dim Ext1

	First applications of the combinatorial method
	The dimension dim Exti for higher i
	Ext and Tor
	The boundary cases q=1 and q=n-1
	Classification of special MCM divisors

	The Ext-algebra
	Yoneda's interpretation of Ext
	The homogeneous elements of Extk(D,D')
	Ext1 as short exact sequences
	Higher Extn as exact sequences
	The multiplication
	Generators of the Ext algebra
	Example: n eq 7, q eq 3

	Code
	Running example with n=7 and q=3
	Finiteness of (D)

	Index of notation
	Bibliography
	Acknowledgements
	Summary
	Zusammenfassung

