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Chapter 2

Theoretical Background

2.1 Many-Body Problem

A significant part of condensed matter physics would be solved if the electronic
structure of atoms, molecules and solids could be determined exactly. The starting
point to investigate properties of materials is to solve the many-body Schrödinger
equation. The problematic issue concerns the number of particles that are involved
and the coupling and interactions of the particles (1023 particles per cm3). This
problem can be overcome using approximate methods.

The N -electron quantum system is described by a function of the spatial (r) and
spin (σ) coordinates of each electron, as well as the spatial coordinates R of the
nuclei, Ψ(r1σ1, ..., rn, σn,R1, ...,RN ). The properties of any (non-relativistic) time-
independent quantum system are determined by the Schrödinger equation:

HΨ(r1σ1, ..., rn, σn,R1, ...,RN ) = EΨ(r1σ1, ..., rn, σn,R1, ...,RN ) , (2.1)

H , Ψ and E are the Hamiltonian, many-body wave-function and total energy of the
system.

The Hamiltonian for a solid system is given by

H = −
N∑

I=1

h̄2

2MI
∇2

RI
−

n∑
k=1

h̄2

2m
∇2

rk
+

1
4πε0

N∑
I

N∑
I>J

ZIZJ

|RI − RJ |

− 1
4πε0

n∑
k=1

N∑
I=1

ZI e

| rk − RI | +
1

4πε0

n∑
k=1

n∑
k′>k

e2

| rk − r′k|
, (2.2)

where N , MI , ZI and RI represent the number, mass, charge and position of the
nuclei and n , m, e and rk are the number, mass, charge and position of an electron.
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The first two terms are the kinetic energy contributions from the nuclei, T i and the
electrons, Te. The remaining terms are Coulombic potential energy terms arising
from the ion-ion repulsion, Vii, ion-electron attraction, Vie and the electron-electron
repulsion, Vee.

Although in principle everything is known exactly, the Schrödinger equation with
this Hamiltonian is too difficult to be solved directly. Hence, the quantum many-
body problem is centred upon finding intelligent approximations for the Hamil-
tonian and the many body wave-function that keep the correct physics and are
computationally tractable.

This problem can be solved using three different levels of approximations:

2.2 Approximation for the Hamiltonian

The adiabatic (Born-Oppenheimer)/static approximations

The first simplification of the many-body problem is to eliminate the dependency
of the electron’s and nuclear dynamics by breaking it down into two sub-systems,
one for the electrons and one for the nuclei.

The electrons move so fast that they follow the ionic (lattice) geometries almost
without delay. In fact, from the electron point of view, the ions are fixed. The
concept behind this approximation comes from the fact that the mass of a nucleus
is much larger than the mass of an electron (M ∼ 103 × me). If we assume that
m
MI

→ 0, the many-body equation 2.1 for each ionic configuration, RI , turns to the
electron equation:

He({RI})Φv({RI}, {rk, σ}) = (T e + V e−ion + V e−e)Φv = EeΦv . (2.3)

Please note that the {RI} in the wave function are not variables but parameters.
Now we expand the solution of the many-body Hamiltonian, Ψ, into a sum of
eigenfunctions of the electron Hamiltonian, Φv :

Ψ =
∑

v

Λv({RI})Φv({RI}, {rk, σ}). (2.4)

Therefore, one can consider H e and Φv for a certain ionic geometry, and the depen-
dence of the many-body Hamiltonian, H and and wavefunction Ψ on {RI} enters
only through the coefficients Λv({RI}).
Using the above definition of the many-body wave function in equation (2.1) and
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multiplying from the left hand side by Φ∗
µ, one can get the ground state energy for

a certain lattice geometry and electron wave function, Φµ, and the integration over
all electronic coordinates gives the ground state energy of the many-body system.
Equation 2.1 turns to:

(T I + V I−I + Ee
µ)Λµ = EΛµ + electron & phonon interaction terms. (2.5)

Up to now everything is exact. In order to decouple the electron and ion dynamics,
we assume that (i) the electron-phonon interaction is negligible, (ii) the electronic
wave function belonging to different eigenstates of the nuclear system are indepen-
dent from each other (i.e. 〈Φv|Φµ〉 = 0 for v �= µ). In other words, the electrons are
always in the ground state. This is the adiabatic principle or Born-Oppenheimer ap-

proximation (BO).

With multiplying the Eq. 2.5 from the left with Λ0, the ground state energy will be
obtained:

E0 = Ee + V I−I + kinetic energy of the lattice vibrations (2.6)

The kinetic energy of the lattice vibrations is given by 〈Λ0|T I |Λ0〉. The many-body
wave function of the ground state is

Ψ0 = Λ0({RI})Φ0({RI}, {rk, σ}). (2.7)

In the BO approximation, the solution of Eq. 2.3 is the ground state energy of the
electronic system for a specific configuration and motion of the ions that follows
from Eq. 2.5.

In the static approximation we assume that the nuclei are fixed at their equilibrium
positions (their average positions), {R0

I}. In the other words, the nuclei are consid-
ered to be at rest with respect to the electrons Ψ0({r, σ}, {R0

I}) = Φ0({r, σ}, {R0
I}) Λ0({R0

I}).

The static and the adiabatic (BO) approximations come from different assumptions
about the position of the nuclei. In the adiabatic (BO) approximation the wavefunc-
tion of the electrons is defined by the momentary configurations, {RI}, of the nuclei
while in the static approximation the nuclei are in their equilibrium positions, {R0

I}.
Therefore, in the adiabatic (BO) approximation these instantaneous nuclear config-
urations appear as parameters. These parameters are no longer fixed, but they are
variables that the energy and wave function depend on.

Solving the Schrödinger equation with the above Hamiltonian is however still too
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complex for most cases, since the many-electron wave-function contains 3N vari-
ables.

One approach to solve the many-electron problem is using the electron density as
the central unknown variable, rather than the many-electron wave-function. This
approach was proposed initially by Thomas and Fermi in the 1920s [23, 24]. This
model simplifies the problem considerably since the density contains only three
degrees of freedom.

A significant leap in electronic structure theory was made in the remarkable theo-
rems of ’density functional theory’ (DFT), proved by Hohenberg and Kohn [25]. DFT
allows the ground-state properties of a many-electron system to be determined ex-
actly through the electron density.

2.3 Density-Functional Theory (DFT)

2.3.1 Basic Principles

As mentioned previously, Thomas and Fermi were the first who suggested the
model for the electron many-body problem based on the electron density. Due
to the some shortcomings of this method, it could not describes the properties of
molecules or solids quantitatively. However, almost forty years later, Hohenberg
and Kohn proposed a powerful and exact theory which is based on the original
idea by Thomas and Fermi. In the following section this theory will be discussed
briefly. For a more comprehensive discussion one of the many review articles and
books (e.g. review by Jones & Gunnarsson [26] and books by Parr & Yang [27] and
Dreizler & Gross [28]) can be consulted.

In two remarkably powerful theorems Kohn and co-workers formally established
the electron density as the central quantity describing electron interactions, and so
devised the method which determines the ground state density exactly, known as
density functional theory (DFT). The ground state density determines many body
Hamiltonian and therefore all properties of the system.

• The Hohenberg-Kohn Theorems

The Hohenberg-Kohn theorems relate to any system consisting of electrons (fermions)
moving under the influence of an external potential . These theorems are as follows:

THEOREM 1. There is a one-to-one mapping between a specific external potential, Vext(r),
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and certain electron density, n(r).

In the other words: The density determines the complete Hamiltonian and ground
state energy, since the lowest eigenvalue of this Hamiltonian gives the ground state
energy. Therefore, the ground state energy is obtained as a functional of the density.

Ev = 〈Φ| He [n(r)] |Φ〉 = 〈Φ| T [n(r)] + Vint[n(r)]︸ ︷︷ ︸
FHK [n(r)]

+Vext[n(r)] |Φ〉 . (2.8)

The sum of T [n(r)] and Vint[n(r)] is a universal functional of the electron density.
The expression for this unknown functional is the same for every system and is
independent from the external potential. Therefore, a specific kind of system is
determined only by Vext[n(r)].

The density, n(r) which is a summation of the density of spin up n↑(r), and spin
down n↓(r), is defined as:

n(r) = n↑(r) + n↓(r) = 〈Φ|
N∑

i=1

δ(r − ri) |Φ〉 . (2.9)

The total energy can be written as a functional of the density in terms of the external
potential and the universal functional in the following way,

Ev[n(r)] ≡ 〈Φ| He [n(r)] |Φ〉

≡
∫

Vext(r) n(r) d3r + F [n(r)] , (2.10)

where F [n(r)] = 〈Φ| FHK [n(r)] |Φ〉.

THEOREM 2. The ground state energy can be obtained variationally, the density that

minimises the total energy is the exact ground state density.

This means, that Ev[n0] is the ground-state energy if and only if the true ground-
state density n0(r) is inserted. For any other density n(r) (which is solution of
Eq. 2.8 and satisfies the constraint of the constant number of electrons,

∫
n(r) dr = N ),

the obtained energy is larger than Ev[n0]

Ev[n0] = min
n(r)

(Ev [n(r)]) ≤ Ev[n] . (2.11)

The ground state energy can be obtained from the variation principle, under the
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Fig. 2.1: Schematic figure of variation principle for 〈Φ0| H |Φ0〉 and Ev[n(r)]. Figure is
adapted from [1]

constraint of conserving the number of electrons of the system. In other words:

δ〈Φ| He [n(r)] |Φ〉 = δ {Ev [n(r)] − µ (
∫

n(r) d3r − N)} = 0 . (2.12)

Hence the constraint of a constant total number of electrons being equal to N is
taken into account by the method of Lagrange multipliers. The important phys-
ical conditions which have to be satisfied is that n(r) ≥ 0 and the assumption of
continuous n(r). ∫

n(r) d3r = N, (2.13)

Solving the equation above leads to the following Euler-Lagrange equation

µ =
δEv [n]
δn(r)

= Vext +
δFHK [n(r)]

δn(r)
, (2.14)

where the Lagrange multiplier, µ, is known as a chemical potential of the electrons.

The second Hohenberg-Kohn theorem states that there is a one to one correspon-
dence between the ground-state wave function and the v-representable electron
densities 1.

Now the many-electron problem with 1023 variable in three-dimensions turn into a
problem with just one variable in three-dimensions.

Figure 2.1 is a schematical comparison of the solution of the Schrödinger equation
using the wave function of electrons (1023 wave functions) and the DFT approach
using the electron density2. The significant advantage is achieved in DFT. In the

1A density is v-representable, if it is associated with the electronic ground-state wave function of
a Hamiltonian in form of H = FKH + Vext.

2Figure is taken from the presentation of Prof. M. Scheffler in density-functional theory workshop
at Los Angeles, IPAM, (2005).
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treatments which are based on the wave function, one has to insert 1023 variables
to the functional while in the DFT approach the functional depends only on one
variable with three coordinates. One must use a separate wave function of each
electron which sums up to 1023 variables.

• The Kohn-Sham Equations

The Kohn-Sham equations published in 1965, turn DFT into a practical tool for
obtaining the ground state energy [29]. The Kohn-Sham formulation centres on
mapping the full interacting system, onto a virtual non-interacting system. The
Kohn-Sham method gives an exact solution since the virtual system yields the same
ground state density as the real system. The kinetic energy functional of the non-
interacting system, Ts[n] (which is known), is not the same as the unknown kinetic
energy of the real system. Therefore the difference between them contributes to the
correlation energy, Ec . The potential energy of the real system contains two terms:
the classic part or Coulomb interaction, VH , (which is known) and the unknown
quantum part. The difference between these two parts is named exchange energy,
Ex . Therefore the functional Ev[n(r)] can be written as a function of known quan-
tities, kinetic energy (Ts) and Coulomb (Hartree) energy (EH ) of a non-interacting
classical system and the unknown Ec and Ex functional,

Ev[n(r)] = Ts[n(r)] +
∫

Vext(r) n(r) d3r + EH [n(r)] + Exc[n(r)] , (2.15)

here, Exc = Ec + Ex.

With the assumption above the Hamiltonian of the real system turns into the fol-
lowing formalism which is called Kohn-Sham Hamiltonian:

HKS[n(r)] = Ts[n(r)] + VH [n(r)] + Vxc[n(r)] + Vext[n(r)]. (2.16)

Here, Vxc is called exchange-correlation potential. It is a variational derivative of
the exchange-correlation energy, Exc,

Vxc =
δExc[n(r)]

δn(r)
. (2.17)

The Kohn-Sham Hamiltonian transforms the many-electron Schrödinger equation
into a set of one-particle Kohn-Sham equations which are much easier to solve than
the Schrödinger equation.

HKSΦoi(r) = εoiΦoi(r) , (2.18)
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here, Φoi ’s and εoi ’s are Kohn-Sham orbitals and eigenvalues. The Kohn-Sham
equations are a set of equations which describe the behavior of non-interacting
classical particles inside an external potential, Vext. Please note that the eigenvalue
of the single Kohn-Sham equations are not the energy of electrons but just mathe-
matical objects and have no physical meaning.

The construction of Kohn-Sham equations guarantees that the ground state density
of this virtual system is exactly the electron ground state density of the real system,
n(r) =

∑
i Φ

∗
oi(r)Φoi(r).

Since the Kohn-Sham Hamiltonian depends on the density, n(r), which is driven
from Φi, a ’ self consistency problem ’ has to be considered to obtain a solution.

(− h̄2

2m
∇2

i︸ ︷︷ ︸
Ts[n]

+
e2

4πε0

∫
n(r) d3r
|r − r′|︸ ︷︷ ︸

VH

+Vxc + Vext)Φi(r) = εiΦi(r) . (2.19)

In the self-consistent field (SCF) app-

Initial guess
n(r)

Calculate potential
Vext(r)   ,

H Φi(r) =  εi Φi(r)

Solve Khon-Sham equation

Calculate electron density

n(r) = Φ*
i(r) Φi(r)

Self-consistent ?

Yes

No

Ground state density
Total energy

Vint(r)   , Vxc(r)

Σ
i

n(r)
E

Mix new & old  density

n(r) = n(r)old ⊗ n(r)new

STOP

make density

Fig. 2.2: The Self-consistent field approach
for solving Kohn-Sham equations.

roach (cf. Fig. 2.2), the solutions, Φi,
determine the Hamiltonian, and the eq-
uations cannot be solved before its so-
lutions to be known. This paradox can
be solved by an iterative procedure: a
initial density, ni(r) is guessed and the
Hamiltonian is constructed. The eq ua-
tions are solved and the resulting Φi

lead to a new density, n1(r), which most
probably is different from the initial den-
sity. Again, new Hamiltonian with new
density is constructed which yields n2(r)
and so on.

This procedure is set up in such a way
that it converges this series to a final
density, nf (r), which generates a Hamil-
tonian with the solution of previous den-
sity, nf (r), again. This final density is

consistent with the Hamiltonian.

Kohn and Sham devised an ingeniously practical single-particle scheme for per-
forming DFT calculations, which is still exact, in principle. An additional approxi-
mations must be made for the unknown component, Exc[n(r)], which accounts for
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electron many-body effects. The exchange and correlation energy is an important
contribution since the binding energy of the systems is defined in an accurate de-
scription of Exc[n(r)] which is crucial for the prediction of binding properties.

Description of some present approximations for the exchange-correlation energy
(potential) in DFT is the object of following part.

2.4 Approximation to The Exchange Correlation Potential

Hohenberg and Kohn in their original paper, considered the exchange-correlation
potential for an inhomogeneous electron gas of almost constant density [25].

n(r) = n0 + ñ(r) , (2.20)

with ñ(r)/n0 
 1 and
∫

ñ(r) dr = 0. Then the exchange-correlation energy func-
tional is expanded in terms of the assumed density:

Exc[n] =
∫

εhomo
xc [n(r)]n(r)dr , (2.21)

where εhomo
xc [n] is the exchange-correlation energy per electron of a uniform (homo-

geneous) electron gas of density n. The εxc is a functional of the local density, so
that this approximation is known as Local-Density Approximation (LDA). The anal-
ogous formalism, in which it describes a spin-polarized system, is known as Local

-Spin -Density Approximation (LSDA). The Exc is a functional of both spin up and
spin down density. LDA predicts a too high cohesive energy and underestimates
the equilibrium volume, due to overbinding.

There are several approximations for the εxc. The most widely used approxima-
tions were proposed by:

Wigner [30]: εx = −0.09164
rs

and εc = −0.88
7.8+rs

. rs = (4πn/3)−1/3 is the Wigner-Seitz
radius.

Hedin and Lundqvist [31] : εx = −0.9164
rs

and εc = −0.045[(1 + ( rs
21)3)h(1 + 21

rs
+ rs

42 −
( rs
21 )2 − 1

3)]

Perdew and Wang [32]: which used the Ceperley and Alder [33] parameterization
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for rs ≥ 1 : εx = −0.4582
rs

εc =

{ −0.1423
1+11.0529

√
rs+0.333 rs

rs ≥ 1

−0.0480 + 0.0311 ln rs − 0.0166 rs + 0.002 rs ln rs 0 ≤ rs ≤ 1

For a system with smooth electron density LDA provides an accurate enough de-
scription, but for strongly inhomogeneous systems, in which the density variations
are significant, the performance of an LDA-Exc functional is not satisfactory.

An Alternative to LDA can be obtained by letting Exc depend on the gradient of
density as well, which allows for more flexibility in dealing with density fluctua-
tions.

Exc[n(r)] =
∫

n(r) εxc(n(r),∇n(r))d3r . (2.22)

This approach leads to the Generalized Gradient Approximation(GGA).

The idea of using the gradient of density beside density, was found for the first time
in Kohn and Sham original paper from 1965 [29]. They used a gradient expansion
of the density as a correction:

Exc[n] =
∫

εxc[n(r)]n(r)dr +
∫

ε2
xc[n(r)]|∇n|2dr + ... (2.23)

There is not a unique generalized gradient approximation for the exchange- cor-
relation functional. Indeed, there are several modifications and some of the most
popular functionals, implemented also in the WIEN2k code are: the PW91 for-
malism, proposed by Perdew and Wang [32] and the modified version, PBE-96 by
Perdew-Burke-Ernzerhof [34]. The latter one is used throughout the present work.

In the PBE-96 functional, a correction term, h(n, rs, t) is added to the correlation
part, εc . The correlation energy is a functional of the relative spin polarization
density, n̄ = (n↑ − n↓)/(n↑ + n↓) ,

EGGA
c [n↑, n↓] =

∫
n(r)(εhomo

c (n̄, rs) + H(n̄, rs, t))d3r , (2.24)

where t ∝ |∇n|/n.

The functional h has a logarithmic shape and obeys the following conditions [34]:
i) For a slowly varying density gradient, h is given by its (the densities) second-
order gradient expansion.
ii) For a rapidly varying density gradient, h −→ −εhomo

c .
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iii) Under uniform scaling h is a constant.

The exchange energy is constructed as:

EGGA
x =

∫
n(r)εhomo

x (n)Fx(s)d3r , (2.25)

where s = |∇n|/(2kfn) and kf = (9π/4r3
s)−1/3. Fx is given as:

Fx(s) = 1.804 − 0.804
1 + 0.235s2/0.804

. (2.26)

Note that the energy in the PBE formalism is given in Hartree unit.

The last level of approximation is applied to solve the Kohn-Sham equation.

2.5 Approximation for Solving The Kohn-Sham Equations

A most important step for solving Kohn-Sham equations is to find a suitable basis
set for the expansion of wave function. Using the suitable basis set that describes
the behavior of the electrons leads to a solution of Kohn-Sham equations, not be
computationally very demanding but still accurate. For example, the behavior of
an electron in a constant potential can be described quite well by a set of plane
waves.

The DFT orbital wave functions, Φis, are then expanded in terms of a basis set, ϕi,

Φoi =
M∑
K

ci
K ϕi

K , K = k + G , (2.27)

where k is the crystal momentum vector in the irreducible Brillouin zone and G is
a reciprocal lattice vector.

In order to find the density, one must set up the basis set and determine the c i
K co-

efficients. In principle, the expansion of the wave functions should be infinite, but
in practice they are truncated at some point. The choice of the truncation value, M ,
turns the infinite number of the basis functions into a finite set of those. This rep-
resent the third level in a hierarchy of approximations necessary to solve a many-
body system Hamiltonian, discussed in the beginning of this chapter.

There are several different methods to define the orbital wave function and solve
the DFT equations. One of the common used methods is the pseudo-potential plane
waves (PP-PWs) method. They are quite suitable for describing periodic solids
when using pseudo-potentials, but are an inefficient basis for describing the rapid
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variations of wave-functions close to the nucleus.

One solution for this difficulty is using the pseudopotential concept, in which the
oscillations of the electron wave-function near a nucleus are considered in a pseud-
ised fashion. Another possibility, used in the calculations presented in this work, is
to augment the plane waves basis set in the vicinity of a nucleus.

In the following sections, the augmented plane waves (APW), the linearized aug-
mented plane waves (LAPW) method and the effect of local orbitals on the effi-
ciency of the basis set will be discussed.

2.5.1 Basis Functions: APW, LAPW, APW + lo

• The Augmented Plane Wave Method (APW)

Slater was the first to introduce Augmented Plane

R
MT

Muffin-Tin

Sphere

Interstitial Region

Fig. 2.3: Division of the unit
cell into two parts: the
Muffin-Tin spheres,
with radius R, around
the nucleus and an
interstitial region.

Waves (APW) as possible basis functions to solve
one-electron equations [35]. In this method the unit
cell is divided into two regions: i) the rigion
around the nuclei, which is a sphere with radius
R , the so called ’ Muffin-Tin ’ sphere (MT). ii) the
remaining part of the unit cell which is called ’ in-

terstitial ’ region (IR), see Fig. 2.3. Loucks describes
this methods in detail [36].

The idea behind APW is that the potential in the
interstitial region is almost constant. This means,
that the behavior of electrons can be efficiently de-
scribed by a plane waves basis set 3. Close to the
nuclei it is assumed that electrons behave like in a
free-atom. The atomic like functions are efficient to describe the behavior of the
electrons in this region. Therefore, the wave function of electron over the whole
unit cell can be obtained as below:

ϕK(r) =

⎧⎪⎨
⎪⎩

1√
V

eiK.r r ∈ IR

∑
l,m AK

lm ul(r,E) Ylm(r̂) r ∈ MT

(2.28)

Here, V is the unit cell volume, Ylm are spherical harmonics and ul is the numerical
solution to the radial Schrödinger equation at the energy ε:

3The solution of a Hamiltonian with constant potential is plane waves.
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{ − 1
r2

d

dr
(r2 d

dr
) + [

l(l + 1)
r2

+ Veff(r) − ε]
}

ul(r, ε) = 0 . (2.29)

The coefficients AK
lm are chosen in such way that satisfy the boundary conditions.

The only boundary condition in the APW method is that the basis functions must
be continuous at the MT-sphere boundaries 4. Therefore, with expanding the plane
wave into Bessel functions and matching the basis functions inside and outside the
sphere, the coefficients are

AK
lm = 4πilY ∗

L (K̂G)
jl(KGR)
ul(R,E)

, (2.30)

where jl(KGr) are Bessel functions and R is radius of MT sphere.

The Kohn-Sham eigenstates are expressed as linear combination of APW functions,
ϕK(r) :

Φoi(r) =
∑
K

Ci
K ϕK(r) . (2.31)

The expansion coefficients C i
K, can be determined variationally [36]. This requires

a variational expression for energy with respect into the linear combination of APW
basis set:

δ〈Φo |H| Φo〉
δCK

= 0 . (2.32)

Although the APW basis set can describe the behavior of the electron near the nu-
clei, there are two shortcomings for this method:
i) First, the coefficients AK

lm are not defined for the energies that yield a radial so-
lution equal to zero at MT-sphere boundaries, ul(E,R) = 0. In this case, the basis
sets are decoupled, since the boundary conditions would not be satisfied [37].
ii) Second, the Kohn-Sham wave functions, Φi(r) can be described by the APW ba-
sis set only if the radial solutions are evaluated at Kohn-Sham eigenvalues,(E = εi).
Therefore a different energy-dependent set of APW basis functions must be found
for each Kohn-Sham eigenenergy. One should start with a guessed energy value,
solve the radial Schrödinger equation to construct the APW basis and set up the
matrix elements . Then the determinant |H − ES| must be computed, where S is
the overlap matrix 5. So in order to find the root of the determinant, several trial
energies have to be tested. A similar procedure is repeated to determine all matrix

4The kinetic energy is not well-defined for discontinuous basis functions.
5Since the APW basis sets are not orthogonal, overlap matrix would not vanish from the secular

equation.
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Fig. 2.4: Schematic dependence of ul(r, εl) (a) and DOS (b) on the energy ε.

elements. This is computationally very expensive [38].

• The Linearized Augmented Plane Wave Method (LAPW)

In 1975 Andersen [39] and Koelling and Arbman [40] in two different works, im-
proved the APW methodology and solved the problem of energy-dependence of
the basis set. In this modified method which is called ’ Linearized Augmented Plane

Wave ’ (LAPW), an energy independent radial solution is expanded in a Taylor-like
series around a fixed energy. Such a Taylor expansion of ul around fixed energy
value6 El is given by:

ul(r, ε) = ul(r, εl) + (εl − ε)
∂ul(r, ε)

∂ε

∣∣∣
ε=εl︸ ︷︷ ︸

u̇l(r,εl)

+ O(εl − ε)2 . (2.33)

The basis functions in the interstitial region are considered to be PW while the basis
set inside the MT-spheres are taken as a linear combination of a radial solution, ul,
at fixed linearization energy, El, and its energy derivative ,u̇l, at the same energy.
Note that both ul and u̇l are regular at the origin. El should be chosen in such a
way that its value is close to the center of the energy band with the appropriate
l-character.

6It is not essential that El is equal to the Kohn-Sham eigenvalues.
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ϕK(r) =

⎧⎪⎨
⎪⎩

1√
V

eiK.r r ∈ IR

∑
l,m ( AK

lm ul(r,El) + BK
lm u̇l(r,El)) Ylm(r̂) r ∈ MT

(2.34)

The coefficients AK
lm and BK

lm will be determined by requiring that the basis function
as well as its derivative are continuous at the boundary of the MT-sphere.

Since the shape of the radial solution ul(r, ε) depends on the εl, choosing the suit-
able linearization energy εl is quite important. The most simple way for doing this
is the Wigner-Seitz method. In this method the linearized energy is chosen to be the
average of two energies εtop and εbottom, i.e. εl = (εtop+εbottom)/2, see Fig. 2.4 7. εtop is
the highest antibonding energy state, i.e. the top of the band. It is also an energy, for
which the radial solution becomes zero at the MT-sphere boundaries, ul(R,Etop) =
0. The other energy is chosen in a similar fashion: Ebottom is the lowest bonding en-
ergy state, i.e. the bottom of the band and for it the derivative of the radial solution
becomes zero at the MT-sphere boundaries, u̇l(R,Etop) = [∂ul(r,Ebottom)/∂r]R = 0,
see Fig. 2.4-a.

Solutions to the radial Schrödinger equation, ul, for s, p, d and f orbitals are shown
for an APW basis set in Fig. 2.5-a and an LAPW basis function in Fig. 2.5-b. The
Figure is taken from work by Sjöstedt et al. [37]. As mentioned before and can
be seen from the figure, due to the discontinuous behavior of the slopes of the
functions in the APW approach, it possesses a kink at the MT-sphere boundary. In
contrast, the LAPW functions have smooth behavior at the MT-sphere boundary.

The LAPW basis set can provide sufficient basis functions for Kohn-Sham eigen-
states in the energy range around the linearization energy. Therefore, all the Kohn-
Sham eigenvalues can be found with just a single diagonalization of the secular
matrix. However, the number of basis functions in LAPW is larger than in the
APW method, thus the secular matrix of LAPW is enlarged in comparison to APW.

• The Augmented Plane Wave plus local orbital Method (APW+lo)

In an alternative approach to LAPW one can combine advantages of both the APW
and the LAPW method to optimized basis functions. It can be done by removing
the energy dependence of the original APW basis functions (which is the char-
acteristic of LAPW functions) but retaining the lower cutoff, i.e. smaller matrix
associated with the original APW functions. In the so called APW+lo method (de-

7Figure is adapted from WIEN2k userguide (http://www.wien2k.at).
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Fig. 2.5: Radial solution, ul, of the l-composition and its behavior at MT-sphere boundaries
in an APW (a) and LAPW (b) basis function are compared.

veloped by Sjöstedt et al.) Sjöstedt et al. proposed an energy-independent basis set
of APW which combines with a new basis set in the MT-sphere which belongs to
the local orbitals. This new basis set is called local orbital basis set (lo). It is applied
in order to increase the flexibility of the basis set and to recover the effect of the
missing derivative of the radial wave functions. They (the local orbitals), neither
impose extera boundary condition of the APW basis set nor affect the number of
basis functions in the interstitial region. This local orbitals are restricted only inside
the MT-sphere, therefore the interstitial region will remain unaffected.

ϕlo
lm(r) =

⎧⎪⎨
⎪⎩

0 r ∈ IR

∑
l,m ( Alo

lm ul(r,El) + Blo
lm u̇l(r,El)) Ylm(r̂) r ∈ MT

(2.35)

For simplification, one can use the same linearization energy for the local orbital
basis functions. The coefficient Alo

lm and Blo
lm are determined by normalization and

using ϕlo
lm = 0 at the MT-sphere boundary. The APW and local orbital are contin-

uous at the MT-sphere while their first derivatives are discontinuous (the slope of
the local orbital has a non-zero value at the MT-sphere).

The new APW+lo basis set includes the radial solutions of the Schrödinger equa-
tion in their original APW form, which efficiently describes the eigenfunctions at
energies close to El, but also a (less restricted) linear combination of ul(r,El) and
u̇l(r,El), which improves the description of states away from El.
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Fig. 2.6: Schematic shape of the full potential (a) and the Muffin-Tin potential (b).

2.5.2 Representation of The Potential

The (L)APW method allows an accurate description of the rapidly changing (os-
cillating) wave-functions, potential and electron density close to the nuclei as well
as the smoother part of these quantities in between the atoms (interstitial region).
Therefore the representation of the potential will be similar to the wave-functions,
the potential is a hybrid of two adjacent regions of space.

M. Weinert [41] and E. Wimmer et al. [42] proposed a method to describe the all
electron potential in the solid using the multipole potentials concept. As there is no
shape approximation for the potential, such an approach is called a full-potential
treatment. In this method the Poisson equation is solved for the general periodic
potential, including the non-spherical contributions of the potential inside the MT-
sphere to the Hamiltonian matrix elements.

The Hamiltonian , and hence the potential, contains three contributions:

Veff = VS + VNS + VIR , (2.36)

where the VS , VNS and VIR terms are due to the spherical and non-spherical part of
the potential in the MT-sphere and the potential in interstitial regions [43].

The potential in the interstitial region is described by the Fourier representation (of
the smooth interstitial charge density), which means that the full potential has then
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the following form:

V (r) =

⎧⎪⎨
⎪⎩

∑
G VG eiG.r r ∈ IR

∑
L,M VLM (r̂) YLM (r̂) r ∈ MT

(2.37)

Here, G is a reciprocal vector and its maximum value is required to be larger than
the one of a reciprocal vector in the PW expansion in the interstitial region, K.
This is due to the fact that the Fourier expansion represents the potential while the
quadratic form of the wave functions determine the density.

YLMs are lattice harmonics represent the point group symmetry which is applied
to the spherical harmonics. The quality of the full-potential is controlled by the
cutoff parameter G which truncates the sum over lattice vectors in the interstitial
region and L,M which restricts the number of the non-spherical terms inside the
MT-sphere which contributes to the potential.

Neglecting non-spherical terms, (l �= 0), in the expansion of the potential inside a
MT-sphere and considering just a constant potential in the interstitial region (G =
0) leads to an approximate crystal potential called Muffin-Tin (MT) potential. The
MT-potentials are a reasonable approximation to describe the potential for bulk
materials but for reduced symmetry solid (such as films or interface) it is not a very
useful treatment. The schematic shape of the full potential and the MT-potential is
shown in Fig. 2.6.

2.6 k-point Sampling

According to Bloch’s theorem [44], any real-space integral over a periodic system
with infinite extent can be replaced by an integral in reciprocal-space over the (fi-
nite) first Brillouin zone. Thus in order to study the properties of crystals, one
needs to calculate the integration of the periodic functions over the first Brillouin-
zone (1BZ) in the reciprocal space in [45]; For a example quantity I can be defined
as:

I =
∫

BZ
F (K) d3k , (2.38)

where the periodic function, F (k) =
∑

R f(R) eik.R is the Fourier transform of a
periodic function in real space. In practice for the numerical evaluation, this inte-
gral turns into the sum over a large number of discrete points. To make calculations
feasible only a finite set of such points in the BZ is used to compute these functions.
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Such a set of special points is called ′k− point′ set. [46]:

Ω−1

∫
BZ

F (k) d3k =
∑

n

wnF (kn) . (2.39)

Here Ω is the unit cell volume in the real space and wn is a weight factor 8 and the
sum over all weights is equal to one.

∑
n

wn = 1 (2.40)

The error introduced by using a discrete k-point set can be reduced by increasing
the density of the k-point mesh.

The symmetries of a crystal allow further reduction of the number of k-points used
for an actual calculation. There are several methods to find such set of points [47–
49]. The most applicable and famous approach is that of Monkhorst and Pack,
[49] which is employed for the calculations in this work. This scheme contains
equispaced grid points which are distributed homogeneously throughout the BZ
with rows and columns parallel to the reciprocal vectors. These equispaced grid of
k-points are constructed as follows:

k = x1b1 + x2b2 + x3b3 , (2.41)

where bis are the reciprocal lattice vectors, and the coefficients are obtained:

xi =
(2i − q − 1)

2q
, i = 1, 2, ...q (2.42)

q is an integer number that determines the number of special points in the set.

Typically, the point-group symmetry of the crystal is used to produce a smaller
subset of the full k-point set, containing points located within the irreducible part
of the Brillouin zone. The values of the weighting factors will be adjusted according
to this new k-point set. This k-point in the irreducible BZ results in a significant
reduction in the computational expense since a smaller number of k-points is used
in the summations.

Choosing a sufficiently dense mesh of integration points is crucial for the conver-
gence of the results. Therefore, it is one of the major parameters for which one
should perform convergence tests before setting up the calculations.

8A weight factor, wn, is defined as a fraction of k-points equivalent under symmetry consideration.
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2.7 The Slab Model and The Supercell Approach

The goal of this work is to predict and simu-

UNIT CELL

VACUUM

SLAB

Fig. 2.7: Side view of a slab
model containing 8 layers
Si(001)(2 × 2) with alterat-
ing dimer reconstruction
and vacuum.

late the behavior of magnetic adatoms (such as
adatom adsorption, diffusion pathways and thin
film growth ) on semiconductor surfaces. To
perform such calculations, one needs a proper
model that describes the system reasonably well
and is computationally not (too) expensive.

Normally, in the bulk material with three di-
mensional periodicity, the periodic boundary con-
ditions of solids can be satisfied in the surfaces.
However, due to the lack of the translation sym-
metry in the direction normal to the surface, the
periodicity will be reduced to two dimensions.
The slab approach is suitable for such a purpose
and is utilized in this work to simulate the stud-
ied system. In the slab model the unit cell is de-
scribed by a finite number of layers and a vac-
uum region is introduced into the unit cell. This
leads to a reduction of the symmetry (compared
to the bulk material) in z-direction, but also in-
troduces a surface into the calculation. Periodic
boundary conditions ensure that the slab is in-
finte in x and y direction, but also that there are
periodically repeated slabs in z-direction, which
are separated by the vacuum region. The slabs
used in this work are constructed in such a way,

that inversion symmetry is retained. The thickness of the slab and the vacuum re-
gion are chosen with the requirement that both surfaces would not have interaction
with each other through the vacuum or the slab. The adequate value for slab and
vacuum thickness must be determined in convergence tests.

There are two different interpretations and descriptions of the slab model within
the (L)APW method and the shape of the full-potential:
i) Film geometry approach, in this model which was proposed by Krakauer et al.

[42,43,50], the vacuum region is described by an alternative basis set and potential
term. The basis function is considered to be a product of a two-dimensional plane-
wave and a z-dependent function and its energy derivative. The z-dependent func-
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tion is defined by the solution of the one-dimensional Schrödinger equation with z-
dependent potential. The applied boundary condition requires that the basis func-
tion and its energy derivative are continuous across the slabs boundaries.
ii) Supercell approach: this model is used in the present work. It is based on the
three dimensional periodicity of the unit cell. It means the periodic boundary con-
ditions are applied for the slabs in z-direction as well as in x and y directions. The
conditions of an adequate thickness of the vacuum and the slab, requires that the
the electronic wave function of the slabs vanishes around the middle of the vacuum
region. The middle layers of the slabs should have a bulk-like representation.
A side view ball-stick model of a supercell with an eight layer Si(001)(2 × 2) slab
and a vacuum region, which is approximately 1.5 times as thick as the slab, is
shown in Fig. 2.7.

2.8 The WIEN2k Code

The calculations in this work are performed using the WIEN2k computer package
[51, 52]. This program contains several sub-programs, which are described briefly
in the following parts. There are two major parts in the program, the initialization
and the self-consistent field [(SCF)] cycle. The flow chart of the code is given in
Fig. 2.8.

• Initialization:
setting up the unit cell and generating the initial density

In this sub-program, atomic densities are generated and superimposed to obtain a
initial crystal density for the SCF calculation. Additionally, the atomic potentials
and, optionally, atomic valence densities are created. Information about l,m values
of the lattice harmonics representation and number of Fourier coefficients of the
interstitial charge density are inserted as input file in this part.

• LAPW0:
Construction of the effective potential:

The Poisson equation is solved and the total potential is computed as the sum of
the Coulomb and the exchange-correlation potential in the LAPW0 program. The
electron (spin) density is used as input and the spherical (l=0) and the non-spherical
parts of the potential are generated. The Coulomb potential is calculated by a mul-
tipolar Fourier expansion introduced by Weinert [41]. The exchange-correlation
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Fig. 2.8: Flow chart of SCF cycle in WIEN2k compter code.
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potential is computed numerically on a grid. Additionally, the Hellmann-Feynman
force contribution to the force is also determined [53].

• LAPW1:
Solving the Kohn-Sham equations of valence electrons:

The Hamiltonian and the overlap matrix [40] are set up in LAPW1. Their diag-
onalization provides the eigenvalues and eigenvectors. Both the LAPW and the
APW+lo methods are supported. For maximum efficiency a mix of both is rec-
ommended, i.e. the APW+lo basis functions are used for physically meaningful l

values, while LAPW basis functions are employed to describe higher l-values func-
tions.

• LAPW2:
Construction of the new electron density

The Fermi-energy is computed. The electronic charge densities are expanded ac-
cording to the representation of Eq. 2.28 for each occupied state and each k-vector.
Afterwards the corresponding (partial) charges inside the atomic spheres are ob-
tained by integration. In addition, Pulay-corrections to the forces are calculated.

• LCORE :
The treatment of the core electrons

The potential and the charge density of the core electrons are computed.

• LMIXER:
Generating the input density for the next iteration

The electron densities of core, semi-core, and valence states are combined to yield
the total new density. Taking only the new densities would, however, lead to in-
stabilities in the iterative SCF process. To have a stable SCF cycle new and old
densities need to be mixed, to obtain a new density.
nm+1

new = (1 − α)nm
new + α nm

old , here α is a mixing parameter. In the WIEN2k code
this is done (mainly) using the Broyden scheme.
The total energy and the atomic forces are computed in mixer, as well.
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