
Chapter 3

Inferring transcriptional regulatory
networks

The last chapter described statistical models to infer the topology of cellular networks by
elucidating the correlation structure of pathway components. This chapter extends these
models to include direct observations of intervention effects at other pathway components
(section 3.1). The main contribution is a general concept of probabilistic interventions in
Bayesian networks. My approach generalizes deterministic interventions, which fix nodes
to certain states (section 3.2). I propose “pushing” variables in the direction of target
states without fixing them (section 3.3) and formalize this idea in a Bayesian framework
based on conditional Gaussian networks (section 3.4).

3.1 Graphical models for interventional data

In modern biology, the key to inferring gene function and regulatory pathways are
experiments with interventions into the normal course of action in a cell. A common
technique is to perturb a gene of interest experimentally and to study which other
genes’ activities are affected. A number of deterministic and probabilistic techniques
have been proposed to infer regulatory dependencies from primary effects. In this
section, we will give an overview over recent approaches, which are extensions of the
methods discussed in the last chapter.

Linking causes with effects Rung et al. [112] build a directed graph by drawing an
edge (i, j) if perturbing gene i results in a significant expression change at gene j. The
authors focus on features of the network that are robust over a range of significance
cutoffs. The inferred networks do not distinguish between direct and indirect effects.
In this sense they are similar to co-expression networks. Fig. 3.1 shows the difference
between a causal network and a network of affected components. In graph-theoretic
terminology, the second network is the transitive closure of the first one.

Distinguishing direct from indirect effects A transitively closed network can
be used as a starting point for further analysis. Wagner [142, 141, 140] uses graph-
theoretic methods of transitive reduction [1, 75] to find the most parsimonious sub-
graph explaining all observed effects. These methods are deterministic and do not
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A Figure 3.1: From the causal network (left) it is
easy to deduce how effects spread through the
pathway (right). The harder problem is to de-
duce the causal pathway from observing effects
of interventions (going from right to left).

account for measurement noise. Wang and Cooper [143] describe a Bayesian gener-
alization of the Wagner algorithm [140] yielding a distribution over possible causal
relationships between genes.

Boolean networks A simple deterministic model of regulatory networks are Boolean
networks: they are defined by a directed (and possibly cyclic) graph. Nodes corre-
spond to genes and can take values 0 and 1. For each node exists a boolean function
relating parent states to the child state. Perturbations allow to infer the structure
and the logic of Boolean networks [63, 2, 3].

Correlation Rice et al. [107] build correlation graphs on knockout data. They
assume that the data contain measurements of the unperturbed cell and several repli-
cates of measurements for every gene knockout. For each gene i, they combine the
wild-type data with the intervention data of this gene and compute on the joint data
the correlation of gene i to all other genes. In the final graph, there is an arrow
(i, j) whenever gene j was highly correlated to gene i. Since the correlation was com-
puted on knockout data, the graph encodes causation and not only correlation. The
big disadvantage of the method is the need for many (≥ 10) replicates of knockout
experiments for every gene in the model. Data are used more efficiently by several
regression methods.

Regression Rogers and Girolami [109] use sparse Bayesian regression based on a
Gaussian linear model. They regress each gene onto all other genes by combining
all the data corresponding to knockouts of genes other than the particular gene of
interest. The measurements of the knockout gene are ignored when predicting this
gene’s expression from the other genes. In the next section we will see that this
strategy is the same as Pearl’s ideal interventions used in Bayesian networks [97]. A
prior on model parameters constrains most regression coefficients to zero and enforces
a sparse solution. Non-zero regression coefficients are indicated by arrows in the
regulation network. The resulting graph is a special case of a Gaussian graphical
model where directed edges are justified because the dataset contained knockouts of
predictor variables.

Other regression methods for network reconstruction are derived from a branch of
engineering called system identification [77]. Functional relations between network
components are inferred from measurements of system dynamics. Several papers
[151, 47, 28, 29] use multiple regression to model the response of genes and proteins
to external perturbations.

Bayesian networks Bayesian networks represent the finest resolution of correla-
tion structure. As shown in section 2.2, they present a prominent approach to derive
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3.2 Ideal interventions and mechanism changes

a theoretical model for regulatory networks and pathways. Genes are represented by
vertices of a network and the task is to find a topology, which explains dependencies
between the genes. When learning from observational data only, groups of Bayesian
networks may be statistically indistinguishable [139] as discussed in section 2.2. In-
formation about effects of interventions helps to resolve such equivalence classes by
including causal knowledge into the model [136, 137]. The final goal is to learn a
graph structure, which not only represents statistical dependencies, but also causal
relations between genes.

The following sections develop a theory for learning Bayesian network structure when
data from different gene perturbation experiments is available. Section 3.2 reviews
classical theory on modelling interventions in Bayesian networks. It shows that these
concepts do not fit to realistic biological situations. A more appropriate model is
introduced in section 3.3. It develops a theory of soft interventions, which push an
LPD towards a target state without fixing it. A soft intervention can be realized by
introducing a “pushing parameter” into the local prior distribution, which captures
the pushing strength. We propose a concrete parametrization of the pushing parame-
ter in the classical cases of discrete and Gaussian networks. Ideal interventions, which
have been formally described by choosing a Dirac prior [137], can then be interpreted
as infinite pushing.

Section 3.4 summarizes the results in the general setting of conditional Gaussian
networks. This extends the existing theory on learning with hard interventions in
discrete networks to learning with soft interventions in networks containing discrete
and Gaussian variables. The concluding Section 3.4.3 deals with probabilistic soft
interventions. In this set-up the pushing parameter becomes a random variable and
we assign a prior to it. Hence, we account for the experimentalist’s lack of knowledge
on the actual strength of intervention by weighted averaging over all possible values.

3.2 Ideal interventions and mechanism changes

It is crucial that models reflect the way data was generated in the perturbation exper-
iments. In Bayesian structure learning, Tian and Pearl [137] show that interventions
can be modeled by imposing different parameter priors when the gene is actively
perturbed or passively observed. They only distinguish between two kinds of inter-
ventions: most generally, interventions that change the local probability distribution
of the node within a given family of distributions, and as a special case, interventions
that fix the state of the variable deterministically. The first is called a mechanism
change. It does not assume any prior information on how the local probability distri-
bution changes. The second type of intervention, which fixes the state of the variable,
is called a do-operator [97]. We will shortly describe both approaches to motivate
our own model, which can be seen as lying intermediate these two extremes.

Ideal interventions Pearl [97] proposes an idealized do-operator model, in which
the manipulation completely controls the node distribution. The influence of parent
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Chapter 3 Inferring transcriptional regulatory networks

nodes is removed and the LPD p(xv|xpa(v), θv) degenerates to a point mass at the
target state x′v, that is,

p(xv|xpa(v), θv)
do(Xv=x′

v)−−−−−−→ p(xv) =

{
1 if xv = x′v
0 else.

(3.1)

Fixing a variable to a state tells us nothing about its “natural” behaviour. When
considering a single variable, data in which it was experimentally fixed has to be
omitted. Cooper and Yoo [24] show: the marginal likelihood for data including
interventional cases is of the same form as for observational cases only, but the counts
go only over observations where a node was not fixed by external manipulation. We
will discuss this result more deeply in section 3.4.

We will call Pearl’s model a hard (pushing) intervention: it is directed to a target
state and fixes the LPD deterministically. Hard interventions are used in almost all
applications of interventional learning in Bayesian networks [152, 153, 130, 138, 99,
88, 22, 24].

A simulation study To test the effect of ideal interventions on structure learning,
we conducted a simulation study on a small network of five nodes. Here, exhaus-
tive enumeration is still possible and we can assess the complete score landscape.
The simulation evaluated reconstruction accuracy with varying levels of noise and
three different dataset sizes. The LPDs are convex combinations of signal and noise
regulated by a parameter κ. The technical set-up is summarized in Fig. 3.2.

X5

X3 X2

X1

X4

Figure 3.2: The network topology used in the simulation. All random
variables can take three values. For each parent state, the LPDs are
a convex combination κ · signal + (1 − κ) · noise, where “noise” is a
uniform distribution over the three states and “signal” propagates the
parent state. If X2 and X3 disagree, X4 chooses uniformly between the
two signals. More technical details are found in [82].

Varying κ in steps of 0.1 in the intervall [0, 0.9] we sampled two datasets of the
same size: one only containing passive observations, and one sampled after ideal
interventions at each node with equal number of replicates for each intervention
experiment. On both datasets we scored all possible DAGs on 5 nodes and counted
differences between the true and the top scoring topology. As errors we counted
missing and spurious edges and also false edge directions. All these features are
important when interpreting network topologies biologically.

The results of 5 repetitions can be seen in Fig. 3.3. The more data and the clearer the
signal, the more pronounced is the advantage of active interventional learning over
purely observational learning. While observational learning results in three equivalent
topologies with the same high score, interventional learning resolves these ambiguities
and yields a single best model. In summary, interventions are critical for effective
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Figure 3.3: Results of simulation experiments. The red dashed line corresponds to
learning from observational data, the green solid line from learning with interventions.
The bigger the sample-size and the clearer the signal, the larger is the gap between
both lines.

inference, particularly to establish directionality of the connections. Recently, this
finding has been confirmed in other simulations [156] and on real data [114].

Mechanism changes Tian and Pearl [137] propose a model for local spontaneous
changes that alter LPDs. They assume that no knowledge is available on the nature
of the change, its location, or even whether it took place. Tian and Pearl derive a
Bayesian score for structure learning by splitting the marginal likelihood for a node,
at which a local change occurred, into two parts: one for the cases obtained before
the change and one for the cases obtained after the change. A hard intervention
as in Eq. (3.1) can be incorporated in this framework by assigning an informative
prior distribution to the second part of the marginal likelihood. Tian and Pearl [137]
show that the assumption (or knowledge) that only a single causal mechanism has
changed, increases power in structure learning. Previously indistinguishable equiva-
lent topologies may now be distinguished.

Problems Both hard interventions and mechanism changes face problems when
being applied to real biological data from gene silencing experiments. Pearl’s model
of ideal interventions contains a number of idealizations: manipulations only affect
single genes and results can be controlled deterministically. The first assumption
may not be true for drug treatment and even in the case of single-gene knockouts
there may be compensatory effects involving other genes. The second assumption
is also very limiting in realistic biological scenarios. Often the experimentalist lacks
knowledge about the exact size of perturbation effects. Due to measurement error or
noise inherent in the observed system it may often happen that a variable, at which
an intervention took place, is observed in a state different from the target state. In
Pearl’s framework, a single observation of this kind results in a marginal likelihood
of zero. Mechanism changes, on the other hand, are also not suited to model real
biological experiments, even though they capture uncertainty on intervention strength
and accuracy. In real applications to reverse screens, at least the target of intervention
is known and there is an expected response of the target to the intervention. Gene
perturbations are directed in the sense that the experimental technique used tells us
whether we should expect more or less functional target mRNA in the cell.
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Chapter 3 Inferring transcriptional regulatory networks

In summary, we need interventional data for successfull small-sample network recon-
struction. Hard interventions (do-operations) are deterministic, mechanism changes
are undirected. Both frameworks do not fit realistic biological situations. If we treat
gene perturbation experiments as unfocussed mechanism changes we lose valuable
information about what kind of intervention was performed. If we model them by a
do-operator, we underestimate the stochastic nature of biological experiments. Thus,
we need a concept of interventions, which is more directed than general mechanism
changes, but still softer than deterministic fixing of variables. In the following, we fo-
cus on interventions, which specifically concentrate the local distribution at a certain
node around some target state. We will call them pushing interventions, they are
examples of mechanism changes with prior knowledge. We generalize hard pushing
interventions (do-operator) to soft pushing interventions : the local probability distri-
bution only centers more around the target value without being fixed. We follow Tian
and Pearl [137] in splitting the marginal likelihood locally in two parts and assigning
informative prior distributions. All interventions we will discuss are external manip-
ulations of single nodes. None of them models global changes in the environment,
which would change the dependency structure over the whole network and not just
in a single family of nodes. Thus, we can start explaining soft interventions in the
next section by concentrating on a single node in a Bayesian network.

3.3 Pushing interventions at single nodes

A Bayesian network is a graphical representation of the dependency structure be-
tween the components of a random vector X. The individual random variables are
associated with the vertices of a directed acyclic graph (DAG) D, which describes the
dependency structure. Once the states of its parents are given, the probability dis-
tribution of a given node is fixed. Thus, the Bayesian network is completely specified
by the DAG and the local probability distributions (LPDs). Although this defini-
tion is quite general, there are basically three types of Bayesian networks which are
used in practice: discrete, Gaussian and conditional Gaussian (CG) networks. CG
networks are a combination of the former two and will be treated in more detail in
Section 3.4, for the rest of this section we focus on discrete and Gaussian networks. In
discrete and Gaussian networks, LPDs are taken from the family of the multinomial
and normal distribution, respectively. In the theory of Bayesian structure learning,
the parameters of these distributions are not fixed, but instead a prior distribution is
assumed [23, 48, 11]. The priors usually chosen because of conjugacy are the Dirichlet
distribution in the discrete case and the Normal-inverse-χ2 distribution in the Gaus-
sian case. Averaging the likelihood over these priors yields the marginal likelihood –
the key quantity in structure learning (see section 2.3.2).

An intervention at a certain node in the network can in this setting easily be modeled
by a change in the LPDs’ prior. When focusing on (soft) pushing interventions, this
change should result in an increased concentration of the node’s LPD around the
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3.3 Pushing interventions at single nodes

target value. We model this concentration by introducing a pushing parameter w,
which measures the strength of the pushing. A higher value of w results in a stronger
concentration of the LPD. We now explain in more detail how this is done for discrete
and Gaussian networks. Since the intervention only affects single variables and the
joint distribution p(x) in a Bayesian network factors according to the DAG structure
in terms only involving a single node and its parents, it will suffice to treat families
of discrete and Gaussian nodes separately.

3.3.1 Pushing by Dirichlet priors

We denote the set of discrete nodes by ∆ and a discrete random variable at node δ ∈ ∆
by Iδ. The set of possible states of Iδ is Iδ. The parametrization of the discrete LPD
at node δ is called θδ. For every configuration ipa(δ) of parents, θδ contains a vector
of probabilities for each state iδ ∈ Iδ. Realizations of discrete random variables
are multinomially distributed with parameters depending on the state of discrete
parents. The conjugate prior is Dirichlet with parameters also depending on the
state of discrete parents:

Iδ | ipa(δ), θδ ∼ Multin(1, θδ|ipa(δ)
),

θδ|ipa(δ)
∼ Dirichlet(αδ|ipa(δ)

).
(3.2)

We assume that the αδ|ipa(δ)
are chosen to respect likelihood equivalence [58]. A

pushing intervention at node δ amounts to changing the prior parameters αδ|ipa(δ)

such that the multinomial density concentrates at some target value j. We formalize
this by introducing a pushing operator P defined by

P(αδ|ipa(δ)
, wδ, j) = αδ|ipa(δ)

+ wδ · 1j, (3.3)

where 1j is a vector of length |Iδ| with all entries zero except for a single 1 at state j.
The pushing parameter wδ ∈ [0,∞] determines the strength of intervention at node
δ: if wδ = 0 the prior remains unchanged, if wδ =∞ the Dirichlet prior degenerates
to a Dirac distribution and fixes the LPD to the target state j. Figure 3.4 shows a
three-dimensional example of increasing pushing strength wδ.

3.3.2 Pushing by Normal-inverse-χ2 priors

The set of Gaussian nodes will be called Γ and we denote a Gaussian random variable
at node γ ∈ Γ by Yγ. In the purely Gaussian case it depends on the values of parents
Ypa(γ) via a vector of regression coefficients βγ. If we assume that βγ contains a first

entry β
(0)
γ , the parent-independent contribution of Yγ, and attach to Ypa(γ) a leading

1, we can write for Yγ the following regression model

Yγ | βγ, σ
2
γ ∼ N(Y>

pa(γ)βγ, σ2
γ),

βγ | σ2
γ ∼ N(mγ, σ2

γM
−1
γ ),

σ2
γ ∼ Inv-χ2(νγ, s2

γ).

(3.4)
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Chapter 3 Inferring transcriptional regulatory networks

Figure 3.4: Examples of pushing a discrete variable with three states. Each triangle
represents the sample space of the three-dimensional Dirichlet distribution (which is
the parameter space of the multinomial likelihood of the node). The left plot shows a
uniform distribution with Dirichlet parameter α = (1, 1, 1). The other two plots show
effects of pushing with increasing weight: w = 3 in the middle and w = 10 at the
right. In each plot 1000 points were sampled.

The regression coefficients follow a multivariate normal distribution with mean mγ

and covariance matrix σ2
γM

−1
γ , where σ2

γ is the variance of node Yγ. The variance fol-
lows an inverse-χ2 distribution. We assume that the prior parameters mγ,Mγ, νγ, s

2
γ

are chosen as in ref. [11].

As for discrete nodes, we implement a pushing intervention by adapting the prior
distributions of model parameters. Pushing the distribution of Yγ to target value k
involves moving the mean by adapting the distribution of regression coefficients and
concentrating the distribution by decreasing the variance σ2

γ. To this end, we propose
to exchange mγ and s2

γ by (m̄γ, s̄
2
γ) = P((mγ, s

2
γ), wγ, k) defined by

m̄γ = e−wγ ·mγ + (1− e−wγ ) · k11,

s̄2
γ = s2

γ/(wγ + 1),
(3.5)

where k11 is a vector of length |ipa(γ)|+ 1 with all entries zero except the first, which
is k. We use P for the pushing operator as in the case of discrete nodes; which
one to use will be clear from the context. Again wγ ∈ [0,∞] represents intervention
strength. The exponential function maps the real valued w into the interval [0, 1].
The interventional prior mean m̄ is a convex combination of the original mean m
with a “pushing” represented by k11. If wγ = 0 the mean of the normal prior and the
scale of the inverse-χ2 prior remain unchanged. As wγ → ∞ the scale s̄2 goes to 0,
so the prior for σ2 tightens at 0. At the same time, the regression coefficients of the
parents converge to 0 and β0 approaches target value k. All in all, with increasing wγ

the distribution of Yγ peaks more and more sharply at Yγ = k. Note that the discrete
pushing parameter wδ and the Gaussian pushing parameter wγ live on different scales
and will need to be calibrated individually.

3.3.3 Hard pushing

Hard pushing means to make sure that a certain node’s LPD produces almost surely
a certain target value. It has been proposed by Tian and Pearl [137] to model this by
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3.3 Pushing interventions at single nodes

imposing a Dirac prior on the LPD of the node. Although the Dirac prior is no direct
member of neither the Dirichlet nor the Normal-inverse-χ2 family of distributions it
arises for both of them when taking the limit w →∞ for the pushing strength. Tian
and Pearl [137] give an example for discrete networks by

p(θδ|ipa(δ)
| do(Xδ = x′δ)) = d(θi′δ |ipa(δ)

− 1)
∏
iδ 6=i′δ

d(θiδ |ipa(δ)
), (3.6)

where d(·) is the Dirac function: d(x) = 1, if x = 0, and d(x) = 0 else. This choice of
the local prior distribution ensures that

θiδ |ipa(δ)
=

{
1 for Iδ = i′δ,

0 else,

in agreement with the definition of hard interventions in Eq. (3.1). We can easily
extend this approach to Gaussian networks by defining a prior density as

p(βγ, σ
2
γ | do(Yγ = k)) = d(β(0)

γ − k)
∏

i∈pa(γ)

d(β(i)
γ ) · d(σ2

γ). (3.7)

Averaging over this prior sets the variance and the regression coefficients to zero,
while β

(0)
γ is set to k. Thus, the marginal distribution of Yγ is fixed to state k with

probability one.

3.3.4 Modeling interventions by policy variables

Hard interventions can be modeled by introducing a policy variable as an additional
parent node of the variable at which the intervention is occuring [97, 127, 73]. In
the same way we can use policy variables to incorporate soft interventions. For each
node v, we introduce an additional parent node Fv (“F” for “force”), which is keeping
track of whether an intervention was performed at Xv or not, and if yes, what the
target state was. For a discrete variable Iδ, the policy variable Fδ has state space
Iδ ∪ ∅ and we can write

p(θδ|ipa(δ),fδ
) =

{
Dirichlet(αδ|ipa(δ)

) if Fδ = ∅,
Dirichlet(ᾱδ|ipa(δ)

) if Fδ = j,
(3.8)

where ᾱδ|ipa(δ)
= P(αδ|ipa(δ)

, wδ, j) is derived from αδ|ipa(δ)
as defined in Eq. (3.3). For

a continuous variable Yγ, the policy variable Fγ has state space IR ∪ ∅ and we can
write

p(βγ|fγ , σ
2
γ|fγ

) =

{
N(mγ, σ

2
γM

−1
γ ) · Inv-χ2(νγ, s

2
γ) if Fγ = ∅,

N(m̄γ, σ
2
γM

−1
γ ) · Inv-χ2(νγ, s̄

2
γ) if Fγ = k,

(3.9)

where (m̄γ, s̄
2
γ) = P((mγ, s

2
γ), wγ, k) as defined in Eq. (3.5). Equations (3.8) and

(3.9) will be used in section 3.4.2 to compute the marginal likelihood of conditional
Gaussian networks from a mix of interventional and non-interventional data.
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3.4 Pushing in conditional Gaussian networks

We summarize the results of the last section in the general framework of conditional
Gaussian networks and compute the marginal likelihood for learning from soft inter-
ventions.

3.4.1 Conditional Gaussian networks

Conditional Gaussian (CG) networks are Bayesian networks encoding a joint dis-
tribution over discrete and continuous variables. We consider a random vector X
splitting into two subsets: I containing discrete variables and Y containing contin-
uous ones. The dependencies between individual variables in X can be represented
by a directed acyclic graph (DAG) D with node set V and edge set E. The node set
V is partitioned as V = ∆ ∪ Γ into nodes of discrete (∆) and continuous (Γ) type.
Each discrete variable corresponds to a node in ∆ and each continuous variable to
a node in Γ. The distribution of a variable Xv at node v only depends on variables
Xpa(v) at parent nodes pa(v). Thus, the joint density p(x) decomposes as

p(x) = p(i,y) = p(i)p(y|i)

=
∏
δ∈∆

p(iδ|ipa(δ)) ·
∏
γ∈Γ

p(yγ|ypa(γ), ipa(γ)). (3.10)

The discrete part, p(i), is given by an unrestricted discrete distribution. The distri-
bution of continuous random variables given discrete variables, p(y|i), is multivariate
normal with mean and covariance matrix depending on the configuration of discrete
variables. Since discrete variables do not depend on continuous variables, the DAG
D contains no edges from nodes in Γ to nodes in ∆.

For discrete nodes, the situation in CG networks is exactly the same as in the pure case
discussed in Section 3.3: The distribution of Iδ|ipa(δ) is multinomial and parametrized
by θδ. Compared to the purely Gaussian case treated in Section 3.3, we have for
Gaussian nodes in CG networks an additional dependency on discrete parents. This
dependency shows in the regression coefficients and the variance, which now not only
depend on the node, but also on the state of the discrete parents:

Yγ | βγ|ipa(γ)
, σ2

γ|ipa(γ)
∼ N(Y>

pa(γ)βγ|ipa(γ)
, σ2

γ|ipa(γ)
). (3.11)

As a prior distribution we again take the conjugate normal-inverse-χ2 distribution as
in Eq. (3.4). For further details on CG networks we refer to references [72, 11].
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3.4 Pushing in conditional Gaussian networks

3.4.2 Learning from interventional and non-interventional data

Assuming an uniform prior over network structures D, the central quantity to be
calculated is the marginal likelihood p(M |D). In the case of only one type of data it
can be written as

p(M |D) =

∫
Θ

p(M |D, θ) p(θ|D) dθ. (3.12)

Here p(θ|D) is the prior on the parameters θ of the LPDs. If the dataset contains
both interventional and non-interventional cases, the basic idea is to choose param-
eter priors locally for each node as in Eq. (3.8) and Eq. (3.9) according to whether
a variable was perturbed in a certain case or not. We will see that this strategy
effectively leads to a local split of the marginal likelihood into an interventional and
a non-interventional part.

A family-wise view of marginal likelihood To compute the marginal likelihood
of CG networks on interventional and non-interventional data, we rewrite Eq. (3.12)
in terms of single nodes such that the theory of (soft) pushing from Section 3.3 can
be used. In the computation we will use the following technical utilities:

1. The dataset M consists of N cases x1, . . . ,xN , which are sampled independently.
Thus we can write p(M |D, θ) as a product over all single case likelihoods p(xc|D, θ)
for c = 1, . . . , N .

2. The joint density p(x) factors according to the DAG D as in Eq. (3.10). Thus,
for each case xc we can write p(xc|D, θ) as a product over node contributions
p(xc

v|xc
pa(v), θv) for all v ∈ V .

3. We assume parameter independence: the parameters associated with one variable
are independent of the parameters associated with other variables, and the param-
eters are independent for each configuration of the discrete parents [58]. Thus, all
dependencies between variables are encoded in the network structure. Parameter
independence allows us to decompose the prior p(θ|D) in Eq. (3.12) into node-wise
priors p(θv|ipa(v)

|D) for a given parent configuration ipa(v).

4. All interventions are soft pushing. For a given node, intervention strength and
target state stay the same in all cases in the data, but of course different nodes
may have different pushing strengths and target values. This constraint just helps
us to keep the following formulas simple and can easily be dropped.

These four assumptions allow a family-wise view of the marginal likelihood. Before
we present it in a formula, it will be helpful to introduce a batch notation. In CG
networks, the parameters of the LPD at a certain node depend only on the configu-
ration of discrete parents. This holds for both discrete and Gaussian nodes. Thus,
when evaluating the likelihood of data at a certain node, it is reasonable to collect
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all cases in a batch, which correspond to the same parent configuration:

p(M |D, θ) =
∏
c∈M

p(xc|D, θ)

=
∏
c∈M

∏
v∈V

p(xc
v|xc

pa(v), θv)

=
∏
v∈V

∏
ipa(v)∈Ipa(v)

∏
c:ic

pa(v)
=ipa(v)

p(xc
v|icpa(v),ypa(v), θv) (3.13)

The last formula is somewhat technical: If the node v is discrete, then ypa(v) will be
empty, and usually not all parent configuration ipa(v) are found in the data, so some
terms of the product will be missing. For each node we gather the cases with the
same joint parent state in a batch Bipa(v)

= {c ∈ 1, . . . , N : icpa(v) = ipa(v)}. When
learning with interventional data, we have to distinguish further between observations
of a variable which were obtained passively and those that are result of intervention.
Thus, for each node v we split the batch Bipa(v)

into one containing all observational
cases and one containing the interventional cases:

Bobs
ipa(v)

= {c ∈ 1, . . . , N : icpa(v) = ipa(v) and no intervention at v},
Bint

ipa(v)
= {c ∈ 1, . . . , N : icpa(v) = ipa(v) and intervention at v}.

If there is more than one type of intervention applied to node v, the batch containing
interventional cases has to be split accordingly. Using this notation we can now write
down the marginal likelihood for CG networks in terms of single nodes and parents:

p(M |D) =
∏
v∈V

∏
ipa(v)

∫
Θ

∏
o∈Bobs

ipa(v)

p(xo
v|ipa(v),y

o
pa(v), θv) p′(θv|D) dθv ×

∏
v∈V

∏
ipa(v)

∫
Θ

∏
e∈Bint

ipa(v)

p(xe
v|ipa(v),y

e
pa(v), θv) p′′(θv|D, wv) dθv.

(3.14)

At each node, we use distributions and priors as defined in Eq. (3.8) for discrete
nodes and Eq. (3.9) for Gaussian nodes. The non-interventional prior p′ corresponds
to Fv = ∅ and the interventional prior p′′ corresponds to Fv equalling some target
value. We denoted the intervention strength explicitly in the formula, since we will
focus on it further when discussing probabilistic soft interventions in Section 3.4.3.
Equation (3.14) consists of an observational and an interventional part. Both can
further be split into a discrete and a Gaussian part, so we end up with four terms to
consider.

Discrete observational part To write down the marginal likelihood of discrete
observational data, we denote by niδ |ipa(δ)

the number of times we passively observe

Iδ = iδ in batch Bobs
ipa(δ)

, and by αiδ |ipa(δ)
the corresponding pseudo-counts of the Dirich-

let prior. Summation of αiδ |ipa(δ)
and niδ |ipa(δ)

over all iδ ∈ Iδ is abbreviated by αipa(δ)
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3.4 Pushing in conditional Gaussian networks

and nipa(δ)
, respectively. Then, the integral in the observational part of Eq. (3.14) can

be computed as follows:∫
Θ

∏
o∈Bobs

ipa(v)

p(xo
v|ipa(v),y

o
pa(v), θv) p′(θv|D) dθv =

=

∫
Θ

(∏
iδ∈Iδ

θ
niδ |ipa(δ)

iδ |ipa(δ)

)(
Γ(αipa(δ)

)∏
iδ

Γ(αiδ |ipa(δ)
)

∏
iδ∈Iδ

θ
αiδ |ipa(δ)

−1

iδ |ipa(δ)

)
dθv

=
Γ(αipa(δ)

)∏
iδ

Γ(αiδ |ipa(δ)
)

∫
Θ

∏
iδ∈Iδ

θ
αiδ |ipa(δ)

+niδ |ipa(δ)
−1

iδ |ipa(δ)
dθv (3.15)

=
Γ(αipa(δ)

)∏
iδ

Γ(αiδ |ipa(δ)
)
·
∏

iδ
Γ(αiδ |ipa(δ)

+ niδ |ipa(δ)
)

Γ(αipa(δ)
+ nipa(δ)

)
(3.16)

The first equations follow from substituting the densities of likelihood and prior into
the integral. The last equation results from the fact that the Dirichlet distribution
integrates to one and thus the Dirichlet integral in line (3.15) is equal to the inverse
normalizing constant of Dirichlet(αiδ |ipa(δ)

+ niδ |ipa(δ)
).

The formula in Eq. 3.16 describes the score constribution of a single node with fixed
parent configuration. The marginal likelihood of the discrete data M∆ can be written
as the local contributions of Eq. (3.16) multiplied over all possible nodes and parent
configurations, that is,

pobs(M∆ | D) =
∏
δ∈∆

∏
ipa(δ)

(
Γ(αipa(δ)

)

Γ(αipa(δ)
+ nipa(δ)

)

∏
iδ∈Iδ

Γ(αiδ |ipa(δ)
+ niδ |ipa(δ)

)

Γ(αiδ |ipa(δ)
)

)
. (3.17)

This result was first obtained by Cooper and Herskovits [23] and is further discussed
by Heckerman et al. [58].

Discrete interventional part Since interventions are just changes in the prior,
the marginal likelihood of the interventional part of discrete data is of the same
form as Eq. (3.17). The prior parameters αiδ |ipa(δ)

are exchanged by α′
iδ |ipa(δ)

=

P(αiδ |ipa(δ)
, wδ, j) as given by Eq. (3.3), and the counts niδ |ipa(δ)

are exchanged by

n′
iδ |ipa(δ)

taken from batch Bint
ipa(δ)

.

In the limit wδ →∞ this part converges to one and vanishs from the overall marginal
likelihood p(M |D). Thus, in the limit we achieve the result of Cooper and Yoo [24]
and Tian and Pearl [137].

Gaussian observational part All cases in batch Bobs
ipa(γ)

are sampled independently

from a normal distribution with fixed parameters. If we gather them in a vector yγ

(of length b = |Bobs
ipa(γ)
|) and the corresponding states of continuous parents as rows in

a matrix Pγ (of dimension b×(|pa(γ)|+1)), we yield the standard regression scenario

yγ | βγ, σ
2
γ ∼ N(Pγβγ, σ

2
γI), (3.18)

39



Chapter 3 Inferring transcriptional regulatory networks

where I is the b×b identity matrix. As a prior distribution over regression coefficients
βγ and variance σ2

γ we choose normal-inverse-χ2 as shown in Eq. (3.4). Marginalizing
with respect to βγ and σ2

γ yields a multivariate t-distribution of dimension b, with
location vector Pγmγ, scale matrix s(I + PγM

−1
γ P>

γ ), and νγ degrees of freedom.
This can be seen by the following argument. To increase readability, we drop the
index “γ” in the following equations. Then, Eq. (3.18) can be rewritten as

y = Pβ + ε with ε ∼ N(0, σ2I). (3.19)

The prior distribution of β|σ2 is Gaussian with mean m and variance σ2M−1. Thus
we can write

Pβ | σ2 ∼ N(Pm, σ2PM−1P>) (3.20)

Since ε is independent of β when conditioning on σ2 we conclude that

y | σ2 ∼ N(Pm, σ2(I + PM−1P>)). (3.21)

The prior for σ2 is inverse-χ2 with scale s and ν degrees of freedom. Marginalizing
with respect to σ2 yields

y ∼ tb(Pm, s(I + PM−1P>), ν). (3.22)

Note that all the distribution parameters above are specific for node γ. When using
data from different batches, every parameter additionally carries an index “ipa(γ)”
indicating that it depends on the state of the discrete parents of the Gaussian node
γ. Multiplying t-densities for all nodes and configurations of discrete parents—the
outer double-product in Eq. (3.14)—yields the marginal likelihood of the Gaussian
part.

Gaussian interventional part Here we consider cases in batch Bint
ipa(γ)

. We collect

them in a vector and can again write a regression model like in Eq. (3.18). The
difference to the observational Gaussian case lies in the prior parameters. They
are now given by Eq. (3.5). The result of marginalization is again a t-density with
parameters as above. The only difference is that the pair (m, s) is exchanged by
(m′, s′) = P((m, s), wγ, k). The Gaussian interventional part is then given by a
product of such t-densities over nodes and discrete parent configurations.

If we use the hard intervention prior in Eq. (3.7) instead, the Gaussian interventional
part integrates to one and vanishs from the marginal likelihood in Eq. (3.14). Thus,
we extended the results by Cooper and Yoo [24] to Gaussian networks.

3.4.3 Probabilistic soft interventions

In Section 3.3 we introduced the pushing operator P(·, wv, tv) to model a soft inter-
vention at a discrete or Gaussian node v. The intervention strength wv is a parameter,
which has to be chosen before network learning. There are several possibilities, how
to do it. If there is solid experimental experience on how powerful interventions are,
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3.4 Pushing in conditional Gaussian networks

this can be reflected in an appropriate choice of wv. An obvious problem is that
wv needs to be determined on a scale that is compatible with the Bayesian network
model. If there is prior knowledge on parts of the network topology, the parameter wv

can be tuned until the result of network learning fits the prior knowledge. Note again
that by the parametrization of pushing given in Section 3.3, the pushing strengths
for discrete and Gaussian nodes live on different scales and have to be calibrated
separately.

However, a closer inspection of the biological background in chapter 1, which mo-
tivated the theory of soft pushing interventions, suggests to treat the intervention
strength wv as a random variable. In gene silencing an inhibiting molecule (a double-
stranded RNA in case of RNAi) is introduced into the cell. This usually works in a
high percentage of affected cells. In the case of success, the inhibitor still has to spread
throughout the cell to silence the target gene. This diffusion process is stochastic and
consequently causes experimental variance in the strength of the silencing effect.

These observations suggest to assign a prior distribution p(wv) to the intervention
strength. That is, we drop the assumption of having one intervention strength in all
cases, but instead average over possible values of wv. For simplicity we assume there
is only a limited number of possible values of wv, say, w

(1)
v , . . . , w

(k)
v , with an arbitrary

discrete distribution assigned to them. Then we can express our inability to control
the pushing strength in the experiment deterministically by using a mixed prior of
the form

p(θv|D) =
k∑

i=1

qk p(θv|D, w(k)
v ). (3.23)

Here, the mixture coefficients qk = p(w
(k)
v ) are the prior probabilities of each possible

pushing strength. The terms p(θv|D, w
(k)
v ) correspond to Dirichlet densities in the

discrete case and Normal-inverse-χ2 densities in the Gaussian case. In RNAi exper-
iments, w

(1)
v , . . . , w

(k)
v can be estimated from the empirical distribution of measured

RNA degradation efficiencies in repeated assays. Mixed priors as in Eq. (3.23) are of-
ten used in biological sequence analysis to express prior knowledge which is not easily
forced into a single distribution. See Durbin et al. [34] for details. If we substitute
the prior p′′(θv|D, wv) in the interventional part of Eq. (3.14) with the mixture prior
in Eq. (3.23), the marginal likelihood of a family of nodes is a mixture of marginal

likelihoods corresponding to certain values w
(k)
v weighted by mixture coefficients qk.

Discussion

Our work extends structure learning from interventional data into two directions:
from learning discrete networks to learning mixed networks and from learning with
hard interventions to learning with soft interventions. Soft interventions are focussed
on a specific target value of the variable of interest and concentrate the local prob-
ability distribution there. We proposed parametrizations for pushing discrete and
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continuous variables using Dirichlet and Normal-inverse-χ2 priors, respectively. We
computed the marginal likelihood of CG networks for data containing both observa-
tional and (soft) interventional cases. In Bayesian structure learning, the marginal
likelihood is the key quantity to compute from data. Using it (and possibly a prior
over network structures) as a scoring function, we can start model search over possible
network structures. For a survey of search heuristics see section 2.3.4.

Since in biological settings the pushing strength is unknown, we proposed using a
mixture prior on it, resulting in a mixture marginal likelihood. This makes the score
for each network more time-consuming to compute. But in applications there is often
a large amount of biological prior knowledge, which limits the number of pathway
candidates from the beginning. When learning network structure we usually don’t
have to optimize the score over the space of all possible DAGs but are limited to a
few candidate networks, which are to be compared. This corresponds to a very rigid
structure prior.

Modeling interventions as soft pushing makes structure learning more robust against
noise. Soft interventions handle major sources of noise inherent in real biological
systems. This is a central benefit of our approach.

Beyond transcriptional networks At the end of chapter 2 we found that visu-
alizing the correlation structure of gene expression may not give us a biologically
meaningful answer. As a first reason for this shortcoming we discussed the need for
interventional data. To address this issue, the present chapter introduced a novel
model of interventions in Bayesian networks. But there is also a second reason, why
a visualization of correlation structure on expression data may not give us the full
picture. We need to have a second look at the rationale, which made us use graphical
models in the first place.

The application of graphical models is motivated by the following consideration: if
the expression of gene A is regulated by proteins B and C, then A’s expression level
is a stochastic function of the joint activity levels of B and C. Expression levels of
genes are taken as a proxy for the activity level of the proteins they encode. This is
the rationale leading to the application of Bayesian networks to expression data [41].
It relies on the assumption that both the regulator and its targets must be tran-
scriptionally regulated, resulting in detectable changes in their expression. Indeed,
recent large-scale analyses of the regulatory networks of Escherichia coli [121] and
S. cerevisiae [74, 86] found a number of cases in which the regulators are themselves
transcriptionally regulated. Simon et al. [123] show direct dependencies of cell cy-
cle transcriptional regulators in yeast between different cell cycle stages. Regulators
that function during one stage of the cell cycle contribute to the regulation of tran-
scriptional activators active in the next stage. These studies show the importance of
transcriptional regulation in controlling gene expression.

On the other hand, these observations cannot obscure the fact that models of corre-
lation structure of mRNA levels have only limited explanatory value, as can be seen
by the two following studies. Gygi et al. [54] found that correlation between mRNA
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and protein levels was poor in yeast. Quantitative mRNA data was insufficient to
predict protein expression levels. They found cases where the protein levels varied by
more than 20-fold, even if the mRNA levels stayed the same. Additionally, activation
or silencing of a regulator is in most cases carried out by posttranscriptional protein
modifications [71]. Thus, even knowing the correct expression state is not enough,
we also need to know the activation state of the protein. In summary, activation
levels of proteins cannot be approximated well by expression levels of corresponding
genes. However, the next chapter will show that the situation is not hopeless. We
will show that secondary effects of interventions are visible as expression changes
on microarray data. Transcriptional effects allow to infer regulatory hierarchies in
non-transcriptional parts of a pathway.
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