
Chapter 2

Statistical models of cellular
networks

In this chapter I describe statistical models to visualize the correlations structure of genes.
The methods can be distinguished by how deeply they purge influences of other genes
from the observed correlations (section 2.1). The most prominent models are Bayesian
networks (section 2.2). To learn them from data I discuss score based approaches in
section 2.3. Section 2.4 reviews benchmarking of models and section 2.5 shows how
my own approaches developed in the following chapters relate to recent developments in
literature.

2.1 Conditional independence models

Let a set V of p network components be given. In probabilistic models we treat each
component v ∈ V as a random variable Xv and the set of all components in the model
as a random vector X = (X1, . . . , Xp). The dataset M consists of N measurements,
that is, realizations x1, . . . ,xN of the random vector X. We think of it as a p × N
matrix with genes corresponding to rows and measurements to columns.

Network components are identified with nodes in a graph. The goal will be to find
an edge set E representing the dependency structure of the network components. We
will call the graph T = (V, E) the topology of the cellular network. Depending on the
model, T can be directed or undirected, cyclic or acyclic. In the important special
case, where T is a directed acyclic graph (DAG), we call it D. The biological meaning
of a “network component” depends on what kind of data we analyze. Most of the
time it will be microarray data and the network is a transcriptional gene regulatory
network. So, we will mostly speak of network components as genes. But the same
methods can also be applied to protein data, even though only few examples can be
found in literature [148, 68, 114].
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Chapter 2 Statistical models of cellular networks

2.1.1 Coexpression networks

Biological processes result from concerted action of interacting molecules. On this
general observation builds a simple idea, which underlies the first approaches to
cluster expression profiles [37, 126] and is still widely used in functional genomics.
It is called the guilt-by-association heuristic: if two genes show similar expression
profiles, they are supposed to follow the same regulatory regime. To put it more
pointedly: coexpression hints at coregulation. Coexpression networks are constructed
by computing a similarity score for each pair of genes. If similarity is above a certain
threshold, the gene pair gets connected in the graph, if not, it remains unconnected.
Wolfe et al. [147] argue that networks of coexpressed genes provide a widely applicable
framework for assigning gene function. They show that coexpression agrees well with
functional similarity as it is encoded in the Gene Ontology [5].

Building coexpression networks The first critical point in building a coexpression
network is how to formalize the notion of similarity of expression profiles. Several
measures have been proposed. The most simple similarity measure is correlation. In
a Gaussian model, zero correlation corresponds to statistical independence. Correla-
tion networks are easy to interpret and can be accurately estimated even if p � N ,
that is, the number of genes is much larger than the number of samples. Stuart et al.
[133] build a graph from coexpression across multiple organisms (humans, flies, worms
and yeast). They find many coexpression relationships to be conserved over evolu-
tion. This implies a selective advantage and thus functional relationship between
these gene-pairs. Bickel [10] generalizes correlation networks to time series data by
introducing a time-lag for correlation.

Correlation is a linear measure of independence, non-linear dependencies between
genes are not necessarily found. This problem can be avoided using networks built
from pair-wise mutual information [18]. Another flexible similarity measure are
kernel-functions [116], which are extensively used in wide parts of Machine Learning.
Yamanishi et al. [148] use kernel functions for supervised network reconstruction.
They show that the kernel formalism gives a unified framework for integrating differ-
ent types of data including expression profiles and protein-interaction graphs. Then,
they tune kernel parameters in known parts of a protein-interaction graph and use
them to infer unknown parts. Kato et al. [68] weight the different data sources ac-
cording to noise and information content when combining them in the kernel.

When comparing different types of tissues, e.g., healthy cells versus tumor cells, it
may be interesting to find genes highly correlated under one condition, but losing this
correlation under the second condition. Kostka and Spang [70] call this behaviour
differential coexpression and interpret it as gain or loss of a regulatory mechanism.
They introduce a correlation-based method to identify sets of differentially coex-
pressed genes.

The second critical point is how to assess significance of results. Many pairs of genes
will show similar behaviour in expression profiles by chance even though they are
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2.1 Conditional independence models

not biologically related. A practical, though time-consuming strategy consists in
permuting the data matrix and comparing the network obtained on real data with
the distribution of similarity scores achieved in the permutations. Bickel [10] uses
permutations to estimate the false discovery rate of spurious connections. In the
supervised setting of Yamanishi et al. [148] cross-validation can be applied to choose
optimal parameters.

Problems of coexpression based approaches Fig. 2.1 shows several reasons,
why three genes X, Y and Z can be found to be coexpressed. We cannot distinguish
direct from indirect dependencies by just looking at similar expression patterns. High
similarity of expression tells us little about the underlying biological mechanisms.

X Y Z X Z

Y
X Z

Y

H

Figure 2.1: Three reasons, why X, Y , and Z are coexpressed. They could be regulated
in a cascade (left), or one regulates both others (middle), or there is a common “hidden”
regulator (right), which is not part of the model.

There are two possible solutions. Functional genomics has a long tradition of per-
turbing the natural state of a cell to infer gene-function from the observed effects.
Interventions allow to decide between the three models in Fig. 2.1, because each one
results in different predictions of effects, which can be compared to those obtained in
experiments. Statisticians devised a different cure. Statistical methods search for cor-
relations which cannot be explained by other variables. The theoretical background
is the notion of conditional independence. Statistical methods filter out correlations,
which can be attributed to other genes.

Conditional independence Conditional independence is defined as follows: Let
X, Y, Z be random variables with joint distribution P . We say that X is conditionally
independent of Y given Z (and write X ⊥ Y | Z) if and only if

P (X = x, Y = y | Z = z) = P (X = x | Z = z) · P (Y = y | Z = z) (2.1)

This is the same as saying

P (X = x | Y = y, Z = z) = P (X = x | Z = z)

and is a direct generalization of the independence condition for X and Y , namely,

P (X = x, Y = y) = P (X = x) · P (Y = y).

The same definitions hold if conditioning is not on a single variable Z but on a set
of variables Z. For an interpretation, we can think of random variables as abstract
pieces of knowledge obtained from, say, reading books [72]. Then X ⊥ Y | Z means:
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Chapter 2 Statistical models of cellular networks

“Knowing Z, reading Y is irrelevant for reading X”; or in other words: “If I already
know Z, then Y offers me no new information to understand X.” Variable Z can
explain the correlation between X and Y .

The statistical models we discuss in the following all build on conditional indepen-
dence. To decide on an edge between X and Y in the graph, they ask questions of
the form “Is X independent of Y given Z?”, but differ with respect to what Z stands
for: either all other variables except for X and Y , or single third variables, or any
subset of all the other variables. Coexpression networks can be seen as the special
case Z = ∅, which encodes marginal dependencies.

2.1.2 Full conditional models

Full conditional models ask: “Can the correlation observed between two genes be
explained by all other genes in the model?” Nodes i and j are connected by an edge
if and only if

Xi 6⊥ Xj | Xrest. (2.2)

where “rest” denotes the set of all variables in V without i and j. Full conditional
models become especially simple in a Gaussian setting. Assume that X ∼ N(µ, Σ),
where Σ is invertible. Let K = Σ−1 be the concentration matrix of the distribution
(also called the precision matrix ). The value −kij/

√
kiikjj is called the partial cor-

relation coefficient between genes i and j [72]. Then, it holds for i, j ∈ V with i 6= j
that

Xi ⊥ Xj | Xrest ⇔ kij = 0. (2.3)

This relation is used to define Gaussian graphical models (GGMs) [72, 35]. A GGM
is an undirected graph on vertex set V . To each vertex i ∈ V corresponds a random
variable Xi ∈ X. The edge set of a GGM is defined by vanishing partial correlations.
Vertices i and j are adjacent if and only if kij 6= 0. An example is shown in Fig. 2.2.

2 3

4

1 Figure 2.2: Example of a full conditional model. Missing
edges between nodes indicate independencies of the form
Xi ⊥ Xj | Xrest. We can read from the graph that
X1 ⊥ X4 | {X2, X3} and X2 ⊥ X3 | {X1, X4} and
X2 ⊥ X4 | {X1, X3}.

The estimation of a GGM from data is a three-step process. First estimate the
covariance matrix Σ, e.g., by the sample covariance matrix Σ̂ = 1

N−1
(M − M̄)(M −

M̄)T , where M̄ denotes the sample mean. Then, invert Σ̂ to obtain an estimate K̂ of
the precision matrix K. Finally, employ statistical tests [72, 124, 33, 32] to decide,
which entries in K̂ are significantly different from zero.

Comparison to correlation networks Correlation graphs visualize the structure
encoded in the correlation matrix Σ, which tells us about the similarity of expression
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2.1 Conditional independence models

profiles. In GGMs, we model via the precision matrix K = Σ−1, which tells us,
how much correlation remains after we corrected for the influence of all other genes.
GGMs not only filter out high correlations, which can be attributed to other genes,
but may also draw attention to genes which are only very weakly correlated with a
gene of interest, but highly related in terms of partial correlations in the context of
the other neighboring genes in the GGM. These genes can be overlooked in correlation
networks [30, 84].

GGMs have another clear advantage over correlation networks. Directly or indirectly,
almost all genes will be correlated. Thus, the correlation coefficient is a weak criterion
for dependence, but zero correlation is a strong indicator for independence. On the
other hand, partial correlation coefficients usually vanish. They provide a strong
measure of dependence and, correspondingly, only a weak criterion of independence
[115].

Problems of GGMs Full conditional relationships can only be accurately esti-
mated if the number of samples N is relatively large compared to the number of
variables p. If the number of genes to be analyzed exceeds the number of distinct
expression measurements (that is, if p � N), the correlation matrix of expression
profiles between genes does not have full rank and cannot be inverted [115]. The
p � N -situation is true for almost all genomic applications of graphical models.
There are basically two ways out: either improve the estimators of partial corre-
lations or resort to a simpler model. The basic idea in all of these approaches is
that biological data are high-dimensional but sparse, in the sense that only a small
number of genes will regulate one specific gene of interest. We end this section with
examples of improved estimators and describe more strongly regularized models in
the following section.

Several papers suggest ways to estimate GGMs in a p � N -situation. Kishino and
Waddell [69] propose gene selection by setting very low partial correlation coefficents
to zero. As they state, the estimate still remains unstable. Schäfer and Strimmer [115]
improve all three steps of GGM construction. First they sample with replacement
from the dataset to obtain many bootstrap [36] samples. Then, they estimate Σ by
the mean covariance matrix achieved over all bootstrap replicates. Instead of the
usual matrix inverse, they use the Moore-Penrose pseudoinverse, which is based on
a singular value decomposition of Σ̂ and can be applied also to singular matrices.
Finally, they use false discovery rate multiple testing for the selection of edges to be
included in the GGM.

2.1.3 First order conditional independence

First order conditional independence models ask: “Can the correlation between two
genes be explained by a single third gene?” In contrast to GGMs, first order condi-
tional independence models condition not on the whole rest, but only on single third
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genes. Draw an edge between vertices i and j (i 6= j) if and only if the correlation
coefficient ρij 6= 0 and no third variable can explain the correlation:

Xi 6⊥ Xj | Xk for all k ∈ V \ {i, j}, (2.4)

This general idea can be implemented in different ways: Basso et al. [7] build a model
based on conditional mutual information. The resulting method is called ARACNe
and was successfully applied to expression profiles of human B cells. In a Gaussian
setting, first order conditional independence models were proposed by several authors
[144, 145, 79, 27]. Testing for first order conditional independence involves only
triples of genes at a time. Thus, the problem for GGMs in high dimensions no
longer exists. Wille and Bühlmann [144] prove: if the full conditional independence
graph (the GGM) contains no cycles, then the first order conditional independence
graph coincides with the full conditional independence graph. Wille et al. [145] use
sparse Gaussian graphical modelling to identify modules of closely related genes and
candidate genes for cross-talk between pathways in the Isoprenoid gene network in
Arabidopsis thaliana.

2.2 Bayesian networks

In the last sections we have seen methods to build graphs from
marginal dependencies Xi 6⊥ Xj,

full conditional dependencies Xi 6⊥ Xj | Xrest,
first order dependencies Xi 6⊥ Xj | Xk for all k ∈ rest.

The logcial next step is to ask for independencies of all orders. In the resulting graph,
two vertices i and j are connected if no subset of the other variables can explain the
correlation, that is, if

Xi 6⊥ Xj | XS for all S ⊆ V \ {i, j}. (2.5)

This includes testing marginal, first order and full conditional independencies. Thus,
the number of edges will be less compared to the models in the previous sections.
The graph encoding independence statements of the form (2.5) for all pairs of nodes
is still undirected. It can be shown that knowing independences of all orders gives
a more advanced picture of correlation structure. The collection of independence
statements already implies directions of some of the edges in the graph [96, 97, 127].
The resulting directed probabilistic model is called a Bayesian network.

Definition A (static) Bayesian network is a graphical representation of the de-
pendency structure between the components of a random vector X. The individual
random variables are associated with the vertices of a directed acyclic graph (DAG)
D, which describes the dependency structure. Each node is descibed by a local prob-
ability distribution (LPD) and the joint distribution p(x) over all nodes factors as

p(x) =
∏
v∈V

p(xv | xpa(v), θv), (2.6)
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2.2 Bayesian networks

where θv denotes the parametrization of the local distribution. The DAG structure
implies an ordering of the variables. The parents of each node are those varibles that
render it independent of all other predecessors. The factorization of the joint distri-
bution in Eq. 2.6 is the key property of Bayesian networks. It allows to segment the
set of variables into families, which can be treated individually. This basic definition
of Bayesian networks poses a number of further questions, which will be answered in
the following:

1. How do the local probability distributions p(xv | xpa(v), θv) look like?

2. How is conditional independence defined for DAGs?

3. How can we learn a Bayesian network structure from data?

4. Are there natural limits to structure learning?

Local probability distributions (LPDs) Bayesian network models differ with re-
spect to assumptions on the local probability distributions p(xv|xpa(v), θv) attached
to each node v ∈ V . Basically, there are two types of parametric LPDs used in prac-
tice: multinomial distributions for discrete nodes and Gaussian distributions (normal
distributions) for continuous nodes. The general model in statistics is a mixture of
a discrete and a continuous part. Additionally, there are approaches to use non-
parametric regression models linking parents to children. In the following, we will
shortly introduce each of these models.

• Discrete LPDs. A discrete node v with discrete parents pa(v) follows a multinomial
distribution:

Xv | xpa(v), θv ∼ Multin(1, θv|xpa(v)
) (2.7)

It is parametrized by a set of probability vectors θv = {θv|xpa(v)
}, one for each

configuration xpa(v) of parents of v.

• Gaussian LPDs. A continuous node v with continuous parents pa(v) follows a
normal distribution:

Xv | xpa(v), θv ∼ N(µv, σ
2
v), (2.8)

where the mean µv = β
(0)
v +

∑
i∈pa(v) β

(i)
v xi is a linear combination of parent states.

The normal distribution is parametrized by a vector θv = (βv, σ
2
v) containing re-

gression coefficients βv = (β
(i)
v )i∈pa(v) for each parent node and a variance for Xv.

• Conditional Gaussian (CG) networks. CG networks are a combination of discrete
and Gaussian networks. Continuous nodes follow a Gaussian distribution and are
allowed discrete and continuous parents, while discrete nodes follow a multinomial
distribution and are restricted to discrete parents. Thus, the network can be
divided into a completely discrete part and a mixed part containing discrete and
continuous nodes. CG networks constitute the general class of graphical models
studied in statistics [72].

• Regression trees. Segal et al. [119, 120] use regression trees as LPDs. These capture
the local structure in the data [42, 21], whereas the DAG describes the global
structure. Each regression tree is a rooted binary tree with parents in the DAG as
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Chapter 2 Statistical models of cellular networks

internal nodes. Each leaf node of the tree is associated to a univariate Gaussian
distribution.

• Non-parametric regression. Instead of the parametric approaches discussed so far,
the relationship between parents and children in the DAG can also be modeled
by non-parametric regression models [64, 65, 66, 134]. The result is a non-linear
continuous model. This is an advantage over multinomial or Gaussian Bayesian
networks, which are either discrete or linear.

• Boolean logic LPDs. Bulashevska and Eils [16] constrain LPDs to noisy logic func-
tions like OR, AND for activatory parent-child relations or NOR, NAND for in-
hibitory. This has the advantage of simplifying and regularizing the model, while
at the same time making it easier to interpret.

• Kinetic modeling. Nachman et al. [89] use non-linear Michaelis-Mentens dynamics
to model how the transcription rate of a gene depends on its regulators. This
approach combines Bayesian networks with a biochemically realistic quantitative
model of gene regulation.

Conditional independence in directed graphs In Fig. 2.2 we saw how to read off
independence statements from a full conditional independence graph. How does this
work in the case of Bayesian networks? The answer is given by the definition of d-
separation [97] (“d” for directed). A path q in a DAG D is said to be d-separated (or
blocked) by a set of nodes S if and only if at least one of the following two conditions
holds:

1. q contains a chain i→ m→ j or a fork i← m→ j such that the middle node m
is in S, or

2. q contains an inverted fork (or collider) i→ m← j such that the middle node m
is not in S and such that no descendent of m is in S.

If all paths between i and j are blocked by S then (and only then) holds Xi ⊥
Xj | XS. The three archetypical situations can be seen in Fig. 2.3. The definition of
d-separation, also called the Global Markov condition, allows to read statements of
statistical indepence off the DAG structure.

X

Y

Z X

Y

Z X

Y

Z

chain fork collider

X ⊥ Z | Y X ⊥ Z | Y X 6⊥ Z | Y

Figure 2.3: The three archetypi-
cal situations in the definition of d-
separation. In the chain and the
fork, conditioning on the middle node
makes the others independent. In a
collider, X and Z are marginally inde-
pendent, but get dependent once Y is
known.

Markov equivalence Many Bayesian networks may represent the same statements
of conditional independence. They are statistically undistinguishable and we call
them Markov equivalent. All equivalent networks share the same underlying undirect
graph (called the skeleton) but may differ in the direction of edges, which are not
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2.3 Score based structure learning

part of a v-structure, that is, a child with unmarried parents (same as a collider in
Fig. 2.3). This was shown by Verma and Pearl [139]. It poses a theoretical limit on
structure learning from data: even with infinitely many samples, we cannot resolve
the structures in an equivalence class.

Acyclicity in a cyclic world Bayesian networks allow the highest resolution of
correlation structure. Still, they suffer from a severe shortcoming: they are acyclic.
With cycles, we cannot decompose the joint distribu-
tion as in Eq. 2.6. Biological networks are all known
to contain feedback loops and cycles [4]. Modeling
the cell cycle with an acyclic model [44] may not be
the best idea. Fortunately, the cycle problem can be
solved by assuming that the system evolves over time.
This is shown in Fig. 2.4. We no longer model a static
random vector X but a time series X[1], . . . ,X[T ] of
observing X at T timepoints. If we assume that Xv

at time t+1 can only have parents at time t, then cy-
cles “unroll” and the resulting model is again acyclic
and tractable: it is called a Dynamic Bayesian net-

A A

B B

A

B

t+1t
Figure 2.4: The cycle unrolls
into an acyclic graph over differ-
ent time slices.

work (DBN) [45, 87]. DBNs found many applications in computational biology
[154, 9, 157]. They are often combined with hidden variables [101], which can also
capture non-transcriptional effects [8, 104, 105, 89, 93].

2.3 Score based structure learning

In correlation networks, GGMs and sparse GGMs we use statistical tests for each
gene pair to decide whether the data support an edge or not. The number of tests
to be done in these models is limited, even though it can be big in the case of sparse
GGMs. For Bayesian networks we would have to test independence of a gene pair for
every subset of the other genes. This is called constraint-based learning of Bayesian
networks. The examples discussed in [97, 127] involve only a handful of variables. For
bigger problems testing gets infeasible very quickly. In applications in computational
biology the network structure is thus mostly estimated by score based techniques.

2.3.1 Maximum likelihood scores

Maximum likelihood A straight-forward idea for model selection is to choose the
DAG D, which allows the best fit to data M . This means maximizing the likelihood
p(M |D, θ) as a function of θ. A score for DAG D is then given by

scoreML(D) = max
θ

p(M |D, θ) (2.9)
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Chapter 2 Statistical models of cellular networks

Unfortunately, the likelihood is not an appropriate score to decide between models
since it tends to overfitting. Richer models with more edges will provably have better
likelihood than simpler ones. A standard solution to this problem is to penalize the
maximum likelihood score according to model complexity. An often used example of
this general strategy is scoring with the Bayesian information criterion.

Bayesian information criterion (BIC) Contrary to what the name suggests, the
BIC score [117] is not a Bayesian score. It is a regularized maximum likelihood
estimate, which penalizes the maximal likelihood of the model with respect to the
number of model parameters to control overfitting. It is defined as

scoreBIC(D) = max
θ

p(M |D, θ)− d

2
log N, (2.10)

where d is the number of parameters. The BIC score can also be used to learn
Bayesian networks with missing values or hidden variables. The likelihood has then to
be maximized via the Expectation-Maximization (EM) algorithm. In such a scenario,
the BIC score was used by Nachman et al. [89] to learn kinetic models of transcription
factors and their targets. They treated protein activities and kinetic constants as
hidden variables. In cases, where the likelihood is accessible to conjugate analysis, a
full Bayesian approach is preferred over ML or BIC.

2.3.2 Bayesian scores

In Bayesian structure learning we evaluate the posterior probability of model topology
D given data M :

scoreBayes = p(D|M) =
p(M |D) · p(D)

p(M)
(2.11)

The term p(M) is an average of data likelihoods over all possible models. We do not
need to compute it for relative model scoring. The term p(D) is a prior over model
structures. The main term is the marginal likelihood p(M |D), which equals the full
model likelihood averaged over parameters of local probability distributions, that is,

p(M |D) =

∫
Θ

p(M |D, θ)p(θ|D) dΘ. (2.12)

This is the reason, why the LPD parameters θ do not enter Eq. 2.11. They are treated
as nuisance parameters and have been integrated out. It is important to note that
the LPD parameters were not maximized as would be done in a maximum likelihood
estimate or in a BIC score. Averaging instead of maximizing prevents the Bayesian
score from overfitting.

Marginal likelihood of network structure The marginal likelihood p(M |D) is the
key component of Bayesian scoring metrics. Its computation depends on the choice
of local probability distributions and local priors in the Bayesian network model. To
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solve integral (2.12) analytically, the prior p(θ|D) must fit to the likelihood p(M |D, θ).
Statistically, this fit is called “conjugacy”. A prior distribution is called conjugate to
a likelihood, if the posterior is of the same distributional form as the prior [49]. If
no conjugate prior is available, the marginal likelihood has to be approximated. We
shortly discuss the LPDs introduced in section 2.2.

• Discrete LPDs. The marginal likelihood for discrete Bayesian networks was first
computed by Cooper and Herskovits [23]. It is further discussed by Heckerman et
al. [58]. The conjugate prior for the multinomial distribution is the Dirichlet
prior [49]. Assuming independence of the prior for each node and each parent
configuration, the score decomposes into independent contributions for each family
of nodes.

• Gaussian LPDs. Corresponding results exist for Gaussion networks using a Normal-
Wishart prior [48]. The marginal likelihood again decomposes into node-wise con-
tributions.

• CG networks. Conditional Gaussian networks are a mix of discrete and Gaussian
nodes [11]. We discuss the computation of marginal likelihood in detail in sec-
tion 3.4.2. Discrete and Gaussian marginal likelihoods are treated there as special
cases.

• Regression trees. The marginal likelihood at each node of the DAG further splits
into independent components for each leaf of the local regression tree. Conjugate
analysis and analytic results are possible using normal-gamma priors for each leaf
node [42, 21].

• Non-parametric regression. Conjugate analysis and analytic computation of the
marginal likelihood are not possible. Imoto et al. [64] use a Laplace approximation
to approach the true marginal likelihood.

• Boolean logic LPDs. Conjugate analysis and analytic computation of the marginal
likelihood are not possible. Instead, Bulashevska and Eils [16] use Gibbs sampling
to estimate the model posterior p(D|M) and the parameter posterior p(θ|M).

• Kinetic modeling. Again, conjugate analysis is not possible. Nachman et al. [89]
use the BIC score for model selection.

Likelihood equivalence It is sensible to postulate that DAGs in the same equiv-
alence class get the same score. The score should not distinguish between undistin-
guishable models. This requirement limits the choice of permissible prior parameters
when computing the marginal likelihood. We discuss here the discrete case of a multi-
nomial node with a Dirichlet prior [58]. The Dirichlet parameters are a set {αiδ |ipa(δ)

},
each element corresponding to a discrete node δ in state iδ with discrete parent con-
figuration ipa(δ). Likelihood equivalence constrains the Dirichlet parameters to the
form

αiδ |ipa(δ)
= α · P (Iδ = iδ, Ipa(δ) = ipa(δ)), (2.13)

where P is a prior distribution over the joint states of node δ and its parents [58].
The scale parameter α of the Dirichlet prior—often interpreted as “equivalent sample
size” or “prior strength”—is positive and independent of δ. It plays an important
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role for regularization of network structure (see section 2.3.3). Two ad hoc choices
are: for all iδ ∈ Iδ and ipa(δ) ∈ Ipa(δ) set

αiδ |ipa(δ)
=

{
1 [23],
α/|Iδ||Ipa(δ)| [17].

Both choices result in different scoring metrics. Heckerman et al. [58] call the first
score the K2 metric after the K2 algorithm introduced in [23]. It is not likelihood
equivalent. Heckerman calls the second score a BDeu metric. The name is an
acronym for a Bayesian score using a D irichlet prior, which is likelihood equivalent
and uniform. It corresponds to the choice of a uniform prior in Eq. 2.13. How can
likelihood equivalence be guaranteed generally? Heckerman et al. [58] and Geiger
and Heckerman [48] introduce methods to deduce the parameter priors for all pos-
sible networks from one joint prior distribution in the discrete and continuous case,
respectively. Bøttcher [11] generalizes the results to CG networks.

Structure prior Structure priors p(D) help to focus inference on reasonable mod-
els by including biological prior knowledge or integrating different data sources. In
some applications the task is not to learn a structure from scratch but to refine a
prior network built from biological prior knowledge. The first idea is to restrict the
search space to a—conveniently defined—vicinity V(P) of the prior network P . All
the DAGs in the restricted search space are considered equally likely. This can be
interpreted as a rigid structure prior of the form

p(D) =

{
1/|V(P)| if D ∈ V(P)

0 else
(2.14)

A smoother way to guarantee that DAGs similar to the prior network P get higher
prior probability is the following. We measure the confidence of edge (v, w) by a
value 0 < κvw ≤ 1. A structure prior can then be defined proportional to a product
of weights κvw over all edges (v, w):

p(D) ∝
∏

v,w∈V

κvw. (2.15)

The normalization constant, which would be necessary to make the right-hand side
a density, can be ignored when computing relative posterior probabilities. What are
smart choices of κvw? There are several approaches suggested in literature, which are
shortly described here.

1. Heckerman et al. [58] assume constant penalty κvw ≡ κ for all edges, in which D
and P differ. Thus, p(D) ∝ κε where ε is the number of edges in which D differs
from the prior DAG P .

2. Another approach [65, 134] uses a network prior in an iterative scheme. They
construct a Bayesian network from microarray data, propose putative transcription
factors from the network structure, and search for common motifs in the DNA
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sequences of children and grand-children of transcription factors. Then, they re-
learn the network by penalizing edges without motif evidence harder than edges
with motif evidence.

3. Bernard et al. [9] define weights from p-values of binding location data. They
assume that p-values follow an exponential distribution if the edge is present and
a uniform distribution if it is not. By Bayes’ rule they derive probabilities for an
edge to be present given the p-values from the location data. The free parameter
of the exponential distribution is then integrated out. The final probabilities Pvw

are used as weights in a structure prior.

Fig. 2.5 shows a comparison of these three prior definitions. They can be organized
by the weights κvw they give for the presence or absence of an edge given prior
information in.

D
[58] 1 0

1 1 κ
Prior P

0 κ 1

D
[65] 1 0

1 e−ξ1 1
0 e−ξ2 1

D
[9] 1 0

p-value Pvw 1− Pvw

Figure 2.5: Comparison of edge weights suggested by Heckerman et al. [58],
Imoto et al. [65] and Bernard et al. [9]. Rows correspond to prior information. In
the left two examples the prior can be described binary, on the right it is expressed as
a p-value derived from a second data set. In the middle table holds ξ1 < ξ2, i.e. edges
with motif evidence contribute more than edges without.

Discretization Most often used in applications is the Bayesian score for discrete
data. When learning gene regulatory networks from microarray data, we first need
to preprocess the continuous gene expression values and discretize them. In general,
discretization may be carried out for computational efficiency, or because background
knowledge suggests that the underlying variables are indeed discrete. Discretizing
continuous variables results in a loss of information. At the same time, this can be a
loss of noise. Discretized data can be more stable with respect to random variations
of the mRNA measurements. Several methods to discretize microarray data were
proposed in literature:

1. Friedman et al. [44] discretize expression values into three categories, depending
on whether the expression rate is significantly lower than, similar to, or greater
than control, respectively.

2. Pe’er et al. [99] introduce an adaptive discretization procedure. They model the
expression level of a gene in different experiments as samples from a mixture of
normal distributions, where each normal component corresponds to a specific state.
Then they use standard k-means clustering to estimate such a mixture.

3. Hartemink et al. [56] use a discretization coalescence method, which incrementally
reduces the number of discretization levels for each gene while preserving as much
total mutual information between genes as possible.
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Chapter 2 Statistical models of cellular networks

4. In the previous three approaches, expression levels were discretized before and
independently of structure learning. Suboptimal discretization policies will lead
to degraded network structure. To avoid this, Steck and Jaakkola [129] derive
a scoring function to efficiently jointly optimize the discretization policy and the
structure of the graphical model.

This section provides us with all the methodology we need to decide between candi-
date regulatory structures by Bayesian scoring. Once we have decided on a discretiza-
tion policy and on the value of Dirichlet parameters, we need to compute the marginal
likelihood of the data for every candidate structure. Biological prior knowledge can
be incorporated via a structure prior to bias our choice towards reasonable models.
Chapter 3 will give a detailed account of how to compute the marginal likelihood for
discrete and Gaussian networks on observational and interventional data.

2.3.3 Regularization

Regularization is a technique used in Machine Learning to ensure uniqueness of solu-
tion and to fight overfitting by constraining admissible models [116, 83]. Regulariza-
tion is always needed in p� N - situations. We already saw examples of regularization
in section 2.1, when Gaussian graphical models were adapted to the p� N -situation
[115, 144]. Different methods were proposed for Bayesian networks.

1. Steck and Jaakkola [128] show that a small scale parameter α in Eq. 2.13 leads
to a strong regularization of the model structure and a sparse graph given a suf-
ficiently large data set. In particular, the empty graph is obtained in the limit
of a vanishing scale parameter. This is diametrically opposite to what one may
expect in this limit, namely the complete graph from an unregularized maximum
likelihood estimate.

2. Another way to regularize Bayesian networks is to constrain the forms, the local
probability distributions can take. Bulashevska and Eils [16] suggest learning
noisy logic gates for parent-child relationships. The drawback is that Bayesian
conjugate analysis, which leads to the analytic solution of the marginal likelihood,
is no longer possible and Gibbs sampling has to be applied.

3. Module networks [119, 120] constrain the number of parameters in the model by
assuming that groups of genes (so called modules) share the same dependence on
regulators. Learning module networks involves an iteration of assigning genes to
modules and searching for dependencies between modules.

2.3.4 Model selection and assessment

Exhaustive search To search for the DAG with highest score is mathematically
trivial: compute the score for every possible DAG and choose the one that achieves
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2.3 Score based structure learning

the highest value. What makes exhaustive search computationally infeasible is the
huge number of DAGs. The number of DAGs on n edges is

an =
n∑

k=1

(−1)k−1

(
n

k

)
2k(n−k) an−k (2.16)

with a0 = 1 [108]. The number of DAGs increases explosively, as the first few steps
in the recursion show: 1, 1, 3, 25, 543, 29 281, 3 781 503, 1 138 779 265. That means,
we have to think of some heuristic strategy to find high-scoring Bayesian networks
without enumerating all possible ones.

Defining search space First we need to decide how to describe models of interest.
This defines the model space, in which we search for models describing the data
well. To apply search heuristics we have to equip search space with a neighborhood
relation, that is, operators to move from one point of the search space to the next
one.

1. The most simple search space results from defining a neighborhood relation on
DAGs. Two DAGs are neighbors if they differ by one edge, which is either missing
in one of them or directed the other way round.

2. Madigan et al. [78] and Chickering [20] restrict the search space to Markov equiva-
lence classes of DAGs which uniquely describe a joint distribution. Thus, no time
is lost in evaluating DAG models which are equivalent anyway.

3. Friedman and Koller [43] search over orders of nodes rather than over network
structures. They argue that the space of orders is smaller and more regular than
the space of structures, and has a much smoother posterior landscape.

Search heuristics Most of the following search algorithms can be applied to all
search spaces, even though they are usually applied to DAGs. They return a single
best network.

1. A simple and fast but still powerful method is hillclimbing by greedy search. First,
choose a point in search space to start from, e.g. a random graph or the empty
graph. Compute the posterior probability for all graphs in the neighborhood of
the current graph. Select the graph with highest score. Iterate until no graph in
the neighborhood has a larger score than the current graph. This procedure gets
you to local maxima of the Bayesian scoring metric. The K2-algorithm [23] is a
variant of greedy search, which assumes that the order of nodes is known.

2. The sparse candidate algorithm [46] restricts the number of possible parents for
each node by searching for pairs of nodes which are highly dependent.

3. The ideal parent algorithm [90, 89] constructs a parent profile perfectly explaining
the child behaviour and uses it to guide parent selection and to restrict the search
space.

4. Peña et al. [100] grow Bayesian networks starting from a target gene of interest.
They iteratively add to the Bayesian network parents and children of all the genes

23



Chapter 2 Statistical models of cellular networks

already included in it. The algorithm stops after a predefined number of steps and
thus, intuitively, highlights the surrounding area of the seed gene without having
to compute the complete Bayesian network over all genes.

5. Friedman [39, 40] introduces the structural EM algorithm to learn Bayesian net-
works in the presence of missing values or hidden variables. It is an extension
of the Expectation-Maximization (EM) algorithm that performs structure search
inside the EM procedure.

Assessing uncertainty The problem with optimal models is, as Edwards [35] puts
it: “Any method (or statistician) that takes a complex multivariate dataset and, from
it, claims to identify one true model, is both naive and misleading”. The emphasis
is on “one true model”. Better than choosing a single best model is to explore the
whole posterior distribution. Direct sampling from the posterior is impossible due
to the intractability of the denominator in Eq. 2.11, but there are other methods
available.

1. The most we know about the data distribution is the empirical distribution of
observations in the dataset. A classical approach to assess variability in the data
is bootstrapping [36]. The strategy is to sample with replacement from the obser-
vations in the data set to get a number of bootstrap datasets, and then learn a
network on every bootstrap dataset. The relative frequency of network features in
the resulting network structures can be used as a measure of reliability [44, 99].

2. Bootstrap samples can contain multiple copies of identical data points. This im-
plies strong statistical dependencies between variables when given a small dataset.
As a consequence, the resulting network structure can be considerably biased to-
wards denser graphs. Steck and Jaakkola [131] propose a correction for this bias.

3. As a simple way to avoid the bootstrap-bias Steck and Jaakkola [129] use the
leave-k-out method. Instead of resampling with replacement, k cases are left out
of the dataset when estimating a model. Repeating this many times also gives an
estimate of model variability.

4. Markov Chain Monte Carlo (MCMC) is a simulation technique, which can be used
to sample from the posterior p(D|M). Given a network structure, a new neigh-
boring structure is proposed. This new structure is accepted with the Metropolis
Hastings acceptance criterion [57]. The iteration of this procedure produces a
Markov chain that under fairly general conditions converges in distribution to
the true posterior. MCMC is used by Husmeier [62] to learn dynamic Bayesian
networks. Madigan et al. [78] use MCMC over Markov equivalence classes and
Friedman and Koller [43] over orders of nodes.

2.4 Benchmarking

Graphical models visualize a multivariate dependency structure. They can only an-
swer biological questions if they succeed in reliably and accurately reconstructing bi-
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ologically relevant features of cellular networks. Unfortunately, rigorous assessment
and benchmarking of methods are still rare.

• One of the first evaluation studies is by Smith et al. [125]. They sample data from
a songbird’s brain model and report excellent recovery success when learning a
Bayesian network from it.

• Zak et al. [155] develop a realistic 10 gene network, where the biological processes
at the different levels of transcription, translation and post-translational modifica-
tions were modeled with systems of differential equations. They show that linear
and log-linear methods fail to recover the network structure.

• Husmeier [62] uses the same simulation network [155] to specify sensitivity and
specificity of dynamic Bayesian networks. He demonstrates how the network in-
ference performance varies with the training set size, the degree of inadequacy of
prior assumptions, and the experimental sampling strategy. By analyzing ROC
curves Husmeier can show fair performance of DBNs.

• Wimberly et al. [146] test 10 algorithms, including Boolean and Bayesian networks,
on a simulation [14] of the genetic network of the sea urchin embryo [25]. They
report that reconstruction is unreliable with all methods and that the performance
of the better algorithms quickly degrades as simulations become more realistic.

• Basso et al. [7] show that their own method, ARACNe, compares favorably
against static Bayesian networks on a simulated network with 19 nodes [154]—
but only if the dataset includes several hundreds of observations. On the other
hand, Hartemink [55] finds dynamic Bayesian networks to be even more accurate
than ARACNe on the same dataset.

All in all the results are not promising. Graphical models from microarray data need
a big sample size and capture only parts of biologically relevant networks. One reason
for this shortcoming is that the models we discussed so far all use purely observational
data, where the cellular network was not perturbed experimentally. In simulations
[156, 82] and on real data [114] it was found that data from perturbation experiments
greatly improve performance in network reconstruction. Thus, the following section 3
will introduce methodology for learning from effects of interventions in a probabilistic
framework suitable to capture the noise inherent in biological experiments. This helps
to improve the accuracy of network reconstruction.

2.5 A roadmap to network reconstruction

Fig. 2.6 organizes network reconstruction methods with respect to basic questions:
Does the data include gene knockout or knockdown experiments? If not, we call it
purely observational data; if yes, we call it interventional data. Is the model proba-
bilistic or deterministic? Does the model allow for changes over time? If yes, we call
it dynamic, else static. Does the model describe transcriptional regulatory networks?
And if yes: are additional non-transcriptional effects taken into account?

25



Chapter 2 Statistical models of cellular networks

In the leaf nodes of the decision tree methods fall together that are methodologically
similar. Some branches in the tree are missing. Mostly, the reason is not that it
would be impossible to follow them, but simply that we found no approach doing
it.
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Figure 2.6: A guide to the literature on network reconstruction. The methods dis-
cussed in this section all fall into the left branch of the tree. The next two sections will
deal with learning transcriptional regulatory networks and non-transcriptional pathways
from interventions. The main contributions of this dissertation are soft interventions
and learning from secondary effects.

Fig. 2.6 shows representative examples and relates our own methods to other ap-
proaches. The main contributions of this dissertation are soft interventions and
learning from secondary effects. They can be found in the right-most branch of
the tree. Both are static probabilistic models for interventional data. Soft inter-
ventions are used for gene regulation networks, in which effects of interventions can
be observed at the other genes in the model. Learning from secondary effects infers
non-transcriptional pathway features from expression data. This model expands the
mRNA centered view of graphical models to non-transcriptional parts of signaling
pathways.
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