List of Figures

1.1	Pore pressure and Mohr-Coloumb failure criterion	2
1.2	Typical stress dependence of P- and S-wave velocities	3
2.1	Stress components acting on the 2-plane	8
2.2	TI medium with vertical symmetry axis (VTI medium)	14
2.3	Symmetry planes in orthorhombic media	15
2.4	Phase and group angle	17
3.1	Triaxial, isostatic stress and pore pressure	30
3.2	Typical pore, overburden and differential pressure profile \ldots	30
3.3	Sketch of bulk and pore space geometry model	34
3.4	Ultrasonic P- and S-wave velocity as a function of isostatic effective stress	38
3.5	Exact stress dependent P-wave velocity vs. linear approximation	46
4.1	Work flow of two step fit procedure	53
4.2	Example for best fit of P- and S-wave velocity	54
4.3	P- and S-wave velocities of different sandstones from Eberhart-Philips et al. data set	56
4.4	Examples of P- and S- wave velocities from the Eberhart-Phillips et al. data set and repeated best fits.	58
4.5	Best fit of sample $E1(412)$ as given in the literature \ldots	59
4.6	Best fit of sample E1(412) from Jones (1995) \ldots \ldots \ldots	59
4.7	Velocities of sample 53 and 139 from Freund (1992) $\ldots \ldots \ldots \ldots$	60
4.8	Best fit and observed velocities for samples from Freund (1992)	62
4.9	Linear regression of θ_c vs. $\theta_c \mu$ for Freund (1992) data set	64
4.10	Linear regression of DP vs. DS for all investigated isotropic sandstone samples	64

4.11	Linear regression of K_{dryS} and μ_{dryS}	65
4.12	Regression of K_{dryS} and μ_{dryS} from sandstone with the upper Hashin-Shtrikman bound	66
4.13	Velocities, stiffnesses, and Thomsen parameters of Berea sandstone $\ . \ .$	67
4.14	Velocities, stiffnesses, and Thomsen parameters of Chelmsford granite .	67
4.15	Velocities, stiffnesses, and Thomsen parameters of Chicopee shale	68
4.16	Measured velocities and best fits for Berea sandstone, Chelmsford gran- ite, and Chicopee shale	69
4.17	Mismatch between the measurement coordinate system and the symmetry planes of orthorhombic medium.	73
4.18	Velocities and strain for KTB sample 403 Cli515 and KTB955C1e558 .	74
4.19	Velocities and best fit for KTB sample 403Cli515	75
4.20	Velocities and best fit for KTB sample 955C1e558	76
4.21	DP vs. DS KTB rocks	77
4.22	Tsvankin's parameters for different weak anisotropic KTB rocks $\ . \ . \ .$	78
4.23	Tsvankin's parameters for different anisotropic KTB rocks	79
4.24	Resistivity and bulk deformation of rock samples saturated with tap and salt solution	79
4.25	Best fit of Westerly granite, first fit	80
4.26	Best fit of Westerly granite, second fit	81
4.27	Best fit of Casco granite, first fit	82
4.28	Best fit of Casco granite, second fit	83
4.29	Dry rock Poisson's ratio sample 140 - influence of parameter D	86
4.30	Dry rock Poisson's ratio sample 51 - influence of parameter D $\ .\ .\ .$.	87
4.31	Dry rock Poisson's ratio sample 43 - influence of parameter D $\ .\ .\ .$.	87
4.32	Saturated rock Poisson's ratio sample 51	88
4.33	Poisson's ratio for KTB sample 403Cli515	90
4.34	Poisson's ratio for KTB sample 955C1e558	91
4.35	Poisson's ratio for KTB sample 522KTB607Albk	92
4.36	DS vs. DP cross plot for all sedimentary samples and crystalline KTB rocks	94
5.1	3D geological interpretation of the KTB test site	96

5.2	Dip of foliation at the KTB in Lambert Projection	97
5.3	SW-NE cross section through the KTB test site	98
5.4	Selected slices of 3-D prestack Kirchhoff migration of the ISO89-3D data set.	100
5.5	Chemical composition of KTB-VB fracture water from pumping tests in April 1990 (left) and December 1991 (right) in 4000 m depth	102
5.6	Properties of the KTB pore fluid	104
5.7	Porosity profile down to 9101 m	105
5.8	Bulk permeability resulting from fracture and matrix permability as well as cross sectional area	107
5.9	Confining pressure dependent permeability of fracture sample from KTB pilot hole.	109
5.10	Result of 3D migration of ISO89-3D data set	111
5.11	Linear approximation of confining stress at the KTB	113
5.12	Non-scaled sketch, illustrating the model for estimation of SE2 reflec- tivity changes due to artificial pore pressure variation around the open hole section of the KTB pilot hole	114
5.13	Reflection coefficients of SE2-host rock interface	117
B.1	Sketch of bulk and pore space geometry model	128
B.2	Ultrasonic P- and S-wave velocity as a function of isostatic effective stress	5134

List of Tables

2.1	Voigt notation: Scheme for index replacement	10
2.2	Relationships between the different elastic moduli	12
3.1	Typical Poisson's ratio for sandstone, limestone, and dolomite \ldots .	49
4.1	Example of best fit parameters from two-step fit procedure	54
4.2	Best fit parameters for regression of velocities for sample E1(412) $$	58
4.3	Best fit values for P- and S-wave velocity for example data sets from Freund (1992)	61
4.4	Stress sensitivity parameters of sample 41, 56, 120, 219, 272, and 308 $\ .$	63
4.5	Best fit results for first and second fit of Berea sandstone, Chelmsford granite, and Chicopee shale velocity data.	70
4.6	Name, depth, in situ pressure, surface crack porosity, and rock type of the KTB samples	72
4.7	Best fit parameters for KTB sample 403Cli515	75
4.8	Best fit parameters for KTB sample KTB955C1e558	76
4.9	Best fit parameters of resistivity and dilatancy data	84
4.10	Best fit parameter from second fit of Cape Cod and Casco data $\ . \ . \ .$	84
5.1	Main composition of KTB fluids pumped from VB at 4000m $\ .$	102
5.2	Dry rock matrix bulk and shear modulus of the SE2 fault zone	115
5.3	Pore pressure dependent dry and saturated P- and S-wave velocities of the SE2 fault zone	116
F.1	Best fit parameter from Eberhart-Phillips <i>et al.</i> (1989)	151
F.2	Best fit parameter from Eberhart-Phillips $et\ al.$ (1989), repeated fit $~$.	153
F.3	Velocity best fit parameter, given by Jones (1995)	155
F.4	Refitted best fit parameter for Jones (1995) data set	156

LIST OF TABLES

F.5	Best fit parameters Freund data set	157
F.6	Stress sensitivity parameters inverted from velocity best fit parameters.	
	Velocity data from Freund (1992). \ldots \ldots \ldots \ldots \ldots	160
G.1	Conversion factors.	163

Danksagung

Zur Entstehung dieser Dissertation haben zahlreiche Personen in unterschiedlicher Weise beigetragen. Hierbei sind die Studenten, Doktoranden und Mitarbeiter des Geophysikalischen Instituts der Universität Karlsruhe und des Fachbereichs Geophysik der freien Universität Berlin zu nennen. Durch meine Zeit an beiden Instituten ist die Liste der Personen, denen ich zu Dank verpflichtet bin sehr lang. Daher möchte ich mich ausdrücklich dafür entschuldigen, wenn ich jemanden im Folgenden nicht explizit nenne, der es jedoch verdient hätte.

Mein besonderer Dank gilt Prof. Dr. Serge Shapiro, der es mir ermöglicht hat, nach Berlin zu kommen und dem ich ein hochinteressantes Dissertationsthema verdanke. Sein Engagement als Betreuer, als Chef und als Wissenschaftler war über die gesamte Zeit vorbildlich. Er hat mich in jeder Hinsicht unterstützt. Unsere Zusammenarbeit war und ist ein Beweis dafür, dass Geologen und Geophysiker zwar bisweilen eine andere Sprache sprechen, aber trotzdem wunderbar zusammen finden können.

Prof. Dr. Volker Haak danke ich für die Übernahme des Korreferats.

Prof. Hartmut Kern und Dr. Till Popp danke ich für die KTB Daten und ihr Interesse an dieser Arbeit.

Prof. Dr. Peter Hubral gilt mein aufrichtiger Dank für alles, was ich im Rahmen meiner Arbeit im Wave Inversion Technology Consortium gelernt habe und seine stete Bereitschaft zu - nicht nur fachlichen - Diskussionen.

Prof. Dr. Friedemann Wenzel und Dr. Martin Karrenbach danke ich dafür, dass sie es mir ermöglicht haben, nach dem Diplom in die Geophysik zu wechseln.

Mein wahrhaft aufrichtiger und besonderer Dank gilt meinem Freund und altem Karlsruher Kollegen Dr. Matthias Riede. Er half mir nicht nur, viele Lücken in meinem geophysikalischen Fachwissen zu schliessen, sondern wahr und ist auch menschlich einer der Besten, die mir je begegnet sind. Insbesondere sei da die wunderbare Zeit zu betonen, die wir als WG in seiner Charachterwohnung in Karlsruhe verbrachten.

Dr. German Höcht war und ist für mich ein Quell steter Freude. Er leitete mich nicht nur sicher durch die dunklen Regionen der Pfalz und tiefe Schwimmbecken, sondern war und ist auch die helle Fackel im Dschungel der C++ Programmierung.

Dr. Alex Görtz danke ich aufrichtig für all die gemeinsamen Erlebnisse in unserem Büro in Karlsruhe, in Amerika, im tiefen nassen Dunkel des Stollens und in Berlin. Er hat mir gezeigt, dass es nicht so schlimm ist, wenn man mal seinen Nachnamen vergisst.

Stellvertretend für alle anderen Kollegen aus Karlsruher Zeiten möchte ich mich noch insbesondere bei Jürgen Mann, Steffen Bergler und Thomas Hertweck bedanken. An dieser Stelle seien noch ausdrücklich Monika Hebben, Gaby Bartman und Claudia Payne genannt, die einem sämtliche Verwaltungsarbeit weitestgehend abgenommen haben.

Micky, MoMo (oder auch MäMä), Yoon danke ich für die vielen Stunden und Gedanken, die wir gemeinsam durchlebten. Sie war und ist mir eine grosse und besondere Hilfe, mich in Berlin heimisch zu fühlen.

Susi Rentsch danke ich für all die vielen und wunderbaren Stunden, die wir in unserem gemeinsamen Büro verbringen konnten. Es war immer erfrischend, insbesondere dann, wenn wir mal nicht einer Meinung waren. Wie hätte ich die Stunden hinterm Rechner ohne ihre lustige Art und die stete Versorgung mit Coffein überstehen sollen. Ich möchte mich auch für ihre endlose Geduld bedanken, mit der sie es ertragen hat, sich meine belehrenden Monologe über Programmieren im Allgemeinen und IAT_EX im Besonderen anzuhören.

Stellvertretend für meine restlichen Kollegen in Berlin bedanke ich mich für alle fachlichen Diskussionen, bezüglich der Arbeit am Institut im Allgemeinen und dieser Dissertation im Besonderen, sowie für die angenehme Atmosphäre, bei Oliver S. Krüger, Dr. Stefan Buske, Dr. Erik Saenger, Dr. Miltos Parotidis, Christof Sick, Elmar Rothert und Dr. Stefan Lüth. Hier am Institut habe ich deutlich zu sehen bekommen, wie wunderbar C++ ist.

Sonja, Christian, Hannah und Jonathan kann ich nicht genug danken für ihre jahrelange Freundschaft, ihre stets offenen Ohren, Herzen und Mägen (Hannah sei von Letzterem mal ausgenommen!). Kappla!

Ich bedanke mich bei der Deutschen Forschungsgemeinschaft für die Finanzierung verschiedener Projekte, auf denen ich gearbeitet habe. Desweiteren bedanke ich ich bei der Sponsoren des Wave Inversion Technology Consortiums für ihre finanzielle Unterstützung.

Linus Thorval und der OpenSource Community danke ich für die Entwicklung von LINUX und all der herrliche Software, die ich für die vorliegende Arbeit benutzen konnte.

Last but not least gilt mein besonderer Dank meiner Familie, insbesondere meinen Eltern. Ihr Vertrauen und ihre Unterstützung haben es erst ermöglicht, dass ich diese Zeilen hier schreiben kann.

Lebenslauf

Persönliche Daten

Name Anschrift	Axel Kaselow Pückler Strasse 38 10997 Berlin kaselow@reephysik fu herlin de
Geburtsdatum Nationalität Familienstand	24.07.1971 in Düsseldorf deutsch ledig
Hochschulbildung	
seit 01.02	Wissenschaftlicher Mitarbeiter im Fachbereich Geophysik der Freien Universität Berlin. Promotion über die Abhängigkeit elastischer Eigenschaften poröser Medien von tektonischen Spannungen
04/99 - 12.01	und Porendruck. Wissenschaftlicher Mitarbeiter am Geophysikalischen Institut der Universität Karlsruhe. Arbeitsfelder:
	3D FD Modellierung des vollen elastischen Wellenfeldes, Rock Physics, Poroelastizität, effektive Medien. Planung und Durchführung des tunnelseismischen Experi- mentes HIKALISTO. Steering commitee Mitglied im Wave Inversion Technology (WIT) Industriekonsortium, Betreuung des Praktikumversuchs "Elastische Wellenfeld Madellierung"
10/92 - 03/99	Modellierung". Studium der Geologie; Universität Karlsruhe.
08/98 - 03/99	Diplomarbeit: "Analytische und numerische Modellierung von Stofftransport in einer Störungszone im Grundgebirge" inkl. der Durchführung von Tracerexperimenten im Un- tertagetestfeld Lindau im Südschwarzwald.
Arbeit als wiss. Hilfsl	kraft
06/93 - 10/96	Institut für Hydrologie und Wasserwirtschaft: Erfassung und Auswertung von Oberflächenabluss- und Niederschlagsdaten
11/96 - 03/99	Lehrstuhl für Angewandte Geologie: Stofftransport in geklüfteten Medien, Beschreibung geklüfteter Medien.
Praktikum	
08/94	Hydrogeologie; Geologisches Landesamt Nordrhein - West-

Hydrogeologie; Geologisches Landesamt Nordrhein - Westfalen.

Schulbildung

$09/78 - 07/82 \\ 08/82 - 07/91 \\ 05/89$	Grundschule Düsseldorf Eller Städtisches Geschwister Scholl Gymnasium, Düsseldorf. Teilnahme am Schüleraustauschprogramm mit der Schule Nr. 50 in Moskau
07/91	Abitur
Wehrdienst	
07/91 - 06/92	Heereflugabwehrregiment 6, Todendorf

Index

Α

Amplitude versus offset (AVO)	112
Anisotropy parameters	51
Stress dependence	43, 142
Aquifer	107
confined	107
unconfined	107
Archie's law	48
cementation exponent	48
Aspect ratio	49
effective	85
of compliant porosity	38, 134
of stiff porosity	38, 134

В

Backpressure
Balanced drilling
Basic fit equation
Bedding plane
Berea 500 sandstone 55
Berea sandstone
plane of isotropy
porosity
resistivity
Biot26, 71
Low frequency limit
Biot coefficient
Biot theory
Blow outs
Body forces
Bohemian massive
Bond transformation matrices10
Bulk modulus11, 12, 26, 85, 114
dry
fluid
grain material27
saturated
Bulk modulus, fluid see KTB
Bulk porosity
Bulk volume26, 34–36, 128–131
deformation131

\mathbf{C}

Cape Cod granodiorite
Casco granite
bulk modulus
resistivity79
Chelmsford granite
plane of isotropy
porosity67
Chicopee shale
plane of isotropy
Christoffel equation16–18
orthorhombic media22
Christoffel matrix16
VTI media18
Clay content
Claystones
Coconino sandstone55
Coefficient of determination63
Compaction 31
Complex resistivity
Compliance matrix
orthorhombic 140
Compliance tensor 10
drained $39, 135$
drained rock matrix $\dots 36$, 130
dry rock matrix37, 40, 133, 139
grain material $\dots 36, 130$
pore space
Compliances $\dots \dots \dots$
anisotropic rocks $\dots 36, 130$
dry rock 140
dry rock matrix $\dots 42, 141$
of a porous system $\dots 34$, 128
Third-order
Compliant porosity $\dots 37-40, 42, 44,$
49,60,63,85,114,134-141,see
Porosity, compliant
relative changes $\dots 38, 134$
Compressibility 12
Bulk
drained rock matrix

grain material 133
Pore
Compressional stress
Concept of effective stress
Conductivity, hydraulicsee Hydraulic
conductivity
Confining pressure31, 32, 36, 37, 54,
55, 130, 133
Confining Stress
Confining stress3, 26, 31, 32, 34–37, 55,
57,66,85,113,128,130133
isostatic4, 36, 37, 47, 130, 133
Conotton sandstone55
Consolidation26
Contact forces
Crack porosity 39, 135
Cracks
Critical frequency27
Cubic Law

D

Darcy's Law 106, 107
Density
Differential pressure
used by drillers 32
Differential stress
used in tectonophysics and rock me-
chanics
Dilatancy
Dilatation9
Direction of propagation 66
Double porosity system 107
Dry matrix bulk modulus43, 44, 63
stress dependence
Dry matrix shear modulus 63
stress dependence
Dry rock bulk modulus see Bulk
modulus, dry
Dynamic moduli 13
Dynamic viscosity 106

\mathbf{E}

Earthquake cycle1
Effective bulk modulus
grain material65
Effective circulating density 33
Effective pressure 4, 32, 36, 55, 130
Effective shear modulus
grain material65

Effective stress
31, 32, 35 - 38, 40, 43, 46, 49, 55,
57, 60, 71, 74, 77, 113, 115, 130,
131, 133 - 136, 139, 141, 143
and reservoir depletion2
isostatic $\dots 3, 4$
uniaxial138
Effective stress coefficient 31, 32, 54, 55
Effective stress tensor
Elastic constants10
Elastic medium
linear
Elastic moduli
third-order $\dots \dots \dots$
Elastodynamic wave equation 15
Electrical conductivity
Electrical resistivity 5, 46–49, 51, 77, 85
and fluid saturation
and pore space deformation 47
and porosity
and temperature
stress dependence
stress dependence in granites47
stress dependence in sandstones. 47
Electrolytic charge transport 47, 85
Equivalent mud weight
Excess pressure

\mathbf{F}

Fast P-wave
Fluid bulk modulus114
Fluid density 106
Fluid flow 47
Fluid Pressure
Fluid pressure
Fluid substitution65
in anisotropic media
Foliation
Fontainebleau sandstone
Formation factor 48, 84, 85
stress dependence
Formation Pressure
Formation pressure1, 2
Formation pressure gradient 33
Fracture gradient2, 33
Fractures
Frankonian Lineament
Fresnel zone 113

\mathbf{G}

н

Harmonic plane wave 16
Hashin-Shtrikman bounds65
effective elastic moduli 65
upper $57, 65, 114, 115$
as envelope $\dots \dots \dots$
Hook's Law8–11
Horizontal stress
Horizontal transversal isotropic medium
see HTI media
HTI media13
Hydraulic conductivity
Hydraulic diffusivity 106, 108
Hydrostatic pressure
Hydrostatic pressure vessel60

Ι

In-plane waves
Incompressibility12
Initial crack porosity63
Inner surface
Inner surface tensor
Interconnected pore space 36, 47, 130 $$
Isostatic stress
Isotropic Media11–13

K

17
Kronecker delta function
3D prestack Kirchhoff migration111
Crack porosity 71
Density 71
Diffusivity tensor
Orientation 111
Double porosity system 108
Draw down test 109
Drill stem test
Effective fracture aperture 110
Fluid bulk modulus
Fluids
Bulk modulus103
Chemical composition 101–103
Foliation
foliation as plane of isotropy \ldots 72
foliation as plane of symmetry 72
Geology
Global permeability tensor111
Hydraulic diffusivity 110, 111
ISO89-3D
major lithological units
Matrix permeability
anisotropic109
in situ
laboratory 108
Microseismicity 110, 111
orientation of the lineation $\dots 72$
orthorhombic isotropy71
Permeability106, 109–111
Core109
Single fracture
Pore pressure 103, 112
Pore pressure gradient 103
Pore pressure perturbations $\dots 112$
Porosity
Pumping test 101
Radiogenic heat production 71
sample 403Cli51572, 74, 77
crack closing stress73
sample 692F1s54577
sample KTB955C1e558 $\dots 72-74$
crack closing stress74
Sample orientation
SE1 98, 99, 111
SE295, 98, 111-113, 115, 116
AVO curves115

Hydraulic diffusivity 110
In situ effective stress 113
In situ porosity 115
Mean confining stress $\dots \dots 113$
Mean effective stress $\dots \dots 113$
Mean pore pressure $\dots \dots 113$
Reflectivity 116
saturated velocities 115
Storativity110
Transmissivity 110
Seismic anisotropy
Shear wave splitting71, 101
Skin 110
Sonic velocities
Stiff porosity
Stress dependence71
Stress tensor 111, 112
Temperature gradient $\dots \dots 103$
Tensor of stress sensitivity 77
$Transmissivity \dots \dots 110$
transversel isotropy
Tsvankin's parameters
VSP 101

\mathbf{L}

\mathbf{M}

Maximum principal stress32
Mean principal stress 31
Michigan sandstone
Microseismic events 1, 2
Microseismicity 106, 110
Minimum principal stress
Model optimization
iterative $\dots \dots \dots$
local minimum
Mohr-Coloumb failure criterion2
Moldanubicum96

\mathbf{N}

Near-isostatic stress71
Net overburden pressure
Non-linear elasticity 143
Non-linearity $\dots \dots \dots 143, 144$
Normal pressure
Normal stress

0 dia

Orthorhombic media 13–15, 51, 137,
141, 148
Orthorhombic symmetry42, 137, 141,
see Orthorhombic media
Outer surface
Outer surface tensor
Overballanced drilling 2, 33
Overburden pressure 31, 37, 133
Overburden stress
Overpressure

\mathbf{P}

P-wave modulus 12
P-wave velocity 13, 54
isotropic media 12
Palaeo state of stress2
Parkfield1
Permeability 27, 46, 47, 106–108
Tensor of 110
Phase angle17, 18, 22, 148
Phase vector
Phase velocity
orthorhombic media23
TI media 18
VTI media148
Phase velocity surface17
Piezosensitivity 39, 43, 44, 137, 142
Plane of isotropy
in TI media $\dots 13$
Plane of symmetry
in orthorhombic media14
Plane waves
orthorhombic media
TI media18–20
Poisson's ratio11, 12, 31, 49, 85, 86, 88,
89
and pore pressure
stress dependence $\dots \dots \dots 50$
Polarization angle21
Polarization direction
Pore bulk modulus

Pore pressure 1–4, 26, 29–32, 34, 36,
37, 54, 55, 57, 77, 84, 107, 108,
113, 128, 130, 132, 133, 136
and hydrofracturing2
and reservoir depletion2
gradient2
perturbation
prediction 32
relaxation 110
Pore space 35 40 120 131 132 136
138, 139
deformation
Interconnected
rotation
Pore space deformation
Pore space geometry4. 37. 133
and porosity
Pore space surface $35, 129, 130$
Pore space volume 34, 35, 128, 129, 135
Pore stress
isostatic
Poroelasticity
Porosity
39 41 43 47-49 55 57 63 65
132–134 136 138 139
and pore space geometry 132
bulk 38 60 63 134
closure of $37 \ 134$
separation of 38 134
stress dependence $40, 137-139$
total 37 134
PP reflection 116
Prossure 20 26 130 132
oradient 106
Pressure gradient 33
local
Pressure gradients
Principal stress
Pulse transition technique71
Pulse-transmission technique60
1

\mathbf{Q}

Quality factor	.54
Quasi-P-wave	. 16
Quasi-S1-wave	. 16
Quasi-S2-wave	. 16

\mathbf{R}

Ray	angle	17
Ray	theory	17

Ray vector17
Ray velocity17, 20, see also Group
velocity
Reservoir depletion
Reservoir exploitation
Resistivity
Rutland quartzite77

\mathbf{S}

3
S-wave velocity
isotropic media 12
Salzwedel
sample 13960
sample $53 \dots 60$
San Andreas Fault 1
Sanding2
Sandstones
Saturated bulk modulus
stress dependence
Saxothuringicum96
SBRC Approach 110
SE1see KTB, SE1
SE2see KTB, SE2
Seismic velocities
linearized stress dependence $\dots 45$
stress dependence
Seismicity Based Reservoir Characteri-
zation see SBRC
Approach
Approach SH-wave18
Approach SH-wave
Approach SH-wave
Approach SH-wave
Approach SH-wave 18 Shear modulus 11, 12, 26, 114 dry 27 saturated 27, 57 Shear stress 8, 11
Approach SH-wave 18 Shear modulus 11, 12, 26, 114 dry 27 saturated 27, 57 Shear stress 8, 11 Shear wave singularities 16, 17
Approach SH-wave 18 Shear modulus 11, 12, 26, 114 dry 27 saturated 27, 57 Shear stress 8, 11 Shear wave singularities 16, 17 Shear wave singularity 19
Approach SH-wave 18 Shear modulus 11, 12, 26, 114 dry 27 saturated 27, 57 Shear stress 8, 11 Shear wave singularities 16, 17 Shear wave singularity 19 Siltstones 65
Approach SH-wave 18 Shear modulus 11, 12, 26, 114 dry 27 saturated 27, 57 Shear stress 8, 11 Shear wave singularities 16, 17 Shear wave singularity 19 Siltstones 65 Slow P-wave 26, 27
Approach SH-wave 18 Shear modulus 11, 12, 26, 114 dry 27 saturated 27, 57 Shear stress 8, 11 Shear wave singularities 16, 17 Shear wave singularity 19 Siltstones 65 Slow P-wave 26, 27 Slow wave 27
Approach SH-wave 18 Shear modulus 11, 12, 26, 114 dry 27 saturated 27 shear stress 8, 11 Shear stress 8, 11 Shear wave singularities 16, 17 Shear wave singularity 19 Siltstones 65 Slow P-wave 26, 27 Slow wave 27 Slowness 27
Approach SH-wave 18 Shear modulus 11, 12, 26, 114 dry 27 saturated 27, 57 Shear stress 8, 11 Shear wave singularities 16, 17 Shear wave singularity 19 Siltstones 65 Slow P-wave 26, 27 Slow wave 27 Slowness 16
Approach SH-wave 18 Shear modulus 11, 12, 26, 114 dry 27 saturated 27, 57 Shear stress 8, 11 Shear stress 8, 11 Shear wave singularities 16, 17 Shear wave singularity 19 Siltstones 65 Slow P-wave 26, 27 Slow wave 27 Slowness 16 Vector 16 Slowness surface 17
Approach SH-wave 18 Shear modulus 11, 12, 26, 114 dry 27 saturated 27, 57 Shear stress 8, 11 Shear wave singularities 16, 17 Shear wave singularity 19 Siltstones 65 Slow P-wave 26, 27 Slow wave 27 Slowness 16 Vector 16 Slowness surface 17 Soft porosity 38, 134
Approach SH-wave 18 Shear modulus 11, 12, 26, 114 dry 27 saturated 27, 57 Shear stress 8, 11 Shear wave singularities 16, 17 Shear wave singularity 19 Siltstones 65 Slow P-wave 26, 27 Slow wave 27 Slowness 16 Vector 16 Slowness surface 17 Soft porosity 38, 134 Specific storage 107
Approach SH-wave 18 Shear modulus 11, 12, 26, 114 dry 27 saturated 27, 57 Shear stress 8, 11 Shear wave singularities 16, 17 Shear wave singularities 16, 17 Shear wave singularity 19 Siltstones 65 Slow P-wave 26, 27 Slow wave 27 Slowness 16 Vector 16 Slowness surface 17 Soft porosity 38, 134 Specific storage 107 Spherical inclusions 65
Approach SH-wave 18 Shear modulus 11, 12, 26, 114 dry 27 saturated 27, 57 Shear stress 8, 11 Shear stress 8, 11 Shear wave singularities 16, 17 Shear wave singularity 19 Siltstones 65 Slow P-wave 26, 27 Slow wave 27 Slowness 16 Vector 16 Slowness surface 17 Soft porosity 38, 134 Specific storage 107 Spherical inclusions 65 Squirt flow 28
Approach SH-wave 18 Shear modulus 11, 12, 26, 114 dry 27 saturated 27, 57 Shear stress 8, 11 Shear wave singularities 16, 17 Shear wave singularities 16, 17 Shear wave singularity 19 Siltstones 65 Slow P-wave 26, 27 Slow wave 27 Slowness 16 vector 16 Slowness surface 17 Soft porosity 38, 134 Specific storage 107 Spherical inclusions 65 Squirt flow 28 SS reflection 116
Approach SH-wave 18 Shear modulus 11, 12, 26, 114 dry 27 saturated 27, 57 Shear stress 8, 11 Shear wave singularities 16, 17 Shear wave singularities 16, 17 Shear wave singularity 19 Siltstones 65 Slow P-wave 26, 27 Slow wave 27 Slowness 16 vector 16 Slowness surface 17 Soft porosity 38, 134 Specific storage 107 Spherical inclusions 65 Squirt flow 28 SS reflection 116 State of stress 1–3, 8, 9, 29, 31, 35, 37,

$\operatorname{current} \dots \dots 34, 129$
hydrostatic29
initial
isostatic
uniaxial12
Static bulk modulus
Static moduli
Stiff pores
Stiff porosity 38–40 42 44 48
49 57 60 65 68 85 114 115
134-137 139 141
relative changes 38 134
Stiffness matrix 10
Stiffness tensor 0-11 16
subie modia 147
hove gonal modia
H 11 media147
Isotropic
isotropic media 147
monoclinic media 146
orthorhombic media \ldots 14, 72, 146
TI media
triclinic media 146
VTI media 14, 18, 146
Stone Mountain granite77
Storage capacity 107
Storativity106, 107
Strain
Strain tensor
Stress9, 29, 132, 143
denoted as hydrostatic
Stress dependence
dry sandstones
saturated sandstones
Stress gradient
Stress sensitivity44, 47, 51, 67, 73, 85
oven-dried samples
saturated sandstones
Stress sensitivity approach 5, 47, 49–52.
57. 65. 68. 71. 73
Stress sensitivity parameters 63
Stress sensitivity tensor 39 52 137 see
Tensor of stress sensitivity
Stress tensor 1 0 10
Symmetry classes 11
Symmetry classes
Symmetry systems 11

\mathbf{T}

Taylor expansion 39, 41, 42, 44, 48, 135,

139, 140, 142, 144, 149
second order143
Taylor seriessee Taylor expansion
Tectonic stress 1, 31
Tensional stress9
Tensor of stress sensitivity39–42, 44,
51, 57, 68, 85, 88, 136-139, 141,
142, 144
and non-linear elasticity $\dots 40, 139$
isotropic 63
of isotropic media138
Symmetry 138
Texture
Thomsen's parameters $\dots 20-22, 24, 51,$
66-68
TI media 13–14, 51, 148
Axis of symmetry13
axis of symmetry68
VTI media24
TI Symmetry
due to periodic thin layering $\dots 13$
due to shales $\dots 13$
Tilted transversal isotropic medium see
TTI media
Time lapse seismic experiments 2
Total porosity see Bulk porosity
Transmissibility 106, see
Transmissibility
Transmissivity
Transport properties
and porosity $\dots 47$
Transversely isotropic media see TI
media
Triclinic anisotropy 138
Tsvankin's parameters 23–25, 51, 141
Stress dependence $\dots 42, 142$
TTI media13
Tuning effects 115
Two-step fit procedure
first step $\ldots 52, 57$
second step
work flow

U

Ultrasonic transmission method	66
Underbalanced drilling	33
Uniaxial compression	31
Uniaxial stress 140, 141, 1	43

\mathbf{V}

Variscian orogeny
Vertical stress
$Vertical\ transversal\ isotropic\ medium see$
VTI media
Viscosity
Viscosity, dynamicsee Dynamic
viscosity
Voigt notation 10, 11, 14, 146
VTI media 13, 22, 148
as background15
stiffness tensor . see Stiffness tensor

Y

Young's modulus1	.1,	12
------------------	-----	----

\mathbf{Z}

Zoeppritz equations	.115
Zone of Erbendorf-Vohenstrauss	96