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Summary 

A variety of different methods have been suggested to classify catchment runoff or 

groundwater dynamics, to relate these to catchment or aquifer properties and thus to 

utilize inherent information of data. To that end, the correlation dimension method, a 

powerful nonlinear time series analysis method based on the chaos theory, has been 

suggested to assess the intrinsic dimensionality of time series according to Takens 

(1981). It can provide an assessment of the minimum number of processes that is 

required to map the observed dynamics. In the first study, the correlation dimension 

method was applied to the observed hydrographs of 35 catchments in the Federal 

State of Brandenburg, Germany. The intrinsic dimensionality of these catchments 

ranged from 2.2 to 5.8. It was uncorrelated with the results of standard time series 

analysis methods, such as autocorrelation, the slope of the power spectrum and the 

Hurst coefficient, revealing that the correlation dimension method captured 

information independent from these measures. The correlation dimension values did 

not exhibit any clear spatial patterns, but showed significant correlations with the 

spatial heterogeneity within the catchments. In addition, the correlation dimension 

method was applied to groundwater head and lake level data in the biosphere reserve 

Schorfheide-Chorin region. The intrinsic dimensionality of groundwater level ranged 

from 0.9 to 5, while lake level exhibited small variations, around 1.57 to 2. The 

correlation dimension values of groundwater level exhibited no correlation with the 

screening depth of groundwater wells, but displayed spatial patterns due to the 

different aquifer conditions (confined or unconfined). It seems that high correlation 

dimension values indicate partly confined conditions.  

Most of the available hydrological models are highly over-parameterized concerning 

available data and encounter the equifinality problem: different model 

parameterizations and even different models yield the same best results, which has 

severe consequences with respect to model uncertainty. However, if these models are 

used for process identification or as a basis for the modeling of reactive solute 

transport, they exhibit substantial variety. The same problem exists for model 

applications to different boundary conditions. Thus, model validation by comparing 
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measured with simulated time series only is not sufficient. In the second study, we 

proposed a different approach based on the correlation dimension method. Simulated 

hydrographs from three hydrological models with increasing complexities were 

investigated using the correlation dimension method and the relationship between 

correlation dimension values and Nash-Sutcliffe efficiency values was explored. The 

correlation dimension method imposes additional constraints to the models and is 

more powerful to reduce the equifinality problem compared with the traditional Nash-

Sutcliffe efficiency criteria. Therefore, the combination of the Nash-Sutcliffe 

efficiency criterion and the correlation dimension method detects the intrinsic 

property underlying the system dynamics, but also improves the prediction accuracy, 

serving as a promising approach for model performance evaluation. In addition, the 

correlation dimension analyses of model rainfall, evapotranspiration and discharge 

time series suggested that the hydrological models likely acted as intrinsic 

dimensionality reducing filters for the high-dimensional model inputs to outputs. The 

model reduced more intrinsic dimensionalities of simulations, if the higher model 

complexity was. 

Keywords: correlation dimension, dominant process, equifinality, hydrological model, 

intrinsic dimensionality, groundwater dynamics 
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Zusammenfassung 

Für eine Klassifizierung hydrologischer Einzugsgebiete hinsichtlich ihres 

Abflussverhaltens, wurden in der Vergangenheit verschiedene Auswertemethoden 

entwickelt. Gemeinsames Ziel war es, die den Datensätzen inhärente Informationen 

soweit nutzbar zu machen, dass eine Korrelation der Abflussdynamik mit den 

Einzugsgebiets- bzw. Aquifereigenschaften möglich ist. Zu diesem Instrumentarium 

gehört auch die Korrelations-Dimensions-Methode, eine auf der Chaos-Theorie 

basierende Methode der nicht linearen Zeitreihenanalyse. Sie wurde von Takens 

(1981) zur besseren Beschreibung hochdynamischer physikalier Systeme entwickelt. 

Die Methode ermöglicht eine Abschätzung der Mindestanzahl an Prozessen, die zur 

Darstellung der beobachteten System-Dynamik notwendig sind, der so genannten 

intrinsischen Dimensionalität. In der vorliegen Arbeit wurde in einem ersten Schritt 

die Korrelations-Dimension auf gemessene Abflussganglinien von 35 

Einzugsgebieten des Bundeslandes Brandenburg (Deutschland) angewendet. Die 

ermittelten Werte für die intrinsische Dimensionalität dieser Einzugsgebiete lagen 

zwischen 2.2 und 5.8. Diese Ergebnisse korrelierten nicht mit den Werten der 

überlicherweise eingesetzten Standardmethoden der Zeitreihenanalyse wie 

Autokorrelation, der Steigung des Powerspektrums oder dem Hurst-Koeffizienten. 

Die Ergebnisse zeigen somit, dass mit der Korrelations-Dimensions-Methode 

zusätzliche bzw. von anderen Auswertemethoden unabhängige Informationen erfasst 

werden können. Die Werte der Korrelations-Dimension korrelieren signifikant mit der 

räumlichen Heterogenität innerhalb der Einzugsgebiete und verweisen somit auf 

strukturelle Einheiten mit unterschiedlicher hydrologischer Komplexität. In einem 

weiteren Schritt wurde die Korrelations-Dimensions-Methode auf Zeitreihen von 

Grund- und Seewasserständen im Biosphärenreservat Schorfheide-Chorin angewendet. 

Hier ergeben sich für die Zeitreihen der Grundwasserstände Korrelations-Dimensions-

Werte von 0.9 bis 5. Für die Dynamik der Seewasserstände wurden Werte zwischen 

1.57 und 2 ermittelt. Die Korrelations-Dimensionen der Grundwasserstände weisen 

keinen Zusammenhang mit der Filtertiefe der Grundwassermessstellen auf, zeigen 

aber räumliche Muster, die mit dem hydraulischem Zustand des Aquifers (gespannt 
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oder ungespannt) korrelieren. Es konnte gezeigt werden, dass hohe Korrelations-

Dimensions-Werte auf gespannte Verhältnisse hindeuten.  

Die intrinsische Dimensionalität ist nicht nur für eine weitergehende Interpretation 

hydrologischer Zeitreihen von großer Bedeutung. Die meisten der verfügbaren 

hydrologischen Modelle sind hinsichtlich der vorhandenen Daten stark 

überparametrisiert und unterliegen dem Problem der Äquifinalität, d.h. verschiedene 

Parametrisierungen von Modellen, sogar verschiedene Modelle liefern qualitativ die 

gleiche Ergebnisse. Werden die Modelle allerdings zur prozessbasierten Modellierung 

z.B für den reaktiven Stofftransport oder für szenariobasierte Berechnungen genutzt, 

zeigen sich grundlegende Abweichungen. Dasselbe Problem besteht bei der 

Anwendung von Modellen mit unterschiedlichen Randbedingungen. Vor diesem 

Hintergrund ist die Validierung von Modellen durch den bloßen Vergleich von 

gemessenen und simulierten Zeitreihen nicht ausreichend. Im Rahmen dieser Arbeit 

wurde daher ein auf der Korrelations-Dimensions-Methode basierender Ansatz zur 

Lösung dieses Problems entwickelt und getestet. Simulierte Abflussganglinien von 

drei hydrologischen Modellen zunehmender Komplexität wurden mit dem 

Korrelations-Dimensions-Ansatz ausgewertet und die Ergebnisse mit dem etablierten 

Nash-Sutcliffe-Effizienz-Kriterium verglichen. Es konnte gezeigt werden, dass die 

Korrelations-Dimension-Methode für die Modelle zusätzliche Beschränkungen der 

Freiheitsgrade setzt und hinsichtlich der Reduzierung des Problems der Äquifinalität 

effektiv einzusetzen ist. Die Kombination aus Nash-Sutcliffe-Effizienz-Kriterium und 

Korrelations-Dimension reduziert den zeitlichen Aufwand der Analyse und verbessert 

die Vorhersagegenauigkeit. Das vorgestellte Verfahren scheint für die Beurteilung der 

Leistungsfähigkeit von Modellen ein vielversprechender Ansatz zu sein. Darüber 

hinaus deuten die Korrelations-Dimensions-Analysen simulierter Niederschlags-, 

Evapotranspirations- und Abfluss-Zeitreihen darauf hin, dass hydrologische Modelle 

für hoch-dimensionale Modelleingaben als Filter für die intrinsische Dimensionalität 

wirken. Es zeigt sich, dass die intrinsische Dimensionalität der Simulationsergebnisse 

in dem selben Maße abnimmt, wie die Komplexität des Modells zunimmt.  
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1 Introduction 

1.1 Background and Objectives  

The complex nature of geophysical phenomena has been realized for centuries. They 

exhibit significant variability on temporal and spatial scales and are governed by 

inherently nonlinear and inter-dependent mechanisms. In order to understand and 

describe complex geophysical phenomena, the “system” concept was introduced. A 

widely accepted classification is that of deterministic systems and stochastic systems. The 

deterministic supporters argue that geophysical phenomena are deterministic in nature. 

On the other hand, the stochastic supporters argue that geophysical phenomena are 

obviously random in nature due to the highly variable complex nature of geophysical 

phenomena and our limited ability to understand such variations. Indeed, most 

geophysical phenomena are neither steady nor periodic. Some are not as irregular and as 

complex as the others. Their behavior can be classified between regular and stochastic 

behavior, called “chaotic” motion. Their describing theory is known as “chaos theory”.  

The chaotic system was first found by Lorenz (1963) when he studied a simplified system 

of convection rolls in the atmosphere to investigate the predictability of the weather. He 

found that this system was neither stochastic nor periodic and never settled down to 

equilibrium or to a periodic state. However, this system is sensitively dependent on the 

initial conditions. For instance, small errors in initial conditions (such as those due to 

rounding errors in numerical computation) yield widely diverging outcomes, rendering 

long-term prediction impossible in general. This is in contrast to the usual understanding 

of the physical laws, where small perturbations cannot produce arbitrarily large 

consequences (Rodriguez-Iturbe et al., 1989). Thus, chaotic motion should be viewed as a 

separate motion regarding the deterministic and stochastic motions. Sivakumar (2004a) 

suggest that the chaos theory might connect deterministic and stochastic systems theory, 

taking into account the advantages of the two systems as well as their limitations. 

The fundamental idea of the chaos theory is that many phenomena appear to be complex 

but may be prone to very few degrees of freedom. Since the development of the chaos 

theory, it has been applied to a variety of geophysical time series, including oxygen 
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isotope records, tree-ring thicknesses, surface pressure, sunshine duration, wave 

amplitude, geo-potential values, temperature, rainfall and wind velocity (e.g. Sivakumar, 

2004a; Sivakumar, 2009). Among them, hydrological phenomena (e.g. rainfall, runoff, 

groundwater flow) are often regarded as paramount examples for highly non-linear and 

apparent complex systems. However, they can be regarded as the outcome of simple 

systems with only a few nonlinear interdependent variables with sensitive dependence on 

initial conditions (Sivakumar, 2004a). Therefore, using the chaos theory to explore the 

useful information of hydrological systems will forward our understanding of the systems. 

Hydrologic phenomena arise as a result of interactions between climate input and 

landscape characteristics that occur over a wide range of space and time scales. Due to 

tremendous heterogeneities in climate inputs and landscape properties, such phenomena 

may be complex at all scales. Consequently, the “complexity" becomes an appropriate 

indicator to represent the hydrological systems’ characteristics. Most of the available 

hydrological models are highly over-parameterized concerning available data. On the 

other hand, a minimum of model complexity is required to account for the expected 

changes of, e.g., land use, water management strategies or climates. This is a serious 

obstacle to using models for water resources planning and management. Thus, there is 

urgent need to equilibrate data and model complexity. 

In spite of our technological advances, there are still many constraints in regards to data 

measurements, some of which are associated with unknown physical mechanisms 

knowledge. Even if we have all the right technologies for data measurements, we still 

may not be able to actually obtain the required data for reasons associated with political 

and societal pressures (Sivakumar, 2008). These difficulties in obtaining more accurate 

data force us to shift our thinking to extract more information from the available data. In 

fact, one of the purposes of measuring data is to learn about such mechanisms from the 

data themselves in an “inverse” manner (Sivakumar, 2008). Various methods have been 

developed to abstract different kinds of information in the data besides time series plots, 

such as autocorrelation analysis, power spectrum analysis, Hurst analysis and principal 

component analysis (PCA) etc. The autocorrelation analysis (e.g. Porporato and Ridolfi, 

1997) provides a mathematical tool for displaying the temporal dependency and finding 
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repeating patterns in the time series, while the power spectrum analysis (e.g. Akselrod et 

al., 1981; Tsonis et al., 1994; Porporato and Ridolfi, 1997; Kirchner et al., 2000; 

Sivakumar, 2001) is often used to quantify the degree to what a catchment buffers the 

high-frequency part of the input signal. The Hurst coefficient (e.g. Lange, 1999) 

quantifies the phenomenon of persistence and reveals the long-term memory of the data. 

PCA (e.g. Jolliffe, 2002) can be thought of revealing the internal structure of the data in a 

way which best explains the variance of the data. However, it is a linear dimensionality 

reduction method that cannot adequately represent nonlinear relationships. Therefore, 

diverse nonlinear time series analysis methods based on the chaos and dynamic theory 

were developed, such as the correlation dimension (CD) method (Grassberger and 

Procaccia, 1983a), Kolmogorov entropy (Grassberger and Procaccia, 1983b), recurrence 

quantification analysis (Marwan et al. 2007), and the Lyapunov exponent (Wolf et al., 

1985). These methods motivate scientists to explore the hidden information in the data 

from the special view of the “complexity” underlying the system dynamics. 

General speaking, the complexity of a system with deterministic dynamics depends on the 

number of degrees of freedom and on how many of them are associated with sensitive 

dependence on initial conditions (Koutsoyiannis, 2006). The former is assessed by the 

dimensional analysis, while the latter is quantified by positive values of the so called 

Lyapunov exponents. The dimensional analysis has great generality and mathematical 

simplicity. It offers an approach for reducing complex physical problems to the simplest 

form and obtaining a quantitative answer (Sonin, 2001). At the heart of dimensional 

analysis is the concept of similarity, which refers to some equivalence between two things 

or phenomena that are actually different. A certain type of dimensional analysis method 

based on the temporal similarity of different periods in a data set is used to assess the 

“intrinsic dimensionality” or the “degrees of freedom” of data, which is defined as the 

minimum number of free variables required to generate the data without any significant 

information loss. In this catalog, the CD method (Grassberger and Proccacia, 1983a) has 

attracted considerable interest of scientists in atmospheric and hydrologic sciences (e.g. 

Sivakumar, 2004a). The obtained CD value is extremely sensitive to slight changes in the 

complexity of the underlying deterministic structure (DeCoster and Mitchell, 1991). The 

higher the CD values, the more complex the underlying system dynamics appear to be. 
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This information is helpful for classifying catchments regarding the observed runoff 

behavior and for distinguishing different dynamics in groundwater aquifer systems. 

On the other hand, different rainfall runoff models or even the same model parameterized 

in different ways often give indistinguishable results with respect to the simulated 

hydrograph (Beven and Freer, 2001). However, if these models are used for process 

identification or as a basis for the modelling of reactive solute transport, they exhibit 

substantial variety, regardless of superior performance on a calibration or validation data 

set. The same problem exists with respect to model applications to different boundary 

conditions. This phenomenon is called “equifinality” and it has severe consequences with 

respect to model uncertainty. Thus, model validation by comparing measured with 

simulated time series only is not sufficient and additional constraints are needed.  

Since it is impossible to model everything due to the interactions with climate and other 

systems in nature, therefore, the “dominant processes” (corresponding to the minimum 

number of independent processes) model framework becomes more practical. In that case, 

the number of dominant processes might be a reliable additional constraint for models. 

The CD method can assess the dominant processes that are required to reproduce the 

observed dynamics. This makes it as an ideal candidate to investigate model structure 

uncertainties and evaluate model performance. 

Based on the advantage of the CD method to explore the underlying the system dynamics 

with no pre-defined assumptions, this thesis aims at applying the CD method to 

hydrological phenomena and develop new promising approaches for classifying 

catchment behavior, evaluating model performance and assessing groundwater dynamics 

through estimating the complexity or the number of dominant processes of observed and 

simulated data. The thesis addresses the following topics: 

1) Which different information does the CD method provide compared with 

autocorrelation analysis, power spectrum analysis, Hurst analysis and principal 

component analysis (PCA)? 
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2) What are the reasons for the different dimensionalities of observed hydrographs? 

Are they related to anthropogenic pressure, catchment properties or 

meteorological data? 

3) How does the CD method tackle the equifinality problem and set up a blueprint 

for model evaluation? 

4) How does the intrinsic dimensionality change from the input to the output of 

conceptual rainfall runoff models? 

5) What are the possible strengths and weaknesses of the CD method with respect 

to groundwater head and lake level time series? 

1.2 Outline of the thesis 

This PHD thesis is composed of eight chapters. Chapters 4 and 5 have been written as 

manuscripts for publication in international peer-reviewed scientific journals (Appendix I). 

Chapter 1 is the introduction of this thesis. It describes the background, problem 

definition and the objectives of the thesis. 

Chapter 2 describes the principle, calculation steps and some methodological problems of 

the CD method and then provides an overview on previous studies of the CD analysis. 

Chapter 3 introduces the principle of three rainfall runoff models (i.e. abc model, VM 

model and HBV model) and the standard time series analysis methods (i.e. variance, 

autocorrelation analysis, power spectrum analysis, Hurst analysis and PCA). These three 

hydrological models with different complexities were employed as the basis of model 

performance evaluation in Chapter 5. While the standard time series analysis methods 

were used to check the redundancies between these measures and CD results in Chapter 4 

and 5. 

Chapter 4 describes the first CD method application, which aims at classifying the 

catchments regarding the runoff behavior and exploring the reasons for different 

dimensionalities of observed hydrographs. 
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Chapter 5 describes the second CD method application, which uses the CD method to 

reduce the equifinality problem and consequently proposes a promising evaluating 

approach for model performance. 

Chapter 6 describes the third CD method application, which applies the CD method to 

assess the complexity of groundwater head and lake level and explore the independent 

information of groundwater dynamics. 

Chapter 7 discusses the possible strength and weakness of the CD method on assessing 

the number of dominant processes underlying the system dynamics.  

Chapter 8 gives a conclusion of this thesis. It highlights the major outcomes of this work 

and provides recommendations for future research. 
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2 Theory and applications of the Correlation Dimension 

method 

2.1 Theory of the Correlation Dimension method 

The correlation dimension (CD) is a measure of the number of “active nodes” in the 

system or of the effective number of degrees of freedom (Theiler, 1986). In physical 

terms, the CD gives a lower bound on the effective number of degrees of freedom 

activated in a physical process (Ding et al. 1993). It is a special case of the Renyi 

dimension 
qD  (Renyi, 1970; Wang and Gan, 1998), defined as  

 

( )
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( 1) log
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





 (2-1) 

Where ( )M   is the number of boxes with a discrete probability distribution 0iP  ;   is 

the side length of the box; q  is any real number, but usually an integer number; 0D  is the 

box-counting dimension; 1D  is the information dimension; 2D  is the correlation 

dimension (CD) and 0 1 2D D D   (Ding et al., 1993; Wang and Gan, 1998). 

The box-counting dimension (i.e. the capacity dimension or the Hausdorff dimension) 

was first proposed by Mandelbrot (1977) to define the dimension of a fractal set. The 

simple concept of this dimension is counting the number of boxes that contain one or 

more data points. This dimension is commonly based on narrow and intuitive definitions 

(Wan and Gan, 1998). The information dimension makes a step forward and takes 

amount of information contained in each box into consideration. This is achieved by 

measuring the irregularity or entropy based on the Shannon formula for a discrete 

probability (Wan and Gan, 1998). These two dimensions described are impractical to 

implement on high dimensional data, because the number of boxes increases 

exponentially with the dimensionality of the data, and consequently requires heavy 

computational load (Buchula et al., 2005). In contrast, the CD can better deal with high 

dimensional data compared with box-counting and information dimensions. Therefore, 
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the CD attracts more interests of scientists. The CD method introduced by Grassberger 

and Proccacia (1983a) can assess the “intrinsic dimensionality” or “degree of freedom” of 

time series according to Taken (1981), that is, the minimum number of dominant 

processes required to map the observed dynamics.  

The CD method can be used as a nonlinear time series analysis method based on the 

theory of dynamic systems. The dynamical system can be defined as a deterministic 

mathematical prescription for evolving the system state forward in time (Ott, 1993). It is 

characterized by: (1) a phase space in which the motion of the system takes place; (2) a 

time evolution law that describes what future states follows from the current state; (3) a 

time set that can describes the moments at which movements from one position to another 

take place (Koutsoyiannis, 2006). The phase space is a coordinate system with the 

coordinates representing the dominant variables to completely describe the state of the 

system at any moment (Sivakumar, 2007). The elements or points of the phase space 

represent possible states of the dynamic system. The path in phase space followed by the 

system as it evolves with time is so called “orbit” or “trajectory”. In dissipative dynamic 

systems, the trajectory of the system, after some transient time, is attracted to some 

subsets of the phase space. This set itself is invariant under the dynamical evolution and is 

called the attractor of the system (Kantz and Schreiber, 2004). One goal of estimating the 

intrinsic dimensionality is to extract the properties of underlying attractors based on 

observed or simulated time series and a reconstruction of the phase space. 

2.1.1 Phase space reconstruction using the time delay embedding method 

The idea behind such a phase space reconstruction is that a nonlinear system is 

characterized by self-interaction, and that time series of a single variable can carry the 

information of the entire multi-variable system dynamics. Takens’ theorem (1981) 

guarantees that original and reconstructed attractors can be considered to represent the 

same dynamical system in different coordinate systems. 

The time delay embedding method is a commonly used phase space reconstruction 

method. It takes a scalar time series ( )ix t  and its successive time delays to embed in the 

m  dimensional phase space defined by 
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  ( ) ( ), ( ), ( 2 ), ( 3 ), , ( ( 1) )i i i i iY t x t x t x t x t x t m          (2-2) 

where   is delay time or time lag; and m  is the embedding dimension. For practical 

purposes, the most important embedding parameter is the product m   rather than any 

single parameter, because m   is the time span represented by an embedding vector 

(Kantz and Schreiber, 2004). In this section, the parameters   and m  are described 

separately. 

2.1.1.1 Time lag 

The time lag   is used to “decorrelate” a time series into a number of vectors (Wang and 

Gan, 1998). Each column in the matrix ( )Y t  stands for the trajectory for the underlying 

system in the embedding phase space. If   is too small, then each column of ( )Y t  is not 

independent from others and little new information is included, resulting in an 

underestimation of the correlation dimension. On the contrary, if   is too large, all 

relevant information contained by the original system and by the phase space 

reconstruction is lost, resulting in almost uncorrelated vector’ components. Thus the data 

are (seemingly) randomly distributed in the embedding space (Hegger et al. 1999; 

Sivakumar, 2000). Various methods for selecting an appropriate   are proposed, such as 

the autocorrelation function (e.g. Tsonis and Elsner, 1988; Jayawardena and Lai, 1994), 

the mutual information (e.g. Frazer and Swinney, 1986; Moon et al., 1995; Hegger et al. 

1999), the phase portrait (e.g. Kantz and Schreiber, 2004). Among these methods, 

autocorrelation function is the most commonly used due to its simple concept and 

computational ease. It is suggested using a value of   at which the autocorrelation 

function first attains a certain value, such as 0 (e.g. Holzfuss and Mayer-Kress, 1986), 0.1 

(e.g. Tsonis and Elsner, 1988) or 0.5 (e.g. Schuster, 1988). Although this method displays 

a regular behavior representing the effect of the seasonal characteristics of the time series 

(e.g. Porporato and Ridolfi, 1997), these given values are too arbitrary and depend on 

personal choice. Frazer and Swinney (1986) pointed out that the autocorrelation function 

method measures the linear dependency among successive points and thus may not be 

appropriate for nonlinear dynamics. They proposed the mutual information method. There 

  should be chosen to coincide with the first minimum of mutual information of the data 
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set. They also showed that the mutual information method is superior to the 

autocorrelation function method for choosing  . But this method requires a large number 

of data points (unless the dimension is small) and is computationally cumbersome 

(Sivakumar, 2000). In addition, the mutual information method always involves the 

parameter “partition” (i.e. the number of bins) and then the estimated time lag   depends 

on the parameter values. There are no clear approaches to identify the value of partition. 

Hence, the estimation of   using mutual information method is uncertain. The phase 

portrait method is another way to identify the proper time lag  , i.e., plotting ( )x t  versus 

( )x t  , and subsequently increasing   until the pattern stabilizes. It is a kind of visual 

inspection and the   obtained by this method is arbitrary. In summary, none of 

aforementioned methods can be the undisputed rule for choosing   from our 

investigation. Therefore, the heuristic method with experimenting different   is preferred 

in this study. 

2.1.1.2 Embedding dimension 

No optimal method to select the embedding dimension m  exists. For a long enough data 

string with low enough noise, the plateau onset occurs at ( )m ceiling CD  (Ding et al. 

1993). In principle m  should be equal or greater than CD, but a too large m  will add 

redundancy and lack of statistics, and hence m  should be chosen carefully. One method 

to obtain the optimum embedding dimension m  is the false nearest neighbors approach 

(e.g. Kennel et al., 1992; Rhodes and Morari, 1997; Hegger, 1999). Its principle is 

eliminating false neighbors by checking the neighborhood of points embedded in 

projected manifolds of increasing dimension (Das et al., 2002). However, the results 

highly rely on the involved parameters which are hard to identify. The same situation is 

faced by the correlation integral method, which is another approach to obtain the 

optimum embedding dimension m . For example, one of the common parameters for the 

false nearest neighbors and the correlation integral methods is the Theiler window, which 

is applied to exclude temporal correlated points from the pair counting. This value is 

usually identified by the space time separation plot (Provenzale et al., 1992). The 

parameter “time lag  ” is employed in this plot, which is difficult to be estimated as 

described in the previous section. Thus, the estimation of the Theiler window based on   
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is incredible. There are no definitive clear-cut guidelines for choosing the embedding 

dimension m  and hence a practical approach to experiment with different   and m  is a 

better choice to get a reliable CD value (e.g. Tsonis et al., 1993, Sivakumar, 2000).  

2.1.2 Correlation Dimension estimation 

Some systems may be constrained in the case of two variables that are highly correlated 

where all data points plot closely to a common regression line. That means the data points 

do not fill the whole 2D phase space more or less homogeneously. The CD method in fact 

checks how homogeneous the phase space is filled by the observations, accounting for 

highly non-linear relationships as well. According to Taken (1981), this method can be 

extended from multi-variate high-dimensional data sets to uni-variate time series. That is, 

the time series can be represented by a set of the same time series, but with different time 

lags. Then, again, this new reconstructed vector usually does not fill the available phase 

space homogeneously. That means, the next data point cannot be any value given a series 

of observed subsequent data points (e.g., discharge data). Instead, the more constrained, 

the lower degrees of freedom are. 

 The CD method assumes that the data are spatially correlated in the respective phase 

space. The more correlations are in a data set, the smaller is the effective dimensionality 

of the data compared to the specified number of variables, so the smaller the inter-points 

distances tend to be (Lischeid and Bittersohl, 2008). The correlation integral ( )C r  is 

employed to measure the spatial correlation of a data set in the phase space. It is defined 

as the number of pairs whose distance is smaller than the threshold r . The equation is: 

 2

1
( ) ( ( ) ( ) )lim a b

n a b

C r H r Y t Y t
N N 

  

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where ( )H u is the Heaviside function with the function
0 0

( )
1 0

u
H u

u


 


and 

( ) ( )a bu r Y t Y t   . ( ) ( )a bY t Y t  denotes the Euclidian distance between two 

geometrical points in the reconstructed phase space, r  stands for the radius of a sphere 
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centered on ( )aY t  or ( )bY t  and N  is the number of data points in the spatial series 

(Grassberger and Proccacia, 1983a). 

For a large data set, there is a relationship between the correlation integral ( )C r  and the 

radius r as:  

 ( ) dC r r  (2-4) 

where   is a constant and d  is the correlation exponent. The value of d  is determined 

as the mean slope of scaling range in log ( )C r  versus log r  plot. 

 
0,

log ( )
lim

logr N

C r
d

r 
  (2-5) 

Plotting log ( )C r  against log r  yields a curved line that can usually be subdivided into 

three parts: (i) the depopulation range (an irregular pattern) for small values of log r , (ii) 

the scaling range (a linear part) for intermediate values of log r , (iii) the saturation range 

(slope approaches zero) for large values of log r . The correlation exponent value is 

estimated from the slope of the scaling range. It must be noted that the exact delineation 

of the scaling region can be difficult and often requires visual inspection. Moreover, the 

scaling region becomes smaller and smaller with increasing of m , and eventually 

vanishes for large m  (e.g. Ding et al., 1993; Hossain and Sivakumar, 2006). Hence the 

estimation of the correlation exponent partly is an empirical exercise. The correlation 

exponent is identified from the scaling range of log ( )C r  against log r  plot for different 

embedding dimensions. Then the values of the embedding dimension m  are plotted 

versus the correlation exponent ( )d m . The estimated CD value typically increases with m 

and reaches a plateau on which the dimension estimate is relatively constant for a range 

of large enough m . This saturation value is the estimated CD of the analyzed signal, while 

the embedding dimension corresponding to the plateau onset is sufficient to estimate the 

dimension of the attractor. That is to say, the nearest integer above the CD provides the 

minimum dimension of the phase space essential to embed the attractor, while the value 

of the embedding dimension at which the saturation of the correlation exponent occurs 
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provides an upper bound on the dimension of the phase space sufficient to describe the 

motion of the attractor (Fraedrich, 1986). If there is no plateau in the ( )d m  curve, it 

indicates that the data could be stochastic in nature or severely affected by noise. In that 

case the CD value cannot be estimated. Therefore, the CD method is able to distinguish 

chaotic motion from a simple system and stochastic motion (Theiler, 1986). 

In this study, we tested different methods to identify the proper time lag and embedding 

dimension, such as the autocorrelation function method, the mutual information method, 

the phase portrait method, the false nearest neighbors and the correlation integral method. 

However, none of these methods was effective. Thus different   and m  were tested for 

each hydrograph. In this procedure, two vital plots need to be considered carefully in the 

application of CD method. One is the log ( )C r  against log r  plot, whose scaling range 

slope gives the correlation exponent. The other is the ( )d m  plot, whose saturation range 

can finally achieve the reliable CD values. These two plots directly determine the 

reliability of the final CD results and hence have to be evaluated thoroughly. 

The scaling range is defined as the linear part of log ( )C r  against log r  plot. Noise in the 

data will render a portion of the plot for low log r  unusable. The finiteness of the data set 

will further curtail the extent of the nearly linear range (DeCoster and Mitchell, 1991). In 

addition, the slope is often not absolutely constant within the scaling range for finite real-

world data sets. Since no existing technique is able to identify the scaling range precisely, 

we suggest using the distinct windows technique (Figure 2.1) to determine the slope of 

the scaling range. In our case, the slope has been determined for 50 subsequent windows 

separately (Figure 2.1). This approach makes the scaling range more visible and 

subsequently helps to improve the visual inspection.  
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Figure 2.1 Distinct windows technique of log ( )C r  against log r  plot. 50 windows 

marked by different colors have been used to determine the slope of the scaling range 

(left figure). The slopes of these 50 segments are given in the right figure. Order of the 

segments is the same in both graphs, facilitating identification of the scaling range and 

subsequent determination of the corresponding mean slope for these segments. 

The saturation range of the ( )d m  plot determines the estimated CD value of the analyzed 

signal. This saturation range should be visible for at least three different time lags 

(Rodriguez-Iturbe et al., 1989; Sivakumar, 2000). The reliable CD value could be 

estimated by the mean value of the saturation range of ( )d m  plot. The analysis was 

performed using the R package (R Development Core Team 2006). No automatic 

algorithm was found that could accomplish this task. Therefore, the CD algorithm 

remained a semi-automatic program requiring some expertise. In summary, the main 

steps of the CD method were: 

1) Reconstructing the phase space using the time delay embedding method to 

represent the underlying system dynamics. 

2) Calculating the Euclidian distances among the points in the reconstructed phase 

space. 
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3) Plotting the log ( )C r  versus log r  and determining the scaling range slope in this 

plot using the distinct windows technique. 

4) Plotting correlation exponent d  versus embedding dimension m  for different 

values of time lags, and then estimating the CD value as the mean value of the 

saturation range in ( )d m  plot. 

2.1.3 The minimum data size 

The CD method is assuming that the time series is infinite. Lacking of sufficient data will 

not only delay the plateau onset, but also make the deviation from the plateau behavior 

occur at smaller values of m , thus shortening the plateau length from both sides (Ding et 

al., 1993). A small data size may result in a significant underestimation of the CD value. 

Sivakumar (2000) investigated the reliability of the CD estimation in short hydrological 

time series. The results reveal that the accuracy of the dimension estimation depends 

primarily on whether the length of the time series is sufficient to represent the changes 

that the system undergoes over a period of time, rather than the data size in terms of the 

number of values in the series. The minimum data size was first tackled by Smith (1988), 

who concluded that this number is a function of the embedding dimension and equal to

, where m  is the smallest integer above the dimension of the attractor. Nerenberg and 

Essex (1990) demonstrated that Smith’s procedure to obtain the  was flawed and that 

the data requirements might not be so extreme. They suggested that the minimum number 

of points required for the dimension estimation is . In fact, these 

requirements would impose serious restrictions to any application of hydrological data. 

However, the mentioned research is not absolutely correct according to Lorenz (1991). 

He pointed out that those different variables could yield different estimations of CD 

values and selected suitable variables could sometimes yield a fairly good estimate even 

if the number of the points were not large. A similar conclusion was drawn by Sivakumar 

(2000; 2005b). He suggested that the minimum data size required for the CD estimation 

may largely depend on the type and dimension of the attractor. Therefore, one reasonable 

way to determine the minimum sufficient data size is to compute the CD for different 

sample sizes until no significant changes can be observed.  

42m

42m

2 0.4

min 10 mN 
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2.1.4 How to handle noisy data? 

The CD method is designed under the assumption that the time series is noise free. 

Inaccurate estimations may be due to the presence of noise (e.g. Schertzer et al., 2002; 

Kantz and Schreiber, 2004). However, all hydrological or real measurements are to some 

extent contaminated by noise. Thus, the severity of the influence of noise on data analysis 

techniques depends largely on the level and the type of noise. There are two types of 

noise, measurement noise and dynamical noise. Measurement noise refers to the 

corruption of observations by errors, which are independent of the dynamics and can be 

reduced by diverse techniques. For example, noise in discharge data might result from the 

impact of wind, wetting, gage exposure, instrumentation, round-off errors and human 

errors in manually reading discharge meters (Sivakumar, 2000). Dynamical noise, in 

contrast to measurement noise, is a feedback process where the system is perturbed by a 

small random amount at each time step. This type of noise arises from the propagation of 

minor random fluctuations in the settings of the main system parameters causing random-

like fluctuations that are not specific to the system (Sivakumar et al., 1999). It might also 

be caused by the influence of intrinsic system events taking place at random (Schouten et 

al., 1994). Dynamical noise directly influences the evolution of the system in time. 

Currently, there are no techniques available to remove dynamical noise and it is debatable 

whether dynamical noise should be removed at all.  

The presence of noise influences the estimation of the CD primarily from the 

identification of the scaling region. Noise may corrupt the scaling behavior at all length 

scales, but its effects are significant especially at smaller length scales. It has been found 

that even small level of noise could conceal possible scaling behavior and hence 

significantly complicate estimates of CD (Schreiber and Kantz, 1996). It is necessary to 

remove the noise using noise reduction techniques without altering the delicate and 

fundamental nonlinear interactions in the signal (Porporato and Ridolfi, 1997). Diverse 

noise reduction methods are developed, such as the simple noise reduction method (e.g. 

Schreiber and Grassberger, 1991), the local projective noise reduction method (e.g. 

Schreiber, 1993) and the systematic noise reduction method (e.g. Sivakummar et al., 

1999). Elshorbagy et al. (2002a) reported that the commonly used algorithms for noise 
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reduction in hydrological data might remove a significant part of the original signal and 

introduce an artificial chaotic behavior to the data. They recommended that the current 

noise reduction techniques should be applied only for better estimation of chaotic 

invariants and that the raw data should always be the basis. Previous studies (e.g. 

Sivakumar, 2000, Schouten et al., 1994) concluded that noise reduction methods might 

not be effective when the noise level is high. From our investigations of the above 

methods, none of these approaches is effective to reduce complex noise hidden in the data, 

if the noise level is high. As these methods always imply sophisticated procedures 

including the selection of new parameter values and the noise level identification, we did 

not follow that path. Instead, given that the tolerant noise level of the CD method is small 

(Kantz and Schreiber, 2004), we preferred less noisy data for the CD analysis.  

2.2 Applications of the Correlation Dimension method in the literature 

The inherent nonlinear nature of hydrologic system and the associated processes make 

these systems complex. Thus complexity is a central and fundamental characteristic of the 

hydrological system. To assess the complexity of hydrological system dynamics, the CD 

method was suggested. Multiple CD method applications from previous studies are 

summarized as follows.  

2.2.1 Chaos investigation  

The CD method has been used to detect the low-dimensional chaotic process of time 

series (e.g. Rodriguez-Iturbe et al., 1989; Jayawardena and Lai, 1994; Porporato and 

Ridolfi, 1997; Kim et al., 2001; Sivakumar, 2002; Hossain and Sivakumar, 2006; Gaume 

et al., 2006), since the CD values are extremely sensitive to slight changes in the 

complexity of the underlying deterministic system dynamics. The results indicate that: 

1) The phase-space reconstruction with time delay embedding approach (Section 

2.1.1) has the ability to represent the dynamics of geophysical phenomena and the 

CD is an useful indicator to reflect the properties (e.g. variability, irregularity and 

complexity) and uniqueness of a particular geophysical time series (Sivakumar, 

2004a; Sivakumar and Singh, 2012);  
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2) The CD values of river flow are much easier to be obtained than rainfall time 

series. A possible implication may be that the mechanisms occurring in the 

aquifers and catchments are more deterministic in nature and more predictable 

than that occurring in the atmosphere (Sivakumar, 2004a).  

3) The CD analysis has encountered some methodological problems, such as 

insufficient data size, the identification of proper time lag and embedding 

dimension, noise level determination and reduction, intermittency, the presence 

of zero rainfalls and high autocorrelation (e.g. Tsonis et al., 1993, 1994; 

Sivakumar, 2000; Sivakumar, 2005a; Koutsoyiannis, 2006).  

It should be noted that the CD method poses inherent limitations when it is used for chaos 

identification. For example, observation of the finite CD value can only be taken as a 

preliminary indicator of the presence of chaos instead of as strong evidence, because 

finite CD value could be observed even for linear stochastic systems as well (e.g. Osborne 

and Provenzale, 1989).  

Since the beginning of the 1990s, a period of reflection has ensured, corresponding with a 

critical analysis of the results obtained, and many phenomena originally imputed to be 

chaotic have actually been shown not to be so after more accurate investigations (e.g. 

Provenzale et al., 1994). One reason is the lack of investigative methods which provide 

sufficient conditions to identify the existence of a chaotic dynamics. Emblematic of this is 

the convergence of the correlation integral, usually understood as the principle if not 

unique sign of deterministic chaos. It has shown how some phenomena, though not being 

chaotic, present a convergent correlation integral (Porporato and Ridolfi, 1997). The other 

reasons are the limitation of the available sample, the insufficient sampling frequency, 

and the presence of noise etc. 

With further developments in nonlinear dynamics in the 1990s, such as the surrogate data 

method, the false nearest neighbor algorithm, noise reduction and missing data estimation, 

attempts have been made to improve the identification of chaos in geophysical 

phenomena. The inverse approach to identify the chaos is proposed (e.g. Porporato and 

Ridolfi, 1997; Sivakumar, 2007). It uses the local approximation method (Farmer and 

Sidorovich, 1987; Casdagli, 1989) to identify the transformed function from starting point 
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to future behavior and then performs nearest neighbor searching procedure to predict the 

time series. Finally it checks the following criteria (i.e. prediction accuracy, prediction 

accuracy against the embedding dimension, against the lead time and against the number 

of neighbors) to assessing the general performance of nonlinear deterministic local 

approximation method. This inverse approach is generally much more reliable than the 

CD method for the chaos identification, because it is essentially based on prediction 

accuracy (Sivakumar, 2007). 

2.2.2 Disaggregating the rainfall and stream flow series to different temporal scales 

and reconstructing the missing data 

When chaos is found in hydrological time series, the chaotic dynamic approaches based 

on the CD method are suggested to estimate the missing data and to disaggregate the 

rainfall and stream flow time series from one temporal scale to another (e.g. Sivakumar et 

al., 2001; Sivakumar et al., 2004; Elshorbagy et al., 2002b). For these mentioned studies, 

the CD method is applied to investigate chaos, which occurred in the data transformed 

weights distribution series. They are extensions of chaos investigation using the CD 

method. 

2.2.3 Assessing the number of dominant processes 

The CD method has been used to assess the number of dominant processes (e.g., Tongal 

et al., 2012). The dominant processes concept was proposed (Grayson and Blöschl, 2000) 

to capture the essential features of hydrological systems. It assumes that simple models 

with only a few dominant parameters could capture the essential features of a given 

catchments response to precipitation events. This assumption is consistent with the 

fundamental idea of chaos theory (i.e. geophysical phenomena may be governed by a 

very few degrees of freedom). A logical way to identify the dominant processes 

governing a system is to evaluate the sensitivity of the system to each individual process 

through a multi-variable sensitivity analysis, and then select those have a ‘noticeably 

significant’ influence on the system sensitivity analysis (Sivakumar, 2004b). In that case, 

a promising procedure is proposed (Sivakumar, 2004b): 
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1) Determine the number of dominant processes using the CD method. 

2) Identify the dominant processes of the system via expert knowledge. 

3) Conduct sensitivity analysis to arrange the dominant processes in the order of their 

extent of dominance on the system. 

2.2.4 Classification of catchments 

Based on the number of dominant processes, Sivakumar et al. (2007) used the “region of 

attraction of trajectories” to classify the system as potentially low-, medium-, or high-

dimensional. Considering the complexity and nonlinearity in hydrologic systems, the 

system complexity is an appropriate basis for a classification framework and nonlinear 

dynamic concepts constitute a suitable methodology for assessing system complexity. A 

catchment classification framework with an aim to subdivide catchments into different 

groups and sub-groups on the basis of their salient characteristics (e.g. data and process 

complexity) is invoked to provide directions for model developers on the level of model 

complexity (Sivakumar and Singh, 2012). This research is still in a state of infancy, but it 

is a new way to classify catchments. The results indicate that the regionalization approach, 

as arguably one of the most important aspects of extrapolation/interpolation of hydrologic 

data and for predictions in ungauged basins, may not always be the right way to 

classification. 

In summary, most previous studies of the CD method we discussed above were employed 

on uni-variate time series. The CD value obtained stands for the number of dominant 

processes underlying the system dynamics. In the following chapters, we still apply the 

CD method to the uni-variate time series for classifying and assessing the complexity of 

observed and simulated data in hydrological systems.  
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3 Rainfall-runoff models and standard time series analysis 

3.1 Rainfall-runoff models 

For this study, three rainfall-runoff models of different complexity (Table 3.1) were 

applied to the same data sets. 

Table 3.1 Comparison of abc, VM and HBV model structures 

Classification abc model VM model HBV model 

Input data Precipitation Precipitation Precipitation & Temperature 

  
Pan evaporation Potential evapotranspiration 

Modules Water balance Three layers evapotranspiration Snow accumulation and melt 

  
Vertical-mixed runoff production Soil moisture accounting  

  

Runoff separation with free water 

storage reservoir model 
Response function 

  
Rive routing and response Rive routing 

Sensitive 

parameters 
3 7 8 

Complexity Simple Medium complex Higher complex 

3.1.1 abc Model 

The abc hydrological model (Fiering, 1967) is a simple linear water balance calculation 

model relating precipitation to evapotranspiration, groundwater storage, groundwater 

outflow and stream flow with only the precipitation as input. It assumes that the 

watershed behaves like a linear reservoir. The abc model (Figure 3.1) calculates the 

runoff as: 

 1(1 )t quick base t tQ R R a b P c S          (3-1) 

 
1(1 )t t tS a P c S       

(3-2)
 

Where tQ , tP , and tS  are the overall runoff, precipitation and groundwater storage at 

time t  respectively [ /mm day ]; quickR  is the quick flow runoff [ /mm day ]; baseR  is the 

base flow runoff [ /mm day ]; a  is the proportion of precipitation entering the 
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groundwater storage; b  is the proportion of precipitation lost as evapotranspiration; c  is 

the proportion of the groundwater storage discharging into the runoff.  

 

Figure 3.1 The schematic diagram of abc model referred to Fiering (1967). Where ET  is 

the actual evapotranspiration [ /mm day ]. 

There are three parameters (i.e. a, b and c) in this model. The constraints of parameters 

are:  

 

0 , , 1

0 1

0t

a b c

a b

S

 

  



 (3-3) 

3.1.2 Vertical-Mixed runoff (VM) model 

Xinanjiang model (Zhao, 1992) has been successfully and widely applied in China since 

its development. This model is only suitable to humid and semi-humid regions due to its 

runoff formation on saturation of storage (i.e. Dunne runoff). However in practice, runoff 

formation in excess of infiltration (i.e. Horton runoff) always exists concurrently with the 

Dunne runoff in the rainfall-runoff transfer processes. Therefore, both formations should 

be considered and incorporated into the Xinanjiang model. The ways to distinguish the 

portion of these two runoff mechanisms in the mixed runoff have a significant influence 

on the quality of model applications. In that case, Bao and Wang (1997) proposed the 

vertical-mixed method to solve the problem of co-existence of two runoff mechanisms 
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and then constructed the VM model. This model can be used to simulate runoff in 

different climate zones and has achieved successful applications in many Chinese 

catchments. Compared with the original Xinanjiang model, the VM model improves the 

runoff production module. The other three modules (i.e. evapotranspiration, runoff 

separation and runoff concentration) keep the same principles with the original 

Xinanjiang model.  

When the rainfall drops on the ground, the runoff is generated and divided into overland 

flow (i.e. surface water) and infiltration water by the improved Green-Ampt infiltration 

capacity distribution curve. Afterwards, the infiltration water is in preference to 

compensate the soil water content until it reaches the field capacity. Then the left water 

percolates down into the groundwater.  

The calculation of the VM model (Figure 3.2) is divided into surface runoff and 

underground runoff. The surface runoff is calculated as the Horton runoff formation and 

determined by rainfall intensity and antecedent soil water capacity, whereas the 

underground runoff, including the interflow and groundwater, is calculated as the Dunne 

runoff formation and determined by antecedent soil water capacity and actual infiltration 

volume (Qu et al., 2007). The tension water capacity curve is introduced to reflect non-

uniform distribution of tension water capacity in the basin. It is combined with the 

improved Green-Ampt infiltration curve to calculate the surface runoff. The formulas can 

be expressed as: 

 RS P E FA    (3-4) 

 

1[1 ] ( 1)
(1 )

( 1)

BFP E
FA FM FM P E FM BF

FM BF

FA FM P E FM BF


     


    

 for all (3-5)  

 (1 )
WM W

FM FC KF
WM


   (3-6) 

 



24 

 

Where RS  is the surface runoff [ /mm day ]; P  is precipitation [ /mm day ]; E  is the 

actual evapotranspiration [ /mm day ]; FA  is the actual infiltration volume [mm/min]; 

FM  is the areal mean infiltration capacity [mm/min]; BF  is the exponent of the free 

water capacity curve, reflecting the spatial distributional characteristic of infiltration 

capacity; FC  is the constant infiltration rate [mm/min], KF  is the sensitive coefficient of 

influence of soil moisture deficit to infiltration rate; WM  is the areal mean tension water 

capacity [mm]; W is the areal actual soil water capacity [mm]. 

The formulas to calculate the underground runoff are of the form: 

 

1(1 ) (1 )
(1 )

(1 )

BFA aa
FA W WM WM FA aa WM B

WM BRR

FA W WM FA aa WM B


      

 
     

    for all (3-7)  

 
1

1(1 )[1 (1 ) ]B
W

aa WM B
WM

     (3-8) 

Where RR  is the underground runoff [ /mm day ]; B  is the exponent of the tension water 

capacity distribution curve; aa  is the value of Y-coordinate corresponding to the initial 

mean tension water capacity W . 

The total runoff is the sum of surface runoff RS  and underground runoff RR . The inputs 

of VM model are precipitation and pan or potential evaporation. The output hydrograph is 

first simulated from each sub-basin and then routed down the channels to the main basin 

outlet. There are 16 parameters in total and 10 sensitive parameters (Table 3.2) in the VM 

model. Among these parameters, flow routing parameters (storage coefficient with units 

of time KE  and flow weighting factor XE ) are not sensitive for the daily runoff 

simulation results, since the basin was not divided into sub-basins in this study. The 

outflow coefficient of the free water storage to interflow KI  can be calculated by the 

bidirectional structural constraint, which is an empirical equation based on hundreds of 

model applications in China, defined as:  
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 0.0521001
0.7( )

1
KI KG

A
 


 (3-9) 

Where A  is the catchment area [ 2km ], KG  denotes the outflow coefficient of the free 

water storage to groundwater. 

Consequently 7 sensitive parameters were left in this study.  

 

Figure 3.2 Computation flow chart of the VM model referred to Bao and Wang (1997). 

Note that all symbols inside the blocks are module names and parameters (Table 3.2), 

while those outside the blocks are inputs, outputs and internal variables. Where Epan  is 

pan evaporation [ /mm day ]; Ep  is potential evapotranspiration [ /mm day ]; E  is the 

actual evapotranspiration [ /mm day ]; P  is precipitation [ /mm day ]; RR  is infiltration 

water volume [ /mm day ]; RS , RI  and RG  represent three runoff separation 

components, with surface water [ /mm day ], interflow [ /mm day ] and groundwater 

[ /mm day ] respectively; QS , QI  and QG  are simulated surface runoff [m
3
/s], interflow 

[m
3
/s] and groundwater discharge [m

3
/s] from sloping surfaces respectively; I  is the total 

runoff discharge from catchment sloping surfaces [m
3
/s]; QC  is the calculated or 

simulated runoff discharge [m
3
/s]. 
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Table 3.2 Parameters of the VM model. The bold parameters are sensitive parameters. 

Component Method Parameter Physical meaning Empirical range  

Evapotranspiration 

  

Three layers 

evapotranspiration pattern 
KC Ratio of potential evapotranspiration to 

pan evaporation 

0.1-1.1  

WUM Average soil moisture storage capacity 

of the upper layer 

5mm for deforested area and 20mm for 

forested area 

 

WLM Average soil moisture storage capacity 

of the lower layer 

60mm for deforested area and 90mm for 

forested area 

 

C Coefficient of the deep 

evapotranspiration 

0.09-0.2. It depends on the proportion of the 

catchment area covered by vegetation with 

deep roots 

 

Runoff production 

  

Vertical-mixed runoff 

formation 
WM Areal mean tension water capacity 120-250 mm  

KF Coefficient of influence of soil moisture 

deficit to infiltration rate 

  

B Exponent  of the tension water capacity 

distribution curve 

0.1-0.4, Varying from 0.1 for catchment area 

less than 10 2km  to 0.4 for catchment area 

larger than 1000 2km  

 

FC  Constant infiltration rate   

Runoff separation 

  

Free water storage reservoir 

model 

BF Exponent of the free water capacity 

distribution curve 

1-1.5  

KI Outflow coefficient of the free water 

storage to interflow 

Calculated by bidirectional structural 

constraint 

 

KG Outflow coefficient of the free water 

storage to groundwater 

The sum of KI and KG is between 0.7-0.8  

Runoff 

concentration 

  

Linear reservoir; 

Muskingum successive 

routing method 

CS Recession coefficient of surface water  0-1 and CS CI CG    

CI Recession coefficient of interflow  0-1 and CS CI CG     

CG Recession coefficient of groundwater  0.95-0.998  

KE Storage coefficient with units of time Determined by hydraulic formulas  

XE Flow weighting factor 0.0-0.5, determined by hydraulic formulas  
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3.1.3 HBV model 

The HBV (Hydrologiska Byräns Vattenbalansavdelning) model, a conceptual rainfall-

runoff model, has been successfully applied to many catchments in Sweden and abroad 

(e.g. Zhang and Lindström, 1996). It has different versions and here we used the HBV-

light version and the standard model structure described by the Lindström et al. (1997). 

This model uses the daily rainfall, temperature and potential evaporation as inputs to 

simulate the daily discharge. It contains snow accumulation and melts, soil moisture 

accounting, response function and river routing modules (Figure 3.3).  

 

Figure 3.3 The HBV model structure referred to Lindström et al. (1997). Where 1Q  and 

2Q  are outflow from upper and lower groundwater response boxes respectively [m
3
/s]; 

UZ  and LZ  stand for upper and lower ground water storage respectively [mm]; 1K , 2K , 

FC , PERC , MAXBAS  and   are the model parameters (Table 3.3). 

Precipitation is simulated to be either snow or rain depending on the threshold 

temperature TT. All precipitation simulated to be snow is multiplied by a snowfall 

correction factor SFCF. Snowmelt is calculated by a degree-day method (Equation 3-10). 
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Melt water and rainfall is retained within the snowpack until it exceeds a certain fraction 

CWH of the water equivalent of snow. Liquid water within the snowpack refreezes 

(Equation 3-11). Rainfall and snowmelt (P) are divided into water filling in the soil box 

and groundwater recharge depending on the relation between soil moisture content SM 

and its maximum value FC (Equation 3-12). Actual evaporation from the soil box equals 

the potential evaporation if SM/FC is above LP, while a linear reduction is used when 

SM/FC is below LP (Equation 3-13). Groundwater recharge is added to the upper 

groundwater box and the water percolates from upper to the lower groundwater box. 

Runoff from the groundwater boxes is computed as the sum of two linear outflows by 

linear reservoir function (Equation 3-14). The recession components threshold of upper 

groundwater box is defined by a nonlinear drainage equation. The runoff is finally 

transformed by a triangular weighting function to give the simulated runoff (Equation 3-

15) (Seibert, 2005). 

 ( ( ) )melt CFMAX T t TT   (3-10) 

 ( ( ))refreezing CFR CFMAX TT T t    (3-11) 

 
arg ( )

( )
( )

rech e SM t

P t FC

  (3-12) 

 
( )

min( ,1)actual potential

SM t
E E

FC LP
 


 (3-13) 

 1

( ) 1 2 1 2GW tQ Q Q K UZ K LZ       (3-14) 

 
( ) ( 1)2

1 1

2 4
( )

2

iMAXBAS

sim t GW t i

i i

MAXBAS
Q u du Q

MAXBAS MAXBAS
 

 

    
(3-15) 

Where ( )P t , ( )T t , ( )SM t , 
( )GW tQ  and 

( )sim tQ are precipitation, temperature, soil moisture, 

groundwater discharge and simulated discharge at time t . CFMAX , CFR , FC , LP , 1K , 

2K ,  and MAXBAS  are model parameters. 
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For both the snow and soil routine, calculations are performed for each different elevation 

zone, but the response routine is a lumped representation of the catchment. In this study, 

we ignored the different vegetation zones and elevation zones due to lack of 

corresponding data. Noted the previous research on the HBV model parameters 

sensitivity analysis (e.g., Harlin and Kung, 1992; Abebe et al., 2010), 8 sensitive 

parameters are employed in this model (Table 3.3). 

Table 3.3 Parameters of HBV model. The bold parameters are sensitive parameters. 

Module Parameter Definition 
Empirical 

range 

Snow 

accumulation 
TT (°C) Threshold temperature [-2, 0] 

and melt SFCF Snowfall correction factor [0.2, 1] 

 
CFMAX 

(mm/°C/d) 
Degree-day factor [1, 4] 

 
CFR Refreezing coefficient 0.05 

 
CWH Water holding capacity 0.1 

Soil moisture  FC (mm) Maximum soil moisture content [200, 850] 

accounting LP (mm) Limit for potential evapotranspiration [0.2, 1] 

  BETA Shape empirical coefficient [1, 4] 

Response 

function 
Alpha Response box parameter [0, 0.5] 

 
K1(1/d) 

Recession coefficient from upper 

storage 
[0.07, 0.2] 

 
K2 (1/d) 

Recession coefficient from lower 

storage 
[0.005, 0.07] 

  
PERC 

(mm/d) 

Percolation from upper to lower 

response box 
[1, 2.5] 

River routing 
MAXBAS 

(d) 
Transformation function parameter [2, 5] 

3.1.4 The Nash-Sutcliffe efficiency criterion (NSc) 

The NSc efficiency criterion is used widely in hydrology. It measures the fraction of the 

variance of observed flows explained by the model in terms of the relative magnitude of 

the residual variance (‘noise’) to the variance of the flows (‘information’) (Nash and 

Sutcliffe, 1970; Yapo et al, 1996). The optimal value is 1.0 and the reasonable NSc value 

should be larger than 0.0. Its function is: 
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Where 
iQ  is the observed discharge at the time i ; iq  is the simulated discharge at the 

time i ; Q  is the observed average discharge; i  is the index of time steps; n  is the total 

number of time steps. 

3.2 Standard time series analysis methods 

Various standard time series methods are developed to abstract different kinds of 

information in the data besides time plots, such as variance, autocorrelation analysis, 

power spectrum analysis, Hurst analysis and PCA etc.  

3.2.1 Variance 

In probability theory and statistics, variance is one of several descriptors of a probability 

distribution, describing how far the numbers lie from the mean (expected value). The 

variance of a random variable X  is its second central moment of the expected value of 

the squared deviation from the mean [ ]E X  . The corresponding equation is:  

 2( ) [( ) ] [ ]Var X E X E X     (3-17) 

Where E  is the expected value operator;   is the mean value of time series X . 

3.2.2 Autocorrelation analysis 

The autocorrelation analysis investigates the temporal correlation of a series with itself 

(Equation 3-18). It can be used as a measure for the “smoothness” of a time series. 

http://en.wikipedia.org/wiki/Probability_theory
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Central_moment
http://en.wikipedia.org/wiki/Expected_value
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2

[( )( )]
( ) [ ]t tE X X

R E X 
 


 

   (3-18) 

Where   is the time lag; E  is the expected value operator;   is the mean value of time 

series X ; t  is the time scale; 2  is the variance of time series and calculated from 

equation 3-17. 

 In general, the autocorrelation function of a random process fluctuates about zero, 

indicating that the process at any instance of time has no memory of the past at all, while 

the autocorrelation function of a periodic process is also periodic, indicating the strong 

relation between values that repeat over and over again (Sivakumar, 2001). For a chaotic 

process, the autocorrelation function decays exponentially with increasing lag, because 

the points are not independent of each other and self-similarity is present (Sivakumar, 

2001). In this study, autocorrelation values were determined for time lags equal to 1 day, 

5 days, 10 days and 30 days. The R language function “acf” was used for the 

autocorrelation analysis. 

3.2.3 Power spectrum analysis  

Power spectrum is the Fourier transform of the autocorrelation function and can be seen 

as a conversion from time domain to frequency domain. It is often used to quantify the 

degree to what a catchment buffers the high-frequency part of the input signal (e.g. 

Akselrod et al., 1981; Tsonis et al., 1994; Porporato and Ridolfi, 1997; Kirchner et al., 

2000; Sivakumar, 2001) (Figure 3.4). In this study, the R language function “spectrum” 

was used for the power spectrum analysis and its function is: 

 ( )E f f   (3-19) 

Where f  is the frequency;   is an exponent; E  is the expected value operator. 

The linear slope of regression line fitted to the spectrum in the logarithmic plot was 

compared to the CD values, where 1 300  day was taken as the minimum frequency. The 



32 

 

slope can be used as a measure to what degree the catchment behaves as a low-pass filter 

of the precipitation input signal. In general, for a random process, the power spectrum 

oscillates randomly about a constant value, indicating that no frequency explains any 

more variance of the sequence than any other frequency, while for a periodic or quasi-

periodic sequence, only peaks at certain frequencies exist (Sivakumar, 2001). It should be 

noted that the identification of scaling regime and the estimation of spectral exponents 

depend on individual judgment. Therefore, discrepancies and uncertainties are 

unavoidable and the caution is needed when uses the power spectrum analysis.  

 

Figure 3.4 (a) the power spectrum density versus frequency plot; and (b) its 

corresponding logarithm power spectrum plot 

3.2.4 Hurst analysis 

The phenomenon of persistence (long term memory within a time series) is quantified by 

calculating the Hurst exponent H. A common method is the rescaled range or R S  

statistics (e.g. Mandelbrot and Wallis, 1969; Lange, 1999). Here, R  denotes the total 

range of deviation from a linear increase and S  denotes the standard deviation of the 

series at a certain time scale. 

Given a time series X  of length n  and a time scale k , the quantity q  versus k  for 

various values of n  is plotted and it is defined as:  
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Where Y  is the partial sums from the original series X ; D   is the deviation from a linear 

increase; and i  is the index of time scale. 

The expected persistence behaviour is 

 
Hq k  (3-22) 

Where H is Hurst exponent. If Hurst scaling is found, then the expected H values are

0 1H  . A value in the range 0 0.5H   indicates anti-persistent behavior (i.e. a time 

series with long-term switching between high and low values in adjacent pairs). This is 

hardly observed in hydrological data. 0.5H   is ordinary Brownian motion, revealing 

that the differences between subsequent data points are uncorrelated. A value in the range 

0.5 1H   is fractal Brownian motion and exhibits persistent behavior. It indicates a 

time series with long-term positive autocorrelation, meaning that a high value in the series 

will probably be followed by another high value and the values will also tend to be high 

for a long time.  

3.2.5 Principal component analysis (PCA) 

PCA is a distance preservation method that uses the simple criteria (i.e. maximizing the 

variance preservation or minimizing the reconstruction error) combined with a basic 

linear model. It can be thought of revealing the internal structure of data in a way which 

best explains the variance of data. It performs an orthogonal transformation to convert a 

set of observations of correlated variables into few components which are independent 

from each other. This transformation is defined in such a way that the first principal 

component explains most variance in the data and each succeeding component explains 

http://en.wikipedia.org/wiki/Orthogonal_transformation
http://en.wikipedia.org/wiki/Variance
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most of the remaining variance under the constraint that it is uncorrelated with the 

preceding components. 

Mathematically PCA is based on the single value decomposition of the correlated matrix 

of z-normalize data (i.e. normalized to zero mean and unit variance). It extracts axes 

(eigenvectors) within a multidimensional data set which are along the main directions of 

the data (i.e. explain most of the variance of the data). The square eigenvalues gives the 

proportion variance in the high dimensional data explained by the single principal 

component (Thomas et al., 2012). The principal components are sorted according to their 

total explained variance. The projections of the data on the new axes are called scores, 

while correlations of the scores with the measurements yield the loadings of the 

components, which describe the positive or negative importance of principal components 

to explain the input data (Thomas et al., 2012). Thus, the loadings can be used to analyze 

the spatial pattern of single component. The squared loadings give the amount of 

explained variance at a gauge with respect to the principal components (Thomas et al., 

2012).  

Thomas et al. (2012) applied the PCA to the 15 years daily discharge data of 37 

catchments in the Federal State of Brandenburg, Germany. However, PCA assumes that 

observed variables are linear combinations of the latent ones and yields a linear projection 

of the observed variables. Thus, it cannot adequately represent nonlinear relationships and 

is often used as a benchmark of nonlinear time series analysis methods (e.g., Lischeid and 

Bittersohl, 2008; Lischeid, 2009). In this study, we employed the CD method, one of 

nonlinear time series analysis method, on the similar discharge data in order to find out 

the relations between the CD and PCA results.  
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4 The Correlation Dimension analysis of observed discharge 

time series in small catchments 

Hydrological models are often developed for specific situations and thus their extensions 

and generations to other situations are difficult. Therefore, it is necessary to classify the 

catchments regarding their available meteorological data and catchment properties. This 

chapter describes the first study of the CD method applications. In this study, the CD 

method is applied to observed discharge time series in order to classify the catchments 

regarding the runoff behavior, check the reasons for different dimensionalities of 

observed hydrographs and explore the independent information underlying the system 

dynamics. We assumed that the degrees of anthropogenic pressure (e.g. land use, 

changing groundwater level and urbanisation) might have an impact on the 

dimensionality of observed hydrographs. The main steps of this study were that: 

1) Observed discharge data (63 small catchments (<500 2km ) in the Federal State of 

Brandenburg, Northeast Germany) were checked quickly using empirical 

cumulative distributed function to exclude the high data with insufficient 

resolution of the sensor. Catchment properties data were extracted from digital 

maps. 

2) The intrinsic dimensionality of the observed hydrographs was assessed by the CD 

method. 

3) The relationships between the CD values, catchment properties and 

meteorological data were investigated and then linear regression analysis and 

cross validation were employed to check whether their relationship was significant. 

4) The relationships between the CD values, the variance of time series, 

autocorrelations for different time lags, the slope of power spectrum, the Hurst 

coefficient, the variance of PCA scores and the PCA loadings were investigated in 

order to check for redundancy of the CD approach with other standard time series 

analysis approaches.  
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4.1 Study area and data processing  

Time series of observed discharge from 63 small catchments (<500 2km ) located in the 

Federal State of Brandenburg, Northeast Germany, were chosen. The Federal State of 

Brandenburg covers an area of 29500 2km and has a population of 2.5 million. It is 

characterised by a glacially and post-glacially formed landscape which is dominated by 

Pleistocene sandy and loamy sediments, while Holocene organic sediments are limited to 

riversides. In this region, forest area contributes to 35% of the total area where Scots Pine 

represents the dominated tree species. Agricultural land is another main land use type 

with 34% cropland and 9% pasture. The region receives an amount of precipitation with 

610 mm per year on average and annual mean temperature from 1951 to 2000 was 

between 7.8° and 9.5℃. The landscape is characterized by a large number of lakes, kettle 

holes and wetlands. Evapotranspiration from these surface water bodies is highly over-

proportional. Due to high climatic water demand, the evapotranspiration here is 

approximately 510 mm per year, only leaving 100 mm per year as runoff (Lischeid and 

Natkhin, 2011). The runoff exhibits substantial spatial variability, depending on local 

meteorological conditions. About 80 out of 100 mm runoff per year occurs as 

groundwater flow, whereas surface runoff plays only a minor role, accounting for less 

than 5% of total runoff (Merz and Pekdeger, 2011).  

The region exhibits a wide array of anthropogenic impacts on the freshwater systems. 

These include weirs, dams and locks, flood protection by levees, navigation, loading by 

waste water and industrial pollutants (Nützmann et al., 2011). These effects result in 

extensive use and alteration of regional freshwater quantity and quality. Drainage and 

sub-irrigation systems are common in peat-lands. The groundwater level is decreasing 

due to the combined effects of land cover change (e.g. increasing area and aging of pine 

forests), drainage measures for agricultural purposes (e.g. melioration of the nearby 

Nuthe-Nieplitz river valley) and climate change (e.g. warming) (Germer et al., 2011).  

Observed daily discharge data covering a 15 year period (from 1991 to 2006) of 63 small 

catchments were used to for the CD analysis. These data were provided by the State 
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Office of Environment, Health and Consumer Protection of the Federal State of 

Brandenburg, Germany. The data had been quality checked by the water resources 

authority. However, visual inspection revealed a cascading structure in some data sets that 

were due to limited resolution of the measurements. These artifacts are very likely to have 

an impact on the CD assessment. Thus data were checked by studying the empirical 

cumulative distribution functions (ECDF) of the data sets. The ECDF describes the 

probability that a real-valued random variable X with a given probability distribution will 

be found at a value less than or equal to X. A stepwise increase of the ECDF gives 

evidence for insufficient resolution of the data and changing rating curve from water level 

to the discharge (Figure 4.1). After the quick check of data using ECDF figures, 14 

catchments with distinct steps in the ECDF were discarded, leaving 49 catchments for the 

CD analysis. However, only 35 catchments got reliable CD values. Their corresponding 

locations are shown in Figure 4.2 and Table 4.2. 

 

Figure 4.1 Empirical cumulative distribution function (ECDF) of catchment with strong 

stepwise. 

http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Probability_distribution
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Figure 4.2 Locations of 35 catchments in Brandenburg, Germany, with federal state 

borders (grey bold dotted lines), rivers (black solid lines), gauges (points), and gauge 

codes (numbers).  

Differences between observed discharge time series are likely linked to climate forcing 

(through precipitations, radiation, etc.) as well as to rainfall-runoff transformation 

mechanisms which are specific for each catchment (Porporato and Ridolfi, 1997), such as 

catchment geometrics, hydraulics, hydrological characteristics of watershed, topology, 

river network, the properties of aquifers, storage capacities including lakes and 

anthropogenic impacts. The investigated indicators are listed in Table 4.1.  
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Table 4.1 Investigated indicators of catchment properties. 

Indicators 

Catchment longitude and latitude 

 Catchment area 

 MMP= max discharge over median discharge 

 Catchment altitude min, max, mean, range 

Groundwater level min, max, mean, range 

Groundwater depth(differences between 

groundwater level and altitude) 
min, max, mean, range 

Annual average precipitation min, max, mean, range, summer range, 

winter range 

Annual average potential evapotranspiration min, max, mean, range, summer range 

Land use types 
forest area (or percentage) 

agricultural land area (or percentage) 

Settlement area (or percentage) 

water surface area (or percentage) 

wetland area (or percentage) 

peat land area (or percentage) 

Population and population density min, max, mean, range 

Waste water discharge 

 River length and mean stream network 

Density including artificial river network   

Catchment properties were derived from topographical, hydrogeological, 

hydrometeorological and land use data sources. Mean catchment values were calculated 

after intersection of these data with surface catchment boundaries (Thomas et al., 2012). 

We used (i) the hydrogeological map of Brandenburg Hyka50, 1:50,000 (State Office for 

Mining, 2012a) to set up a digital altitude model of the groundwater table and digital 

elevation model of Germany to calculate mean depth to groundwater, (ii) the 

Hydrological Atlas of Germany 1961-1991 (Federal Ministry for the Environment, 2003) 

to calculate mean potential evapotranspiration, (iii) the CORINE land cover data (Bossard 

et al., 2000) for calculating percentage coverage of forest and agricultural area, (iv) the 

surface catchment area (State Office for Mining, 2012b) to calculate mean surface 

catchment area, (v) river length and density was taken from the GwNet 25 BB database 

and waste water discharge data was from the municipal wastewater treatment database 
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(State Office for Mining, 2012a, 2012b), (vi) Population density was calculated on the 

basis of the VG250 database (Central Basic Geodata Service for Germany, 2012). 

4.2 Results 

4.2.1 Correlation Dimension results  

Out of 63 hydrographs provided for this study, 14 catchments were discarded during 

screening procedure using the ECDF figure due to insufficient measurements, and another 

14 catchments were deleted due to the absence of a saturation range in the ( )d m  plot. 

Thus, CD values were calculated for 35 catchments (Table 4.2). The CD values ranged 

from 2.2 to 5.8. The frequency distribution of CD values was not normal distributed 

(Figure 4.3). The majority of CD values ranged from 3 to 6 and only one catchment 

showed a smaller CD value of 2.2. The higher CD values, the larger dimensions of the 

space required to completely unfold the attractor, and the more complex the underlying 

dynamical system appears to be. The CD values did not show a pronounced spatial 

pattern (Figure 4.4). They tended to be slightly higher in the western part, ranging from 

4.95 to 5.8. 

 

Figure 4.3 The histogram of the CD values frequency distribution. 
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Table 4.2 The CD values of 35 catchments in Brandenburg 

Code Location Name Area ( 2km ) CD 

1 Northeast Schönermark 333.5 5.65 

2  Tantow 147.0 3.95 

3  Eberswalde 125.0 5.4 

4  Grüntal 40.2 2.2 

5 Northwest Freyenstein 39.4 4.2 

6  Pritzwalk 75.9 3.75 

7  Gadow 466.8 4.5 

8  Wittstock 73.8 5.3 

9  Bad Wilsnack 289.9 3.1 

10 Mid-south Lindenau 258.0 4.6 

11  Ortrand 245.0 4.33 

12  Lipsa 152.7 5.6 

13  Peitz 197.1 5.35 

14 Southeast Mulknitz 120.9 3.8 

15  Jocksdorf 28.4 3.9 

16  Zschorno 76.3 4.65 

17 West Görisgraben 344.3 4.95 

18  Wenzlow 93.7 5.25 

19  Birkenreismühle 95.9 5.64 

20  Trebitz 226.7 5.78 

21  Golzow 416.3 5.8 

22 Middle Blankenfelde 23.3 4.77 

23  Mellensee 64.4 4.45 

24  Woltersdorf II 209.9 5.13 

25  Woltersdorf I 362.9 5.35 

26  Jüterbog-Bürgermühle 141.4 4.5 

27 East Gusow 174.7 4 

28  Buckow 122.3 4.25 

29  Fredersdorf 116.6 5.2 

30  Eggersdorf 2 80.7 4.75 

31  Kienbaum Straßenbrücke 140.4 4.65 

32  Lichtenow 83.1 4.64 

33  Garzau 30.9 3.25 

34  Kienbaum Neue Mühle UP 16.1 5.58 

35   Ressen Stau UP 72.4 3.65 
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Figure 4.4 Distribution map of CD values (color bar) corresponding to 35 catchments, 

with federal state borders (dashed lines), rivers (solid lines) and gauges (points).  

4.2.2 Relationship between Correlation Dimension values and catchment 

properties 

This section aims at relating the CD values of 35 catchments in Brandenburg State both to 

catchment properties and to meteorological data. To test for significant correlations, the t-

test was used and a cut-off 0.05 was selected as the significance level. The significant 

correlations between the indicators and the CD values are summarized in Table 4.3. A 

ranked visualization of all the investigated indicators correlations with CD values is given 

in Figure 4.5. The obtained results reveal: 

1) Only five indicators, including forest area, summer average potential 

evapotranspiration range, groundwater depth range, annual average potential 

evapotranspiration range and maximum groundwater depth, show significant correlations 
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with CD values (i.e. 0.01P  ). These five indicators show significant colinearity (i.e. the 

Kendall correlation coefficient between “max groundwater depth” and “groundwater 

depth range” is 0.89 and the coefficient between “summer average potential 

evapotranspiration range” and “annual average potential evapotranspiration range” is 

0.81). 

2) Forest area exhibited the strongest correlation (i.e. 0.4). In contrast, mean, 

minimum and maximum values of any other indicators do not relate to CD values. 

3) Forest area percentage is positively correlated with CD values, whereas 

agricultural land area percentage is negatively correlated. 

4) The CD values exhibit no correlation with catchment size. 

 

Figure 4.5 Ranked visualization of Kendall correlations between CD values and 

investigated indicators. 
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Table 4.3 Kendall correlations between CD values and indicators of catchment properties 

and meteorological data, whose P values are less than 0.05. 

Code Indicators 
Kendall correlation 

coefficient 
P value 

1 Forest area 0.4 0.001 

2 summer average Ep range 0.348 0.007 

3 groundwater depth range 0.335 0.005 

4 annual average Ep range 0.332 0.008 

5 max groundwater depth 0.326 0.007 

6 altitude range 0.302 0.011 

7 annual average precipitation range 0.272 0.024 

8 Forest area percentage 0.272 0.023 

9 mean population 0.265 0.027 

10 mean groundwater depth 0.251 0.035 

11 min population 0.245 0.041 

12 winter average precipitation range 0.244 0.042 

13 max altitude 0.24 0.045 

14 MMP(max discharge/ median discharge) -0.253 0.034 

15 Agricultural land area percentage -0.275 0.021 

4.2.3 Linear regression analysis and cross validation 

The simple linear regression analysis was introduced to model the relationship between 

CD values and investigated five indicators whose P values are less than 0.01 in order to 

quantify the strength of these relationships. Then the cross validation, which uses the 

“training set” to set up the model and the “test set” to assess the model performance, was 

employed to find out whether the significant relationship was caused by single extremes 

or not. The results indicate that all the five linear regression equations displayed 

significant relationships and no relationship was depended on one value. Therefore, these 

five linear regression models were confirmed to be significant. However, they cannot be 

used for prediction due to the high residual errors. 

In addition, since the CD values are affected by several factors’ interactions, multiple 

linear regression analysis was made to assess which combination of factors can explore 

more information about coordinate Y than a single factor. In our case, the indicators 

whose P value during correlation analysis was less than 0.05 (Table 4.3) were 
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investigated. The multiple regression analysis regards the influence of every factor to be 

included in a model, but also considers the relationship between factors and eliminates 

those factors which contribute no new information to the model (Draper and Smith, 1981; 

Gomez-Plaza et al., 2001). Significance test was provided by F-test and t-test, with a 

significant level of 0.001 and 0.05 respectively. None of the tested regression models 

exhibited P values less than 0.05. Therefore, no combination of factors outperformed any 

univariate regression model.  

4.2.4 Relating Correlation Dimension values to standard time series analysis 

methods 

In this section, the CD results of observed discharge were compared to other time series 

analysis approaches in order to check to what degree the CD method yields additional 

information. Given that the CD frequency distribution does not appear to be normal 

distributed (Figure 4.3), the Kendall correlation method was used. Correlations were 

tested for significance using the t-test. The results are listed at Table 4.4. 

Table 4.4 Kendall correlations and corresponding P values between CD values and 

standard time series analysis. 

Method Indicator Kendall correlation coefficient P value 

Variance  -0.086 0.477 

Autocorrelation 

Time lag =1 -0.12 0.306 

Time lag =5 -0.12 0.306 

Time lag =10 -0.13 0.268 

Time lag =30 -0.13 0.293 

Power Spectrum Frequency > (1/300) -0.04 0.755 

Hurst Exponent  -0.24 0.047 

PCA scores Variance of scores -0.03 0.798 

PCA loadings Component 1 0.147 0.222 

 Component 2 0.126 0.293 

 Component 3 0.13 0.28 

 Component 4 0.295 0.013 

 Component 5 -0.052 0.67 
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For autocorrelation analysis, Kendall correlation coefficients were around -0.12 and P 

values were around 0.3 (Table 4.4). Thus the relationships between CD values and 

autocorrelation for different time lags were not significant. The CD method provided 

different information compared to autocorrelation analysis. Besides, there was no 

significant correlation between CD values and power spectrum analysis considering the 

small negative Kendall correlation coefficient (-0.04) and high P value (0.755).  

All Hurst exponents of the 35 catchments were within the range  0.5,1  and thus showed 

persistence in the observed discharge series. The Kendall correlation coefficient between 

CD values and Hurst exponents was -0.24 with a P value of 0.047. That is, the Hurst 

exponent had a weak but significant relationship with CD values. 

The relationships between PCA loadings or scores and CD values were investigated 

(Table 4.4). Loadings of component 4 had a significant but still weak correlation with CD 

values (i.e. correlation coefficient of -0.295 and a P value of 0.013). The variance of the 

original observed discharge series and PCA scores (transformed component discharge 

series) exhibited no correlations with CD values. 

4.3 Discussion 

This study showed that none of the indicators of anthropogenic impacts exhibited 

significant correlation with CD values. It can only be speculated whether the effects of 

anthropogenic impact were too small compared to the effects of other catchment 

properties, or the selected indicators were not suitable. Therefore, it is difficult to judge 

whether strong anthropogenic pressure on hydrological processes could increase the 

intrinsic dimensionality of observed hydrographs due to the weak correlation coefficients. 

However, the CD values of observed discharge time series displayed significant 

correlations with five indicators: forest area, summer average potential evapotranspiration 

range, groundwater depth range, annual average potential evapotranspiration range and 

maximum groundwater depth. Three out of these five indicators relate to the variation of 

catchment properties and reflect the heterogeneity of the catchment. Thus, the 
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heterogeneity of the catchment seems to be the main factor explaining high CD values of 

the observed hydrographs. In addition, forest area percentage of land use is positively 

correlated with CD values, while agricultural land area percentage is negatively 

correlated. That means, more forest area induces higher CD values and increases the 

complexity of system dynamics, whereas the agricultural land leads to the lower CD 

value and reduces the complexity. It is assumed that the heterogeneity of the catchment 

hydrological processes maybe increases with increasing percentage of forest area due to 

larger species diversity in the forest, resulting in higher CD values. On the contrary, 

agricultural lands mainly cultivate a few species fit to plants seasons and certain regions, 

leading to the homogeneity of the catchment and lower CD values. Thus, the reason for 

different dimensionalities of observed hydrographs relates to the heterogeneity of the 

catchment. The underlying system dynamics of forest area seems to be more complex 

than agricultural land with respect to the observed runoff behavior. 
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5 Using the Correlation Dimension analysis to evaluate 

model performance 

The evaluation of hydrological model performance is commonly assessed by comparison 

of simulated and observed discharge at the catchment outlet (Krause et al., 2005). Various 

efficiency criteria, such as the Nash-Sutcliffe (NSc) efficiency, coefficient of 

determination, the absolute and squared errors, have been used to assess the model’s 

ability to reproduce historic catchment behavior (e.g. Yapo et al, 1996, 1998; Madsen 

2000). Different efficiency criteria place emphasis on different systematic and dynamic 

errors between simulations and observations. For example, the Nash-Sutcliffe (NSc) 

efficiency criterion measures the fraction of the variance of observed flows explained by 

the model in terms of the relative magnitude of the residual variance (‘noise’) to the 

variance of the observed data (‘information’) (Nash and Sutcliffe, 1970; Yapo et al, 1996). 

It employs the function of square errors, which lays stress on larger errors while small 

errors tend to be neglected. Consequently it leads to an overestimation of the model 

performance during peak flows and an underestimation during the low flows (Krause et 

al., 2005). It is often argued that a single evaluating criterion would not be adequate, 

therefore, multiple efficiency measures were proposed and studied (e.g., Madsen, 2000; 

Yu and Yang, 2000; Cheng et al., 2002, 2006). In some of these studies, the observed 

discharge time series were partitioned into peak flow, medium flow and low flow and 

have been assessed with different criteria. Finally all the efficiency criteria were 

aggregated into one function. In these studies, the multiple efficiency criteria showed 

advantages compared to a single criterion. 

However, no matter using single or multiple efficiency criteria, many different model 

structures and many different parameters sets within a chosen model structure often 

produce a range of equally acceptable solutions. Obviously a global optimum does not 

exist. These amounts of acceptable “equally good” solutions are called ‘non-dominated 

solutions’ (Yapo, et al., 1998; Madsen, 2000) or ‘equifinality’ (Beven, 1993; Beven and 

Freer, 2001). Equifinality is a serious obstacle for modelers. The common traditional 

efficiency criteria are blind to detect the intrinsic properties of the underlying system, 
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failing to solve the equifinality problem. There is an urgent need to develop an efficiency 

criterion that accounts for the intrinsic properties of the respective dynamic system 

through assessing the “complexity” of observed and simulated data independent from any 

predefined assumptions.  

This chapter describes the second study of the CD method application. In this study, the 

CD method was used to reduce the equifinality problem and consequently improve the 

hydrological prediction accuracy. To the authors’ knowledge, this study is the first one to 

propose an efficiency criterion based on chaos theory that explores the intrinsic system’s 

properties. This new criterion is compared with the commonly used traditional criterion 

(NSc) for evaluating model performance. The main steps were that: 

1) Three hydrological models of different complexity were fitted to observed data 

from two catchments (the Karthane catchment in Germany and the Shaowu 

catchment in China) using a Monte Carlo approach, and performance of the 

optimal simulations was evaluated based on the NSc value. 

2) The intrinsic dimensionality of observed and simulated discharge time series was 

determined using the CD method, and the relationship between NSc and CD 

values was investigated, achieving the objective 3 (Page 5).  

3) The intrinsic dimensionality of precipitation and evapotranspiration time series, 

which characterize the input into the system, was assessed and compared to that of 

the runoff data as the system’s output, achieving the objective 4 (Page 5).  

4) The CD values were compared to the results of autocorrelation and power 

spectrum analysis to check for redundancies between these measures. 

5.1 Study area and data 

Data sets from two catchments (one in Germany and one in China) were used in this 

study. Their corresponding characteristics are described as follows.  

5.1.1 The Karthane catchment, Germany 

The Karthane catchment is a small catchment (289.9 2km ) situated in the glacially formed 
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northeast German lowland, with its gauge in Bad Wilsnack (Table 4.2). It is located in the 

Northwest of the Federal State of Brandenburg (Figure 5.1). The landscape is dominated 

by Pleistocene sandy and loamy sediments. Agricultural land and forest area are the major 

land use types, with the percentage of 78.7% and 19.1% respectively. Annual mean 

precipitation is around 690 mm per year, while evapotranspiration amounts to 550 mm 

per year, leaving 140 mm as runoff. The mean temperature is approximately 9℃. Ten 

years daily monitoring data including precipitation, discharge and temperature data are 

used in this study (Figure 5.2). Potential evapotranspiration is assessed by the mean 

values of the respective region in the digital hydrological atlas of Germany from 1961 to 

1991 (Federal Ministry for the Environment, 2003). 

 

Figure 5.1 Map of the Karthane catchment, Germany. 
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Figure 5.2 Precipitation (P), potential evapotranspiration (Ep), temperature (T) and 

observed discharge (Q) time series of the Karthane catchment from the year of 1993 to 

2002. 

5.1.2 The Shaowu catchment, China 

The Shaowu catchment with a drainage area of 2745 2km  locates at the upstream of the 

Minjiang River in China. It is a sub-basin in the Northwest of the Minjiang basin. The 

landscape here is mainly medium or low mountains with granite generated from the late 

Jurassic to early Cretaceous period. The groundwater is mainly bedrock fissure water and 

has good circulation and recharge condition. Annual mean temperature is 18℃. Annual 

mean rainfall is around 1940 mm per year, while the mean pan evaporation is 
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approximately 750 mm per year. There are 9 rainfall gauges (at Shaowu, Gaoyang, 

Jinkeng, Guangze, Gaojia, Chafu, Zhima, Qiaowan and Siqian), 1 evaporation monitoring 

station (at Guangze) and 1 discharge measuring station (at Shaowu) in this catchment 

(Figure 5.3). Ten years daily observed data of rainfall, pan evaporation, discharge and 

temperature data were used in this study (Figure 5.4). For rainfall, the arithmetic mean 

values of 9 rainfall gauges were used. Pan evaporation was measured with an E-601 

evaporator. About 68.9% of the annual rainfall occurs between March and June, whereas 

the maximum evaporation is between May and September.  

 

Figure 5.3 Map of the Shaowu catchment, China. 
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Figure 5.4 Precipitation (P), pan evapotranspiration (Epan), temperature (T) and observed 

discharge (Q) time series of the Shaowu catchment from the year of 1988 to 1997. 

5.2 Results 

5.2.1 Model results 

For each of the three models, 10000 parameter combinations were generated in a Monte 

Carlo procedure using random numbers from a uniform distribution within the given 

ranges of parameter sets (Table 5.1). These ranges were defined by the model constraints 

and empirical scopes given by the model developers. The model was run with each 

parameter combination and the NSc value was calculated. Then simulations were ranked 



54 

 

based on the NSc values. As expected the equifinality phenomenon became manifest in 

the results. In the following we will focus only on the simulations with the best NSc 

values. For the Karthane catchment only has the potential evapotranspiration data, 

therefore, the VM model parameter “K” stands for the data conversion coefficient instead 

of its original meaning and the given range of “K” was selected as 0.1 to 2. 

Table 5.1 Parameters range used in the Monte Carlo procedure. The bold parameters are 

sensitive parameters.  

abc model VM model HBV model 

Parameters Range Parameters Range Parameters Range 

a [0,1] KC [0.1, 1.1] (Karthane) TT [-2, 0] 

b [0,1] 

 

[0.1, 2] (Shaowu) SFCF [0.2, 1] 

c [0,1] UM [5, 20] CFMAX [1, 4] 

  

LM [60, 90] CFR 0.05 

  

C [0.1, 0.2] CWH 0.1 

  
WM [120, 250] FC [200, 850] 

  

KF [0.1, 20] LP [0.2, 1] 

  

B [0.1, 0.4] BETA [1, 4] 

  
FC [1, 80] Alpha [0, 0.5] 

  

BF [1, 1.5] K1 [0.07, 0.2] 

  
KG [0.2, 0.4] K2 [0.005, 0.07] 

  
CS [0.1, 0.5] PERC [1, 2.5] 

  
CI [0.5, 0.9] MAXBAS [2, 5] 

    CG [0.9, 0.999]     

In this section, we explored whether the equifinality phenomenon relates to the model 

complexity. The results indicated that all of the studied models exhibited the equifinality 

phenomenon with different optimal NSc values. For the Karthane catchment, the more 

complex VM and the HBV model produced acceptable simulations and their optimal NSc 

values reached up to 0.64, while the simple abc model simulations were not reasonable 

and the best NSc value was only 0.18. For the Shaowu catchment, the simulations of abc, 

VM and HBV models obtained very high NSc values, with 0.8, 0.88 and 0.9 respectively. 
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5.2.2 Correlation Dimension results of observed and simulated discharge series 

The CD analyses of observed and simulated discharge time series were made to explore 

the intrinsic properties of their system dynamics. The CD values of observed discharge 

time series were 3.1 for the Karthane catchment and 2.55 for the Shaowu catchment 

(Figure 5.5). 

 

Figure 5.5 The correlation exponent versus embedding dimension of observed discharge 

time series for the two catchments, where t is the time delay. 

For the abc and the VM model, the selected model with the best results were classified 

into two groups with five simulations each. The first group contains the simulations 

obtained by very similar parameter combinations, and the second group includes 

simulations from widely differing parameter values (Table 5.2, 5.3). Thus it can be 

checked to what extent different parameterizations of the same models fitted to the same 

hydrograph vary in terms of intrinsic dimensionality. The results revealed that the optimal 

simulations with very similar parameter values yielded almost similar CD values, whereas 

those with widely differing parameter values led to totally different CD values. In order to 

enhance the ability of the CD method to distinguish between the optimal simulations with 

widely differing parameter values, 20 simulations of the HBV model were investigated 

via the CD analysis. The CD results covered only a narrow range in the Karthane 



56 

 

catchment, from 2.67 to 2.95 (Table 5.4), and they were very close to the CD value of 

observed discharge series (Figure 5.6). For the Shaowu catchment, the CD results 

grouped in two separate ranges (Figure 5.6), that is, between 2 and 2.21 and the other 

between 3.95 and 4.65 (Table 5.4). Again, different optimal simulations with widely 

differing parameter values yielded very different CD values. In addition, the correlations 

between CD values and each parameter in these three models were investigated. The 

results reveal that there was no correlation between the CD values and model parameters 

and no special pattern was existed.  

Table 5.2 The NSc and the CD values of simulated hydrographs for different parameter 

values of the abc model. 

Study Area Classification Num a b c NSc CD 

Karthane 

catchment  

Group 1 

1 0.162 0.833 0.054 0.17 3.5 

2 0.162 0.833 0.059 0.17 3.5 

3 0.162 0.838 0.059 0.16 3.65 

4 0.16 0.833 0.059 0.17 3.5 

5 0.165 0.833 0.054 0.18 3.55 

Group 2 

1 0.216 0.774 0.088 0.16 3.75 

2 0.167 0.819 0.093 0.12 3.78 

3 0.172 0.828 0.103 0.12 4 

4 0.152 0.823 0.044 0.11 5.65 

5 0.162 0.819 0.088 0.11 4.18 

Shaowu 

catchment  

Group 1 

1 0.652 0.284 0.407 0.80 6 

2 0.652 0.289 0.407 0.80 6.03 

3 0.657 0.289 0.407 0.80 6.02 

4 0.657 0.294 0.412 0.80 6.1 

5 0.647 0.28 0.397 0.80 5.85 

Group 2 

1 0.652 0.27 0.436 0.80 6.2 

2 0.613 0.309 0.51 0.80 6.58 

3 0.667 0.28 0.451 0.81 6.35 

4 0.676 0.294 0.466 0.80 6.4 

5 0.618 0.333 0.466 0.80 6.13 
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Table 5.3 The NSc and the CD values of simulated hydrographs for different parameter values of the VM model. The bold columns are sensitive 

parameters. 

Study 

Area 
Classification Num KC WUM WLM C WM KF B FC BF KG CS CI CG NSc CD CDEvap 

Karthane 

catchment  

Group 1 

1 1.425 14.700 89.850 0.159 215.550 13.350 0.382 74.400 1.333 0.346 0.190 0.900 0.994 0.64 2.65 
 

2 1.425 14.750 89.850 0.159 215.550 13.350 0.384 74.400 1.335 0.346 0.192 0.900 0.994 0.64 2.60 
 

3 1.420 14.650 89.700 0.158 214.900 13.255 0.381 74.050 1.330 0.345 0.188 0.898 0.994 0.63 2.62 
 

4 1.415 14.650 89.550 0.158 214.250 13.160 0.381 74.050 1.330 0.344 0.188 0.896 0.993 0.62 2.68 
 

5 1.410 14.600 89.400 0.157 213.600 13.065 0.379 73.350 1.328 0.343 0.186 0.894 0.993 0.61 2.69 9.10 

Group 2 

1 1.725 19.150 60.300 0.131 242.850 16.390 0.397 67.750 1.428 0.224 0.470 0.892 0.981 0.62 2.30   

2 1.655 10.750 72.600 0.126 199.950 11.545 0.213 52.700 1.213 0.398 0.370 0.854 0.999 0.64 3.35 8.90 

3 1.55 10.20 71.70 0.19 237.00 16.96 0.39 70.90 1.17 0.39 0.36 0.81 0.99 0.59 2.55 
 

4 1.570 10.450 72.450 0.189 240.250 17.340 0.393 72.650 1.183 0.392 0.368 0.820 0.993 0.60 2.40 
 

5 1.520 14.850 88.950 0.173 203.850 18.100 0.343 45.350 1.058 0.343 0.314 0.822 0.999 0.59 2.10 9.15 

Shaowu 

catchment 

Group 1 

1 0.640 7.025 69.000 0.106 168.800 8.713 0.238 26.725 1.040 0.220 0.448 0.830 0.970 0.88 2.63   

2 0.635 6.950 68.850 0.106 168.400 8.614 0.237 26.235 1.038 0.219 0.446 0.826 0.969 0.88 2.75 
 

3 0.630 6.875 68.700 0.105 168.400 8.614 0.235 26.235 1.038 0.218 0.446 0.826 0.969 0.88 2.59 10.50 

4 0.615 6.650 68.250 0.104 166.800 8.466 0.231 25.500 1.028 0.215 0.438 0.820 0.967 0.88 2.77 
 

5 0.660 7.325 69.600 0.108 170.400 8.862 0.244 27.460 1.050 0.224 0.456 0.836 0.972 0.88 2.67   

Group 2 

1 0.835 15.800 89.400 0.143 145.200 9.406 0.399 20.600 1.235 0.317 0.468 0.760 0.972 0.89 2.69   

2 0.900 8.750 63.150 0.189 196.400 5.347 0.249 22.560 1.225 0.359 0.498 0.660 0.965 0.88 2.95 11.10 

3 0.710 17.975 85.650 0.130 135.600 8.218 0.361 27.705 1.175 0.292 0.418 0.710 0.960 0.88 2.77 10.80 

4 0.780 6.050 71.850 0.104 187.600 3.961 0.357 25.010 1.413 0.392 0.498 0.748 0.973 0.88 2.90 
 

5 0.900 18.950 63.900 0.129 173.200 2.476 0.265 40.690 1.398 0.296 0.402 0.660 0.973 0.88 2.85   
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Table 5.4 The NSc and the CD values of simulated hydrographs for different parameter values of the HBV model. The bold columns are 

sensitive parameters. 

Study Area Num TT SFCF CFMAX FC LP BETA Alpha K1 K2 PERC MAXBAS NSc CD 

Karthane 

catchment 

1 -0.398 0.9 2.499 639 0.239 1.437 0.137 0.099 0.07 2.08 3.036 0.636 2.82 

2 -1.232 0.96 1.287 558 0.218 1.418 0.102 0.088 0.06 2.057 3.283 0.636 2.68 

3 -1.648 0.99 1.741 574 0.265 1.556 0.166 0.057 0.06 1.23 3.357 0.636 2.67 

4 -1.182 0.97 1.496 616 0.221 1.448 0.106 0.13 0.08 1.941 3.382 0.637 2.76 

5 -1.324 0.9 2.628 580 0.203 1.514 0.252 0.061 0.08 1.517 2.967 0.636 2.78 

6 -0.65 0.87 1.44 589 0.216 1.378 0.202 0.079 0.07 1.561 3.23 0.637 2.78 

7 -1.545 0.98 1.125 558 0.253 1.631 0.138 0.08 0.07 1.933 3.424 0.637 2.69 

8 -0.896 0.9 1.609 621 0.213 1.383 0.17 0.094 0.07 1.944 3.679 0.638 2.67 

9 -0.803 0.96 2.246 656 0.221 1.335 0.223 0.053 0.07 1.367 2.87 0.638 2.77 

10 -1.964 0.97 2.88 602 0.21 1.426 0.245 0.056 0.08 1.357 2.86 0.641 2.79 

11 -0.535 0.93 3.625 680 0.233 1.402 0.111 0.085 0.06 1.169 3.853 0.635 2.75 

12 -1.181 0.98 3.084 578 0.223 1.512 0.251 0.089 0.07 2.35 3.787 0.635 2.68 

13 -1.963 0.88 2.551 576 0.209 1.511 0.244 0.093 0.07 1.949 3.635 0.634 2.73 

14 -1.443 0.95 2.421 571 0.237 1.447 0.151 0.106 0.07 2.007 3.297 0.634 2.84 

15 -1.339 0.99 3.233 640 0.305 1.698 0.232 0.06 0.08 1.714 3.883 0.633 2.88 

16 -0.984 0.98 2.234 608 0.313 1.656 0.301 0.077 0.06 2.177 3.196 0.632 2.8 

17 -1.16 0.91 1.032 676 0.459 2.276 0.228 0.059 0.07 1.989 2.763 0.631 2.95 

18 -0.801 0.98 3.697 605 0.306 1.585 0.146 0.099 0.06 2.317 4.15 0.631 2.76 

19 -1.325 0.92 2.099 713 0.421 1.979 0.138 0.096 0.07 2.23 3.11 0.631 2.95 

20 -0.545 0.94 3.661 605 0.309 1.644 0.188 0.101 0.06 1.819 3.708 0.631 2.94 
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Shaowu 

catchment 

1 -1.169 0.63 3.386 426 0.973 2.903 0.414 0.085 0.06 3.408 2.468 0.915 2.12 

2 -0.019 0.43 1.647 264 0.93 2.976 0.425 0.102 0.03 4.025 2.792 0.912 2 

3 -0.196 0.88 3.416 494 0.927 2.028 0.482 0.079 0.07 4.691 2.48 0.917 3.95 

4 -1.259 0.22 2.18 345 0.915 2.224 0.481 0.095 0.02 4.727 3.027 0.910 2.1 

5 -0.356 0.28 2.302 286 0.674 1.061 0.365 0.152 0.08 3.646 2.997 0.911 4.5 

6 -0.868 0.29 1.493 282 0.7 1.152 0.406 0.1 0.08 4.609 2.52 0.920 4.1 

7 -0.765 0.78 2.921 494 0.883 1.63 0.294 0.151 0.04 3.508 2.53 0.915 2.15 

8 -1.454 0.68 2.154 441 0.972 2.834 0.352 0.101 0.05 3.224 2.439 0.913 4.3 

9 -0.504 0.53 3.449 262 0.869 2.264 0.368 0.104 0.05 3.057 2.482 0.911 2.03 

10 -0.275 0.34 2.813 499 0.977 2.784 0.361 0.12 0.07 2.761 2.71 0.912 4.6 

11 -1.036 0.42 2.892 499 0.902 1.762 0.39 0.105 0.07 4.801 2.777 0.916 3.95 

12 -0.827 0.93 3.144 547 0.902 1.58 0.39 0.108 0.06 4.381 2.663 0.919 4.21 

13 -0.981 0.41 1.638 554 0.934 2.246 0.367 0.121 0.03 2.752 2.721 0.916 2.05 

14 -1.43 0.51 2.066 335 0.771 1.584 0.405 0.122 0.03 4.104 2.854 0.917 2.12 

15 -0.231 0.29 2.456 484 0.649 1.434 0.383 0.118 0.04 3.231 2.75 0.915 2.15 

16 -0.957 0.21 3.596 276 0.716 1.577 0.397 0.118 0.03 4.602 2.67 0.917 2.08 

17 -0.106 0.65 2.805 592 0.862 2.626 0.393 0.112 0.06 3.863 2.757 0.918 4.18 

18 -0.418 0.78 3.952 339 0.868 1.54 0.463 0.093 0.04 4.995 2.891 0.918 2.21 

19 -0.106 0.93 1.354 519 0.737 2.466 0.478 0.087 0.07 3.708 2.833 0.916 4.25 

20 -1.778 0.36 2.705 560 0.809 1.933 0.425 0.098 0.06 2.798 2.475 0.915 4.65 
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In this section, the relationship between NSc and CD values was investigated. For the 

Karthane catchment, the optimal simulations of the abc model could not be improved any 

more after 10000 iterations of the Monte Carlo procedure, ending up with low NSc values 

(around 0.18). The CD values of optimal simulation of the abc model ranged from 3.5 to 

5.65. They clearly exceeded that of the observed discharge of 3.1. The CD values seemed 

to be negatively related to the NSc values. However, a corresponding relationship is less 

clear for the CD results of different models applied in the Shaowu catchment (Figure 5.6). 

Discharge simulated by the simple abc models exhibited clearly larger CD values 

compared to those of the VM and HBV model simulations for each catchment. It seemed 

that there was a convergence of CD values approaching the intrinsic dimensionality of the 

observed discharge time series with increasing NSc values. To summarize, simulations 

with similar NSc values differ considerably with respect to CD values, but the CD 

converges for the best simulation in terms of NSc towards that of the observed discharge. 

 

Figure 5.6 The relationship between NSc and CD values of the different models. The red 

color denotes the Karthane catchment value, while the black color denotes the Shaowu 

catchment value. The open symbols denote the CD values obtained from similar 
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parameter values, whereas the solid symbols denote the CD values obtained from widely 

differing parameter values. 

5.2.3 Correlation Dimension results of rainfall and evapotranspiration time series 

The correlation dimension values of observed and simulated hydrographs clearly 

exhibited saturation with increasing embedding dimension. However, no CD value could 

be obtained from the 10 years daily precipitation data for both catchments. The CD 

results of observed pan evaporation data in the Shaowu catchment was 10.4, whereas no 

reliable CD value was obtained from the analysis of potential evapotranspiration data in 

the Karthane catchment. For the actual evapotranspiration calculated by the VM model, 

the CD values ranged from 9 to 11, much higher than the values of observed discharge 

(Table 5.3). 

5.2.4 Relating Correlation Dimension values to autocorrelation and power 

spectrum analysis  

The CD method has only recently been applied to characterize hydrological time series, 

but autocorrelation analysis and power spectrum are much more common. We test to what 

degree the CD analysis gives additional information that is uncorrelated with those of the 

common approaches. To that end, Kendall correlations between CD values and 

autocorrelation were investigated. Correlations were tested for significance using the t-

test at a 0.05 significant level. Autocorrelation values were determined for time lags of 1 

day, 5 days, 10 days and 30 days (Table 5.5). For the abc model simulations, most 

Kendall correlation coefficients were negative and ranged from -0.96 to -0.6, excluding 

the coefficient for the time lags of 30 days in the Karthane catchment (Table 5.5). All of 

these relationships were statistically significant. For the VM and HBV model, most of the 

CD values did not exhibit significant relationships with the autocorrelation coefficients 

(Table 5.5). However, an analysis of a merged data set, that combined the findings for the 

different models for single catchment or for both catchments, yielded weak but significant 

negative relationships for nearly all of the considered time lags. 
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For the power spectrum analysis, the linear slope of the regression line fitted to the 

spectrum in the double logarithmic plot of spectrum density versus frequency was 

compared to the CD values, where 1 300  day was taken as the minimum frequency. The 

CD values of the abc model simulations indicated significant negative relationships with 

the slope of the power spectrum for both catchments, but only the Karthane catchment for 

the HBV model, and none for the VM model. Similar as for the autocorrelation results, 

merging the results for all the models for single or both catchments resulted in weak but 

significant relationships (Table 5.5).  
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Table 5.5 Kendall correlation between CD values, autocorrelations for different time lags and the slope of power spectrum of simulated 

discharge time series. The bold values stand for the Kendall coefficient whose P values are significant on the 0.05 level. 

Study area Models 

Autocorrelation analysis 
Power spectrum analysis 

time lag = 1 day time lag = 5 day time lag = 10 day time lag = 30 day 

Kendall 

coefficient 

P 

values 

Kendall 

coefficient 

P 

values 

Kendall 

coefficient 

P 

values 

Kendall 

coefficient 

P 

values 

Kendall 

coefficient 
P values 

Karthane 

catchment 

abc -0.87 0.001 -0.83 0.001 -0.60 0.023 -0.41 0.123 -0.69 0.008 

VM 0.02 1.000 0.20 0.474 0.20 0.474 0.16 0.592 -0.02 1.000 

HBV -0.29 0.085 -0.28 0.097 -0.32 0.055 -0.39 0.018 -0.33 0.047 

Total -0.19 0.082 -0.28 0.011 -0.35 0.002 -0.53 0.000 -0.22 0.046 

Shaowu 

catchment 

abc -0.73 0.004 -0.96 0.000 -0.96 0.000 -0.91 0.000 -0.56 0.032 

VM -0.36 0.067 -0.50 0.012 -0.50 0.012 -0.27 0.181 -0.25 0.215 

HBV 0.07 0.673 0.21 0.205 0.21 0.205 0.29 0.085 0.04 0.820 

Total -0.18 0.080 -0.30 0.004 -0.38 0.000 -0.28 0.007 -0.35 0.001 

Both catchments -0.22 0.003 -0.25 0.001 -0.29 0.000 -0.35 0.000 -0.30 0.000 
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5.3 Discussion 

The CD values of optimal simulations indicated weak but significant relationships with 

the results of autocorrelation and power spectrum. This might be partly due to the rather 

strong relationships found for the abc model but not for the medium complex models. 

Anyhow, even then only a minor fraction of the variance of the CD values was explained 

by the more common autocorrelation and power spectrum results, indicating that the CD 

measure largely gives independent information. 

Figure 5.5 shows that the CD value of the Karthane catchment is 3.1, higher than the 

value of the Shaowu catchment (i.e. 2.55). It means that the dynamic system of the 

Karthane catchment is more complex than the Shaowu catchment. The higher CD values, 

the more complex the underlying dynamical system appears to be. The required dominant 

variables to model the system dynamics are 4 and 3 respectively, and hence the models 

with less parameter numbers than dominant variables are rejected due to their insufficient 

model structure. 

As conceptual rainfall-runoff models consider mainly the watershed input data and the 

corresponding output data, the CD analysis of rainfall input and evapotranspiration time 

series has been performed to check how the intrinsic dimensionality changed in the model 

from the input to the output. Many previous researches performed a CD analysis of 

rainfall time series, but they mainly focused on whether the rainfall time series is 

resulting from stochastic or low-dimensional chaotic processes. The results are 

controversial. Some research obtained the CD values in the rainfall time series, ranging 

from 0.5 to 9 (summarized in Table 1 of Sivakumar, 2004a), while the others got no 

reliable CD values for rainfall data. In this study, no CD value was obtained in the 10 

years daily precipitation data for the two catchments. The reasons maybe related to 

insufficient size (ten years daily data is not long enough) and high noise level of the data 

sets. These two reasons are the main limitations for applying the CD method. The short 

data will not only delay the plateau onset, but also make the deviation from the plateau 

behavior occur at smaller values of the embedding dimension, thus shortening the plateau 

length from both sides. Moreover, an insufficient data set gives rise to shorter scaling 



65 

 

regions, thus causing the disappearance of scaling regions to occur at smaller values of 

the embedding dimension (Ding et al., 1993).  

From our investigation, the CD values of evapotranspiration time series are much higher 

than the values of discharge series. That is, the underlying dynamic system of 

evapotranspiration is more complex than that of discharge. The model seems to be an 

intrinsic dimensionality reducing filter from input to output. Moreover, the simple abc 

model cannot reduce the intrinsic dimensionalities of simulations to the necessary 

dimensionality of observations, always keeping higher CD values (Figure 5.6). The 

simple model produces more complex discharge time series than the medium complex 

model (Figure 5.6). Thus instead of raising intrinsic dimensionality, the model reduces 

the intrinsic dimensionality of simulations when the model complexity increases. 

Figure 5.6 shows that the CD values vary between different optimal simulations based on 

NSc values and make them distinguishable. Thus the CD method can make a better 

evaluation of the model performance than the other traditional efficiency criteria, like 

absolute and square errors. However, the CD values also can give similar results if the 

optimal simulations are obtained from similar parameter combinations. Therefore, it is 

unnecessary to make the CD analysis on the optimal simulations with similar parameter 

combinations when evaluating model performance. 

It is suggested to combine the CD analysis and NSc efficiency criterion due to the time 

consuming semi-automatic CD program. Firstly, use NSc as the objective function to find 

optimal solutions of the model and then apply the CD analysis to distinguish between 

these simulations. Finally, the comparison of CD values between observed and simulated 

time series offers the information whether the simulations underestimate or overestimate 

the intrinsic dimensionalities of observations. If the CD value of a simulation is larger 

than that of the observation, then this simulation overestimates the intrinsic 

dimensionalities of observation, and vice versa. If the CD value of a simulation is smaller 

than that of the observation, then this simulation underestimates the intrinsic 

dimensionalities of observation. The closer the CD values between the simulation and 

observation are, the better the simulation is. The proposed evaluating approach employs 

the traditional NSc efficiency criterion to save time, but also extracts the intrinsic 
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properties of underlying system dynamics using the CD method. It finally reduces the 

equifinality problem and might be a step towards improving the model prediction 

accuracy. 
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6 Correlation Dimension analysis of groundwater head and 

lake level 

This chapter describes the third CD method application. It is based on the work of 

Lischeid et al. (2010). The CD method is applied to assess the complexity of groundwater 

head and lake level and to explore independent information of groundwater dynamics. 

The main steps were that: 

1) The intrinsic dimensionality of groundwater head and lake level was assessed by 

the CD method and the information provided by the CD method was addressed, 

achieving the objective 5 (Page 5). 

2) The relationship between the CD values and the screening depth of groundwater 

wells was investigated. 

6.1 Study area and data 

The study region (Figure 6.1) is located within the biosphere reserve Schorfheide-Chorin, 

approximately 65 km northeast of Berlin, and 10 km northwest of the town of 

Angermünde. The region is centered on 53° 03′ 07″ N, 13° 50′ 23″ E. Land use is forest 

predominantly (52% of the area), although arable land and small settlements cover 

another 36% of the area. The remaining 12% are covered by lakes and wetlands. 

Groundwater wells and lakes are located within an area of approximately 40 km
2
. The 

maximum distance between single measurement sites is less than 10 km. In general, 

groundwater flow direction in the uppermost aquifer is from the West to the East 

(Lischeid et al., 2010).  

Meteorological data were available from Angermünde, about 10 km southeast of the 

study area. The long-term (1951–2008) mean rainfall at Angermünde amounted to 606 

mm per year, and mean air temperature to 8.6 °C (Lischeid et al., 2010). Potential 

evapotranspiration was about 570 mm per year during that period. In contrast, the year of 

2007 was an extraordinary wet year with 747 mm of precipitation, whereas potential 

evapotranspiration was 547 mm. Consequently, the usual water level depression during 
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the growing season was virtually absent in some groundwater wells and lakes in 2007 

(Lischeid et al., 2010). Pressure transducers were installed at some of sites by the Institute 

of Landscape Hydrology, ZALF. They yielded hourly water level data. In this study, data 

of the growing season 2007 (March through August) were used (Figure 6.2). The 

measurement error usually was less than 1 cm.  

 

Figure 6.1 Study region map with 7 groundwater wells (red points), 3 lake level recording 

sites (red points), lakes (blue polygon), forests (green background), cities (white polygon) 

and roads (red and brown lines). This map is based on the digital topological map (1:100) 

of Brandenburg State. 

Groundwater levels from all the wells in Redernswalder See decreased from March to 

August, where only Gw1 increased after July. Those in Briesensee exhibited similar 

changing trends and seasonal characteristics. The short-term fluctuations of the 

groundwater level data were stronger in Redernswalder See than in Briesensee. The 

screening intervals of groundwater wells in Redernswalder See range from 14 to 24 m, 

deeper than those in Briesensee with screening depths between 7 and 15 m (Table 6.1). 
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All the studied lakes levels showed similar behavior with more fluctuations from May to 

August. This is probably due to the occurrence of summer rainfall. 
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Figure 6.2 Studied groundwater and lake level time series, where “Red”, “Bri” and “Hei” are Redernswalder See, Briesensee and Heilsee, 

respectively. “Gw” denotes the groundwater level of recording wells, while “Lk” denotes the lake water level from recording sites. 
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6.2 Results 

All of the three lakes levels time series showed almost similar CD values, around 1.5 to 2 

(Table 6.1). In contrast, the CD values of 7 groundwater levels time series exhibited 

obvious spatial pattern (Figure 6.3), with higher CD values ranging from 3.8 to 5 in the 

region of Redernswalder See and lower values in the region of Briesensee (1.8 for 

Bri_Gw3 and 0.9 for the other wells). There was no CD value obtained for Red_Gw2. In 

addition, the CD values displayed uncorrelated to their corresponding screening depth of 

groundwater wells. 

Table 6.1 The CD values of groundwater and lake level data. The screening interval is the 

distance below upper end of gauge [m]. 

ID Site Data type 
Screening  

CD 
interval 

Red_Gw1 Redernswalder See Groundwater level 15-17 5 

Red_Gw2 Redernswalder See Groundwater level 23-24 None 

Red_Gw3 Redernswalder See Groundwater level 23-24 3.825 

Red_Gw4 Redernswalder See Groundwater level 14-15 4.1 

Bri_Gw3 Briesensee Groundwater level 7-9 1.8 

Bri_Gw4 Briesensee Groundwater level 13-15 0.9 

Bri_Gw5 Briesensee Groundwater level 11-13 0.9 

Bri_Gw6 Briesensee Groundwater level 11-13 0.935 

Red_Lk1 Redernswalder See Lake level 

 

1.57 

Bri_Lk1 Briesensee Lake level 

 

2 

Hei_Lk1 Heilsee Lake level   1.63 
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Figure 6.3 Map of the sampling sites (7 groundwater wells and 3 lakes recording sites) 

with CD values (colour bar). 

6.3 Discussion 

No CD value could be obtained from Red_Gw2, probably due to insufficient resolution of 

the measurements and a high noise level of time series, which can clearly be identified in 

the empirical cumulative distribution function (ECDF) (Figure 6.4). The insufficient 

resolution of measurements usually display the high stepwise in the time series and clear 

breakup points in the ECDF (Figure 6.4), which induce the severe problem to get the 
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reliable CD value. On the other hand, the presence of noise influences the CD estimation 

primarily from the identification of scaling region. Noise may corrupt the scaling 

behavior at all length scales, and its effects are significant especially at smaller length 

scales. Therefore, noise reduction methods are needed. However, in this case, even when 

noise reduction methods were employed to filter the data of Red_Gw2, we still cannot get 

the reliable CD values since those methods were not efficient with respect to the high 

noise level. 

 

Figure 6.4 Left: Red_Gw2 groundwater level time series; Right: Its empirical cumulative 

distributed function (ECDF) 

The correlation exponents of Bri_Gw3 decreases rather markedly with increasing 

embedding dimension (Figure 6.5). They might be influenced by the seasonal 

components of time series. The saturation value of the correlation exponents tends to 

decrease with increasing seasonality (Khan et al., 2005). Therefore, the CD value of 

Bri_Gw3 is not reliable. From the CD results of the other wells in Briesensee (Table 6.1), 

it seems that there is only one process dominating the groundwater level of unconfined 

aquifer, less processes than for the lake level (i.e. 2). This process might relate to 

precipitation minus evaporation. Since the studied lakes do not exhibit any inlet or outlet 

stream, the lake level likely depends on groundwater dynamics as well as on local hydro-

climatic conditions (Lischeid et al., 2010). 
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Figure 6.5 Correlation exponents versus embedding dimension plot for different time lags 

(i.e. 7, 8 and 10). 

From the CD analysis of groundwater level data, the corresponding numbers of dominant 

processes are 4 to 5 in the aquifer of the Redernswalder See and 1 in the aquifer of 

Briesensee. That is, the system dynamics of groundwater level in the region of 

Redernswalder See is more complex than that of Briesensee. The reason for the higher 

CD values in Redernswalder See aquifer might be that these groundwater wells are 

screened in a confined aquifer. In a confined aquifer, groundwater head data does not 

only reflect hydrological processes, but also fluctuates with atmospheric pressure which 

would yield larger CD values. In general, barometric effects and water level changes are 

greater and more pronounced in confined aquifers (e.g. Rasmussen and Crawford, 1997). 

Lischeid et al. (2010) showed that Red_Gw3 and Red_Gw4 were screened in a confined 

aquifer and their high-passed groundwater levels were strongly negatively correlated with 

barometric pressure. They also gave some evidences that Red_Gw1 was affected by 

atmospheric pressure fluctuations. It seems that high CD values indicate (partly) confined 

conditions which would make the CD method very promising. While the groundwater 

head within the open well is instantly affected by a barometric pressure change, the total 

head within the aquifer may or may not be affected by those changes (Rasmussen and 

Crawford, 1997). Therefore, these CD values may represent the number of dominant 
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processes of groundwater head measured in the groundwater wells instead of representing 

the complexity of confined aquifer dynamics. 

Furthermore, even in the same aquifer system, the CD method can also distinguish 

different complexities of underlying dynamics considering the variation of the CD values. 

The higher the CD values, the more complex the system dynamics turn to be. For 

example, the Red_Gw1 system dynamics is more complex than that of Red_Gw3, since 

the CD value of Red_Gw1 is 5, higher than the values of Red_Gw3 (Table 6.1). 

  



76 

 

7 Applicability and paractibility of the Correlation Dimension 

method 

7.1 The robustness of the Correlation Dimension method 

The CD analysis of physical and mathematical systems offers an alternative way to 

investigate natural systems. In this thesis, the CD method was used for assessing the 

number of dominant processes. This information is especially valuable when physical 

mechanisms governing hydrologic system are studied from the data themselves in an 

inverse manner (Sivakumar, 2008). 

The CD method provides independent information compared with standard time series 

analysis approaches. For the first CD method application (Chapter 4), the relationships 

between CD values, the variance of observed discharge time series, autocorrelation for 

different time lags, the slope of power spectrum, the Hurst coefficient, the variance of 

PCA scores and PCA loadings were not significant for hydrographs from 35 catchments 

in Federal State of Brandenburg, Germany. That is, the CD method provides information 

independent from that of standard time series analysis approaches. Moreover, the second 

CD method application (Chapter 5) also showed that the CD largely gave independent 

information compared with autocorrelation and power spectrum analysis. 

For the observed time series, the CD method yields reliable values to assess the 

complexity (i.e. intrinsic dimensionality, degree of freedom or the number of dominant 

processes) of observed data, which is useful for catchment classification and system 

dynamics exploration. The classification based on the dominant processes has more solid 

physical and mathematical foundations than the common traditional methods. The 

underlying system dynamics of groundwater head and lake level, explored by the CD 

method (Chapter 6), indicated that the confined aquifer involved more dominant 

processes governing the groundwater head dynamics than unconfined aquifer. These 

evidences prove that the CD method offers inherent further information to understand the 

underlying system dynamics of data. 
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For hydrological models, the CD method helps the modeller to exclude models with 

insufficient complexity, thus reducing the equifinality problem and model structure 

uncertainties. It proved to be more powerful than the traditional NSc efficiency criterion 

(Chapter 5). The combination of the CD method and NSc efficiency criterion seems to 

detect the number of dominant processes and improve the prediction accuracy, serving as 

a promising evaluation approach of model performance. In addition, the CD method gives 

a new model validation approach besides the simple comparison of observed and 

simulated hydrographs. It assesses the variations of the number of dominant processes 

accounting for the respective observations and simulations. This helps to check how the 

simulations represent the observed system dynamics in a physical and mathematical way. 

In summary, all these evidences reveal that the CD method is able to assess the number of 

dominant processes that can represent the complexity of hydrological systems and 

provides a lot of valuable information about the hydrological system dynamics. The 

method can be applied to the other systems, such as geology, hydro-chemistry, 

atmospheric science, climate and global change, ocean science etc. 

7.2 Methodological problems of the Correlation Dimension method 

Since Taken’s theorem (1981) presupposes series of infinite length and being completely 

avoid of measurement errors, any practical application of the CD method obviously 

proves heuristic. Some problems had been addressed for CD analysis, including the 

identification of proper time lags and embedding dimension, the minimum data size, 

noise level determination and reduction, the effect of intermittency, the presence of zero 

values in rainfall data, high autocorrelation. A small data size may result in a significant 

underestimation of the CD value, whereas the presence of noise may overestimate the CD 

value. A large time lag may overestimate the CD value, while a small time lag may 

underestimate the CD value. In Chapter 2, we have already discussed the identification of 

proper time lags and embedding dimensions (Section 2.1.1.1 and 2.1.1.2), the minimum 

data size (Section 2.1.3) and noise reduction (Section 2.1.4). Consequently different 

strategies are suggested to handle these issues. In this section, we will discuss other 

methodological problems. 
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The CD method employs the scaling range chosen procedure. No automatic algorithm is 

powerful to accomplish this task. Therefore, the determination of the CD value remains a 

semi-automatic program based on the expert’s knowledge. In common, the CD analysis 

of one time series may cost a day for beginners, but only takes an hour for experienced 

applicators. The main reasons to consume so much time are the visual inspection to 

identify the scaling range and lacking of powerful methods to identify the proper time lag 

  and embedding dimension m . It is a serious problem to choose the right scaling range 

in the log ( )C r  versus log r  plot, when the data are polluted by noise. For example, noise 

in the data may lead to two different short linear ranges, resulting in a wrong decision of 

the applicator for choosing the right scaling range. We proposed the distinct window 

techniques to tract the scaling range. However, visual inspection and the CD estimation 

remain difficult. As we checked many previous studies of the CD analysis, no clear 

universal principle was found for the scaling range identification. Therefore, achieving 

the robust automatic CD algorithm depends on the development of a powerful method to 

identify the correct scaling range, proper time lag   and embedding dimension m . 

An important limitation of the CD analysis of rainfall time series is the presence of a large 

numbers of zero values. Some papers (e.g. Tsonis et al., 1993; Sivakumar et al., 2001) 

pointed out that amounts of zero rainfall might underestimate the CD values because the 

reconstructed hyper-surface in phase space would tend to a point when a certain value 

dominates in a time series, whereas Sivakumar (2005a) offered evidences that the 

presence of zero rainfall may not always result in an underestimation of the CD values. In 

fact, zero rainfall is also indicative of and equally important to understand how the 

dynamics of the system evolved, and the elimination of zero rainfall could lead to 

unrealistic estimates in the CD estimation of the rainfall time series. Therefore, the CD 

analysis of rainfall time series should consider zero values of rainfall. 

Even including the amounts of zero values, Koutsoyiannis (2006) showed that the CD 

was simply zero for any embedding dimension for a given example. This phenomenon is 

called intermittency. Intermittency is not unique to rainfall series, but also exists in 

discharge time series which exhibit intermittency without zero values. Intermittency in 

discharge series performs a J-shape distribution (i.e. that is defined for positive values of 
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the variable and has a high coefficients of skewness), and produce random points whose 

largest percentage are close to zero and a small number of points take large values. Graf 

von Hardenberg et al. (1997) demonstrated that this equivalent of intermittency makes the 

estimated CD value very small, although the actual dimension of the system is infinite. 

Finally, they proposed ways to refine the algorithm in order to obtain correct results. The 

simplest of them is to filter the data by excluding all the delay vectors x  having at least 

one component ix c , where c  is typically a small percentage (e.g. 5%) of the average 

of the data series. The appropriate cut-off value c  leaves out all off data points of the 

intermittent time series. This simple algorithm was proven very effective (Koutsoyiannis, 

2006). From our investigations, none of the studied time series exhibited the intermittency 

problem in the log ( )C r  against log r  plot.  

Hydrological time series, especially on fine time scales (e.g. hourly or daily), are 

characterized by high autocorrelation coefficients. The effects of autocorrelation may act 

synergistically with the effects of an asymmetric distribution function and the effect of 

sample size (Koutsoyiannis, 2006). In auto-correlated series, a larger number of data 

points may not suffice to avoid misleading results. Therefore, the Theiler window is 

needed to exclude temporal correlated points from the pair counting. It is usually 

identified by the space time separation plot (Provenzale et al., 1992; Kantz and Schreiber, 

2004). In this plot, the parameter “time lag  ” is employed, and hence the appropriate 

selection of the time lag in constructing delay vectors should be cautious (Section 2.1.1.1). 

It is useful to know that the CD as a popular fractal dimension tends to underestimate the 

true dimensionality and noise may pollute the estimation (Lee and Verleysen, 2006). 

Since each method has its limitations, it would be unwise to think that a given problem 

can be solved using one particular method. Given that each method often possesses 

different advantages and limitations, it would be better to attempt to maximize their 

advantages and minimize their disadvantages. 
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8 Conclusions 

Hydrological models are often developed for specific situations and thus their extensions 

and generations to other situations are difficult. Therefore, it is necessary to classify 

catchments regarding their behavior or catchment properties. In the first study, the 

observed hydrographs of 35 small catchments in the Federal State of Brandenburg, 

Germany, were analyzed by the CD method. The majority of catchments exhibited CD 

values between 3 and 6. The CD values did not exhibit any pronounced spatial pattern, 

but they displayed significant correlations with the heterogeneity of the catchment, which 

seems to be the main factor explaining high CD values of the observed hydrographs. 

Forest area percentage of land use is positively correlated with CD values, while 

agricultural land area percentage is negatively correlated. It seems that the underlying 

system dynamics of forest area are more complex than agricultural land with respect to 

the observed runoff behavior. Moreover, the CD method captures different information 

independent from that of standard time series analysis methods, including variance, 

autocorrelation analysis, power spectrum analysis, Hurst analysis and PCA. It can 

estimate the intrinsic dimensionality of the data and provide information on the minimum 

number of processes underlying the signal dynamics. This information makes the CD 

method as an ideal candidate to reduce model uncertainties. 

In the second study, the model equifinality problem was addressed by comparing three 

hydrological models with different model complexities and different parameterizations, 

applied to the same two catchments. Equifinality arose in any of the three models. Results 

from models with similar and widely differencing parameter values were analysed by the 

CD method. Simulations with similar NSc values differed considerably with respect to 

CD values, but the CD values converged for the best simulation in terms of NSc values 

towards that of the observed discharge. Therefore, the CD method is proposed to tackle 

the equifinality problem in hydrology. The new suggested approach that combined the 

NSc efficiency criterion and the CD method seems to be more powerful compared to the 

usual approach. It can save the time, but also detect the intrinsic properties of system 

dynamics. In addition, the CD analyses of model rainfall, evapotranspiration and 

discharge time series suggest that hydrological models likely act as intrinsic 
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dimensionality reducing filters for the high-dimensional model input. If the model 

complexity increases, hydrological models reduce the intrinsic dimensionality of 

simulations. Correspondingly, a minimum model complexity seems to be required to 

fulfill this task rather than raising the intrinsic dimensionality of the input data. 

In the third study, the CD method was applied to groundwater head and lake level data in 

the biosphere reserve Schorfheide-Chorin region. The intrinsic dimensionality of 

groundwater level ranged from 0.9 to 5, while lake level performed small variations, 

around 1.57 to 2. The CD values of groundwater level exhibited no correlation with the 

screening depth of groundwater wells, but displayed spatial patterns for confined and 

unconfined aquifer, respectively. It seems that high CD values indicate partly confined 

conditions. Furthermore, the CD method can also recognize the different complexities of 

underlying dynamics within the same aquifer system. The higher the CD values, the more 

complex system turns to be. 

In summary, the CD method can estimate the reliable number of dominant processes and 

it seems to be a powerful method for system dynamics exploration, catchment 

classification and model evaluation. However, it cannot identify the actual processes 

occurred in the system. Therefore, it is a great challenge to achieve the larger goal of 

identifying the dominant processes since none of the existing methods seems capable of 

fulfilling this task.  

  



82 

 

Referrences 

Abebe NA, Ogden FL, Pradhan NR. 2010. Sensitivity and uncertainty analysis of the 

conceptual HBV rainfall-runoff model: Implications for parameter estimation. 

Journal of Hydrology 389: 301-310. 

Akselrod S, Gordon D, Ubel FA, Shannon DC, Barger AC, Cohen RJ. 1981. Power 

spectrum analysis of heart rate fluctuation: a quantitative probe of Beat-To-Beat 

Cardiovascular control. Science 213: 220-222. 

Bao W, Wang C. 1997. Structure and application of Vertical-mixed Runoff Model. 

Journal of Hydrology China 3: 18-21. 

Beven K. 1993. Prophecy, reality and uncertainty in distributed hydrological modelling. 

Advances in Water Resources 16: 41-51. 

Beven K, Freer J. 2001. Equifinality, data assimilation, and uncertainty estimation in 

mechanistic modelling of complex environmental systems using the GLUE 

methodology. Journal of Hydrology 249: 11-29. 

Bossard M, Feranec J, Otahel J. 2000. CORINE land cover technical guide - Addendum 

2000. European Environment Agency. 

Buchala S, Davey N, Gale TM, Frank RJ. 2005. Analysis of linear and nonlinear 

dimensionality reduction methods for Gender classification of face images. 

International Journal of Systems Science 36: 931-942. 

Casdagli M. 1989. Nonlinear prediction of  chaotic time series. Physica D 35: 335-356. 

Central Basic Geodata Service for Germany, VG250, 2012. Geo Information: http:// 

www.geodatenzentrum.de. 

Cheng CT, Ou CP, Chau KW. 2002. Combing a fuzzy optimal model with a genetic 

algorithm to solve multi-objective rainfall-runoff model calibration. Journal of 

Hydrology 268: 72-86. 

Cheng CT, Zhao MY, Chau KW, Wu XY. 2006. Using genetic algorithm and TOPSIS for 

Xinanjiang model calibration with a single procedure. Journal of Hydrology 316: 

129-140. 

Das A, Das P, Roy AB. 2002. Nonlinear data analysis of experimental (EEG) data and 

comparison with theoretical (ANN) data. Complexity 7: 30-40. 

Decoster GP, Mitchell D. 1991. The efficacy of the correlation dimension technique in 

detecting determinism in small samples. Journal of Statistical Computation and 

Simulation 39: 221-229. 

http://www.geodatenzentrum.de/


83 

 

Ding M, Grebogi C, Ott E, Sauer T, Yorke JA. 1993. Estimating correlation dimension 

from a chaotic time series: when does plateau onset occur? Physica D 69: 404-424. 

Draper NR, Smith H. 1981. Applied Regression Analysis, second edition. John Wiley & 

Sons. 

Elshorbagy A, Simonovic SP, Panu US. 2002a. Noise reduction in chaotic hydrologic 

time series: facts and doubts. Journal of Hydrology 256: 147-165. 

Elshorbagy A, Simonovic SP, Panu US. 2002b. Estimation of missing streamflow data 

using principles of chaos theory. Journal of Hydrology 255: 123-133. 

Farmer JD, Sidorowich JJ. 1987. Predicting chaotic time series. Phys. Rev. Lett. 59: 845-

848. 

Federal Ministry for the Environment, Nature Conservation and Nuclear Sefety, 2003. 

Hydrological Atlas of Germany 1961-1991 (Hydrologischer Atlas von 

Deutschland). www.bmu.de, Bonn. 

Fu G, Liu C, Chen S, Hong J. 2004. Investigating the conversion coefficients for free 

water surface evaporation of different evaporation pans. Hydrological processes 

18: 2247-2262. 

Fiering MB. 1967. Streamflow Synthesis. Harvard University Press. Online source: 

http://www.google.de/url?sa=t&rct=j&q=Fiering%2Babc%2Bmodel&source=we

b&cd=1&ved=0CC8QFjAA&url=http%3A%2F%2Fwww.geogr.uni-

jena.de%2Ffileadmin%2FGeoinformatik%2FLehre%2FSoSe_2006%2FModul241

%2FabcModel.pdf&ei=XOzTUd3dHcLtswaTyIGwAQ&usg=AFQjCNH7SSfgAJ

FrVgXfWu_7b4BIWKcQ9A&bvm=bv.48705608,d.Yms&cad=rjt 

Fraedrich K. 1986. Estimating the dimensions of weather and climate attractors. Journal 

of Atmospheric Sciences 43: 419-432. 

Fraser AM, Swinney HL. 1986. Independent coordinates for strange attractors from 

mutual information. Physical Review A 33: 1134-1140. 

Gaume E, Sivakumar B, Kolasinski M, Hazoume L. 2006. Identification of chaos in 

rainfall temporal disaggregation: Application of the correlation dimension method 

to 5-minute point rainfall series measured with a tipping bucket and an optical 

raingage. Journal of Hydrology 328: 56-64. 

Germer S, Kaiser K, Bens O, Hüttl RF. 2011. Water balance changes and responses of 

Ecosystems and society in the Berlin-Brandenburg region--a review. In: Global 

change: Challenges for regional water resources, DIE ERDE, pp: 65-95. 

http://www.bmu.de/
http://www.google.de/url?sa=t&rct=j&q=Fiering%2Babc%2Bmodel&source=web&cd=1&ved=0CC8QFjAA&url=http%3A%2F%2Fwww.geogr.uni-jena.de%2Ffileadmin%2FGeoinformatik%2FLehre%2FSoSe_2006%2FModul241%2FabcModel.pdf&ei=XOzTUd3dHcLtswaTyIGwAQ&usg=AFQjCNH7SSfgAJFrVgXfWu_7b4BIWKcQ9A&bvm=bv.48705608,d.Yms&cad=rjt
http://www.google.de/url?sa=t&rct=j&q=Fiering%2Babc%2Bmodel&source=web&cd=1&ved=0CC8QFjAA&url=http%3A%2F%2Fwww.geogr.uni-jena.de%2Ffileadmin%2FGeoinformatik%2FLehre%2FSoSe_2006%2FModul241%2FabcModel.pdf&ei=XOzTUd3dHcLtswaTyIGwAQ&usg=AFQjCNH7SSfgAJFrVgXfWu_7b4BIWKcQ9A&bvm=bv.48705608,d.Yms&cad=rjt
http://www.google.de/url?sa=t&rct=j&q=Fiering%2Babc%2Bmodel&source=web&cd=1&ved=0CC8QFjAA&url=http%3A%2F%2Fwww.geogr.uni-jena.de%2Ffileadmin%2FGeoinformatik%2FLehre%2FSoSe_2006%2FModul241%2FabcModel.pdf&ei=XOzTUd3dHcLtswaTyIGwAQ&usg=AFQjCNH7SSfgAJFrVgXfWu_7b4BIWKcQ9A&bvm=bv.48705608,d.Yms&cad=rjt
http://www.google.de/url?sa=t&rct=j&q=Fiering%2Babc%2Bmodel&source=web&cd=1&ved=0CC8QFjAA&url=http%3A%2F%2Fwww.geogr.uni-jena.de%2Ffileadmin%2FGeoinformatik%2FLehre%2FSoSe_2006%2FModul241%2FabcModel.pdf&ei=XOzTUd3dHcLtswaTyIGwAQ&usg=AFQjCNH7SSfgAJFrVgXfWu_7b4BIWKcQ9A&bvm=bv.48705608,d.Yms&cad=rjt
http://www.google.de/url?sa=t&rct=j&q=Fiering%2Babc%2Bmodel&source=web&cd=1&ved=0CC8QFjAA&url=http%3A%2F%2Fwww.geogr.uni-jena.de%2Ffileadmin%2FGeoinformatik%2FLehre%2FSoSe_2006%2FModul241%2FabcModel.pdf&ei=XOzTUd3dHcLtswaTyIGwAQ&usg=AFQjCNH7SSfgAJFrVgXfWu_7b4BIWKcQ9A&bvm=bv.48705608,d.Yms&cad=rjt


84 

 

Gomez-Plaza A, Martinez-Mena M, Albaladejo J, Castillo VM. 2001. Factors regulating 

spatial distribution of soil water content in small semiarid catchments. Journal of 

Hydrology 253: 211-226. 

Graf von Hardenberg J, Paparella F, Platt N, Provenzale A, Spiegel EA, Tesser C. 1997. 

Missing motor of on-off intermittency. Physical Review E 55: 58-64. 

Grassberger P, Procaccia I. 1983a. Measuring the strangeness of strange attractors. 

Physica D 9: 189-208. 

Grassberger P, Procaccia I. 1983b. Estimation of the Kolmogorov entropy from a chaotic 

signal. Physical Review A 28: 2591-2593. 

Grayson RB, Blöschl G. 2000. Summary of pattern comparison and concluding remarks. 

Cambridge University Press. 

Harlin J, Kung CS. 1992. Parameter uncertainty and simulation of design floods in 

Sweden. Journal of Hydrology 137: 209-230. 

Hegger R, Kantz H, Schreiber T. 1999. Practical implementation of nonlinear time series 

methods: The TISEAN package. Chaos 9: 413-435. 

Holzfuss J, G.Mayer-Kress. 1986. An approach to error-estimation in the application of 

dimension algorithms. In: Dimensions and Entropies in Chaotic System, Mayer-

Kress G (ed.) Springer, pp: 114-122. 

Hossian F, Sivakumar B. 2006. Spatial pattern of arsenic contamination in shadow wells 

of Bangladesh: regional geology and nonlinear dynamics. Stochastic 

Environmental Research Risk Assessment 20: 66-76. 

Jayawardena AW, Lai F. 1994. Analysis and prediction of chaos in rainfall and stream 

flow time series. Journal of Hydrology 153: 23-52. 

Jolliffe IT. 2002. Principle Component Analysis, second edition. Springer. 

http://scholar.google.de/scholar_url?hl=zh-

CN&q=http://hbanaszak.mjr.uw.edu.pl/MarketingoweZastosowania/PCA/Jolliffe_

2002_PrincipalComponentAnalysis.pdf&sa=X&scisig=AAGBfm0br1cLJi6yHc41

PSU24cY-aFL4bQ&oi=scholarr&ei=z-

TTUc4XhouzBtvDgMAF&ved=0CCwQgAMoADAA 

Kantz H, Schreiber T. 2004. Nonlinear time series analysis. 2nd Edn., Cambridge 

University Press. 

Kennel MB, Brown R, Abarbanel HDI. 1992. Determining embedding dimension for 

phase-space reconstruction using a geometrical construction. Physical Review A 

45: 3403-3411. 

http://scholar.google.de/scholar_url?hl=zh-CN&q=http://hbanaszak.mjr.uw.edu.pl/MarketingoweZastosowania/PCA/Jolliffe_2002_PrincipalComponentAnalysis.pdf&sa=X&scisig=AAGBfm0br1cLJi6yHc41PSU24cY-aFL4bQ&oi=scholarr&ei=z-TTUc4XhouzBtvDgMAF&ved=0CCwQgAMoADAA
http://scholar.google.de/scholar_url?hl=zh-CN&q=http://hbanaszak.mjr.uw.edu.pl/MarketingoweZastosowania/PCA/Jolliffe_2002_PrincipalComponentAnalysis.pdf&sa=X&scisig=AAGBfm0br1cLJi6yHc41PSU24cY-aFL4bQ&oi=scholarr&ei=z-TTUc4XhouzBtvDgMAF&ved=0CCwQgAMoADAA
http://scholar.google.de/scholar_url?hl=zh-CN&q=http://hbanaszak.mjr.uw.edu.pl/MarketingoweZastosowania/PCA/Jolliffe_2002_PrincipalComponentAnalysis.pdf&sa=X&scisig=AAGBfm0br1cLJi6yHc41PSU24cY-aFL4bQ&oi=scholarr&ei=z-TTUc4XhouzBtvDgMAF&ved=0CCwQgAMoADAA
http://scholar.google.de/scholar_url?hl=zh-CN&q=http://hbanaszak.mjr.uw.edu.pl/MarketingoweZastosowania/PCA/Jolliffe_2002_PrincipalComponentAnalysis.pdf&sa=X&scisig=AAGBfm0br1cLJi6yHc41PSU24cY-aFL4bQ&oi=scholarr&ei=z-TTUc4XhouzBtvDgMAF&ved=0CCwQgAMoADAA
http://scholar.google.de/scholar_url?hl=zh-CN&q=http://hbanaszak.mjr.uw.edu.pl/MarketingoweZastosowania/PCA/Jolliffe_2002_PrincipalComponentAnalysis.pdf&sa=X&scisig=AAGBfm0br1cLJi6yHc41PSU24cY-aFL4bQ&oi=scholarr&ei=z-TTUc4XhouzBtvDgMAF&ved=0CCwQgAMoADAA


85 

 

Kim HS, Yoon YN, Kim JH, Kim JH. 2001. Searching for strange attactor in wastewater 

flow. Stochastic Environmental Research Risk Assessment 15: 399-413. 

Khan S, Ganguly AR, Saigal S. 2005. Detection and predictive modeling of chaos in 

finite hydrological time series. Nonlinear Processes in Geophysics 12: 41-53. 

Kirchner JW, Feng X, Neal C. 2000. Fractal stream chemistry and its implications for 

contaminant transport in catchments. Nature 403: 524-526. 

Koutsoyiannis D. 2006. On the quest for chaotic attractors in hydrological processes. 

Hydrological Sciences Journal 51: 1065-1091. 

Krause P, Boyle DP, Bäse F. 2005. Comparison of different efficiency criteria for 

hydrological model assessment. Advances in Geosciences 5: 89-97. 

Lange H. 1999. Time series analysis of Ecosystem variables with complexity measures. 

Interjournal for complex systems 250. 

Lee JA, Verleysen M. 2006. Nonlinear dimensionality reduction. Springer. Chapter 3: 

Estimation of intrinsic dimensionality. Page 48-55. 

Lindström G, Johansson B, Persson M, Gardelin M, Bergström S. 1997. Development 

and test of the distributed HBV-96 hydrological model. Journal of Hydrology 201: 

272-288. 

Lischeid G. 2009. Non-linear visualization and analysis of large water quality data sets: a 

model-free basis for efficient monitoring and risk assessment. Stoch Environ Res 

Risk Assess 23: 977-990. 

Lischeid G, Bittersohl J. 2008. Tracing biogeochemical processes in stream water and 

groundwater using non-linear statistics. Journal of Hydrology 357: 11-28. 

Lischeid G, Natkhin M. 2011. The potential of Land-Use change to mitigate water 

scarcity in Northeast Germany--a review. In: Global change: Challenges for 

regional water resources, DIE ERDE, pp: 97-113. 

Lischeid G, Natkhin M, Steidl J, Dietrich O, Dannowski R, Merz C. 2010. Assessing 

coupling between lakes and layered aquifers in a complex Pleistocene landscape 

based on water level dynamics. Advances in Water Resources 33: 1331-1339. 

Lorenz EN. 1963. Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences 

20: 130-141. 

Lorenz EN. 1991. Dimension of weather and climate attractors. Nature 353: 241-244. 

Madsen H. 2000. Automatic calibration of a conceptual rainfall-runoff model using 

multiple objectives. Journal of Hydrology 235: 276-288. 



86 

 

Mandelbrot B. 1977. Fractals: Form, chance and dimensions. W. H. Freeman & Company. 

Mandelbrot BB, Wallis JR. 1969. Robustness of the rescaled range R/S and the 

measurement of noncyclic long run statistical dependence. Water Resources 

Research 5: 967-988. 

Marwan N, Romano MC, Thiel M, Kurths J. 2007. Recurrence plots for the analysis of 

complex systems. Physics Reports 438: 237-239. 

Merz C, Pekdeger A. 2011. Anthropogenic changes in the Landscape Hydrology of the 

Berlin-Brandenburg region. In: Global change; Challenges for regional water 

resources, DIE ERDE, pp: 21-39. 

Moon Y, Rajagopalan B, Lall U. 1995. Estimation of mutual information using kernel 

density estimators. Physical review E 52: 2318-2321. 

Nützmann G, Wolter C, Venohr M, Pusch M. 2011. Historical Patterns of Anthropogenic 

impacts on freshwaters in the Berlin-Brandenburg region. In: Global change: 

Challenges for regional water resources, DIE ERDE, pp: 41-64. 

Nash JE, Sutcliffe JV. 1970. River flow forecasting through conceptual models part I — 

A discussion of principles. Journal of Hydrology 10: 282-290. 

Nerenberg MAH, Essex C. 1990. Correlation dimension and systematic geometric effects. 

Physical Review A 42: 7065-7074. 

Osborne AR, Provenzale A. 1989. Finite correlation dimension for stochastic systems 

with power-law spectra. Physica D 35: 357-381. 

Ott E. 1993. Chaos in dynamical systems. Cambridge University Press. Page 6. 

Porporato A, Ridolfi L. 1997. Nonlinear analysis of river flow time sequences. Water 

Resources Research 33: 1353-1367. 

Provenzale A, Smith LA, Vio R, Murante G. 1992. Distinguishing between low-

dimensional dynamics and randomness in measured time series. Physica D 58: 31-

49. 

Provenzale A, Vio R, Cristiani S. 1994. Luminosity variations of 3C 345: Is there any 

evidence of low-dimensional chaos? Astrophysical Journal 428: 591-598. 

Qu S, Bao W, Shi P. 2007. A comparative study of the Xinanjiang model and the 

Vertical-mixed runoff model. IAHS Publ. 311, pp: 1-8. 

Rasmussen TC, A.Crawford L. 1997. Indentifying and Removing Barometric Pressure 

Effects in Confined and Unconfined Aquifers. Ground Water 35: 502-511. 



87 

 

R Development Core Team, 2006. R: A Language and Environment for Statistical 

Computing. R Foundation for Statistical Computing. Vienna, Austria. ISBN: 3-

900051-07-0, <http://www.Rproject.org>. 

Renyi A. 1970. Probability theory. American Elsevier Publishing Company, New York. 

Online source:  

http://www.google.de/url?sa=t&rct=j&q=Renyi%2BA.%2B1970.%2BProbability

%2Btheory.&source=web&cd=4&ved=0CD8QFjAD&url=http%3A%2F%2Fww

w.ams.org%2Fbull%2F1973-79-02%2FS0002-9904-1973-13147-7%2FS0002-

9904-1973-13147-7.pdf&ei=_vDTUcLKLojLtAbi-

YGwCQ&usg=AFQjCNH0zQ0mkHYZr1rjxGHLtVKkt9fkww&bvm=bv.487056

08,d.Yms&cad=rjt 

Rhodes C, Morari M. 1997. The false nearest neighbors algorithm: an overview. Comput. 

Chem. Eng. 21: 1149-1154. 

Rodriguez-Iturbe I, De-Power BF, Sharifi MB, Georgakakos KP. 1989. Chaos in Rainfall. 

Water Resources Research 25: 1667-1675. 

Schertzer D, Tchiguirinskaia I, Lovejoy S, P.Hubert, Bendjoudi H. 2002. Which chaos in 

the rainfall-runoff process? A discussion on‘Evidence of chaos in the rainfall-

runoff process’ by Sivakumar et al. Hydrological Sciences Journal 47: 139–147. 

Schouten JC, Takens F, Bleek CMvd. 1994. Estimation of the dimension of a noisy 

attractor. Physical Review E 50: 1851-1861. 

Schreiber T. 1993. Extremely simple nonlinear noise reduction method. Physical Review 

E 47: 2401-2404. 

Schreiber T, Grassberger P. 1991. A simple noise reduction method for real data. Physics 

letters A 160: 411-418. 

Schreiber T, Kantz H. 1996. Observing and predicting chaotic signals: Is 2% noise too 

much? , Springer: 1-22. Online source: 

http://www.google.de/url?sa=t&rct=j&q=Fiering%2Babc%2Bmodel&source=we

b&cd=1&ved=0CC8QFjAA&url=http%3A%2F%2Fwww.geogr.uni-

jena.de%2Ffileadmin%2FGeoinformatik%2FLehre%2FSoSe_2006%2FModul241

%2FabcModel.pdf&ei=XOzTUd3dHcLtswaTyIGwAQ&usg=AFQjCNH7SSfgAJ

FrVgXfWu_7b4BIWKcQ9A&bvm=bv.48705608,d.Yms&cad=rjt 

Schuster HG. 1988. Deterministic Chaos. VCH. Weinheim. Online source: 

http://freepdfdb.org/pdf/deterministic-chaos-schuster 

Seibert J. 2005. HBV light version 2: User's mnual. Stockholm University, Department of 

physical geography and quaternary geology. 

http://www.google.de/url?sa=t&rct=j&q=Renyi%2BA.%2B1970.%2BProbability%2Btheory.&source=web&cd=4&ved=0CD8QFjAD&url=http%3A%2F%2Fwww.ams.org%2Fbull%2F1973-79-02%2FS0002-9904-1973-13147-7%2FS0002-9904-1973-13147-7.pdf&ei=_vDTUcLKLojLtAbi-YGwCQ&usg=AFQjCNH0zQ0mkHYZr1rjxGHLtVKkt9fkww&bvm=bv.48705608,d.Yms&cad=rjt
http://www.google.de/url?sa=t&rct=j&q=Renyi%2BA.%2B1970.%2BProbability%2Btheory.&source=web&cd=4&ved=0CD8QFjAD&url=http%3A%2F%2Fwww.ams.org%2Fbull%2F1973-79-02%2FS0002-9904-1973-13147-7%2FS0002-9904-1973-13147-7.pdf&ei=_vDTUcLKLojLtAbi-YGwCQ&usg=AFQjCNH0zQ0mkHYZr1rjxGHLtVKkt9fkww&bvm=bv.48705608,d.Yms&cad=rjt
http://www.google.de/url?sa=t&rct=j&q=Renyi%2BA.%2B1970.%2BProbability%2Btheory.&source=web&cd=4&ved=0CD8QFjAD&url=http%3A%2F%2Fwww.ams.org%2Fbull%2F1973-79-02%2FS0002-9904-1973-13147-7%2FS0002-9904-1973-13147-7.pdf&ei=_vDTUcLKLojLtAbi-YGwCQ&usg=AFQjCNH0zQ0mkHYZr1rjxGHLtVKkt9fkww&bvm=bv.48705608,d.Yms&cad=rjt
http://www.google.de/url?sa=t&rct=j&q=Renyi%2BA.%2B1970.%2BProbability%2Btheory.&source=web&cd=4&ved=0CD8QFjAD&url=http%3A%2F%2Fwww.ams.org%2Fbull%2F1973-79-02%2FS0002-9904-1973-13147-7%2FS0002-9904-1973-13147-7.pdf&ei=_vDTUcLKLojLtAbi-YGwCQ&usg=AFQjCNH0zQ0mkHYZr1rjxGHLtVKkt9fkww&bvm=bv.48705608,d.Yms&cad=rjt
http://www.google.de/url?sa=t&rct=j&q=Renyi%2BA.%2B1970.%2BProbability%2Btheory.&source=web&cd=4&ved=0CD8QFjAD&url=http%3A%2F%2Fwww.ams.org%2Fbull%2F1973-79-02%2FS0002-9904-1973-13147-7%2FS0002-9904-1973-13147-7.pdf&ei=_vDTUcLKLojLtAbi-YGwCQ&usg=AFQjCNH0zQ0mkHYZr1rjxGHLtVKkt9fkww&bvm=bv.48705608,d.Yms&cad=rjt
http://www.google.de/url?sa=t&rct=j&q=Renyi%2BA.%2B1970.%2BProbability%2Btheory.&source=web&cd=4&ved=0CD8QFjAD&url=http%3A%2F%2Fwww.ams.org%2Fbull%2F1973-79-02%2FS0002-9904-1973-13147-7%2FS0002-9904-1973-13147-7.pdf&ei=_vDTUcLKLojLtAbi-YGwCQ&usg=AFQjCNH0zQ0mkHYZr1rjxGHLtVKkt9fkww&bvm=bv.48705608,d.Yms&cad=rjt
http://www.google.de/url?sa=t&rct=j&q=Fiering%2Babc%2Bmodel&source=web&cd=1&ved=0CC8QFjAA&url=http%3A%2F%2Fwww.geogr.uni-jena.de%2Ffileadmin%2FGeoinformatik%2FLehre%2FSoSe_2006%2FModul241%2FabcModel.pdf&ei=XOzTUd3dHcLtswaTyIGwAQ&usg=AFQjCNH7SSfgAJFrVgXfWu_7b4BIWKcQ9A&bvm=bv.48705608,d.Yms&cad=rjt
http://www.google.de/url?sa=t&rct=j&q=Fiering%2Babc%2Bmodel&source=web&cd=1&ved=0CC8QFjAA&url=http%3A%2F%2Fwww.geogr.uni-jena.de%2Ffileadmin%2FGeoinformatik%2FLehre%2FSoSe_2006%2FModul241%2FabcModel.pdf&ei=XOzTUd3dHcLtswaTyIGwAQ&usg=AFQjCNH7SSfgAJFrVgXfWu_7b4BIWKcQ9A&bvm=bv.48705608,d.Yms&cad=rjt
http://www.google.de/url?sa=t&rct=j&q=Fiering%2Babc%2Bmodel&source=web&cd=1&ved=0CC8QFjAA&url=http%3A%2F%2Fwww.geogr.uni-jena.de%2Ffileadmin%2FGeoinformatik%2FLehre%2FSoSe_2006%2FModul241%2FabcModel.pdf&ei=XOzTUd3dHcLtswaTyIGwAQ&usg=AFQjCNH7SSfgAJFrVgXfWu_7b4BIWKcQ9A&bvm=bv.48705608,d.Yms&cad=rjt
http://www.google.de/url?sa=t&rct=j&q=Fiering%2Babc%2Bmodel&source=web&cd=1&ved=0CC8QFjAA&url=http%3A%2F%2Fwww.geogr.uni-jena.de%2Ffileadmin%2FGeoinformatik%2FLehre%2FSoSe_2006%2FModul241%2FabcModel.pdf&ei=XOzTUd3dHcLtswaTyIGwAQ&usg=AFQjCNH7SSfgAJFrVgXfWu_7b4BIWKcQ9A&bvm=bv.48705608,d.Yms&cad=rjt
http://www.google.de/url?sa=t&rct=j&q=Fiering%2Babc%2Bmodel&source=web&cd=1&ved=0CC8QFjAA&url=http%3A%2F%2Fwww.geogr.uni-jena.de%2Ffileadmin%2FGeoinformatik%2FLehre%2FSoSe_2006%2FModul241%2FabcModel.pdf&ei=XOzTUd3dHcLtswaTyIGwAQ&usg=AFQjCNH7SSfgAJFrVgXfWu_7b4BIWKcQ9A&bvm=bv.48705608,d.Yms&cad=rjt
http://freepdfdb.org/pdf/deterministic-chaos-schuster


88 

 

Sivakumar B. 2001. Is a chaotic multi-fractal approach for rainfall possible? Hydrological 

processes 15: 943-955. 

Sivakumar B. 2002. Is correlation dimension a reliable indicator of low-dimensional 

chaos in short hydrological time series? Water Resources Research 38: 1011. DOI: 

10.1029/2001WR000333. 

Sivakumar B. 2004a. Chaos theory in geophysics: past, present and future. Chaos, 

Solitons and Fractals 19: 441-462. 

Sivakumar B. 2004b. Dominant processes concept in hydrology: moving forward. 

Hydrological processes 18: 2349-2353. 

Sivakumar B. 2005a. Chaos in rainfall: variability, temporal scale and zeros. Journal of 

Hydroinformatics 7.3: 175-184. 

Sivakumar B. 2005b. Correlation dimension estimation of hydrological series and data 

size requirement: myth and reality. Hydrological Sciences Journal 50: 591-603. 

Sivakumar B. 2007. Nonlinear determinism in river flow: prediction as a possible 

indicator. Earth Surface Processes and Landforms 32: 969-979. 

Sivakumar B. 2008. Dominant Processes Concept, Model Simplification and 

Classification Framework in Catchment Hydrology. Stochastic Environmental 

Research Risk Assessment 22: 737-748. 

Sivakumar B. 2009. Nonlinear dynamics and chaos in hydrologic systems: latest 

developments and a look forward. Stochastic Environmental Research Risk 

Assessment 23: 1027-1036. 

Sivakumar B, Jayawardena AW, Li WK. 2007. Hydrologic complexity and classification: 

a simple data reconstruction approach. Hydrological processes 21: 2713-2728. 

Sivakumar B, Phoon KK, Liong SY, Liaw CY. 1999. A systematic approach to noise 

reduction in observed chaotic time series. Journal of Hydrology 219: 103-135. 

Sivakumar B, Singh VP. 2012. Hydrologic system complexity and nonlinear dynamic 

concepts for a catchment classification framework. Hydrology and Earth System 

Sciences 16: 4119-4131. 

Sivakumar B, Sorooshian S, Gupta HV, Gao X. 2001. A chaotic approach to rainfall 

disaggregation. Water Resources Research 37: 61-72. 

Sivakumar B, Wallender WW, Puente CE, Islam MN. 2004. Streamflow disaggregation: 

a nonlinear deterministic approach. Nonlinear Processes in Geophysics 11: 383-

392. 



89 

 

Sivalumar B. 2000. Chaos theory in hydrology: important issues and interpretations. 

Journal of Hydrology 227: 1-20. 

Smith LA. 1988. Intrinsic limits on dimension calculations. Physics letters A 133: 283-

288. 

Sonin AA. 2001. The physical basis of dimensional analysis, second edition. Page 6. 

Online source: 

http://www.google.de/url?sa=t&rct=j&q=Sonin%2BAA.%2B2001.%2BThe%2Bp

hysical%2Bbasis%2Bof%2Bdimensional%2Banalysis&source=web&cd=1&ved=

0CC8QFjAA&url=http%3A%2F%2Fweb.mit.edu%2F2.25%2Fwww%2Fpdf%2F

DA_unified.pdf&ei=GevTUY79LomRswbf0ICQAQ&usg=AFQjCNH0Zupq6nh1

jxaH-tV5uqG_Syz1Zg&bvm=bv.48705608,d.Yms&cad=rjt 

State Office for Mining, Geology and Raw Material of Brandenburg, 2012a. 

Hydrogeologic Map of Brandenburg: http://www.geo.brandenburg.de/hyk50. 

State Office for Mining, Geology and Raw Material of Brandenburg, 2012b. Geo 

Informations: http://www.mugv.brandenburg.de/cms/detail.php/lbm1.c.200103.de. 

Takens F. 1981. Detecting strange attractors in turbulence. In: Dynamical Systems and 

Turbulence, Lecture Notes in Mathematics, Rand DA, Young, L.S. (ed.) Springer, 

pp: 366-381. 

Theiler J. 1986. Spurious dimension from correlation algorithms applied to limited time-

series data. Physical Review A 34: 2427-2432. 

Thomas B, Lischeid G, Steidl J, Dannowski R. 2012. Regional catchment classification 

with respect to low flow risk in a Pleistocene landscape. Journal of Hydrology 475: 

392-402. 

Togal H, Demirel MC, Booij MJ. 2012. Seasonality of low flows and dominant processes 

in the Rhine River. Stochastic Environmental Research Risk Assessment. DOI: 

10.1007/s00477-012-0594-9. 

Tsonis AA, Elsner JB. 1988. The weather attractor over very short timescales. Nature 333: 

545-547. 

Tsonis AA, Elsner JB, Georgakakos KP. 1993. Estimating the dimension of weather and 

climate attractors: important issues about the procedure and interpretation. Journal 

of the Atmospheric Sciences 50: 2549-2555. 

Tsonis AA, Triantafyllou GN, Elsner JB. 1994. Searching for determinism in observed 

data: a review of the issue involved. Nonlinear Processes in Geophysics 1: 12-25. 

Wang Q, Gan TY. 1998. Biases of correlation dimension estimates of streamflow data in 

the Canadian prairies. Water Resources Research 34: 2329–2339. 

http://www.google.de/url?sa=t&rct=j&q=Sonin%2BAA.%2B2001.%2BThe%2Bphysical%2Bbasis%2Bof%2Bdimensional%2Banalysis&source=web&cd=1&ved=0CC8QFjAA&url=http%3A%2F%2Fweb.mit.edu%2F2.25%2Fwww%2Fpdf%2FDA_unified.pdf&ei=GevTUY79LomRswbf0ICQAQ&usg=AFQjCNH0Zupq6nh1jxaH-tV5uqG_Syz1Zg&bvm=bv.48705608,d.Yms&cad=rjt
http://www.google.de/url?sa=t&rct=j&q=Sonin%2BAA.%2B2001.%2BThe%2Bphysical%2Bbasis%2Bof%2Bdimensional%2Banalysis&source=web&cd=1&ved=0CC8QFjAA&url=http%3A%2F%2Fweb.mit.edu%2F2.25%2Fwww%2Fpdf%2FDA_unified.pdf&ei=GevTUY79LomRswbf0ICQAQ&usg=AFQjCNH0Zupq6nh1jxaH-tV5uqG_Syz1Zg&bvm=bv.48705608,d.Yms&cad=rjt
http://www.google.de/url?sa=t&rct=j&q=Sonin%2BAA.%2B2001.%2BThe%2Bphysical%2Bbasis%2Bof%2Bdimensional%2Banalysis&source=web&cd=1&ved=0CC8QFjAA&url=http%3A%2F%2Fweb.mit.edu%2F2.25%2Fwww%2Fpdf%2FDA_unified.pdf&ei=GevTUY79LomRswbf0ICQAQ&usg=AFQjCNH0Zupq6nh1jxaH-tV5uqG_Syz1Zg&bvm=bv.48705608,d.Yms&cad=rjt
http://www.google.de/url?sa=t&rct=j&q=Sonin%2BAA.%2B2001.%2BThe%2Bphysical%2Bbasis%2Bof%2Bdimensional%2Banalysis&source=web&cd=1&ved=0CC8QFjAA&url=http%3A%2F%2Fweb.mit.edu%2F2.25%2Fwww%2Fpdf%2FDA_unified.pdf&ei=GevTUY79LomRswbf0ICQAQ&usg=AFQjCNH0Zupq6nh1jxaH-tV5uqG_Syz1Zg&bvm=bv.48705608,d.Yms&cad=rjt
http://www.google.de/url?sa=t&rct=j&q=Sonin%2BAA.%2B2001.%2BThe%2Bphysical%2Bbasis%2Bof%2Bdimensional%2Banalysis&source=web&cd=1&ved=0CC8QFjAA&url=http%3A%2F%2Fweb.mit.edu%2F2.25%2Fwww%2Fpdf%2FDA_unified.pdf&ei=GevTUY79LomRswbf0ICQAQ&usg=AFQjCNH0Zupq6nh1jxaH-tV5uqG_Syz1Zg&bvm=bv.48705608,d.Yms&cad=rjt
http://www.geo.brandenburg.de/hyk50
http://www.mugv.brandenburg.de/cms/detail.php/lbm1.c.200103.de


90 

 

Wolf A, Swift JB, Swinney HL, Vastano JA. 1985. Determining Lyapunov Exponent 

from a time series. Physica 16D: 285-317. 

Yapo PO, Gupta HV, Sorooshian S. 1996. Automatic calibration of conceptual rainfall-

runoff models: sensitivity to calibration data. Journal of Hydrology 181: 23-48. 

Yapo PO, Gupta HV, Sorooshian S. 1998. Multi-objective global optimization for 

hydrologic models. Journal of Hydrology 204: 83-97. 

Yu PS, Yang TC. 2000. Fuzzy multi-objective function for rainfall-runoff model 

calibration. Journal of Hydrology 238: 1-14. 

Zhang X, Lindström G. 1996. A comparative study of a Swedish and a Chinese 

hydrological model. Water Resources Bulletin 32. 

Zhao RJ. 1992. The Xinanjiang model applied in China. Journal of Hydrology 135: 371-

381. 

  



91 

 

Appendix I - List of publications 

 

Ma M, Lischeid G, Merz C, Thomas B., under review. “Correlation dimension analysis of 

observed discharge time series in small catchments: what information can the method 

provide?”, Journal of Hydrology. 

Ma M, Lischeid G, Merz C., under review. “Using the Correlation Dimension analysis to 

evaluate model performance”, Environmental modeling & software. 

 

  



92 

 

 

 

For reasons of data protection, the Curriculum Vitae is not published in the online version. 

  



93 

 

 

 

For reasons of data protection, the Curriculum Vitae is not published in the online version. 

 


