
Chapter 4

Inferring signal transduction
pathways

The last chapter dealt with models of primary effects. We assumed that perturbing one
pathway component leads to detectable changes at other pathway components. In this
chapter I introduce a method designed for indirect observations of pathway activity by
secondary effects at downstream genes (section 4.1). I present an algorithm to infer non-
transcriptional pathway features based on differential gene expression in silencing assays.
The main contribution is a score linking models to data (section 4.2). I demonstrate its
power in the controlled setting of simulation studies (section 4.3) and explain its practical
use in the context of an RNAi data set investigating the response to microbial challenge
in Drosophila melanogaster (section 4.4).

4.1 Non-transcriptional modules in signaling
pathways

A cell’s response to an external stimulus is complex. The stimulus is propagated
via signal transduction to activate transcription factors, which bind to promoters
thus activating or repressing the transcription and translation of genes, which in turn
can activate secondary signaling pathways, and so on. We distinguish between the
transcriptional level of signal transduction known as gene regulation and the non-
transcriptional level, which is mostly mediated by post-translational modifications.
While gene regulation leaves direct traces on expression profiles, non-transcriptional
signaling does not. Thus, on microarray data gene regulatory networks can be mod-
elled by methods described in chapters 2 and 3, while non-transcriptional pathways
can not. However, reflections of signaling activity can be perceived in expression
levels of other genes. We explain this in a simplified pathway model and in a real
world example in Drosophila.

A hypothetical pathway Fig. 4.1 shows a hypothetical biochemical pathway
adapted from Wagner [140]. It consists of two transcription factors, a protein ki-
nase and a protein phosphatase and the genes encoding these proteins. The figure
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Chapter 4 Inferring signal transduction pathways

shows the three biological levels of interest: genome, transcriptome and proteome.
The thick arrows show information flow through the pathway. The transcription
factor expressed by gene 1 binds to the promoter region of gene 2 and activates
it. Gene 2 encodes a protein kinase, which phosphorylates a protein phosphatase
(expressed by gene 3). This event activates the protein phosphatase, which now de-
phosphorylates the transcription factor produced by gene 4. It binds to gene 5 and
induces expression.

The three biological levels of DNA, mRNA and protein are condensed into a graph
model on five nodes. Gene expression data only shows the mRNA level. A model
inferred from expression data will only have two edges, connecting gene 1 to gene 2
and then gene 2 to gene 5. Since genes 3 and 4 only contribute on the protein level,
a model based on correlations on the mRNA level will ignore them. This holds true
for all models descibed in chapter 2.
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Figure 4.1: A hypothetical biochemical pathway adapted from Wagner [140]. It
shows four levels of interest: three biological and one of modeling. Inference from gene
expression data alone only gives a very limited model of the pathway. The contributions
of genes 3 and 4 are overlooked.
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Figure 4.2: The situation changes if we can use interventional data for model building.
Silencing gene 3 by RNAi will cut information flow in the pathway and result in an
expression change at gene 5. This is visible on the mRNA level and can be integrated
in the model. Thus, the expanded model shows an edge from gene 3 to gene 5.
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4.1 Non-transcriptional modules in signaling pathways

Interventions at genes in the pathway shed light on the pathway topology. This is
exemplified by an RNAi intervention at gene 3 in Fig. 4.2. Silencing gene 3 will cut
information flow in the pathway and result in an expression change at gene 5. This is
reflected in the model by extending it to include an edge from gene 3 to gene 5. Note
that we have no observation of direct effects of the intervention at gene 4 in mRNA
data. The only information we have are secondary effects at the transcriptional
end of the pathway. This chapter will introduce novel methodology to order genes in
regulatory hierarchies from secondary effects. The procedure is motivated by the logic
underlying a study in Drosophila conducted by Michael Boutros and coworkers.

An example in Drosophila Boutros et al. [12] investigate the response to microbial
challenge in Drosophila melanogaster. They treat Drosophila cells with lipopolysac-
charides (LPS), the principal cell wall components of gram-negative bacteria. Sixty
minutes after applying LPS, a number of genes show a strong reaction. Which genes
and gene products were involved in propagating the signal in the cell? To answer
this question a number of signaling genes are silenced by RNAi. The effects on the
LPS-induced genes are measured by microarrays. The observations are: with only
one exception, the signaling genes show no change in expression when other signaling
genes are silenced. They stay “flat” on the microarrays. Differential expression is
only observed in genes downstream of the signaling pathway: silencing tak reduces
expression of all LPS-inducible transcripts, silencing rel or mkk4/hep reduces expres-
sion of disjoint subsets of induced transcripts, silencing key results in profiles similar
to silencing rel. Gene tak codes for protein TAK1 in Fig. 1.2, key for IKKγ, and rel is
the transcription factor Relish, already discussed in the introduction in chapter 1.

Boutros et al. [12] explain this observation by a fork in the signaling pathway with tak
above the fork, mkk4/hep in one branch, and both key and rel in the other branch.
The interpretation is a Relish-independent response to LPS, which is also triggered
by IMD and TAK but then branches off the Imd pathway. Note that this pathway
topology was found in an indirect way: no information is coming from the expression
levels of the signaling genes. Silencing candidate genes interrupts the information flow
in the pathway, the topology is then revealed by the nested structure of affected gene
sets downstream the pathway of interest. The computational challenge we address is
to derive an algorithm for systematic inference from indirect observations.

Models for primary effects cannot be applied here In chapter 3, we discussed
models to explain primary effects of silencing genes on other genes in the pathway.
Some are deterministic and graph based, some are probabilistic and able to han-
dle noise in the data. All of them aim for transcriptional networks and are unable
to capture non-transcriptional modulation. Some approaches use hidden variables
to capture non-transcriptional effects [89, 104, 105] without making use of inter-
ventional data. To keep model selection feasible they have to introduce a number
of simplifying assumptions: either the hidden nodes do not regulate each other, or
the hidden structure is not identifiable. In both cases, the models do not allow in-
ference of non-transcriptional pathways. In graphical models with hidden variables
non-transcriptional effects are considered nuisance, not the main target of pathway
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Chapter 4 Inferring signal transduction pathways

reconstruction. In summary, none of the methods designed to infer transcriptional
networks can be applied to reconstruct non-transcriptional pathways from microarray
data. The major problem is: these algorithms require direct observations of expres-
sion changes of signaling genes, which are not fully available in datasets like that of
[12]. There exist only two methodologies comparable to ours in being able to identify
non-transcriptional pathway features from microarray data: physical network models
and epistasis analysis.

Physical network models Yeang et al. [149] introduce a maximum likelihood
based approach to combine three different yeast datasets: protein–DNA, protein–
protein, and single gene knock-out data. The first two data sources indicate direct
interactions, while the knock-out data only contains indirect functional information.
The algorithm searches for topologies which are consistent with observed downstream
effects of interventions. While it is not confined to the transcriptional level of regula-
tion, it also requires that most signaling genes show effects when perturbing others.
It is not designed for a dataset like that of Boutros et al. [12] described above.

Epistasis analysis Our general objective is similar to epistasis analysis with global
transcriptional phenotypes. Regulatory hierarchies can be identified by comparing
single-knockout phenotypes to double-knockout phenotypes. Driessche et al. [31] use
gene expression time-courses as phenotypes and reconstruct a regulatory system in
the development of Dictyostelium discoideum, a soil-living amoeba. Yet, there are
several important differences. First, we model whole pathways and not only single
gene-gene interactions. Second, we treat an expression profile not as one global
phenotype but as a collection of single-gene phenotypes. This will be made clear in
the following overview.

How to learn from secondary effects We present a computational framework
for the systematic reconstruction of pathway features from expression profiles re-
lating to external interventions. The approach is based on the nested structure of
affected downstream genes, which are themselves not part of the model. Here we
give a short overview of the method before presenting it in all details in section 4.2.
The model distinguishes two kinds of genes: the candidate pathway genes, which are
silenced by RNAi, and the genes, which show effects of such interventions in expres-
sion profiles. We call the first ones S-genes (S for “silenced” or “signaling”) and the
second ones E-genes (E for “effects”). Because large parts of signaling pathways are
non-transcriptional, there will be little or no overlap between S-genes and E-genes.
Elucidating relationships between S-genes is the focus of our analysis, the E-genes are
only needed as reporters for signal flow in the pathway. E-genes can be considered
as transcriptional phenotypes. S-genes have to be chosen depending on the specific
question and pathway of interest. E-genes are identified by comparing measurements
of the stimulated and non-stimulated pathway: genes with a high expression change
are taken as E-genes.

The basic idea is to model how interventions interrupt the information flow through
the pathway. Thus, S-genes are silenced while the pathway is stimulated to see which
E-genes are still reached by the signal. Optimally, the gene expression experiments are
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4.1 Non-transcriptional modules in signaling pathways
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Figure 4.3: A schematic summary of our model. The dashed box indicates one
hypothesis: it contains a directed graph T on genes contributing to a signaling pathway
(S-genes). A signal enters the pathway at one (or possibly more than one) specified
position. Interventions at S-genes interrupt signal flow through the pathway. S-genes
regulate E-genes on the second level. Together the S- and E-genes form an extended
topology T ′. We observe noisy measurements of expression changes of E-genes. The
objective is to reconstruct relationships between S-genes from observations of E-genes
in silencing experiments.

replicated several times. This results in a data set representing every signaling gene
by one or more microarrays. These requirements are the same as in epistasis analysis
[6], but they are not satisfied in all datasets monitoring intervention effects. In the
Rosetta yeast compendium [61], for example, there is no external stimulus by which
the interruption of signal flow through a pathway of interest could be measured.

The main contribution of this chapter is a scoring function, which measures how well
hypotheses about pathway topology are supported by experimental data. Input to
the algorithm is a list of hypotheses about the candidate pathway genes. A hypothesis
is characterized by (1.) a directed graph with S-genes as nodes and (2.) the possibly
many entry points of signal into the pathway. This setting is summarized in Fig. 4.3.
The model is based on the expected response of an intervention given a candidate
topology of S-genes and the position of the intervention in the topology. Pathways
with different topology can show the same downstream response to interventions. All
pathways, which make the same predictions of intervention effects on downstream
genes, are identified by one so called silencing scheme. Sorting silencing schemes
by our scoring function shows how well candidate pathways agree with experimental
data. Output of the algorithm is a strongly reduced list of candidate pathways. The
algorithm is a filter, which helps to direct further research.

Applications beyond RNAi Our motivation to develop this algorithm results from
the novel challenges the RNAi technology poses to bioinformatics. At present RNAi
appears to be the most efficient technology for producing large-scale gene-intervention
data. However, our framework is flexible and any type of external interventions can be
used, which reduces information flow in the pathway. This includes traditional knock-
out experiments and specific protein inhibiting drugs. An important requirement for
any perturbation technique used is high specificity. Off-target effects impair our
method since intervention effects can no longer be uniquely predicted.
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Chapter 4 Inferring signal transduction pathways

4.2 Gene silencing with transcriptional phenotypes

First, we describe our model for signaling pathways with transcriptional phenotypes.
Predictions from pathway hypotheses are summarized in a silencing scheme. In the
main part of the section, we develop a Bayesian method to estimate a silencing scheme
from data.

4.2.1 Signaling pathway model

Core topology on S-genes The set of E-genes is denoted by E = {E1, . . . , Em},
and the set of S-genes by S = {S1, . . . , Sp}. As a pathway model, we assume a
directed graph T on vertex set S. The structure of T is not further restricted:
there may be cycles and it may decompose into several subgraphs. The external
stimulus acts on one or more of the S-genes as specified by the hypothesis. S-genes
can take values 1 and 0 according to whether signaling is interrupted or not. State 0

corresponds to a node, which is reached by the information flow through the pathway.
This is the natural state when the pathway is stimulated. State 1 describes a node,
which is no longer reached by the signal, because the flow of information is cut by
an intervention at some node upstream in the pathway. An S-gene in state 1 is
in the same state as if the pathway had not been stimulated. While the pathway
is stimulated, experimental interventions break the information flow in the pathway.
An intervention at a particular S-gene first puts this S-gene’s state to 1. The silencing
effect is then propagated along the directed edges of T .

From pathways to silencing schemes We call the subset of S-genes, which are in
state 1 when S-gene S is silenced, the influence region of S. The set of all influence
regions is called a silencing scheme Φ. It summarizes the effects of interventions
predicted from the pathway hypothesis. Mathematically, a silencing scheme is the
transitive closure of pathway T implying a partial order on S. Drawn as a graph,
Φ contains an edge between two nodes whenever they are connected by a directed
path in T . Different pathway models can result in the same silencing scheme. An
example is given in Fig. 4.4. Note that the E-genes do not appear in Φ, which only
describes interactions between S-genes. The E-genes come into play when inferring
silencing schemes. Reduced signaling strength of S-genes due to interventions in the
pathway cannot be observed directly on a microarray, but secondary effects are visible
on E-genes.

Secondary effects on E-genes The extended topology on S ∪E is called T ′. We
assume that each E-gene has a single parent in S. In particular, the E-genes do not
interact with each other. We interpret the set of E-genes attached to one S-gene as
a regulatory module, which is under the common control of the S-gene. The reaction
of E-genes to interventions in the pathway depends on where the parent S-gene is
located in the silencing scheme. E-genes are set to state 1 if their parent S-gene is in
the influence region of an intervention; else they are in state 0. The state of E-genes
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Figure 4.4: Transitive closure. The right topology is the transitive closure of the left
topology. When adding an entry point for signal, both are valid pathway hypotheses.
Both are represented by a silencing scheme, which has the same topology as the right
graph.

can be experimentally observed as differential expression on microarrays. Due to the
observational noise or stochastic effects in signal transduction, we expect a number
of false positive and false negative observations.

4.2.2 Likelihood of a silencing scheme

Data In each experiment, one S-gene is silenced by RNAi and effects on E-genes
are measured by microarrays. Each S-gene needs to be silenced at least once, but
ideally the silencing assays are repeated and several microarrays per silenced gene
are included in the dataset. Microarrays are indexed by k = 1, . . . , l. The expression
data are assumed to be discretized to 1 and 0 — indicating whether interruption of
signal flow was observed at a particular gene or not. The result is a binary matrix
M = (eik), where eik = 1 if E-gene Ei shows an effect in experiment k. Thus, our data
only consists in coarse qualitative information. We do not consider whether an E-
gene was up- or down-regulated or how strong an effect was. Each single observation
eik relates the intervention done in experiment k to the state of Ei. In the following,
the index “i” always refers to an E-gene, the index “j” to an S-gene, and the index
“k” to an experiment.

Likelihood The positions of E-genes are included as model parameters Θ = {θi}mi=1

with θi ∈ {1, . . . , n} and θi = j if Ei is attached to Sj. Let us first consider a
fixed extension T ′ of T , that is, the parameters Θ are assumed to be known. For
each E-gene, T ′ encodes to which S-gene it is connected. In a silencing experiment
T ′ predicts effects at all E-genes, which are attached to an S-gene in the influence
region. Expected effects can be compared to observed effects in the data to choose
the topology, which fits the data best. Due to measurement noise no topology T ′

is expected to be in complete agreement with all observations. Deviations from
predicted effects are allowed by introducing global error probabilities α and β for
false positive and negative calls, respectively.

The expression levels of E-genes on the various microarrays are modelled as binary
random variables Eik. The distribution of Eik is determined by the silencing scheme
Φ and the error probabilities α and β. For all E-genes and targets of intervention,
the conditional probability of E-gene state eik given silencing scheme Φ can then be
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Chapter 4 Inferring signal transduction pathways

written in tabular form as

eik = 1 eik = 0

α 1− α if Sj = 0
p(eik|Φ, θi = j) =

{
1− β β if Sj = 1

(4.1)

This means: if the parent of Ei is not in the influence region of the S-gene silenced
in experiment k, the probability of observing Eik = 1 is α (probability of false alarm,
type-I error). The probability to miss an effect and observe Eik = 0 even though Ei

lies in the influence region is β (type-II error). The likelihood p(M |Φ, Θ) of the data
is then a product of terms from the table for every observation, that is,

p(M |Φ, Θ) =
m∏

i=1

l∏
k=1

p(eik|Φ, θi) = αn10βn01(1− α)n00(1− β)n11 , (4.2)

where nse is the number of times we observed E-genes in state e when their parent
S-gene in Φ was in state s.

However, in reality the “correct” extension T ′ of a candidate topology T is unknown.
The positions of E-genes are unknown and they may be regulated by more than one
S-gene. We also do not aim to infer extended topologies from the data: the model
space of extended topologies is huge, and model inference is unstable. We are only
interested in the silencing scheme Φ of S-genes. To deal with these issues, we interpret
the position of edges between S- and E-genes as nuisance parameters, and average
over them to obtain a marginal likelihood. This is described next.

4.2.3 Marginal likelihood of a silencing scheme

This section defines a scoring function to link models with observations. It evaluates
how well a given silencing scheme Φ fits the experimental data. For now, we assume
the silencing scheme Φ and the error probabilities α and β to be fixed. But in contrast
to the last section, the position parameters Θ are unknown. By Bayes’ formula the
posterior of silencing scheme Φ given data M can be written as

p(Φ|M) =
p(M |Φ)p(Φ)

p(M)
. (4.3)

The normalizing constant p(M) is the same for all silencing schemes, it can be ne-
glected for relative model comparison. The model prior p(Φ) can be chosen to incor-
porate biological prior knowledge. In the following, we assume it to be uniform over
all possible models. What remains is the marginal likelihood p(M |Φ). It equals the
likelihood p(M |Φ, Θ) averaged over the nuisance parameters Θ. To compute it, we
make three assumptions:
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1. Given silencing scheme Φ and fixed positions of E-genes Θ, the observations in M
are sampled independently and distributed identically:

p(M |Φ, Θ) =
m∏

i=1

p(Mi|Φ, θi) =
m∏

i=1

l∏
k=1

p(eik|Φ, θi),

where Mi is the ith row in data matrix M .

2. Parameter independence. The position of one E-gene is independent of the posi-
tions of all the other E-genes:

p(Θ|Φ) =
m∏

i=1

p(θi|Φ).

3. Uniform prior distribution. The prior probability to attach an E-gene is uniform
over all S-genes:

P (θi = j|Φ) =
1

p
for all i and j.

The last assumption can easily be dropped to include existing biological prior knowl-
edge about regulatory modules. With the assumptions above, the marginal likelihood
can be calculated as follows. The numbers above the equality sign indicate which as-
sumption was used in each step.

pα,β(M |Φ) =

∫
pα,β(M |Φ, Θ) p(Θ|Φ) dΘ

[1,2]
=

m∏
i=1

∫
pα,β(Mi|Φ, θi) p(θi|Φ) dθi

[3]
=

1

pm

m∏
i=1

p∑
j=1

pα,β(Mi|Φ, θi = j)

[1]
=

1

pm

m∏
i=1

p∑
j=1

l∏
k=1

pα,β(eik|Φ, θi = j). (4.4)

The marginal likelihood in Eq. (4.4) contains the error probabilities α and β as free
parameters to be chosen by the user. This is indicated by subscripts. In section 4.4
we will show how to estimate these parameters when discretizing the data.

Estimated position of E-genes Given a silencing scheme Φ, the posterior proba-
bility for an edge between Sj and Ei is given by

Pα,β(θi = j|Φ, M) =
p(θi = j | Φ)

pα,β(Mi | Φ)

l∏
k=1

pα,β(eik | Φ, θi = j) (4.5)

where the prior p(θi = j|Φ) is again chosen to be uniform. In general, the prior could
take any other form as long as it is the same as in the computation of marginal likeli-
hood above. The E-genes attached with high probabilty to an S-gene are interpreted
as a regulatory module, which is under the common control of the S-gene.
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4.2.4 Averaging over error probabilities α and β

The likelihood in Eq. (4.4) is a polynomial in α and β. In a full Bayesian approach
we would again average over possible values of α and β given a prior distribution.
This problem can be cast in a way accessible to standard Bayesian theory, as it is
also used when averaging over LPD parameters to gain the marginal likelihood in
Bayesian network structure learning (see section 2.12). So far, we assumed that all
E-genes share the distribution specified in Eq. (4.1) and α and β are indeed global
parameters applicable to every E-gene. This simplifying assumption was introduced
to keep inference feasible. Else, we would have to estimate parameters (αi, βi) for
every E-gene Ei. When averaging over LPD parameters, we will drop the assumption
of parameter sharing. Instead we augment the three assumptions above by three
additional ones.

First we define ηi = (ηi0, ηi1) = (αi, 1 − βi), then for one E-gene E with parent S
holds ηis = P (Ei = 1|Sθi

= s). We make the following assumptions on the prior
distribution p(η|Φ, Θ) of η = (ηi)i=1,...,m:

4. Global and local parameter independence. Parameters are independent for every
E-gene Ei and for different states of the parent S-gene, that is,

p(η|Φ, Θ) =
m∏

i=1

p(ηi|Φ, θi) =
m∏

i=1

∏
s∈{0,1}

p(ηis|Φ, θi).

5. The prior p(ηis|Φ, θi) is chosen as a beta distribution, which is conjugate to the
multinomial distribution of the Ei [49], that is,

p(ηis|Φ, θi) = ηais−1
is (1− ηis)

bis−1.

6. All local priors p(ηis|Φ, θi) share the same parameters, that is,

ais = as and bis = bs for all i = 1, . . . ,m.

The last assumption limits the number of parameters. It is parameter sharing not on
the level of distribution parameters but on the level of parameters of prior distribu-
tions, which are themselves independent. With these assumptions we can compute
the marginal likelihood with respect to position parameters Θ and effect probabilities
η by

p(M |Φ) =

∫∫
p(M |Φ, Θ, η) p(η|Φ, Θ) p(Θ|Φ) dη dθ

[4]
=

m∏
i=1

∫ (∫
p(Mi|Φ, θi, ηi) p(ηi|Φ, θi) dηi

)
p(θi|Φ) dθi. (4.6)

We first concentrate on one fixed Ei. Then Φ and θi specify the parent S-gene Sθi

and its state Sθi
= s. The data Mi split into two subsets M s

i and M1−s
i , where
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M s
i = {eik|Sθi

= s}. Each batch of data follows the same binomial distribution in
Eq. (4.1). The inner integral in Eq. (4.6) splits into two integrals, one for each parent
state s, which can be computed as follows:∫

p(M s
i |Φ, θi, ηis)p(ηis|Φ, θi) dηis =

[5,6]
=

Γ(as + bs)

Γ(as)Γ(bs)

∫
ηnis1+as−1

is (1− ηis)
nis0+bs−1 dηis

=
Γ(as + bs)

Γ(as)Γ(bs)
· Γ(nis1 + as)Γ(nis0 + bs)

Γ(nis1 + nis0 + as + bs)
, (4.7)

where the counts nise denote the number of experiments, in which we observed Ei = e
while the parent S-gene Sθi

was in state s. Note that this computation is identical
to marginalizing LPD parameters in discrete Bayesian networks (section 3.4.2). The
reason is that our model can be viewed as a highly restricted Bayesian network, in
which the LPDs at S-genes are deterministic and the E-genes follow a conditional
binomial distribution.

The data likelihood p(Mi|Φ, θi) for gene Ei is a product of terms on the right hand
side of Eq. (4.7) for both S-gene states. The marginalization over E-gene positions Θ
works exactely as in section 4.2.3 and results in the following full marginal likelihood:

p(D|Φ) =
1

pm

m∏
i=1

p∑
j=1

∏
s∈{0,1}

Γ(as + bs)Γ(nis1 + as)Γ(nis0 + bs)

Γ(as)Γ(bs)Γ(nis1 + nis0 + as + bs)
. (4.8)

Estimated position of E-genes Similar to Eq. (4.5), the posterior probability for
an edge between Sj and Ei with marginalization over α and β is given by

P (θi = j|Φ, M) =
1

Z

l∏
k=1

p(eik | Φ, θi = j)

=
1

Z

∏
s∈{0,1}

Γ(as + bs)Γ(nis1 + as)Γ(nis0 + bs)

Γ(as)Γ(bs)Γ(nis1 + nis0 + as + bs)
. (4.9)

where Z is a normalizing constant ensuring that the sum over all S-genes is 1. This
equation allows to estimate E-gene positions given the beta prior on the local distri-
bution parameters of Ei.

Summary of parameters Table 4.1 gives an overview of the ingredients to the
formulas developed in this section. It shows counts, distribution parameters and prior
parameters for the four possible combinations of E-gene state and parent S-gene state.
The counts are E-gene specific, while the parameters (α, β) and prior parameters
(a0, b0, a1, b1) apply to all E-genes. Having four prior parameters to specify, while
before there were only two distribution parameters, may seem as a disadvantage of
marginalization. But there are two considerations to keep in mind. First, a model is
much more stable against choices of prior parameters than of distribution parameters.
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Ei

1 0
0 ni01 ni00S
1 ni11 ni10

Eq. (4.4)
1 0

0 α 1− α
1 1− β β

Eq. (4.8)
1 0

0 ao b0

1 a1 b1

Table 4.1: The table describes the main terms of the marginal likelihoods computed
in this section. It focusses on one E-gene (columns) and its parent S-gene (rows). The
left table contains the counts from the data for the four possible combinations of E-
gene and parent state. They are E-gene specific and used in all formulas. To compute
the marginal likelihood of Eq. (4.4) error probabilities α and β need to be specified,
which are the same for all E-genes. For the full marginal likelihood of Eq. (4.8) the user
needs to choose prior parameters (a0, b0) and (a1, b1), which are shared by all E-genes.

In situations with little knowledge on error rates in experiments it is safer to use the
full marginal likelihood of Eq. (4.8) than the marginal likelihood of Eq. (4.4). Second,
the four prior parameters fall in two categories: (a0, b1) give weights for observing
errors, while (a1, b0) give weights for observing the predicted state. This motivates
to use only two values for the prior parameters: one for a0 and b1, and another one
for a1 and b0. Because we expect there to be more signal than noise in the data, the
value of a0 = b1 should be considerably smaller than that of a1 = b0. We will see an
example in the application to Drosophila data in section 4.4.

4.2.5 Limits of learning from secondary effects

The method we described can only reconstruct features of the pathway, not the full
topology. This stems from inherent limits of reconstruction from indirect observa-
tions. We discuss here prediction equivalence and data equivalence.

Prediction equivalence More than one pathway hypothesis result in the same
silencing scheme if they only differ in transitive edges. An example is given in Fig. 4.4.
Both topologies there can be considered as pathway hypotheses, but only the right
one is transitively closed and thus a silencing scheme. Since our score is defined
on silencing schemes and not on topologies directly, the hypotheses with the same
silencing scheme are not distinguishable. Assuming parsimony, each silencing scheme
can uniquely be represented by a graph with minimal number of edges. This technique
is called transitive reduction [1, 75, 142, 140].

Data equivalence There exist cases, where two hypotheses with different silencing
schemes produce identical data. Fig. 4.5 shows an example with a cycle of S-genes
and a linear cascade, where all E-genes are attached at the downstream end. In both
pathways, all E-genes react to interventions at every S-gene. In this case, the data
does not prefer one silencing scheme over the other.
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S S S

E E E

Signal

S S S

EE E

Signal

Figure 4.5: Data equivalence: The two plots show different topologies of S-genes
with two distinct silencing schemes. However, both pathways will produce the same
data: All E-genes react to interventions at every S-gene.

4.2.6 Extending the basic model

Epistatic effects The model described above is very simple. Additional constraints
are imposed by epistatic effects: one gene can mask the effect of another gene. These
effects can be included into the model by introducing a set of boolean functions
F = {fS, S ∈ S}. Each fS ∈ F determines the state of S-gene S given the states of
its parents in T . Two simple examples of local functions fS are AND- and OR-logics.
In an AND-logic, all parent nodes must be affected by an intervention (i.e. have
state 1) to propagate the silencing effect to the child. This describes redundancy in
the pathway: if two genes fulfill alternative functions, both have to be silenced to
stop signal flow through the pathway. In an OR-logic, one affected parent node is
enough to set the child’s state to 1. This describes a set of genes jointly regulating
the child node; silencing one of the parents destroys the collaboration. The topology
T together with the set of functions F defines a deterministic Boolean network on
S. Fig. 4.6 gives an example, how local logics constrain influence regions and change
silencing schemes.

S1

S2
S3

OR
S5S4

S1

S2
S3

AND
S5S4

Figure 4.6: Influence regions are constrained by local logics. The left plot shows in
grey the influence region of S3 if S4 is reigned by an OR-logic. If the logic changes to
an AND, S4 lies no longer in the influence region of S3, because the second parent S2

lies outside of it.

Multiple knockouts Since epistatic effects involve more than one gene, they can-
not be deduced from single knock-out experiments. The model has to be extended to
data attained by silencing more than one gene at the same time. This will not change
the scoring function, but more sophisticated silencing schemes have to be developed,
which encode predictions both from single-gene and multi-gene knockouts. Since the
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number of possible multiple knockouts increases exponentionally, tools to choose the
most informative experiments are needed. Experimental design or active learning
deals with deciding which interventions to perform to learn the structure of a model
as quickly as possible and to discriminate optimally between alternative models. This
is an active area of research in Machine Learning [138, 88]. For reconstruction of reg-
ulatory networks, a number of methods have been proposed in different frameworks:
for Bayesian networks [103, 152], physical network models [150], Boolean networks
[63], and dynamical modeling [135].

4.3 Accuracy and sample size requirements

Section 4.2 introduced a Bayesian score to find silencing schemes explaining the data
well. We will demonstrate its potential in two steps. First, we investigate accuracy
and sample size requirements in a controlled simulation setting. In a second step, we
show that our approach is also useful in a real biological scenario by applying it to
a dataset on Drosophila immune response. This section evaluates how our algorithm
responds to different levels of noise in the data, how accurate it is and how many
replicates of intervention screens are needed for reliable pathway reconstruction. To
answer these questions, we performed simulations consisting of five steps:

1. We randomly generated a directed acyclic graph T with 20 nodes and 40 edges.
This is the core topology of S-genes.

2. Then, we connected 40 E-genes to the core T of S-genes. Together they form an
extended topology T ′. To evaluate how the position of E-genes affects the results,
we implemented three different ways of attaching E-genes to S-genes: either two
E-genes are assigned to each S-gene, or E-gene positions are distributed uniformly,
or positions are chosen preferentially downstream (also random but with a higher
probability for S-genes at the end of pathways).

3. From the extended topology T ′ we generated random datasets using eight differ-
ent repetition numbers per knockout experiment (r ∈ {1, . . . , 5, 8, 12, 16}). The
experiment then consists of 20 · r “microarrays”, each corresponding to one of r
repeated knockouts of one of the 20 signaling genes. For each knockout experiment
the response of all E-genes is simulated from T ′ using error probabilities αdata and
βdata. The false negative rate is fixed to βdata = 0.05 and the false positive rate
αdata is varied from 0.1 to 0.5.

4. We randomly selected three existing edges in the graph T and three pairs of non-
connected nodes. Using these six edges, there are 26 = 64 possible modifications of
T , including the original pathway T itself. Some of the selected edges in T may be
missing and some new links may be added. The 64 pathways were used as input
hypotheses of our algorithm.

5. We scored the 64 pathway hypotheses by the marginal likelihood of Eq. (4.4) with
parameters αscore = 0.1 and βscore = 0.3. Note that these (arbitrarily chosen)
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Figure 4.7: Results of simulation experiments on random graphs. The number of
replicates r in the data are on the x-axis, while the y-axis corresponds to the rate
of perfect reconstructions in 1000 runs. Each plot corresponds to a different way
of attaching E-genes to S-genes. The curves in each plot correspond to αdata =
0.1, . . . , 0.5 in descending order: the lower the curve, the higher the noise in data
generation. The dashed vertical line indicates performance with r = 5 replicates—a
practical upper limit for most microarray studies. The plots show excellent results for
low noise levels. Even with αdata = 0.5 the method does not break down, but identifies
the complete true pathway in more than half of all simulation runs.

values are different from (αdata, βdata) used for data generation. If the best score
is achieved by the original pathway T this is counted as a perfect reconstruction.
Even with a single incorrect edge the reconstruction is counted as failed.

Simulation results Fig. 4.7 depicts the average number of perfect reconstructions
for every (αdata, r)-pair over 1000 simulation runs. The plots show: rates of perfect
reconstruction are best when each S-gene has two E-genes as reporters and worst for
purely random E-gene connections. The frequency to identify the correct pathway
quickly increases with the number of replicates. With five replicates and low noise
levels, the rate of perfect reconstruction is above 90% in all simulations. Even with
a noise level of 50% the algorithm correctly identified the right hypothesis in more
than half of the runs.

The impact of these simulation results becomes apparent when comparing it to results
by graphical models of the correlation structure of expression values. Basso et al. [7]
show that their own method, ARACNe, compares favorably against static Bayesian
networks on a simulated network with 19 nodes. The smallest sample size used in
the comparison is 100 observations, the biggest 2000. They show a steady increase
in performance, which levels off at around 1000 observations. Hartemink [55] finds
dynamical Bayesian networks to be even more accurate than ARACNe on the same
simulation network with the same dataset sizes. In summary, at least 1000 obser-
vations are needed to reliably reconstruct a 19 node network by Bayesian networks
or ARACNe. Our simulations show that less than 100 samples are needed to re-
construct a network of the same size when using gene silencing screens. This is one
order of magnitude less. For 20 nodes, 100 observations correspond to five replicates
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Chapter 4 Inferring signal transduction pathways

per intervention, which give an almost consummate rate of perfect reconstruction in
Fig. 4.7.

4.4 Application to Drosophila immune response

We applied our method to data from a study on innate immune response in Drosophila
[12], which was already described as an example in the introduction. Selectively
removing signaling components (S-genes in our terminology) blocked induction of all,
or only parts, of the transcriptional response to LPS (E-genes in our terminology).

Data preprocessing The dataset consists of 16 Affymetrix-microarrays: 4 repli-
cates of control experiments without LPS and without RNAi (negative controls),
4 replicates of expression profiling after stimulation with LPS but without RNAi
(positive controls), and 2 replicates each of expression profiling after applying LPS
and silencing one of the four candidate genes tak, key, rel, and mkk4/hep. For pre-
processing, we performed normalization on probe level using a variance stabilizing
transformation [60], and probe set summarization using a median polish fit of an
additive model [67]. In this data, 68 genes show a more than 2-fold up-regulation
between control and LPS stimulation. We used them as E-genes in the model.

Adaptive discretization Next, we transformed the continuous expression data to
binary values. An E-gene’s state in an RNAi experiment is set to 1 if its expression
value is sufficiently far from the mean of the positive controls, i.e. if the intervention
interrupted the information flow. If the E-genes expression is close to the mean of
positive controls, we set its state to 0. Formally, this strategy is implemented as
follows. Let Cik be the continuous expression level of Ei in experiment k. Let µ+

i be
the mean of positive controls for Ei, and µ−

i the mean of negative controls. To derive
binary data Eik, we defined individual cutoffs for every gene Ei by:

Eik =

{
1 if Cik < κ · µ+

i + (1− κ) · µ−
i ,

0 else.
(4.10)

We tried values of κ from 0 to 1 in steps of 0.1. Fig. 4.8 shows the results. To control
the false negative rate, we chose κ = 0.7: It is the smallest value where all negative
controls are correctly recognized.

Figure 4.9 shows the continuous and discretized data as used in the analysis. Silencing
tak affects almost all E-genes. A subset of E-genes is additionally affected by silencing
mkk4/hep, another disjoint subset by silencing rel and key. Note that expression pro-
files of rel and key silencing are almost indistinguishable both in the continuous and
discrete data matrix. The subset structure observed by Boutros et al. [12] is visible,
but obscured by noise. Some of it can be attributed to noise inherent in biolgical sys-
tems and to measurement noise. Some of it may be due to our selection of E-genes.
Including more biological knowledge on regulatory modules in Drosophila immune
response would help to clarify the picture. The following results show that even
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Figure 4.8: Discretizing according to Eq. (4.10) with κ varying from 0 to 1 (x-axis).
The black dots show, which percentage of negative controls was not recognized, i.e.
set to 0 instead of 1. The circles show, which percentage of positive controls wrongly
assigned to state 1. The dashed line indicates the smallest value of κ, at which all
negative controls were correctly identified (the black dots hit zero).

from noisy data the dominant biological features of the dataset can be reconstructed
without having to rely on prior knowledge.

Score parameters We used the two scoring functions developed in this chapter.
To compute the marginal likelihood of Eq. (4.4) we need to specify the global error
rates α and β. The discretization is consistent with a small value of false negative
rate β. We set it to β = 0.05. The false positive rate α was estimated from the
positive controls: The relative frequency of negative calls there was just below 15%.
Thus we set α = 0.15. Trying different values of α and β did not change the results
qualitatively, except when very large und unrealistic error probabilities were chosen.
We compare these results with the results obtained from using the full marginal
likelihood of Eq. (4.8). There we have to specify four prior parameters. We set
a0 = b1 = 1. Both values correspond to false observations (see Table 4.1) and should
be small compared to the other two weights, if there is a clear signal in the data. We
chose a1 and b0 to be equal and varied their value from 1 to 10.

Results Input hypotheses to the algorithm were all silencing schemes on four genes.
The four S-genes can form 212 = 4096 pathways, which result in 355 different silencing
schemes. Fig. 4.10 compares the result from applying both scoring functions. The
distribution of marginal likelihood from Eq. (4.4) over the 30 top ranked silencing
schemes in Fig. 4.10 shows a clear peak: A single silencing scheme achieves the best
score. It is well separated from a group of four silencing schemes having almost the
same second-best score. Only after a wide gap all other silencing schemes follow. The
ranking of silencing schemes is stable, when using different values of α and β, but the
gap is sometimes less pronounced.

For the full marginal likelihood of Eq. (4.8) and low values of a1 and b0, we get a
fully connected graph as the best model: no structure was found in the data. When
the value increases, the scoring landscape looks more and more similar to the results
obtained from Eq. (4.4). For a1 = b0 = 5, both scores result in the same winning
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Figure 4.9: Data on Drosophila immune response. Left: the normalized, gene-wise
scaled data from [12]. Black stands for low expression and white for high expression.
Rows are E-genes selected for differential expression after LPS stimulation (as seen in
the first eight colums). Right: The data from silencing experiments after discretization
(κ = 0.7) as used in our analysis. We only show the eight columns in the data matrix
corresponding to RNAi experiments. The subset structure is visible, but obscured by
noise.

model. In the right plot of Fig. 4.10 we show the result for a1 = b0 = 9. It is the
smallest value for which both scores agree on the five highest ranked models.

The topology of the best silencing scheme obtained from both scoring functions is
shown in Fig. 4.11. It can be constructed from three different pathway hypotheses:
One is the topology shown in Fig. 4.11, which is transitively closed, the other two
miss either the edge from tak to rel or from tak to key. This is an example of
prediction equivalence. The key features of the data are preserved in all three pathway
topologies. The signal runs through tak before splitting into two pathway branches,
one containing mkk4/hep, the other both key and rel. There is no hint of cross-talk
between the two branches of the pathway. All in all, our result fits exactly to the
conclusions Boutros et al. [12] drew from the data.

Fig. 4.12 shows the expected position of E-genes given the optimal silencing scheme
of Fig. 4.11. Both predictions agree very well and show only subtle differences. The
double-headed arrow in Fig. 4.11 indicates that the order of key and rel cannot be
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Figure 4.10: The score distribution over the 30 top scoring silencing schemes. The
same silencing scheme (circeled) achieves the best score in both plots. In the left plot
(Eq. 4.4, α = 0.15, β = 0.05), it is well separated from a small group of four lagging
behind with a pronounced gap to the rest. In the right plot (Eq. 4.8, a0 = b1 = 1,
a1 = b0 = 9), the distribution is more continuous. The five top ranking silencing
schemes are the same for both scoring functions. If the value of a1 and b0 is further
increased, the right plot converges towards the left one and shows a clear gap between
the best ranking silencing schemes and the rest.

rel

key

tak

receptor
LPS

mkk4/hep

Figure 4.11: Topology of the top-scoring silencing scheme
on the Drosophila data. It clearly shows the fork below tak
with key and rel on one side and mkk4/hep on the other. The
double-headed arrow between key and rel indicates that they
are undistinguishable from this data.

resolved from this dataset, which was to be expected from the nearly identical profiles
in Fig. 4.9. This is also the reason, why the posterior position of E-genes in the upper
half of Fig. 4.12 is distributed equally on both S-genes. The data is undecided about
the relative position of key and rel, and so is the posterior. However, it is known
that rel is the transcription factor regulating the downstream genes (see chapter 1).
This knowledge could have been easily introduced into a model prior p(Φ) penalizing
topologies not showing rel below key. We refused to do this on purpose. The results
here show how well pathway features can be reconstructed just based on experimental
data, without any biological prior knowledge.

A measure of uncertainty In Bayesian terminology, maximizing the marginal
likelihood is equivalent to calculating the mode of the posterior distribution on model
space, assuming a uniform prior. When scoring all possible pathways, we have derived
a complete posterior distribution on model space, which does not only estimate a
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Figure 4.12: Expected position of E-genes on the Drosophila data. Left: The ex-
pected position of E-genes given the silencing scheme with highest marginal likelihood
of the data computed from Eq. (4.5). The lower half of E-genes is attributed to
mkk4/hep, the upper half mostly to key and rel, which show almost the same inter-
vention profiles (see Fig. 4.9). Right: Expected position of E-genes computed from
Eq. 4.9.

single pathway model, but also accurately describes the uncertainties involved in
the reconstruction process. A flat posterior distribution indicates ambiguities in
reconstructing the pathway. What Fig. 4.10 shows is a well pronounced maximium
for both scores. This indicates that we found the dominant structure in the data
with high certainty. This conclusion is strengthened by inspecting the four silencing
schemes achieving the second best score in both plots in Fig. 4.10. They all share
the fork beneath tak and only differ from the best solution in Fig. 4.11 by missing
one or two of the edges between tak, key and rel. All of them represent well the key
features of the data.
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