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Chapter 3

Bulk Properties

3.1 Introduction

A surface is directly connected to the underlying bulk, which means that the prop-
erties of the bulk material will most probably influence the properties and behavior
of the surface. This chapter is therefore devoted to the investigation of different
bulk structures, in order to study their equilibrium atomic structure, relative sta-
bility, electronic and magnetic properties. The results are then used to obtain the
surface energy and formation energy of films at the surface. Additionally, it is the
basis for comparing the theoretical results with experimental data.

The starting point of any investigation is the determination of the theoretical lattice
parameter. Thermodynamic properties will be important as well for the following
discussion of the surfaces.

To obtain the equilibrium bulk structure, the total energy is minimized with respect
to the unit cell volume. The lattice parameters and bulk modulus are determined
by fitting a set of data points to the Murnaghan equation of state, [54]:

E(V ) = E(V0) +
B0

B
′
0

[
V0 (V0/V )B

′
0−1

B
′
0 − 1

+ V (1 − (V0/V )
B

′
0 − 1

)

]
, (3.1)

where V0 is the equilibrium volume at zero temperature, E(V0) is the minimum
energy of the system, B0 is the bulk modulus, defined as

B0(T, p) = −V
∂p

∂V
|T , (3.2)

and B
′
0 is the pressure derivative of bulk modulus at p = 0 and constant tempera-

ture:
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B
′
0 = − ∂

∂p
( V

∂p(T, V )
∂V

)T,p=0 . (3.3)

The cohesive energy is always defined as the energy needed to form a crystal from
the individual free atoms 1 which form the crystal. For example, the cohesive en-
ergy for MnSi is obtained as:

Ecoh = EMnSi−bulk
tot − EMn−atom

tot − ESi−atom
tot . (3.4)

where EMnSi−bulk
tot , EMn−atom

tot and ESi−atom
tot are the total energies of MnSi bulk, Mn

and Si free atoms.

The energy difference between a crystal and it’s constituent parts as solid phases is
called the formation enthalpy of the solid at zero temperature, which is given by:

∆H(MnSi) = EMnSi−bulk
tot − EMn−bulk

tot − ESi−bulk
tot . (3.5)

where EMnSi−bulk
tot , EMn−bulk

tot and ESi−bulk
tot are the total energies of the bulk phases

of MnSi, Mn and Si, respectively.

The first-principles calculations are performed using density-functional theory (DFT).
For non-magnetic cases the exchange-correlation functional is treated with the local-
density approximation (LDA) [55]. In the spinpolarized calculations, the general-
ized gradient approximation in the parameterization of Perdew, Burke, and Ernz-
erhof (GGA-PBE 96) [34] for the exchange-correlation potential, is used 2. It has
been demonstrated and confirmed by test calculations that GGA gives a much bet-
ter description for bulk Mn than the local-spin-density approximation (LSDA). The
Kohn-Sham equations were solved applying the full-potential augmented plane
wave plus local orbital (FP-APW + lo) method [37].

This chapter presents ab initio total energy calculations of Si, Mn, MnSi. The effects
of pressure on structure, bonding and electronic structures are also discussed.

1The total energy for a spin-polarized free atom is calculated. Due to the periodic boundary con-
ditions the self-consistent calculations for the atom are performed using a large cubic supercell, so
that interactions between the atoms are negligible.

2The convergence test are presented in Appendix A.
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Fig. 3.1: Energy-volume curve for bulk diamond and β-tin Si using GGA (red line) and
LDA (blue line) functionals. The dashed lines are the common tangents, the slope
of the common tangents is the pressure for the phase transition from the diamond
to the β-tin structure.

3.2 Bulk Silicon

3.2.1 Structural Properties and Thermodynamical Stability

Silicon with the atomic number 14 belongs to the group-IV elements in the periodic
table. It has 4 unpaired electrons in the outer shell which leads to the formation of 4
bonds with neighboring atoms in the diamond structure of the Si-bulk phase. The
conventional cell of Si-bulk is a fcc lattice type with two basis atoms at (0 , 0 , 0 ) and
(1
4 , 1

4 , 1
4 ). The primitive lattice vectors are a1 = a

2 î + a
2 k̂ , a2 = a

2 î + a
2 ĵ and a3 = a

2 ĵ+
a
2 k̂ , where î , ĵ , k̂ are the unitary vectors along the x , y , z directions, respectively.
There is a structural phase transition from four-fold-coordinated diamond structure
to a tetragonal six-fold-coordinated β-tin phase at pressure of 99 GPa [56]. The β-tin
has a bcc lattice with atoms at (0, 0, 0) and (1

2 , 0, 3
4) positions.

To obtain the lattice parameter, a sequence of calculations are performed for bulk Si
in both diamond and β-tin phases in nine separate calculations for volumes varying
between -20 % and +20 % of the experimental volume. The volume corresponding
to the minimum energy identifies the equilibrium lattice parameter, a0. The co-
hesive energy versus volume curves calculated with GGA and LDA functional for
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both diamond and β-tin are shown in Fig. 3.1. The blue curves are LDA and the red
curves are GGA results, the dashed lines are common-tangents, the slope of these
lines indicate the phase transition pressure.

For the diamond structure, the LDA calculations show the well-known overbind-
ing effect value with a cohesive energy overestimated by +11.4% and lattice param-
eter underestimated by -0.37 %, as compared to the experimental results.

In GGA, on the other hand, the equilibrium volume is overestimated by 0.74 % and
the cohesive energy, Ecoh, is underestimated by -0.86 % . Here, we do not consider
the zero point vibrations of lattice. Therefore, the calculated lattice constant in this
work is smaller than that, including zero point vibrations. The order of magnitude
of the zero point vibrations can be estimated from the uncertainty relation [57]. Tak-
ing into account the zero point vibrations increase the lattice constant up to 0.5%.
Our results are compared to GGA-PW 91 functional [58] and experimental data in
Tab. 3.1. The lattice parameter (a0), bulk modulus (B0), and derivative of bulk
modulus, B ′

0 calculated using LDA are in good agreement with the experimental
results. The difference in the GGA-PBE 96 and GGA-PW 91 results are just a few
percent.

The pressure of the phase transition is obtained via the Gibbs common tangents
construction using the energy versus volume plot for the two phases, i.e.,

pt = −Ed
t − Eβ

t

V d
t − V β

t

, (3.6)

where Pt is phase transition pressure, Ed
t and Eβ

t are energy at the transition for di-
amond and β-tin structures, V d

t and V β
t are the transition volume for the mentioned

structures.

In the prediction of the transition pressure, the LDA results are significantly lower
than the experimental value, whereas the GGA increases the transition pressure,
leading to a value that is close to the experimental value. The transition pressure
is a sensitive quantity, since it depends not only on the energy but also on its first
derivative with respect to the volume. The pressures calculated with both GGA
PBE/PW functional are 4 % - 5 % smaller than the experimental value while this is
22 % smaller for LDA.

3.2.2 Electronic Properties

The diamond structure of silicon is found to be the ground state structure at zero
pressure and temperature, therefore only the electronic properties of this structure
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Table 3.1: Comparison of the calculated lattice constant (a0), bulk modulus (B0), pressure
derivative of the bulk modulus (B

′
0), and cohesive energy (Ecoh) for Si diamond

and β-tin structures using LDA, GGA-PBE and GGA-PW. The transition presure
between the two phases, as well as their volumes V d

t and V β
t at the transition

point are given . The experimental values are taken from Ref. [3] and [4] and for
the GGA-PW values the results of Moll et al [5].

LDA GGA GGA EXP.
PBE PW

Diamond
a0(Å) 5.41 5.47 5.59 5.43
B0(GPa) 94.9 87.8 85.2 98.8
B′

0 4.25 4.25 3.70 4.09
Ecoh(eV/atom) 5.26 4.59 4.64 4.63

β-tin
a0(Å) 4.73 4.78 4.82 —
B0(GPa) 115 106 106 —
B′

0 4.89 4.25 4.10 —
Ecoh(eV/atom) 5.06 4.31 — 4.63
c/a 0.55 0.55 0.551 0.552

V d
t /V d

0 (exp.) 0.926 0.937 0.928 0.918
V β

t /V d
0 (exp.) 0.703 0.715 0.706 0.710

pt (GPa) 70 95 106 99-101

will be discussed in the following. It can be seen from the band structure that
silicon (in the diamond structure) is semiconductor. It has an indirect band gap of
1.17 eV [3].

The band gap calculated with DFT-LDA (GGA), which is determined by the energy
difference between the top of highest occupied state (valence band) and bottom of
lowest unoccupied state (conduction band), is almost half of the value of the ex-
perimental band gap. Having a value of 0.5 eV for the calculated band gap, agrees
poorly with the experimentally observed band gap. The calculated band structure
and density of states for both the LDA and GGA functionals at their equilibrium
volume are shown in Fig. 3.2. The GGA and the LDA bandstructures are quite sim-
ilar, but the conduction and the upper valence bands in LDA are shifted by 0.2 eV
with respect to their GGA counterparts.

The electron density of states (DOS) is shown in Fig. 3.2. Three energy regions for
the valence bands can be distinguished: the s band’s contribution is found in the
range between -12 eV and -8 eV below the Fermi level; a hybridization of s and p
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Fig. 3.2: Band structure and DOS plot for bulk Si at equilibrium volume with a (10×10×10)
k-point grid in the Brillouin-Zone using GGA (solid lines) and LDA (dash lines)
functionals. The energy zero is taken to be the top of the valence band.

bands is found between -4 eV and -8 eV below the Fermi level; while p bands are
observed between zero to -4 eV below Fermi level.

It is known from photoemission experiments, that the top of the valence band is
located at k=0, denoted Γ25′ [61]. The minimum of the conduction band is found
close to the X point (k=(2π/a)( 1

2 , 0, 0)) along the ∆ symmetry line and has p-like
character, cf. Fig. 3.2. The experimental optical gaps found at Γ and X points, re-
spectively, are 3.4 eV and 4.4 eV, which is 1.0 eV and 0.9 eV higher than the values
found in the present work. On the other hand, for deeper lying valence bands,
the calculated band structure is in good agreement with the experiment, the rel-
ative error being less than 2 % . In Tab. 3.2.2 one can compare the eigenvalues
of Kohn-Sham equations for Si bulk with photoemission measurement energy for
some critical points in the Si-band structure. These value are calculated at theoret-
ical lattice parameter. As one expects, the LDA results are closer to experimental
observations.
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Table 3.2: Electronic energies of Kohn-Sham equation for Si bulk.

Γ1v Γ25′v Γ15c Γ2′c Γ1c X4v X1c

LDA -12.1 0.0 2.3 3.2 7.7 -3.1 0.6
GGA -12.0 -0.2 2.5 2.8 7.5 -3.0 0.55
EXP -12.5 a 0.0 a 3.4 a 4.15 b 7.6 b -2.9 a 1.13 a

(a) Ref. [59]
(b) Ref. [60]

3.3 Bulk Manganese

Manganese (Mn) is one of the interesting and complex case in the metallic elements.
According to Hund’s rule, the magnetic moment of the free atom is as large as 5 µB

which is the highest magnetic moment among transition metal elements. The stable
phase under normal temperature and pressure condition is α-manganese (space
group T3

d—I 4̄3m) [62], which has complex cubic structure with 29 atoms per unit
cell and shows non-collinear magnetism.

The Mn atoms in the α phase have magnetic moments between 0 and more than
3 µB [63]. The α-Mn phase undergoes a phase transition from antiferromagnetic
(AFM) to non-magnetic (NM) at a Neél temperature of TN = 95 K. This magnetic
transition is coupled to a tetragonal crystal structure for the non-magnetic phase.

In the temperature interval from 1000 K to 1368 K the β phase will form. It has
a cubic structure with twenty atoms per unit cell, the space group P4132 [64] and
a small magnetic moment [65, 66] . The fcc-γ phase exists in the temperature re-
gion from 1368 K to 1406 K and has an antiferromagnetic low-spin ground state.
For high temperatures up to the melting point (1517 K) the non-magnetic bcc-δ
structure is found. Under compression a phase transition to the antiferromagnetic
hexagonal ε-structure [63] occurs.

3.3.1 Structural Properties

The calculations which are performed in this part are for fcc-γ structures with
different magnetic ordering (PM, FM, AFM). The AFM ordering is considered as
planes in (100) direction containing parallel magnetic moments (i.e. in-plane FM).
Extensive convergence test showed that an energy cutoff of 16 Ry and (15×15×15)
k-points in the Brillouin zone are sufficient to describe this structure. In order to
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do calculation for AFM phase, a body-centered-tetragonal structure with lattice pa-
rameters, a = b =

√
2 c and c = afcc is considered.
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Fig. 3.3: The plot of total energy per atom versus unit cell volume, (E-V), with GGA (a) and
LSDA (b). the circles, squares and triangle were used for antiferromagnetic, fer-
romagnetic and non-magnetic, respectively. The AFM ordering has lowest energy
at equilibrium volume in GGA. The magnetovolume effect is not significant with
LSDA. Magnetic and non-magnetic calculation have nearly the same E-V curve

In Fig. 3.3 the total energy is given as a function of volume for both GGA and
LSDA functionals. The antiferromagnetic fcc-γ phase structure is energetically the
ground state for GGA calculations. The lattice constant is 4% smaller than the α-
Mn and the cohesive energy is lower than non-magnetic state by at least 50 meV.
In the LSDA all calculations converge to a non-magnetic ground state at a volume
interval in ±10 % around equilibrium volume. GGA, on the other hand, predicts
an increased equilibrium volume. This means a smaller deviation of the theoreti-
cal lattice parameter from the experimental result in GGA, compared to LSDA. In
addition, LSDA increases the magnetovolume effect: an antiferromagnetic solution
exists for expanded volume which is about 11 Å3 while the AFM order found at
volume around at 10 Å3, for GGA.

The results for the cohesive energy, lattice constant and bulk modulus for the non-
magnetic, ferromagnetic and antiferromagnetic ordering are summarized in Ta-
ble 3.3 for GGA, LSDA and the experimental results. Some prominent details in
this comparison that should be emphasized are:

(I) Use of different exchange-correlation functionals has a stronger influence on
the total energy and equilibrium volume, than the magnetovolume effect.

(II) The difference between LSDA and GGA results for the magnetic cases are more
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Table 3.3: Comparison of the cohesive energy Ecoh, the lattice parameter a0 and the bulk
modulus B0 of different magnetic ordering of manganese in fcc-γ structure.

fcc-γ Magnetic Ecoh a0 B0

structure Phase (eV/atom) (Å/atom) (Mbar)

AFM 3.87 3.59 1.35
Present work (GGA) FM 3.82 3.47 2.76

NM 3.83 3.50 2.72

AFM 5.36 3.42 3.07
Present work (LSDA) FM 5.38 3.42 4.19

NM 5.36 3.43 3.25

US-PP (GGA)(a) AFM — 3.65 0.95
US-PP (LSDA) NM — 3.43 3.10

LMTO (GGA)(b) — — 3.61 2.81
LMTO (LSDA) — — 3.49 3.14

EXP. AFM 2.92(c) 3.73 1.31

(a) Ref. [67]
(b) Ref. [68]
(c) Ref. [69], value was obtained by extrapolation of high-temperature data to room
temperature.

pronounced than for the non-magnetic phases.

(III) The lattice parameter for both GGA and LSDA is smaller than experimental
value, but the discrepancy between theory and experiment is reduced in GGA.

(IV) The compressibility 3, which is the reciprocal of the bulk modulus, is overesti-
mated in LSDA. This leads to a shorter bondlength and stronger bonding compared
to GGA. Therefore the cohesive energy in LSDA is also larger than in GGA.

Table 3.3 shows that the full-potential LSDA calculations are in good agreement
with ultrasoft-pseudopotential (US-PP) [67] and linear-muffin-tin-orbital (LMTO)
[68] calculations. All methods using GGA calculations show a thermodynamically
stable AFM phase for bulk Mn.

3The compressibility is defined as the inverse of bulk modulus: κ = 1
B0

.
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3.3.2 Magnetic Properties

The dependence of the FM and AFM states on the volume are shown in Fig. 3.4. A
high-spin state at the expanded volume is found for each of these magnetic phases
and the magnetic moment is underestimated in both calculations. In the GGA cal-
culations, the magnetic moment for the AFM state at equilibrium volume is as large
as 1.9 µB but its value is quenched to almost zero for the FM state. The LSDA pre-
dicts the non-magnetic states as the ground state at the equilibrium volume. All in
all, LSDA poorly describes the magnetization at the equilibrium volume and fails
to give the experimental magnetic moment of the fcc-γ structure, which is about
2.3 µB .
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Fig. 3.4: Magnetic moment in ferromagnetic (red lines) and antiferromagnetic (blue lines)
states from GGA (a) and LSDA (b) calculations.

3.4 Manganese-Silicide Compounds

Studies of Mn covered Si substrates show that Mn has the tendency to form manganese-
silicide alloys on the surface [15, 16]. Our studies of the growth process of man-
ganese on Si show that the strong covalent bond between Mn and Si lead to the
formation of islands or films of Mn-Si on the Si surfaces. This makes it essential to
first study the properties of some Mn-Si compounds, before turning to the films.
In this chapter, the structural, magnetic and electronic properties of MnSi which
could form on Si are studied (The bulk properties of Mn3Si will be discussed in
Appendix B).
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Fig. 3.5: Possible epitaxial structures of 1:1 stoichiometry of MnSi. The natural phase has
FeSi structure (a) which is called B20 structure. The B2 struture (b), is the second
lowest structure. The tungsten carbid, nickel arsenic and rocksalt structure are
other possible epitaxial structures.

3.4.1 Bulk MnSi

Manganese mono-silicide is a magnetic intermetallic compound with B20 structure
that is isostructural to non-magnetic transition metal silicides like FeSi, CoSi and
CrSi. It contains four Mn and four Si atoms in a simple cubic structure with Pear-
son symbol cP8 and a lattice parameter of a0 = 4.558 Å [70]. Mattheiss et al. [71] de-
scribed the B20 structure as a rocksalt structure containing four MnSi in the unit cell
where the atoms are displaced along the [111] direction. This distortion eliminates
the inversion symmetry and changes the space group from Fm3m to P213 [71]. The
position of four Mn or Si in the unit cell are (u, u, u ), ( 1

2 + u, 1
2 - u, -u), (-u, 1

2 + u, 1
2 -

u) and (1
2 - u, -u, 1

2 + u) where uMn = 0.137 and uSi = 0.845 [72]. Mn is coordinated to
one Si at 2.11 Å along [111] direction, three Si neighbors at a distance of 2.35 Å and
three neighbors at 2.69 Å. In the absence of a magnetic field and below Tc = 29 K, it
has a helical magnetic structure with a long spiral period of 180 Å [72]. The lack of
inversion symmetry is the reason of the spiral magnetic structure in the B20 crystal
structure [73]. At the temperature of zero K, there is a spontaneous magnetic mo-
ment of 0.4 µB per Mn atom which forms a conical order phase in the magnetic field
of 0.1 T [74]. The spins align as a ferromagnetic structure at 0.6 T external magnetic
field [72]. The temperature increases spin fluctuation of Mn, which is called ther-
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mal excitations of spin fluctuations (SFs). This induces a large magnetic moment of
2.2 µB [73]. The Curie temperature drops with pressure until the magnetic ordering
disappears at the pressure of 1.46 GPa [75].

The growth of some mono-silicide compounds on Si substrates introduces new
crystal structures which do not exist in bulk form [76]. They are formed by epi-
taxy and cannot be reached by external changes in pressure or temperature of bulk
phase. The epitaxial stabilization of CsCl-structure of FeSi and CoSi was first ob-
served in Si(111) surface [76].

In the following, the energy-volume curves of the epitaxial structures are compared
which might conceivably form on the Si surface. In particular, the CsCl, WC, AsNi
and NaCl crystal structures, Fig. 3.5, are considered which are the starting point of
the forthcoming surface calculations. The optimized volume and other primitive
structural properties are determined using both GGA and LSDA functionals, an
energy cutoff Ecut =13.8 Ry and 12×12×12 k-points in the Brillouin zone.

• Structural, Electronic and Magnetic Properties

To assess the stability of various phases of manganese mono-silicide compound,
the energy vs. volume curves are calculated for each structure. The curves for each
structure, fitted using the Murnaghan equation, are shown in Fig. 3.6. These curves
show that the stable phase is the simple cubic lattice with 4 Mn and 4 Si which
corresponds to the previously mentioned B20 (or P213) structure. The calculated
lattice parameter is 0.9 % smaller than the experimental value and the calculated
Mn-Si bond lengths are 2.28 Å , 2.37 Å and 2.52 Å. The structural properties for all
calculated phases are collected in Tab. 3.4. A FM ordering with a magnetic moment
of more than 1.0 µB per atom is predicted for the P213 structure, which is larger
than the experimental value. However, this is comparable to previous calculations
done by Jeong et al. using the full-potential nonorthogonal local orbital (FP-LO)
method [77].

The density of states of MnSi in Fig. 3.8-a shows metallic behavior for both spin
channels. For the majority spin channel there is a narrow gap of about 0.2 eV above
the Fermi level. An indirect narrow gap was also reported by Nakanishi et al [78]
for the iso-structure alloy FeSi. Due to four more valence electrons per unit cell in
this latter structure, its Fermi level lies in the gap, i.e. it is a normal semiconductor.

The CsCl or B2 structure appears in the regimes of high pressure. The calculations
with GGA (LDA) show a phase transition from B20 structure to B2 structure at the
pressure of 45 (22) GPa. This pressure is larger than the quantum critical pressure
where the magnetism vanishes. Therefore it is not surprising to find the cubic B2
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Fig. 3.6: Energy-volume curves for different epitaxy structures of MnSi are shown in the
plot above. The FeSi (blue line), the CsCl (red line) and the NiAs (brown line)
structures are stable in equilibrium, compressed and expanded volume, respec-
tively. The WC (green line) and NaCl (purple line) structures are unstable.

structure with a non-magnetic phase. This structure undergoes to ferromagnetic
order in a tetragonal cell. The ferromagentic structure is found upon a small distor-
tion of the lattice, leading to an elongation of 5 % in the c direction. The calculated
magnetic moment is about 0.7 µB in this tetragonal structure, the exchange split-
ting due to magnetization is 0.35 eV and the spinpolarization at the Fermi level is
around 37 % 4. The density of states for cubic and tetragonal structure are com-
pared in Fig. 3.7. A difference of 0.25 eV between the cohesive energy of the B2 and
the B20 structures is found, which is smaller than similar results for FeSi (0.54 eV)
and CoSi (0.75 eV) [76].

The WC structure is not stable structure according to the energy-volume plot, c.f.
Fig. 3.6. The lattice parameters in a and b directions are just 0.15 % shorter than in
the B20 structure but an elongation of almost 20 % in the c direction is found. The
space group of the tungsten carbide structure is P6m2; it is an hcp structure (i.e.
ABAB... stacking) with Mn at (0, 0, 0) and Si ( 2

3 , 1
3 , 1

2 ), c.f. Fig. 3.5. The magnetic
moment is 1.5 µB and the polarization at the Fermi level is about 13 %.

The AsNi structure is a metastable structure which exists in the expanded volume
of 35 % compared to the equilibrium volume of the P213 structure. It has the space
group P63mmc and hexagonal structure with four basis atoms at (0,0,0) and (0, 0,
1
2 ) for Mn and (1

3 , 2
3 , 1

4 ) and (2
3 , 1

3 , 3
4 ) for Si. The stacking is ABACABAC... with Mn in

A site and Si in B and C sites. The environment of Mn atom is fcc-like and environ-
ment of Si atom is hcp-like. The cohesive energy is 0.4 eV/atom less than cohesive

4spin polarization at Fermi level is defined as : (n↑
f − n↓

f )/(n↑
f + n↓

f ).
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Table 3.4: Lattice parameter (a0), formation enthalpy (∆H), bulk modulus (B0) and mag-
netic moment (m) for all epitaxial structures as calculated with both GGA and
LDA functionals.

structure a0 ∆H B0 m
Å eV/formula unit Mbar µB/atom

MnSi 4.517 0.879 2.00 0.26
CsCl 4.437 0.623 2.23 0.0

(GGA) WC 4.524 0.542 1.19 1.5
AsNi 4.483 0.077 2.06 1.5
NaCl 4.859 -0.457 0.92 0.0

MnSi 4.439 6.522 2.94 0.26
CsCl 4.359 6.345 2.61 0.0

(LSDA) WC 4.410 5.500 1.46 1.7
AsNi 4.197 6.165 2.44 1.6
NaCl 4.687 -4.907 1.30 0.0

EXP∗. MnSi 4.558 0.4

(∗) Ref. [78]

energy of B20 structure and the manganese atoms have AFM spin alignment with
a magnetic moment of 1.5 µB. The magnetic moment in this structure and the WC
crystal structure can be attributed to a distortion of cubic cell to tetragonal cell.

The NaCl structure is considered as an undistorted variant of the B20 structure [79].
This non magnetic structure is energetically unstable with a cohesive energy of
almost 1.4 eV per formula unit higher than in the B20 structure. This structure has
the largest equilibrium volume and compressibility of all considered structures.

Due to the deviation of the atomic positions from the structure with Oh symmetry,
the B20 structure has magnetic order with a considerable magnetic moment.

In the following calculations, due to the second highest stability (after the natural
B20 phase) of the B2 structure, the magnetic properties of the B2 structure will be
compared with the B20 structure.

• Curie Temperature

A good magnetic material, in addition to a high magnetization, should have a high
Curie temperature. In order to estimate the Curie temperature of the B2 structure,
two simplest models are considered:
(i) Mohn-Wohlfarth approach:
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This model is based on band theories of magnetism (the Stoner model). The fea-
tures of this model are that it has a good description for the itinerant electrons,
involves spin fluctuation and introduces an exchange energy which is proportional
to the magnetization [80,81]. The constant of proportionality is the so-called Stoner
parameter 5.
(ii) Heisenberg approach: This model usually is used for the systems with well-
localized electrons.

Mohn-Wohlfarth approach: The MnSi is considered to be in the group of weak
itinerant-electron ferromagnetism because of [83]:

I) a low saturation magnetic moment at the temperature of zero K (0.4 µB/Mn) [74].

II) a low magnetic order-disorder phase transition temperature (TC ∼ 29K) [72].

Since MnSi is an itinerant ferromagnet, the existence of magnetism could be evalu-
ated by the Stoner criterion [84] which states:

I · N(εF ) > 1 , (3.7)

where I is the Stoner parameter and N(εF ) is the density of states at the Fermi level
in the non-magnetic phase.

The Stoner parameter is obtained from the following definition:

∆ex = Im , (3.8)

where ∆ex, the exchange splitting, is the band splitting between spin up and spin
down channel due to magnetization. The exchange splitting is calculated directly
from the total DOS of the B20 structure. m is the total magnetic moment per atom.
The calculated ∆ex = 0.55 eV and m = 1.0 µB yield a Stoner parameter of I = 0.5 eV/µB.

From the Stoner model, the magnetic phase appears when the gain in the exchange
energy is larger than the loss in kinetic energy. Additionally, this model allows us
to understand the structural dependence of the magnetic moment in the structures.
This dependency is explained by comparing the DOS of the B2 and the B20 struc-
tures (Fig. 3.7 and 3.8) :
The non-magnetic B20 DOS has several peaks which belong to itinerant electrons.
The Fermi level in MnSi DOS lies on one of the peaks which results in a higher den-
sity of states than for the cubic B2 structure. On the other hand in the cubic B2 DOS

5The Stoner parameter is an intra-atomic quantity that does not depend on the crystal environment
and structure [82].



44 Bulk Properties

-4 -2 0 2 4
0

1

2

3
D

O
S 

(s
ta

te
/e

V
)

-4 -2 0 2 4
0

1

2

3

4

5

D
O

S 
(s

ta
te

/e
V

)

-4 -2 0 2 4

B2-UP

B2-DN

B2-NM B2-NMTETRAGONAL

TETRAGONAL

CUBIC

(a)

(b) (c)

Fig. 3.7: Density of states (N ) for MnSi in the B2 structure using a (12×12×12) k-point grid
in the Brillouin-Zone. The filled blue (red dash) line is the DOS for the B2 in the
majority (minority) spin channel (a). The black line is the DOS of the non-magnetic
phase for both spin channels (b, c). The Fermi level is taken as the energy zero.

the Fermi level is in the shoulder of the peak, c.f. Fig. 3.8. In the DOS of the cubic
B2 structure, there are several occupied peaks for the t2g band and one peak which
has eg character. The Fermi level is in the shoulder of the lower peak which results
in a low density of states at the Fermi level (∼ 1.5 state/eV), see Fig. 3.7-c. As the
Stoner parameter is the same for both structures [82], the Stoner criterion is fulfilled
for B20 but not for the cubic B2 structure. These results are in agreement with the
thermodynamical stability of the non-magnetic phase of the B2 cubic structure and
the magnetic ground state order of the B20 structure. However, with distortion of
the B2 structure in c direction (at constant volume), one can get a magnetic struc-
ture [85]. In the present work with the lattice distortion of 5 % in c direction, we get
a magnetic moment of 0.7 µB/Mn atom. The density of states for cubic and tetrag-
onal structure in non-magnetic and magnetic order are shown in Fig. 3.7-b, c. The
density of states at the Fermi level in the non-magnetic cubic B2 structure is about
1.5 state/eV but rises up to 2.6 state/eV in the tetragonal structure, c.f. Fig. 3.7-b, c
and leads to satisfy the Stoner criterion.
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Fig. 3.8: Density of states (N ) for MnSi in the B20 structure using a (12 × 12 × 12) k-point
in the Brillouin-Zone. The blue filled (red dash )line is the DOS of the majority
(minority) spin channel (a). The black line is the DOS of the B20 structure in the
non-magnetic phase for both spin channels (b). The Fermi level is referred to the
energy zero level.

The simplest approach to estimate the Curie temperature of itinerant magnets is
to consider Stoner excitations. The Stoner excitations lead to a reduced magnetic
moment with raising the temperature, which finally vanishes at T = TC . The
Curie temperature from the Stoner model, TS , is defined as [81] :

I(εF )
∫ ∞

−∞

∂f(ε, T )
∂ε

nnm(ε) dε + 1 = 0 . (3.9)

where nnm(ε) = 1/2 Nnm(ε) is the density of states per atom and spin in the non-
magnetic state, and f(ε, T ) is the Fermi distribution function which is a function of
temperature. The solution of above equation gives the Stoner temperature (TS).

However, the Stoner model yields a Curie temperature that is too high. There is
the semiempirical approach developed by Mohn and Wohlfarth [80] which calcu-
lates the Curie temperature of a very weak itinerant ferromagnet involving spin
fluctuations [86] . In this approach, long-wavelength spin fluctuations are made
responsible for the Curie temperature.
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Table 3.5: Density of states per Mn at the Fermi level for both spin channels (n↑(εF ), n↓(εF )),
total density of states at the Fermi level for the non-magnetic case (nnm(εf )),
the exchange splitting (∆ex), the magnetic moment m, the Stoner parameter (I),
the Pauli susceptibility (χ) and the Curie temperature (TC) calculated by Mohn-
Wohlfarth theory.

n↑(εF ) n↓(εF ) Nnm(εF ) ∆ex m I χ TSF
C

(eV) (µB) (eV/µB) (K)

B20 0.5 0.6 2.5 0.52 1.0 0.5 1.6 609

B2 0.6 1.2 2.6 0.35 0.7 0.5 2.7 225

This theory contains three parameters: saturation magnetization, Pauli susceptibil-
ity and Stoner parameter. Despite its theoretical shortcomings, this approach has
been widely used to evaluate experimental data on intermetallic materials.

In the Mohn-Wohlfarth theory the mentioned parameters are related in this formula

T 2
C

T 2
S

+
TC

TSF
= 1 , (3.10)

where TS is the Stoner-model Curie temperature, and the spin-fluctuation temper-
ature TSF is given by:

TSF =
m2

20kBχ0
, (3.11)

where χ0 is the spin susceptibility at equilibrium and m is the averaged magnetic
moment per Mn (in units of µB).

χ−1
0 = (1/2µ2

B)(
1

2n↑(εF )
+

1
2n↓(εF )

− I) . (3.12)

Here n↑(εF ) and n↓(εF ) are the zero-temperature densities of states per atom at the
Fermi level of the spin up and down bands, and I is the Stoner parameter. Often
the Stoner temperature, TS is much higher than the spin fluctuation temperature
TSF ; therefore, the Curie temperature is estimated just by TSF (TC ∼ TSF ) .

The density of states at the Fermi level, the exchange splitting energy, the Stoner pa-
rameter, the Pauli susceptibility and finally the Curie temperature for both B2 and
B20 structures are summarized in Tab. 3.5. As one sees, this approach still yields a
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very high Curie temperature for both structures.

Heisenberg approach: In this approach, the Curie temperature is calculated from
the total energy difference of the ferromagnetic and the antiferromagnetic state in
the nearest-neighbor Heisenberg model [87]. Here, one starts with the Heisenberg
Hamiltonian

H = −J
∑

i

∑
j

SiSj . (3.13)

which describes the isotropic exchange interaction, J , between the spins located on
a three-dimensional lattice. It is assumed that the exchange interaction between
nearest-neighbor atoms is the dominant one, thus the summation runs over all
nearest-neighbor sites.

The Curie temperature of the Heisenberg ferromagnet in the mean-field approxi-
mation is described in Ref. [88]:

TMF
C = 2J

γ

3KB
= 2

EAFM − EFM

3kB
. (3.14)

Table 3.6: Energy difference in DFT-GGA between FM and AFM order per formula unit
and calculated Curie temperature for B20 and B2 structures.

EAFM − EFM (meV) TC (K)

B20 11 85

B2 11 85

The factor γ is given by S(S + 1)/S2 for quantum spins and it equals to 1 for clas-
sical spins, EAFM and EFM are the energy of antiferromagnetic and ferromagnetic
structures. Choosing the empirical value of γ = 1 leads to a good agreement with
the experiment [88].

The energy of ferromagnetic and antiferromagnetic order and the calculated Curie
temperature in the Heisenberg model are summarized in Tab 3.6. The Heisenberg
model predicts the Curie temperature more realistic than the Stoner model, and
shows low Curie temperature (below room temperature) for bulk structures of Mn-
mono-silicide.
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