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Appendix A

Notations

Notations

∇ Nabla operator.
∆ Dilatation
Θ Phase angle
Σ Encasing surface of interconnected pore space.
Ψ Outer surface of rock sample.
Ω Bulk rock electrical resistivity.
Ωfl Fluid resistivity.
Ωst Fluid resistivity of hypothetical rock at Peff = 0 with φs = φc = 0.
α Biot coefficient.
γ Thomsen’s anisotropy parameter.
γ(1) Tsvankin’s VTI parameter γ in the [x2,x3]-plane.
γ(2) Tsvankin’s VTI parameter γ in the [x1,x3]-plane.
δij Kronecker delta
δ Thomsen’s anisotropy parameter.
δ(1) Tsvankin’s VTI parameter δ in the [x2,x3]-plane.
δ(2) Tsvankin’s VTI parameter δ in the [x1,x3]-plane.
δ(3) Tsvankin’s VTI parameter δ in the [x1,x2]-plane.
ε Thomsen’s anisotropy parameter ε
ε(1) Tsvankin’s VTI parameter ε in the [x2,x3]-plane.
ε(2) Tsvankin’s VTI parameter ε in the [x1,x3]-plane.
εij Strain tensor
ζij Inner surface tensor.
ηij Outer surface tensor
θc

ijklmn Tensor of stress sensitivity.
θc Tensor of stress sensitivity, isotropic case.
θcΛ

ijklmn First derivative of property Λ with respect
to changes of compliant part of generalized porosity.

θsΛ
ijklmn First derivative of property Λ with respect

to changes of stiff part of generalized porosity.
κ Permeability.
κM Matrix permeability.
κF Fracture permeability.
λ Lamé constant.
µ0 Shear modulus of matrix forming mineral.
µsat Shear modulus of saturated rock.
µdry Shear modulus of dry rock matrix.
µdryS Hypothetical shear modulus of the dry rock matrix at

σe = 0 and φc = φs = 0.
ν Poisson’s ratio.
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χ2 Sum of squared model deviations from observations where the deviations
are normalized by the standard deviation of the observations.

υ Viscosity.
ρ Density
ρdry Dry rock density
ρ0 Mineral density
ρfl Fluid density
ρsat Saturated rock density
σ1 Maximum principal stress.
σ2 Intermediate principal stress.
σ3 Minimum principal stress.
σv Vertical stress.
σhor Horizontal stress.
σh Minimum horizontal stress.
σH Maximum horizontal stress.
σij Stress tensor
σc

ij Confining stress tensor.
σd

ij Differential stress tensor.
σe

ij Effective stress tensor.
σf

ij Stress tensor of pore filling material.
φ Porosity.
φij Generalized porosity.
φs0

ij Stress independent stiff part of generalized porosity.
φs

ij Stress dependent stiff part of generalized porosity.
φc

ij Compliant part of generalized porosity.
φfr Fracture porosity.
φm Matrix porosity.
φc Crack porosity.
φc0 Initial crack porosity at Peff = 0.
φs Stress dependent part of stiff porosity (Peff 6= 0).
φs0 Stress independent part of stiff porosity.
A Cross sectional area.
AX Best fit parameter A with respect to considered property X.
BX Best fit parameter B with respect to considered property X.
C Compressibility
CIJ Stiffness tensor in Voigt notation.
CVTI

IJ Stiffness tensor of VTI media in Voigt notation.
COrtho

IJ Stiffness tensor of orthorhombic media in Voigt notation.
Cdry Compressibility of dry rock matrix.
CdryS Hypothetical compressibility of dry rock matrix at σe = 0 and φc = φs = 0.
Cijkl Stiffness tensor.
D Hydraulic diffusivity.
DX Best fit parameter D with respect to considered property X.
E Young’s modulus.
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F Electrical formation factor.
Gij Christoffel matrix.
Ly Fracture width normal to direction of fluid flow.
K Bulk modulus.
K0 Bulk modulus of the matrix forming mineral.
Kφ Porosity bulk modulus.
Kdry Bulk modulus of dry rock matrix.
KdryS Hypothetical bulk modulus of the dry rock matrix at σe = 0 and φc = φs = 0.
Kfl Bulk modulus of pore fluid.
Ksat Saturated rock bulk modulus.
KsatS Hypothetical bulk modulus of the saturated rock at σe = 0 and φc = φs = 0.
KX Best fit parameter K with respect to considered property X.
M Reservoir thickness
P Pressure.
Pc Confining pressure.
Pdiff Differential pressure.
Peff Effective pressure.
Pfl Pore fluid pressure.
Q Volumetric flow rate.
R2 Coefficient of determination.
Sdry Compliance tensor of dry rock matrix.
Smt Compliance tensor matrix forming mineral.
Sp Compliance tensor of pore space.
S Storage coefficient.
Ss Specific storage coefficient.
T Transmissivity.
VP P-wave velocity
VP0 Vertical P-wave velocity in weak anisotropic orthorhombic media.
VPsat P-wave velocity of saturated rock.
VPdry P-wave velocity of dry rock.
VPdryS P-wave velocity of hypothetical dry rock at Peff 0̄ with φc = φs = 0.
VS S-wave velocity
VS0 Velocity of the vertically traveling S-wave polarized
VSH Transversely (out-off-plain polarized) S-wave.
VSV In-plane polarized S-wave.
VSsat S-wave velocity of saturated rock
VSdry S-wave velocity of dry rock.
VSdryS S-wave velocity of hypothetical dry rock at Peff 0̄ with φc = φs = 0.
Vij A seismic velocity propagating in the i direction with polarization

in the j direction.
VGi Group velocity vector.
b Fracture aperture.
g Acceleration due to gravity.
ii Unit coordinate vector.
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kf Hydraulic conductivity.
ki Phase vector.
m Archie’s cementation factor.
n Effective stress coefficient.
ni Direction vector of wave propagation.
t Time.
ui Displacement vector.
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Appendix B

Anisotropic stress sensitivity

B.1 Deformation of pore space

This part of the Appendix describes the theoretical background of the stress sensitivity
approach in detail. It represents the paper of Shapiro & Kaselow (2003).

In order to quantify the deformation of the pore space geometry due to an applied
load it is necessary to define quantitatively (a) the bulk and the pore space volume
Vb and Vp, respectively, and (b) to introduce several compliances of the porous system
which describe the deformation of the system due to an applied load. This will be done
following and extending the approach of Brown & Korringa (1975).

The geometry of the sample bulk volume can be described in terms of a surface Σ
covering the sample as shown in Fig. (B.1). The surface normal is defined positive in the
outward direction. In the same way, a second surface Ψ is defined representing the inner
surface of the rock, i.e., it covers the interconnected pore space. The permeability of the
interconnected pore space is sufficient in order to equillibrate deformation induced pore
pressure gradients within the sample. Per definition, the positive normal direction of
the inner surface is pointing into the sample. Where the outer surface of the sample cuts
a pore it coincides with the inner surface and simultaneously seals the pore. However,
the normals point in opposite directions. In this way, it is possible to represent the

Σ Ψ

Figure B.1: Sketch of bulk and pore space geometry. Both volumes are described in
terms of covering surfaces Σ and Ψ, respectively. The positive normal direction of Σ
points outward and in the case of Ψ into the sample. In 3D all pores are interconnected
and effective for fluid flow.

bulk and pore space volume of the rock sample in terms of the encasing surfaces Σ
and Ψ, respectively. Thus, it is possible to describe changes of both volumes by the
displacement of points on the surfaces Σ and Ψ.

The rock may be subjected to two different load components, an externally applied
confining stress σc

ij and an internally applied stress σf
ij, where i and j can be 1, 2, and 3.

Here, the latter load component is denoted as pore stress. In most realistic situations
this stress is a pressure, i.e., the pore pressure. Assume that the confining stress
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and/or pore stress have changed from an initial state of stress (σc0
ij , σf0

ij ) to the current

state (σc
ij, σ

f
ij). As a result the bulk and pore space volume will be deformed. The

deformation of both volumes can be described by the displacement of the corresponding
surface points. All displacements are assumed to be very small in comparison to the
size of the rock volume under consideration. This can be observed in many laboratory
experiments where the deformations are usually in the order of 10−3 or even smaller.

The points of the external surface may have been displaced by ui(x̂), where x̂ is
a surface point. Following Brown & Korringa (1975) it is possible to introduce a
symmetric tensor:

ηij =

∫

Σ

1

2
(uinj + ujni)d

2x̂. (B.1)

Here, n is the surface normal at point x̂. Since ηij is related to the outer surface of
the sample it will be denoted as the outer surface tensor . In the case of a continuous
elastic body replacing the porous rock (i.e., a differentiable displacement is given at
all its points) Gauss’ theorem can be used to relate the integral over surface Σ to an
integral over the corresponding volume.

ηij =

∫

Vb

1

2
(∂jui + ∂iuj)d

3x. (B.2)

The integrand here is the strain tensor and Vb is the sample bulk volume. Thus,
εij = ηij/Vb is the volume averaged strain.

In this way the outer surface tensor ηij can be related to the deformation of the
rock sample. In the same way, it is possible to define a second symmetric tensor related
to the deformation of the pore space.

ζij =

∫

Ψ

1

2
(uinj + ujni)d

2x̂, (B.3)

Here, x̂ is a point of surface Ψ, ui is a component of the displacement of points x̂, and
ni is a component of the outward normal of Ψ. In analogy to the outer surface tensor
ηij, the tensorial quantity ζij will be denoted as the inner surface tensor .

If the pore space is completely filled with some material (e.g., a fluid or clay or
cement) then, in analogy with the outer surface tensor ηij, the pore volume averaged
inner surface tensor ζij/Vp will denote the volume averaged strain of this material, where
Vp denotes the volume of the pore filling material. Moreover, using the summation
convention, −ζii denotes a volume change of the pore filling material.

Up to this point two tensorial quantities ηij and ζij were introduced which describe
the bulk and pore space volume, respectively, in terms of encasing surfaces and the
deformation of these volumes through the displacement of the corresponding surface
points. However, these deformations result from the application of two stress fields.
These stress fields will be explained in more detail in the following.

As common in rock mechanics, stress acting compressional with respect to the solid
phase is defined negative. Assume that the stress σf

ij acting on the pore space surface
Ψ is isostatic. In this case, the diagonal elements of the stress tensor are identical and
shear stress is absent. This described the most realistic situation, namely, that the
pore space is filled with a fluid. In the literature, this state of stress is, in general,

129



B. Anisotropic stress sensitivity

denoted as hydrostatic, because it is typical for fluids. Since a more general situation
is considered here, where the pore space can be filled with an arbitrary material, this
state of stress should is denoted as isostatic. In the case of an isostatic stress σf

ij it is

possible to define a scalar pressure Pp acting on the pore space surface: σf
ij = −δijPp.

As common in rock mechanics and already mentioned in section (3.1) both load
components are usually combined. Here, the difference between the external confining
stress and internal pore stress is defined as the effective stress σe:

σe
ij = σc

ij − σf
ij. (B.4)

In the case of an isostatic pore stress, this gives:

σe
ij = σc

ij + δijPp. (B.5)

Assuming further a complete isostatic state of stress, i.e., also the external confining
stress is isostatic, gives:

σe
ij = δijσ

c
ij + δijPp = (−Pc + Pp)δij = −(Pc − Pp)δij, (B.6)

or, completely written in terms of pressure:

Peff = Pc − Pp, (B.7)

where Peff and Pc are the effective and confining pressure, respectively.

After considering the load components acting on a porous rock rock compliances
will be introduced which relate the acting stress to the deformation of the rock.

In analogy to the paper of Brown & Korringa (1975), three fundamental compliance
tensors of an anisotropic porous body can be defined which can be obtained from
appropriate laboratory measurement.

Sdry
ijkl =

1

Vb
(
∂ηij

∂σe
kl

)

∣

∣

∣

∣

σf

, (B.8)

Smt
ijkl =

1

Vb
(
∂ηij

∂σf
kl

)

∣

∣

∣

∣

∣

σe

, (B.9)

Sp
ijkl = − 1

Vp
(
∂ζij

∂σf
kl

)

∣

∣

∣

∣

∣

σe

. (B.10)

Again, Vb is the bulk volume of the porous body and Vp is the volume of the intercon-
nected pore space. Sdry denotes the compliance tensor of the drained rock matrix. It
is obtained in an experiment where the rock samples strain (in the sense of eq. B.1) is
measured as a function of the effective stress while keeping σf

ij constant. This corre-
sponds to a compressional experiment on a dry sample or a drained experiment where
the confining stress is variable and the pore pressure is kept constant by letting the
pore fluid freely entering or leaving the sample. Smt and Sp are the compliance tensors
characterizing the grain material and the pore space, respectively. They are obtained
in experiments where the inner stress, i.e., the pore pressure, is changed, but the effec-
tive stress as defined above (eq. B.5) is constant. Then, Smt

ijkl and Sp
ijkl are obtained by

relating the rock deformation to the bulk and pore volume, respectively.
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If the effective stress is constant but the pore stress σf can be changed the confining
stress must change correspondingly. This means that the same stress variation is
applied to the inner and outer surface of the rock. If the material of the rock skeleton
(i.e., the grain material) is homogeneous and linear, i.e., if the rock is in the Gassmann
limit, then the condition about uniformly distributed stress variations will be equivalent
to the replacement of the material in the pores with the grain material. This, in other
words, means that the pore volume as well as the bulk volume change due to an applied
load, but the porosity stays constant. Moreover, in this case the volume averaged strain
is independent of the geometry of considered averaged rock domain. This yields the
following modification of the last definition above:

Sp
ijkl = − 1

V
(
∂(ζij/φ)

∂σf
kl

)σe =
1

V
(
∂ηij

∂σf
kl

)σe = §mt
ijkl. (B.11)

Obviously, if the rock skeleton material is homogeneous and linear both compliance
tensors Sp

ijkl and Smt
ijkl are equal to the compliance tensor of the rock matrix forming

material.

One more but not-independent compliance tensor can be introduced:

S ′

ijkl = − 1

V
(
∂ζij

∂σe
kl

)σf . (B.12)

Using the reciprocity theorem (see, e.g., Amenzade, 1976) analogously to Brown &
Korringa (1975) this gives:

S ′

ijkl = Sdry
klij − σmt

klij. (B.13)

However, an assumed arbitrary change of the applied load will deform the pore
space, thus, will change ζij. Such an arbitrary change of the applied load can be
understood as the sum of two load changes as described above. Thus, the inner surface
tensor ζij will change due to δσe while keeping a constant pore stress σf plus an effect
of applying δσf from inside and outside while keeping the effective stress σe constant:

δζij =

(

∂ζij

∂σe
kl

)

σf

δσe
kl +

(

∂ζij

∂σf
kl

)

σe

δσf
kl. (B.14)

In the same way changes of the outer surface tensor ηij due to an arbitrary load
change can be expressed using an analogous equation:

δηij =

(

∂ηij

∂σe
kl

)

σf

δσe
kl +

(

∂ηij

∂σf
kl

)

σe

δσf
kl. (B.15)

Taking into account that ηij is related to the deformation of the sample bulk volume
it is clear that δVb = δηii. Hence,

δV =

(

∂ηii

∂σe
kl

)

σf

δσe
kl +

(

∂ηii

∂σf
kl

)

σe

δσf
kl. (B.16)

However, relating the inner surface tensor ζij to the bulk volume of the sample can be
used to define an additional tensorial quantity φij:

φij =
ζij

Vb

. (B.17)
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In analogy to the porosity, which is defined as the ratio of the pore space volume to
the bulk volume, φij will be denoted as generalized porosity. Stress induced changes
of φij satisfy the following rule:

δφij ≡ δ

(

ζij

Vb

)

=
δζij

Vb
− φij

δVb

Vb
. (B.18)

Since ζij is related to the geometry of the pore space the generalized porosity φij is, in
fact, closely related to the porosity φ. Indeed, if Vp0 is the volume of the interconnected
pores in a reference state with ζij = 0, the complete change of the porosity due to a
change in the applied load is:

δφ = δ

(

Vp

Vb

)

= δ

(

Vp0 − ζii

Vb

)

= −Vp0

Vb

δVb

Vb
− δφii = −δζii

Vb
− Vp0 − ζii

Vb

δVb

Vb

= −δζii

Vb

− φ
δVb

Vb

=
δVp

Vb

− φ
δVb

Vb

. (B.19)

Thus, using equations (B.13) - (B.16) and definitions (B.8)-(B.10) changes of the
generalized porosity φij can be related to arbitrary load changes using the previously
defined compliances:

−δφij =
(

Sdry
klij − Smt

klij + φijS
dry
mmkl

)

δσe
kl +

(

φSp
ijkl + φijS

mt
mmkl

)

δσf
kl. (B.20)

For the porosity this gives:

δφ = (Sdry
klii − Smt

klii − φSdry
iikl)δσ

e
kl + φ(Sp

iikl − Smt
iikl)δσ

f
kl. (B.21)

Equation (B.21) provides a quite general and exact way to describe porosity changes
of an arbitrary anisotropic rock as a function of arbitrary load changes. In most realistic
situations, this relation can be simplified by taking into account that the pore filling
material is a fluid, i.e., water, brine, oil or gas. Therefore, the inner surface of the rock
is subjected to a pressure rather than to a stress.

Then, with σf
kl = −δklPfl this gives:

−δφij = (Sdry
klij − Smt

klij + φijS
dry
mmkl)δσ

e
kl − (φSp

ijkk + φijS
mt
mmkk)δPfl. (B.22)

Note, up to here Pfl was denoted as Pp. This different notation should indicate that
Pp describes an isostatic state of stress in an arbitrary pore filling material. Hence,
using Pfl instead of Pp should indicate that the pore space is filled with a fluid. However,
the following deviations are still valid for an arbitrary pore filling as long the it acts
isostatically on the inner surface of the rock. However, for the porosity this gives:

δφ = (Sdry
klii − Smt

klii − φSdry
mmkl)δσ

e
kl − φ(Sp

iikk − Smt
mmkk)δPfl. (B.23)

This equation provides an exact relation describing the dependence of porosity on
changes in pore fluid pressure and confining stress. Hence, it formulates quite well the
dependence of porosity on a geologically realistic state of stress, although is it limited
to elastic, i.e, usually small, deformations. Consequently, it may provide a suitable for-
malism to estimate porosity reduction with burial depth for already consolidated rocks
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in real geological environments. In practice, the in situ stress is usually approximated
with a confining pressure, identical to the overburden pressure. Thus, taking also an
isostatic confining stress into account (i.e., also StressEkl = −δklPeff) these eq. (B.22)
and (B.23) are reduced to:

−δφij = (Sdry
llij − Smt

llij + φijS
dry
mmll)δPeff − (φSp

ijkk + φijS
mt
mmkk)δPfl. (B.24)

and
δφ = (Sdry

llii − Smt
llii − φSdry

mmll)δPeff − φ(Sp
iikk − Smt

mmkk)δPfl. (B.25)

Results (B.22)-(B.25) show that generally the porosity is a function of both, the
effective stress as well as the pore pressure. Remember, effective stress is defined as
the pure difference between confining stress and pore pressure. If Smt

iikk = Sp
iikk, i.e., the

rock matrix is homogenous and/or the interconnected porosity is small then porosity
changes depend on the difference between confining stress and pore pressure only. The
following considerations are restricted to this case. Under isostatic conditions and
considering isotropic rocks only this relation reduces to the porosity dependence on the
differential pressure, as it was shown by Zimmerman et al. (1986) and Goulty (1998);
Detournay & Cheng (1993):

dφ

dPeff
= Cmt − (1 − φ)Cdry, (B.26)

where Cmt and Cdry are compressibilities of the grain material and of the drained rock
matrix, respectively. They are related to the compliance tensors as follows:

Cmt,dry = Smt,dry
1111 + Smt,dry

2222 + Smt,dry
3333 + 2(Smt,dry

1122 + Smt,dry
1133 + Smt,dry

2233 ) ≡ Smt,dry
iikk . (B.27)

Until now the presented derivations provide several precise results describing stress
dependencies of the pore space geometry. The compliance tensors Smt and Sp are
practically independent of effective stress at least up to a few hundred MPa. Thus, in
equations (B.22) - (B.26) only two quantities are significantly stress dependent: the
porosity φ and the dry rock matrix compliance tensor Sdry. Since porosity variations
depend on the dry rock compliances and the dry rock compliances depend, in turn,
on the porosity at least one more equation is required, which would mutually relate
them. This equation cannot be obtained exactly, since Sdry depends upon the com-
plete geometry of the pore space rather than on the magnitude of the porosity alone.
Thus, a further analysis requires to involve some empirical observations and heuristic
assumptions.

B.2 Elastic compliances

Typical stress dependencies of elastic moduli, hence, seismic velocities, look like shown
in Fig. (B.2). Increasing effective stress leads first to a rapid non-linear increase of
seismic velocities. Then, for higher stresses, the velocity stress dependence tapers into
a flat linear relation. Occasionally, the linear part of the velocity-stress relation does
not show any further increase of velocities with increasing stress, at least up to some
hundred MPa (approx. 200-400 MPa, depending on the rock) effective stress. Although
it is a quite intuitive assumption that this velocity dependence upon stress results from
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the closure of the porosity, many porosity measurements show that porosity does not
change at all or even very slightly while velocities change remarkably (e.g., Khaksar
et al., 1999). Thus, it is a common interpretation that the rapid increase of velocities
at low stresses results from the closure of cracks and grain contact vicinities. This part
of the porosity, denoted as the compliant porosity usually represents only a very small
fraction of the total porosity (< 1% in typical sandstones). Hence, even its complete
closure does not change the bulk porosity remarkably. When this easily deformable
part of the bulk porosity is closed the velocity increase is caused by the closure of the
hardly deformable remaining stiff pores.
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Figure B.2: Typical ultrasonic P- (red circles) and S-wave (blue circles) velocity as a
function of isostatic effective stress. This example shows a sandstone from Salzwedel

drilling site (data from Freund, 1992).

This distinct deformation behavior of stiff and compliant porosity is taken in ac-
count by formulating:

φ = φc + [φs0 + φs] , (B.28)

as done by Shapiro (2003). Here, φ is the bulk interconnected porosity, φc is the
compliant porosity supported by cracks and grain contact vicinities. As a rule of thumb,
compliant porosity shows an aspect ratio γ (a relationship between the minimum and
maximum dimensions of a pore) less than 0.01 (see Zimmerman et al., 1986). The
second part, [φs0 + φs], comprises the stiff porosity supported by more or less isometric
or spherical pores (i.e., equidimensional or equant pores, see also Hudson et al., 2001;
Thomsen, 1995). The aspect ratio of such pores is typically larger than 0.1. Such
a separation of the porosity into a compliant and a stiff part is very similar to the
definitions of stiff and soft porosity by Mavko & Jizba (1991) and others.

In turn, stiff porosity is further separated into a stress independent part φs0, which
is equal to the stiff porosity in the case of an effective stress σe = 0, and into a part
φs which describes an amount of stiff porosity due to a deviation of the effective stress
from zero. As mentioned above it is reasonable to assume that the relative changes of
the stiff porosity, φs/φs0, are small. In contrast, the relative changes of the compliant
porosity (φc- φc0)/φc0 can be very large, i.e., of the order of 1 where φc0 denotes the
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compliant porosity in the unloaded case σe = 0. In general, the compliant porosity is
a very small quantity since it represents only a very small part of the bulk porosity.
As a rule of thumb, the amount of compliant porosity is much smaller than the stress
independent part of the stiff porosity φs0 and even than the absolute value of the stress
induced change of stiff porosity φs. Thus, the following inequality is usually valid:

φs0 � |φs| � φc. (B.29)

In sedimentary rocks the orders of magnitude for these quantities are approximately
φs0 = 0.1, |φs| = 0.01 and φc = 0.001. Inequality (B.29) may not be valid in low
porosity crystalline rocks. For instance, calculating the stress dependence of crack
porosity from strain measurements, as introduced by Brace (1965), Kern et al. (1991)
implicitly assume that the porosity of the KTB rocks consist of compliant porosity
only. However, this has no implication on the following considerations since even if a
rock shows no stiff porosity eq. (B.28) is still valid.

In analogy to eq. (B.28) generalized porosity is also written as:

φij = φc
ij +

[

φs0
ij + φs

ij

]

. (B.30)

In the following, an inner surface tensor ζij = 0 denotes a state of the rock with a
completely closed porosity. Note, closed porosity refers to a pore space volume Vp = 0
and not to isolated pores. Then, the initial pore space volume Vp0 = 0 and eq. (B.19)
give φ = −φii. This illustrates, that it is reasonable to denote the quantity φij as a
generalized porosity as introduced in section (3.2.1). Quantity φs0

ij denotes the stiff part
of φij in the unloaded state and φs

ij denotes the stress induced changes of the stiff part
of the generalized porosity. Thus, if the load is absent, φs

ij = 0. Further, φc
ij denotes

the compliant part of the generalized porosity. It can be completely closed under a
compressional effective stress of the order of a few hundred megapascal. φc0

ij denotes
the compliant part of the generalized porosity in the unloaded state. It is clear, that
φc = −φc

ii, φs0 = −φs0
ii , and φs = −φs

ii.

The definitions above are somehow ”asymmetric”definitions of stiff and compliant
porosity. This means, the stiff porosity is separated into a stress dependent and a stress
dependent part while the crack porosity is treated as a whole. This is justified by their
distinct deformation behavior and accounts for the assumption that under moderate
loads considered here (approx. 200 - 300 MPa, dependent on the rock under consider-
ation) the stiff porosity suffers small changes only. In contrast to this, the compliant
porosity can be significantly changed or even completely closed. Thus, the notation
system introduced above is convenient for describing such an ”asymmetric”behavior.

Taking into account that both stress dependent parts φs
ij and φc

ij of the generalized
porosity introduced above are very small (of the order of the strain), it is reasonable to
assume a first, linear approximations of the skeleton compliances as functions of these
quantities. A Taylor expansion gives:

Sdry
ijkl(φ

s0
mn + φs

mn, φc
mn) = Sdrys

ijkl + Cdrysθs
ijklmnφs

mn + Cdrysθc
ijklmnφ

c
mn, (B.31)

where Sdrys
ijkl is the drained compliance tensor of a hypothetical rock with a closed

135



B. Anisotropic stress sensitivity

compliant porosity (i.e., φc = 0) and the stiff porosity equal to φs0. Further,

θs
ijklmn =

1

Cdrys

∂Sdry
ijkl

∂φs
mn

, (B.32)

θc
ijklmn =

1

Cdrys

∂Sdry
ijkl

∂φc
mn

, (B.33)

where the derivatives are taken in points φs = 0 and φc = 0, respectively. The θ
quantities in eq. (B.32) and (B.33) are individual for a given rock sample. Moreover,
same load paths will give the same configuration of φs

ij and φc
ij. This means, only

non-hysteresis deformations are considered. Note also that the elements φij of the
generalized porosity do not take pure rotations of the pore space into account. However,
such rotations should be small, i.e., in the order of the strain. Moreover, they do not
change the geometries of the grain contact zones. Thus, the influence of a possible pure
rotation of the pore space on compliances can be neglected.

Approximation (B.31) implies that the products of the form θφ are smaller than 1.
Numerous laboratory experiments and practical experience show that the drained com-
pressibilities depend strongly on changes in the compliant porosity, and depend much
weaker on changes in the stiff porosity. This empirical observation might be expressed
by the restriction:

|θs
ijklmnφ

s
mn| � |θc

ijklmnφ
c
mn|. (B.34)

If so, approximation (B.31) can be used further in the following simplified form:

Sdry
ijkl(φ

s0, φc
ij + φs

ij) = Sdrys
ijkl + Cdrysθc

ijklmnφc
mn. (B.35)

This simplification formulates the observations of the approx. stress independent be-
havior of seismic moduli and velocities for high stresses, where the cracks are assumed
to be completely closed. If this high stress behavior reflects the usually negligible lin-
ear dependence upon the closure of stiff porosity, this should especially valid in the
low stress regime and thus, only the changes in compliant porosity are significant. A
consequence of the different significance of stiff and compliant porosity closure is that
the tensor θc is the most important property regarding the stress dependence of elastic
rock moduli. This tensor is called the tensor of stress sensitivity .

Beside the mentioned approximations also the following simplifying assumptions
will be used. In direct additive terms the porosity φ is neglected in comparison with 1,
i.e., only rocks with moderate or small porosity in the order of 0.1 or less are considered.
This limiting value is just a thumbnail and this approach may even work sufficiently for
porosities up to 20 or 30 percent. However, if desired it is straightforward to modify our
derivations. Further, it is assume that Smt and Sp can be neglected in comparison to
Sdry. This is quite a realistic assumption for rocks at least in the upper Earth’s crust.
Finally, it is assumed that the magnitude of effective stress changes is not smaller than
those of pore pressure changes. This corresponds to realistic geological and technical
processes in the underground.

Under the assumptions summarized above it is possible to modify equation (B.22):

−δφij = (Sdrys
klij + θc

klijmnφc
mnCdrys − Smt

klij)δσ
e
kl. (B.36)
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Equations (B.31) and (B.36) together provide the searched for description of stress
dependencies of elastic moduli. The last equation shows that the tensor of stress
sensitivity θc

klijmn mainly controls these dependencies. It is analogous to the scalar
dimensionless quantity introduced by Shapiro (2003) as the piezosensitivity.

The symmetry of this tensor reflects to the symmetry of the drained matrix compli-
ance tensor of the rock under consideration. For example, the stress sensitivity tensor
of a triclinic medium has 56 independent components and 3 in the case of an isotropic
medium (see Appendix B.7 for details). The complexity of the stress sensitivity tensor
reflects the highly complex variety of possible reactions of elastic moduli of porous
systems due to applied stress.

B.3 Stress dependence of porosity

Assume that stress induced changes of stiff and compliant porosity are independent of
each other. In this case, if the compliant porosity is closed then φc

ij = 0 and eq. (B.36)
gives:

−δφs
ij = (Sdrys

klij − Smt
klij)δσ

e
kl. (B.37)

If this is valid then this relationship will also be valid for an arbitrary and usually small
φc. Therefore,

−δφc
ij = Cdrysθc

klijmnφ
c
mnδσe

kl. (B.38)

Taking into account that φs = 0 if no load is applied yields:

φs
ij = (−Sdrys

klij + Smt
klij)σ

e
kl. (B.39)

For the further analysis additional simplifying assumptions have to be made in
order to analyze eq. (B.38). In the following, orthorhombic media are considered only.
Moreover, the principal stress components τI ≡ σe

ii (I is equal to 1, 2 or 3 denoting
one of index combinations 11, 22 or 33 and there is no summation over i here) are
assumed to act perpendicular to the symmetry planes of the orthorhombic system.
For example, the principal stress component τ1 is acting on the [2,3] symmetry plane.
Moreover, these considerations are restricted to media that stay orthorhombic with
the same symmetry plains in the loaded state or to media representing a special case
orthorhombic symmetry. This also includes possibilities for the medium to become
transversely isotropic, cubic or isotropic. Consequently, θc

klijmn can differ from zero
only if k = l and i = j or k = j and i = l or, finally, k = i and l = j (see eq. B.31).
However, in eq. (B.38) k = l, because coordinate axes coincide with the principal stress
directions. Thus,

∂φc
ij

∂τI
= 0, for i 6= j. (B.40)

Equation (B.40) states that all off-diagonal elements of the tensor φc
ij do not change

due to the principal stress components. Since it is clear that all entries of the compliant
porosity tensor are zero at high stresses where all cracks are closed, it follows directly
that the off-diagonal elements are always identically zero. Moreover,

∂φc
K

∂τI

= −Cdrysθc
IKMφc

M , (B.41)
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where all capital indices are equal to 1, 2 or 3 denoting one of combinations 11, 22 or
33, respectively. This equation introduces the following restriction on the components
of the stress sensitivity tensor (which can be obtained from the existence condition of
second partial derivatives for quantities φ):

θc
IKMθc

JMLφc
L = θc

JKMθc
IMLφc

L. (B.42)

In general, this means that the rank of the matrix composed from elements θc
IKMθc

JML−
θc

JKMθc
IML is less than 3 (one dimension of this matrix is given by index L, another one

by all possible combinations of I, K, and L). Consequently, a lot of internal relations
exist between elements of the stress sensitivity tensor (note that a similar equation is
valid in the very general case of triclinic anisotropy, where all capital indices accept
values from 1 to 6 and the rank of the matrix mentioned above must be less than 6).
These additional constrains on the tensor of stress sensitivity arise from the fact that
the non-linearity of the medium has a known physical reason: the existence of the pore
space.

For a further analyzis of equation system (B.38), the most simple case of the stress
sensitivity tensor of an isotropic medium is considered. In this case only 3 components
of this tensor are independent (see also Hearmon, 1953). These are θc

111111, θc
111122 and

θc
112233. Moreover, a detailed analysis of equation (B.41) and restriction (B.42) shows

that only two types of media can satisfy these conditions. The first one is characterized
by θ111111 = θ112233, which implies that only two entries of the stress sensitivity tensor
differ from each other. Then,

φc
11 = φc

22 = φc
33 = φc0

11e
−(θ111111+2θ111133)(τ1+τ2+τ3)Cdrys

. (B.43)

In such a situation different stress components (τ1, τ2, τ3) have the same influence on
different porosity components. This means, e.g., that the elastic anisotropy of such
a medium will not change even in the case of a uniaxial stress. This situation is not
realistic for rocks. In contrast, it is well known from many experiments that initially
isotropic rocks become anisotropic under uniaxial load due to the preferred closure of
suitably oriented cracks. Therefore, such media are not considered further.

The second type of media with a stress sensitivity tensor of an isotropic medium is
characterized by θ111122 = θ112233 = 0. In other words, only one of the three independent
entries of the tensor of stress sensitivity is non-zero. The solutions for porosity compo-
nents are similar to those given by eq. (B.43). The changes of the principal components
φc

11, φc
22 and φc

33 of the compliant porosity tensor are completely independent of each
other. This is equivalent to the situation that there are three non-intersecting com-
ponents of the compliant porosity independently changing by applying corresponding
uniaxial effective stress.

Assuming that changes of φc
11, φc

22 and φc
33 are completely independent from each

other, even for lower symmetries of the stress sensitivity tensor, the consideration will
become more general. This assumption along with the symmetry properties of the
stress-sensitivity tensor discussed in Appendix (B.7) requires that for capital indices
equal to 1, 2 or 3 quantities θc

IKM will not vanish only if I = K = M . This is also
in agreement with equation (B.42). The last assumption formulates the only possible
realistic situation if the symmetry of the stress sensitivity tensor corresponds the one
of an isotropic medium.

138



Appendices

In this approximation the stress dependencies of the diagonal elements of the gen-
eralized compliant porosity tensor read:

φc
11 = φc0

11 exp(−θc
1τ1C

drys), (B.44)

φc
22 = φc0

22 exp(−θc
2τ2C

drys), (B.45)

φc
33 = φc0

33 exp(−θc
3τ3C

drys). (B.46)

where a new notation θc
1, θc

2 and θc
3 for θc

111111, θc
222222 and θc

333333, respectively, was
introduced.

The basic assumption for the above mentioned considerations is that the dry rock
compliance tensor and the pore space are the rock characteristics most sensitive to
changes in effective stress. A mutual relation between both quantities was found
by taking the distinct deformation behavior of the stiff and compliant porosity into
account. Especially the stress induced closure of compliant porosity causes signifi-
cant stress induced changes of the dry rock compliance tensor. The new introduced
rock characteristic which describes the changes of the dry rock compliance tensor with
changes of generalized compliant porosity is the tensor of stress sensitivity. Taking
the most general case of an arbitrary anisotropic medium under non-isostatic load
into account shows that this tensor is of rank six. It is directly related to non-linear
elasticity of porous rocks. In order to analyze this tensor the considerations were lim-
ited to orthorhombic media subjected to a non-isostatic effective stress with principal
stress components oriented normal to the symmetry planes of the medium. However,
these considerations include media showing symmetries that could be understood as
special cases of orthorhombic symmetry as well, i.e, transversal, cubic, and isotropic
symmetry. In the case of a stress sensitivity tensor of an isotropic medium only three
independent entries remain. It turned out that the only realistic situation relevant for
a rock physical application arises if two of these entries are identically zero and only
one independent entry remains. In this case, the stress dependencies of the principal
elements of the generalized compliant porosity tensor are independent from each other.

B.4 Stress dependence of elastic moduli

Although numerous simplifying assumptions were made the derived stress dependencies
of the dry rock compliances and the (generalized) porosity are still quite general with
respect to rocks and the state of stress that can be expected in rock physical practice.
Thus, in the following an arbitrary elastic characteristic Λ (e.g., a seismic velocity, a
stiffness or a compliance) of a porous drained body is considered.

However, this requires to take only those elastic characteristics into account that
dependent on stress via the stress dependence of the pore space. Thus, let us assume
that Λ, in a vicinity of the state where φs0 and φc as well as the effective stress are
identically zero, can be expanded into a Taylor series similar to equation (B.31)) with
respect to the porosity (this should be valid for all such characteristics like seismic
velocities and elastic moduli):

Λ(φs0
ij + φs

ij, φ
c
ij) = Λdrys

[

1 + θsΛ
ij φs

ij + θcΛ
ij φc

ij

]

, (B.47)

where only the linear part of the Taylor expansion was kept. Λdrys is a hypothetical
rock characteristics, since it assumes that φs0 and Peff equal zero and φc is zero as well.
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This is an unrealistic situation for rocks since it implicitly means that the rock has no
crack-like porosity at all. Hence, the mentioned formulation of the Taylor expansion is
purely a mathematical concept. Here,

θsΛ
ij =

1

Λdrys

∂Λ

∂φs
ij

, (B.48)

θcΛ
ij =

1

Λdrys

∂Λ

∂φc
ij

(B.49)

and the derivatives are taken at φs = 0 and φc = 0, respectively. Substituting the
corresponding stress dependencies of the generalized porosity (equations B.39 and B.44)
into eq. (B.47) gives:

Λ(τ) = Λdrys
[

1 + θsΛ
ij

(

Smt
ijK − Sdrys

ijK

)

τK + θcΛ
I φc0

I exp (−θc
IτIC

drys)
]

, (B.50)

where K and I can assume one of values 1, 2 or 3 denoting 11, 22 and 33, respectively.
In the exponent there is no summation over repeating indices. Formulating this general
relation in terms of the dry rock compliances gives:

Sdry
ijkl = Sdrys

ijkl

[

1 + θs
ijklmn(S

drs
mnK − Smt

mnK)τK+

θc
ijklMφc0

M exp (−θc
MτMCdrys)

]

. (B.51)

Again, summation over M in the exponent is not allowed. Since only the diagonal
elements of the stress sensitivity tensor differ from zero, also the diagonal entries of
the orthorhombic compliance matrix suffer significant changes only (i.e., at least from
changes due to the variations in compliant porosity).

A comparison of all these results with equation (1.1) shows a surprising but striking
result. All mentioned stress dependencies have the same form A+KP −B exp (−PD).
Thus, the theoretically derived stress dependencies of all mentioned elastic rock char-
acteristics have the same form as the empirically found best fit equation. Especially
the physical meaning of parameter D is important. If the medium is isotropic or the
stress sensitivity tensor corresponds to one of an isotropic medium the fit parameter D
reads

D = θcCdrys. (B.52)

Thus, it is independent from the property under consideration, in other words, it is a
universal quantity for the rock compliances.

If Λ is understood in terms of seismic velocities this a rough approximation since the
use of a Taylor expansion implies small changes of velocities with stress. In the case of
significant velocity variations due to an applied stress this approximation might become
erroneous. However, it was found that the error introduced by using an equation of
the form A + KP −B exp (−PD) for seismic velocities is usually negligible, as will be
shown in section (3.3).

However, if eq. (B.51) is valid it is reasonable to expect that in the case of a uniaxial
stress τN of a given direction N all coefficients D are identic to a single exponent
DN characterizing all elastic quantities changing by such a load, at least in the first
approximation. Hence, the result of an arbitrary three axial load is equivalent to a
simple sum of changes due to corresponding uniaxial stress.
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B.5 Stress dependence of elastic anisotropy

Since a quite general relation of the stress dependent dry rock compliances has already
been derived it is only consequent to analyze the corresponding stress dependence of
elastic anisotropy. Since significant changes of elastic rock characteristics are produced
by changes of compliant porosities only it is reasonable to neglect the contributions of
the stiff porosity to stress dependences of elastic moduli in the following. Remember
that orthorhombic symmetry is considered. However, the limitation to situations where
the principal axes of the effective stress tensor are oriented normal to the symmetry
planes is strongly restrictive and my only be satisfied in carefully conducted laboratory
experiments.

In the case of a uniaxial stress τN applied in a given direction N the compliances
that undergo changes due to such a load are: Sdry

NN (no summation over N here),
Sdry

44 , Sdr
55 and Sdry

66 . In the case of a three-axial effective stress eq. (B.51) gives the
following stress dependencies of the dry rock matrix compliances, whereby, from this
point on, all capital indices can accept one of the values 1, 2, 3, 4, 5 or 6 and standard
contracted notation is used:

Sdry
11 = Sdrys

11 (1 + B111E1), (B.53)

Sdry
22 = Sdrys

11 (1 + B222E2), (B.54)

Sdry
33 = Sdrys

33 (1 + B333E3), (B.55)

Sdry
44 = Sdrys

44 (1 + B441E1 + B442E2 + B443E3), (B.56)

Sdry
55 = Sdrys

55 (1 + B551E1 + B552E2 + B553E3), (B.57)

Sdry
66 = Sdrys

66 (1 + B661E1 + B662E2 + B663E3), (B.58)

where

BNNM = Cdrysθc
NNMφc0

M/Sdrs
NN (B.59)

and

Ei = exp
(

−θc
i τiC

drys
)

. (B.60)

In eq. (B.59) no summation over N, M , as well as no summation over i in equa-
tion (B.60) is applied. Note that in the contracted notation components θc

NKM as well
as Sdrs

NK and SNK are 2n times the corresponding tensor coefficient, where n is the
number of appearances of 4, 5 or 6 as a subscript.

In the discussion on stress dependence of anisotropy Tsvankin’s parameters (Tsvankin,
1997) for orthorhombic media under drained conditions are considered (in the following
the index dry is omitted), which have been introduced in more detail in section (2.1.4).
Usually these parameters are given in terms of stiffnesses (see, e.g., Sarkar et al., 2003).
In terms of compliances they are given in Appendix (E).

Here, only weak anisotropic media are considered. In this case, the dry rock compli-
ance tensor Sdrs

ijkl of the medium is weakly anisotropic only or may even be approximated
as isotropic. In addition, the stress sensitivity tensor and φc0

ij are assumed to show an
even weaker anisotropy. This means that the stress sensitivity tensor corresponds ef-
fectively to one of an isotropic medium. This last assumption leads to the following
equivalences for non vanishing θc

NNM : θc
111 = θc

222 = θc
333 = θc

442 = θc
443 = θc

551 =
θc
553 = θc

661 = θc
662 = −θc, and also φc0

1 = φc0
2 = φc0

3 = −φc0/3. In this approximation
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Tsvankin’s parameters simplify to:

ε(1) = ε
(1)
0 + A1θ

cφc0(E2 − E3), (B.61)

ε(2) = ε
(2)
0 + A1θ

cφc0(E1 − E3), (B.62)

δ(1) = δ
(1)
0 + A1θ

cφc0(E2 − E3), (B.63)

δ(2) = δ
(2)
0 + A1θ

cφc0(E1 − E3), (B.64)

δ(3) = δ
(3)
0 + A1θ

cφc0(E2 − E1), (B.65)

γ(1) = γ1
0 + A2θ

cφc0(E3 − E2), (B.66)

γ(2) = γ2
0 + A2θ

cφc0(E3 − E1), (B.67)

where ε0, δ0, and γ0 refer to these parameters in the unstressed state. Moreover,

A1 =
2

3

S11

S44(S44 − 4S11)
and A2 =

1

6

1

S44
.

If stress changes are small the exponential functions Ei in these equations can be
expanded in Taylor series. Then, in the linear approximation with respect to stress
the resulting formulas will be completely analogous to equations (19)-(23) of Sarkar
et al. (2003). However, in contrast to their results the equations above are also valid
for moderate stress changes.

In the special case of a completely isostatic load all Ei terms become equal, i.e.,

E1 = E2 = E3 = E = exp(−θcC
drysPeff) (B.68)

Hence, in equations (B.61) to (B.67) the right hand sides reduce to the initial values
of the anisotropy parameters in the unstressed state. This means, if the rock is weakly
anisotropic and the stress sensitivity corresponds effectively to one of an isotropic
medium the initial elastic anisotropy of the rock will not change under an isostatic
stress.

Considering initially isotropic rocks the situation reduces to the one considered
in Shapiro (2003). Quantity θc is then the piezosensitivity introduced in this paper.
Moreover, even in the case of initially anisotropic rocks only one single quantity D = θc

controls the exponential parts of the stress dependence of any compliance, of any
stiffness and of any elastic wave velocity.

At this point it is necessary to consider that the assumptions made above might be
to restrictive for real rocks. However, it will be shown in section (4.3) that there are
anisotropic sedimentary and as well as metamorphic rocks which show this interesting
phenomenom.

Exactly as found by Sarkar et al. (2003) equation (B.61) - (B.64) also describe

elliptical changes of anisotropy due to non-isostatic stress only, because ε(1) − ε
(1)
0 =

δ(1) − δ
(1)
0 , ε(2) − ε

(2)
0 = δ(2) − δ

(2)
0 and δ(1) − δ

(1)
0 = (ε(1) − ε

(1)
0 ) − (ε(2) − ε

(2)
0 ).

However, stress induced anisotropy changes are not elliptical anymore in more gen-
eral situations of a tensor of stress sensitivity that does not correspond to one of an
isotropic medium. For example, assume that the compliances tensor Sdrs

ijkl is isotropic
or weakly anisotropic only, and the tensor of stress sensitivity has a cubic symme-
try along with the condition φc0

1 = φc0
2 = φc0

3 = −φc0/3 (i.e., complete equivalence
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of the symmetry planes). This assumption leads to the following equivalences for
non vanishing θc

NNM : θc
111 = θc

222 = θc
333 = −U . θc

441 = θc
552 = θc

663 = −V and
θc
442 = θc

443 = θc
551 = θc

553 = θc
661 = θc

662 = −W . Thus,

ε(1) = ε
(1)
0 + A1Uφc0(E2 − E3), (B.69)

ε(2) = ε
(2)
0 + A1Uφc0(E1 − E3), (B.70)

δ(1) = δ
(1)
0 − A1φ

c0F (E3, E2, E1), (B.71)

δ(2) = δ
(2)
0 − A1φ

c0F (E3, E1, E2), (B.72)

δ(3) = δ
(3)
0 − A1φ

c0F (E1, E2, E3), (B.73)

γ(1) = γ1
0 + A2φ

c0(W − V )(E3 − E2), (B.74)

γ(2) = γ2
0 + A2φ

c0(W − V )(E3 − E1), (B.75)

with

F (X, Y, Z) = [2(2X + Y )U − 3V Z − 3(X + Y )W ]

+ [(X + Y )(W − U) + V Z]
S44

S11

. (B.76)

An anellipticity remains non vanishing also in the case of uniaxial stress and even
in the case of an isostatic load. Indeed, in the last case δ-parameters are changing only:

δ(1) − δ
(1)
0 = δ(2) − δ

(2)
0 = δ(3) − δ

(3)
0 = A1φ

c0(2U − V − 2W )
(S44 − 3S11)

S11

E. (B.77)

Then, the anisotropy changes are cubic.

B.6 Stress sensitivity versus third-order elastic constants

When dealing with elastic characteristics of rocks as a function of an applied effective
stress it might become necessary to take non-linear elasticity into account since the
applied stress usually leads to finite strain much larger than the strain induced by a
passing seismic wave. The magnitude of the stress induced strain might become to
large to be sufficiently described with a linear stress-strain relation. However, in the
following, only simple non-linearity is considered, i.e., only the stress level is taken into
account and not its history. This means, hysteresis is assumed to be negligible.

A general third-order non-linear elasticity-theory based consideration provides the
following equation for compliances (they can be obtained from the second order Taylor
expansion of the strain tensor with respect to the stress tensor using definitions (9.11)
and (9.12) of Thurston (1974) using additionally Thurston equations (9.15) and (9.16)
one arrives to equation (17) of Sarkar et al. (2003); note that in this equation a degree
of ambiguity is present: to avoid it the pair of indices kl must be renamed to, e.g., uv
by keeping lm unchanged):

Sdry
ijpq = S0

ijpq + B0
ijpqtmτtm, (B.78)

where B0
ijpqtm are third-order compliances (Thurston, 1974, p. 126), and index 0 de-

notes the unstressed state. The third-order compliances can be related to the third-
order elastic moduli A0

klnors used in Sarkar et al. (2003) as follows:

A0
klnors = −C0

ijklC
0
tmnoC

0
pqrsB

0
ijtmpq. (B.79)
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Expanding in eq. (B.51) the exponential term in the Taylor series by keeping the first
two terms and comparing the result with eq. (B.78) gives:

B0
ijklµµ ≈ Cdrys

[

θs
ijklmn(S

drys
mnµµ − Smt

mnµµ) − θc
ijklµµφc0

µ θc
µ

]

, (B.80)

where there is no summation over µ.

In the last equation, on the right hand side the second term provides usually a
dominant contribution. For the following estimate the first term is thus neglected.
Again, an isotropic tensor of stress sensitivity1 is assumed and the elastic anisotropy of
the tensor Sdrys, i.e., returning back to the medium described before equation (B.70) is
neglected. Then, using equations (B.79) and (B.78) gives all three, in general situations
independent, coefficients of the isotropic tensor of third-order elastic moduli:

A111 = −(C3
11 + 2C3

12)(C
drys)2θ2

cφ
c0, (B.81)

A112 = −(C2
11C12 + C2

12C11 + C3
12)(C

drys)2θ2
cφ

c0, (B.82)

A123 = −3(C2
12C11)(C

drys)2θ2
cφ

c0. (B.83)

We see now that in the case of compliant-porosity-related non-linearity these three
quantity are not independent any more. Usually C11 is larger or even much larger
than C12. Then, one can expect that A111 has the largest absolute value. This is also
observed in reality (see Table 3 of Sarkar et al. (2003)).

B.7 Symmetry properties of the stress sensitivity tensor

In the following, the general symmetry properties of the tensor of stress sensitivity
are considered (Shapiro & Kaselow, 2003). Therefore, equation (B.31) is considered
in more details. Firstly, due to the symmetry of tensor φij the following symmetry is
valid for the tensor of stress sensitivity:

θc
klijmn = θc

klijnm. (B.84)

Taking into account that quantities φs and φc can assume any values including zero,
and also assuming that usual symmetry properties, at least approximately, are valid
for the tensor of drained compliances even in the loaded state (note, that according
to the underlying concept of physical processes under consideration, the rock transfers
from one state of linear elasticity to another one due to changes in the applied stress),
this gives

θc
klijmn ≈ θc

ijklmn ≈ θc
jiklmn ≈ θc

ijlkmn. (B.85)

Note also, that under assumptions described above eq. (B.36) approximately gives:

δεij ≈ −δφij. (B.86)

This result follows from a comparison of equations (B.15) and (B.20). Thus,

∂Sdry
ijkl

∂φmn
≈ −

∂Sdry
ijkl

∂εmn
. (B.87)

1Talking about an isotropic tensor of stress sensitivity means that a stress sensitivity tensor is
considered with symmetry properties corresponding to those of an isotropic medium.

144



Appendices

Moreover,
Sdry

IK Cdry
KJ = δIJ , (B.88)

where Sdry
IK and Cdry

KJ denote the elements of the compliances and stiffnesses matrices
in the contracted notations (see also Auld, 1990) and δIJ denotes the Kronecker delta.
This equation follows from the fact that the stiffness matrix is inverse to the compliance
matrix. In addition,

∂Cdry
IK

∂εJ

=
∂Cdry

IJ

∂εK

, (B.89)

because the compliances are directly proportional to the second strain derivative of the
free energy (consider isothermic processes here). Again, εJ denotes components of the
strain vector in the contracted notations.

Writing now equation (B.88) using different indices:

Sdry
IJ Cdry

JK = δIK, (B.90)

and differentiating both equations (B.88) and (B.90) by εJ and εK , respectively, gives

∂Sdry
IK

∂εJ
=

∂Sdry
IJ

∂εK
. (B.91)

Thus, the stress sensitivity tensor shows approximataly the following symmetry:

θc
klijmn ≈ θc

ijmnkl ≈ θc
klmnij. (B.92)

Consequently, at least in the first approximation, the stress-sensitivity tensor possess
the symmetry properties (B.84), (B.85), and (B.92). These symmetries coincide with
the symmetries of the third-order elastic coefficient tensor of non-linear elastic media
(see also Hearmon, 1953). Therefore, all medium-symmetry caused mutual relation-
ships between elements of these tensors will coincide. This means, for example, that
for a triclinic material the stress-sensitivity tensor has 56 independent components. In
monoclinic media there are 32 independent components. In orthorhombic - 20; hexag-
onal - 10 and isotropic -3. The complexity of the stress-sensitivity tensor reflects a
variety of possible reactions of elastic moduli of porous systems on stresses.
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Stiffness matrices

Here, the stiffness tensors of anisotropic media are given in Voigt notation, according
to Tsvankin (2001).

• Triclinic symmetry, 21 independent entries.

CIJ =

















C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66

















• Monoclinic symmetry, 13 independent entries.

CIJ =

















C11 C12 C13 0 0 C16

C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36

0 0 0 C44 C45 0
0 0 0 C45 C55 0

C16 C26 C36 0 0 C66

















• Orthorhombic symmetry, 9 independent entries.

CIJ =

















C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

















• Transversel or hexagonal symmetry, 5 independent entries.

– Vertical transversal isotropic (VTI) medium. 3-axis is assumed to represent
the symmetry axis.

CV TI
IJ =

















C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C55 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

















,

with

C12 = C11 − 2C66.
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– Horizontal transversal isotropic (HTI) medium. 1-axis is assumed to repre-
sent the symmetry axis.

CHTI
IJ =

















C11 C13 C13 0 0 0
C13 C33 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C55

















,

with
C23 = C33 − 2C44.

• Cubic symmetry, 3 independent entries.

CIJ =

















C33 C12 C12 0 0 0
C12 C33 C12 0 0 0
C12 C12 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

















• Isotropic symmetry, 2 independent entries

CIJ =

















C33 C12 C12 0 0 0
C12 C33 C12 0 0 0
C12 C12 C33 0 0 0
0 0 0 C55 0 0
0 0 0 0 C55 0
0 0 0 0 0 C55

















,

with
C12 = C33 − 2C55,

and

C55 = µ and C33 = K +
4

3
µ.
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Appendix D

Exact velocities in VTI media

When dealing with seismic data from transversely isotropic or even orthorhombic
media they are usually assumed to show weak anisotropy, i.e., anisotropy is in the range
of 10-20% or even below. And in fact, most rocks relevant in practice can be described
in this way. The advantage of the weak anisotropy approach is the remarkably reduced
algebraic complexity in comparison to the exact relations. While the weak anisotropy
approximation is discussed in detail in the main text, here, the exact equations for
velocities in VTI media are given for completeness, as discussed by Thomsen (1986).

The three phase velocities in VTI media as a function of the phase angel Θ are:

ρV 2
P (Θ) =

1

2

[

C33 + C44 + (C11 − C33) sin2 Θ + D(Θ)
]

, (D.1)

ρV 2
SV (Θ) =

1

2

[

C33 + C44 + (C11 − C33) sin2 Θ − D(Θ)
]

, (D.2)

ρV 2
SH(Θ) = C66 sin2 Θ + C44 cos2 Θ, , (D.3)

with

D(Θ) ≡
(

(C33 − C44)
2

+2
(

2 (C13 + C44)
2 − (C33 − C44) (C11 + C33 − 2C44)

)

sin2 Θ

+
(

(C11 + C33 − 2C44)
2 − 4 (C13 + C44)

4) sin4 Θ
)1/2

. (D.4)

The obvious algebraic complexity is the main obstacle to use eq. (D.4) in practice. To
overcome this complexity Thomsen (1986) introduced a set of parameters representing
useful combinations of different stiffnesses in eq. (D.1) to (D.4), involving only two
elastic velocities and three measures of anisotropy. These are:

VP0 =

√

C33

ρ
, (D.5)

VS0 =

√

C44

ρ
, (D.6)

ε ≡ C11 − C33

2C33
, (D.7)

γ ≡ C66 − C44

2C44
, (D.8)

and

δ∗ ≡ 1

2C2
33

(

2 (C13 + C44)
2 − (C33 − C44) (C11 + C33 − 2C44)

)

. (D.9)

With these definitions eq. (D.1) - (D.3) can exactly be written as

V 2
P (Θ) = V 2

P0

(

1 + ε sin2 Θ + D∗(Θ)
)

, (D.10)

V 2
SV (Θ) = V 2

S0

(

1 +
V 2

P0

V 2
S0

ε sin2 Θ − V 2
P0

V 2
S0

D∗(Θ)

)

, (D.11)

V 2
SH(Θ) = V 2

S0

(

1 + 2γ sin2 Θ
)

, (D.12)
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with

D∗(Θ) ≡ 1

2

(

1 − V 2
P0

V 2
S0

)














1 +

4δ∗
(

1 − V 2
S0

V 2
P0

)2 sin2 Θ cos2 Θ +
4
(

1 − V 2
S0

V 2
P0

+ ε
)

ε
(

1 − V 2
S0

V 2
P0

)2 sin4 Θ







1/2

− 1









.

(D.13)
It is important to note at this point, that the given equations are valid for an arbitrary
anisotropy and not weak anisotropy only.

However, from many observations it is known that most rocks, especially sediments,
show only a weak-to-moderate anisotropy below 20%. In this case, the anisotropic
velocities of a rock can be understood as a linear combination of an isotropic background
velocity (represented by VP0 and VS0) and small anisotropic perturbations (represented
by ε, γ, and δ∗). If these perturbations are small the constitutive equations can be
approximated by a first order Taylor expansion in the small parameters at fixed Θ, i.e.,
retaining only linear terms for these parameters. Then D∗ can be approximated by:

D∗ ≈ δ∗

1 − V 2
S0

V 2
P0

sin2 Θ cos2 Θ + ε sin4 Θ. (D.14)

Substituting eq. (D.14) into eq. (D.10) and (D.11), and further linearization finally
gives a set of equations for the three phase velocities valid in weak anisotropic media:

VP (Θ) = VP0

(

1 + δ sin2 Θ cos2 Θ + ε sin4 Θ
)

, (D.15)

VSV (Θ) = VS0

(

1 +
V 2

P0

V 2
S0

(ε − δ) sin2 cos2

)

, (D.16)

VSH(Θ) = VS0

(

1 + γ sin2 Θ
)

, . (D.17)

We further obtain:

δ ≡ 1

2



ε +
δ∗

1 − V 2
S0

V 2
P0



 =
(C13 + C44)

2 − (C33 − C44)
2

2C33 (C33 − C44)
. (D.18)
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Orthorhombic anisotropy parameters in terms of compliances

Tsvankins anisotropy parameters for orthorhombic media (Tsvankin, 1997) as given
in terms of stiffnesses in section 2.1.4 can be expressed as function of the corresponding
compliances. Then they read (Shapiro & Kaselow, 2003):

ε(1) =
a0 − b0

2b0

, (E.1)

ε(2) =
c0 − b0

2b0

, (E.2)

δ(1) =
a2

1 − 2a1b1

2b1
, (E.3)

δ(2) =
a2

2 − 2a2b2

2b2
, (E.4)

δ(3) =
a2

3 − 2a3b3

2b3
, (E.5)

γ(1) =
S55 − S66

2S66
, (E.6)

γ(2) =
S44 − S66

2S66
, (E.7)

(E.8)

with

a0 = S11S33 − S2
13, a1 = 1 +

c1

b0
, a2 = 1 +

c2

b0
, a1 = 1 +

c3

b0
, (E.9)

b0 = S11S22 − S2
12, b1 = 1 − S33b0 + S23c1 + S13c2

b0S44
,

b2 = 1 − S33b0 + S23c1 + S13c2

b0S55
, b3 = 1 − S11c0 + S12c3 + S13c2

c0S66
, (E.10)

c0 = S33S22 − S2
23, c1 = S12S13 − S11S23,

c2 = S12S23 − S13S22, c3 = S13S23 − S12S33. (E.11)
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Best fit results for sandstones.

Table F.1: Best fit parameter from Eberhart-Phillips et al. (1989). Porosity φ is
dimensionless, indices P and S indicate P- and S-wave. A and B are given in km/s, K
is in km/s/MPa and D is in 1/MPa.

φ AP KP BP DP AS KS BS DS

0.064 5.470 0.002 0.503 0.090 3.440 0.004 0.399 0.110
0.227 3.910 0.003 0.622 0.220 2.310 0.002 0.537 0.190
0.222 3.820 0.003 0.441 0.180 2.320 0.002 0.353 0.120
0.195 4.010 0.002 0.451 0.100 2.440 0.003 0.443 0.130
0.259 3.650 0.002 0.337 0.230 2.040 0.001 0.139 0.150
0.111 4.680 0.001 0.187 0.090 2.900 0.002 0.141 0.130
0.236 3.800 0.003 0.716 0.240 2.280 0.002 0.616 0.170
0.111 4.530 0.005 0.397 0.160 2.690 0.005 0.407 0.180
0.046 5.170 0.001 0.419 0.080 3.060 0.003 0.270 0.150
0.160 4.450 0.004 0.257 0.280 2.730 0.002 0.278 0.180
0.156 4.700 0.003 0.532 0.350 3.000 0.002 0.518 0.300
0.200 4.360 0.003 0.664 0.220 2.780 0.002 0.571 0.190
0.144 3.580 0.004 0.492 0.260 1.850 0.003 0.365 0.270
0.143 3.500 0.003 0.301 0.140 1.920 0.002 0.224 0.140
0.132 3.460 0.005 0.425 0.190 1.930 0.002 0.399 0.160
0.312 3.120 0.002 0.558 0.170 1.650 0.003 0.389 0.180
0.305 3.110 0.002 0.350 0.140 1.730 0.001 0.333 0.130
0.111 3.860 0.003 0.429 0.160 2.140 0.001 0.390 0.130
0.158 3.720 0.007 0.608 0.220 1.960 0.005 0.625 0.210
0.162 3.740 0.006 0.631 0.130 1.990 0.003 0.556 0.130
0.256 3.200 0.004 0.732 0.190 1.800 0.003 0.643 0.130
0.264 3.380 0.004 0.641 0.140 1.870 0.002 0.515 0.110
0.155 3.640 0.003 0.502 0.150 2.000 0.003 0.418 0.120
0.123 3.690 0.004 0.359 0.240 2.050 0.002 0.374 0.190
0.159 3.690 0.004 0.466 0.190 2.000 0.004 0.437 0.200
0.272 3.550 0.003 0.610 0.160 2.090 0.003 0.398 0.140
0.276 3.450 0.004 0.713 0.180 1.980 0.003 0.774 0.170
0.294 3.410 0.004 0.807 0.190 1.940 0.003 0.674 0.170
0.283 3.410 0.004 0.795 0.150 1.960 0.003 0.632 0.130
0.275 3.320 0.005 0.716 0.130 1.810 0.004 0.804 0.210
0.213 3.600 0.007 0.747 0.180 2.070 0.004 0.605 0.120
0.127 4.000 0.006 0.682 0.170 2.380 0.003 0.409 0.060
0.162 4.370 0.006 0.776 0.120 2.410 0.008 0.681 0.180
0.117 4.170 0.006 0.568 0.140 2.370 0.006 0.485 0.120
0.069 4.420 0.004 0.675 0.140 2.570 0.004 1.270 0.280
continued on next page
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F. Best fit results for sandstones.

continued from previous page

φ AP KP BP DP AS KS BS DS

0.161 3.890 0.005 0.452 0.140 2.220 0.004 0.451 0.160
0.266 3.200 0.004 0.308 0.120 1.920 0.002 0.305 0.100
0.261 3.370 0.005 0.323 0.200 1.910 0.004 0.301 0.250
0.240 3.700 0.000 0.366 0.070 2.120 0.003 0.294 0.160
0.245 3.480 0.005 0.380 0.210 2.040 0.003 0.390 0.200
0.243 3.710 0.005 0.507 0.240 2.260 0.003 0.320 0.190
0.184 4.210 0.003 0.378 0.150 2.540 0.002 0.369 0.130
0.184 4.160 0.004 0.343 0.160 2.470 0.002 0.345 0.170
0.212 3.940 0.002 0.646 0.120 2.250 0.004 0.522 0.170
0.097 4.760 0.003 0.239 0.130 2.930 0.003 0.308 0.150
0.096 4.590 0.003 0.364 0.130 2.770 0.004 0.322 0.200
0.073 4.300 0.002 0.375 0.150 2.550 0.002 0.386 0.210
0.080 4.170 0.002 0.271 0.190 2.380 0.003 0.377 0.310
0.121 3.950 0.004 0.464 0.240 2.230 0.003 0.424 0.270
0.098 4.210 0.001 0.323 0.080 2.440 0.002 0.296 0.130
0.103 4.060 0.003 0.299 0.140 2.310 0.003 0.330 0.210
0.077 4.220 0.003 0.387 0.130 2.450 0.003 0.376 0.150
0.147 4.440 0.002 0.742 0.070 2.550 0.003 0.575 0.110
0.170 4.130 0.005 0.380 0.210 2.370 0.004 0.548 0.300
0.162 4.030 0.006 0.472 0.150 2.360 0.004 0.464 0.120
0.180 4.070 0.004 0.572 0.130 2.310 0.003 0.509 0.110
0.177 4.000 0.005 0.478 0.130 2.260 0.004 0.515 0.170
0.167 3.660 0.004 0.338 0.190 2.010 0.002 0.357 0.190
0.131 3.920 0.004 0.539 0.140 2.110 0.003 0.484 0.170
0.205 4.210 0.002 0.746 0.240 2.580 0.002 0.781 0.200
0.187 4.550 0.003 0.800 0.190 2.830 0.002 0.741 0.160
0.136 4.170 0.001 0.467 0.060 2.220 0.004 0.255 0.130
0.194 4.030 0.004 0.669 0.190 2.390 0.003 0.535 0.150
0.059 4.860 0.002 0.109 0.140 3.050 0.002 0.123 0.170
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Table F.2: Best fit parameter from repeated fit of Eberhart-Phillips et al. (1989) data
as given in Tab. (F.1). Porosity φ is dimensionless, indices P and S indicate P- and
S-wave. A and B are given in km/s, K is in km/s/MPa and D is in 1/MPa.

φ AP KP BP DP AS KS BS DS
0.064 5.459 0.002 0.500 0.100 3.447 0.004 0.400 0.100
0.227 3.966 0.003 0.594 0.205 2.354 0.002 0.520 0.205
0.222 3.854 0.003 0.430 0.150 2.331 0.002 0.353 0.150
0.195 4.010 0.002 0.451 0.115 2.459 0.002 0.442 0.115
0.259 3.681 0.002 0.320 0.190 2.048 0.001 0.137 0.190
0.111 4.676 0.001 0.186 0.110 2.906 0.002 0.141 0.110
0.236 3.868 0.003 0.677 0.205 2.325 0.002 0.603 0.205
0.111 4.557 0.005 0.391 0.170 2.721 0.004 0.396 0.170
0.046 5.149 0.002 0.412 0.115 3.076 0.003 0.267 0.115
0.160 4.476 0.004 0.239 0.230 2.751 0.002 0.271 0.230
0.156 4.757 0.002 0.485 0.325 3.053 0.002 0.479 0.325
0.200 4.420 0.002 0.634 0.205 2.826 0.001 0.553 0.205
0.144 3.628 0.003 0.462 0.265 1.886 0.003 0.341 0.265
0.143 3.516 0.003 0.299 0.140 1.932 0.002 0.223 0.140
0.132 3.494 0.005 0.412 0.175 1.957 0.002 0.393 0.175
0.312 3.160 0.002 0.546 0.175 1.680 0.002 0.379 0.175
0.305 3.128 0.002 0.348 0.135 1.744 0.001 0.332 0.135
0.111 3.889 0.003 0.422 0.145 2.157 0.001 0.389 0.145
0.158 3.775 0.007 0.580 0.215 2.015 0.004 0.600 0.215
0.162 3.767 0.006 0.629 0.130 2.014 0.003 0.555 0.130
0.256 3.259 0.003 0.709 0.160 1.828 0.002 0.641 0.160
0.264 3.414 0.004 0.637 0.125 1.879 0.002 0.516 0.125
0.155 3.670 0.003 0.497 0.135 2.013 0.003 0.418 0.135
0.123 3.724 0.003 0.340 0.215 2.080 0.002 0.362 0.215
0.159 3.728 0.003 0.452 0.195 2.037 0.003 0.421 0.195
0.272 3.591 0.003 0.600 0.150 2.111 0.003 0.395 0.150
0.276 3.505 0.004 0.695 0.175 2.036 0.002 0.758 0.175
0.294 3.475 0.003 0.782 0.180 1.989 0.002 0.660 0.180
0.283 3.458 0.004 0.786 0.140 1.987 0.003 0.630 0.140
0.275 3.351 0.004 0.714 0.170 1.880 0.004 0.771 0.170
0.213 3.658 0.006 0.728 0.150 2.089 0.004 0.605 0.150
0.127 4.049 0.006 0.668 0.115 2.324 0.004 0.382 0.115
0.162 4.394 0.006 0.776 0.150 2.462 0.007 0.663 0.150
0.117 4.200 0.006 0.564 0.130 2.385 0.006 0.485 0.130
0.069 4.455 0.004 0.671 0.210 2.698 0.003 1.182 0.210
0.161 3.914 0.004 0.449 0.150 2.250 0.003 0.444 0.150
0.266 3.210 0.003 0.308 0.110 1.920 0.002 0.305 0.110
0.261 3.397 0.004 0.311 0.225 1.939 0.003 0.284 0.225
0.240 3.668 0.001 0.353 0.115 2.140 0.002 0.289 0.115
0.245 3.513 0.005 0.365 0.205 2.073 0.003 0.376 0.205
continued on next page
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F. Best fit results for sandstones.

continued from previous page

φ AP KP BP DP AS KS BS DS

0.243 3.758 0.005 0.480 0.215 2.286 0.003 0.310 0.215
0.184 4.233 0.003 0.374 0.140 2.556 0.002 0.368 0.140
0.184 4.183 0.003 0.338 0.165 2.495 0.002 0.338 0.165
0.212 3.960 0.002 0.646 0.145 2.288 0.003 0.511 0.145
0.097 4.770 0.003 0.238 0.140 2.949 0.002 0.305 0.140
0.096 4.606 0.003 0.363 0.165 2.797 0.004 0.310 0.165
0.073 4.323 0.002 0.371 0.180 2.584 0.002 0.370 0.180
0.080 4.192 0.002 0.263 0.250 2.419 0.002 0.347 0.250
0.121 3.994 0.003 0.439 0.255 2.272 0.003 0.396 0.255
0.098 4.194 0.002 0.318 0.105 2.453 0.002 0.295 0.105
0.103 4.076 0.003 0.297 0.175 2.339 0.003 0.317 0.175
0.077 4.237 0.003 0.386 0.140 2.473 0.003 0.372 0.140
0.147 4.375 0.003 0.716 0.090 2.560 0.003 0.576 0.090
0.170 4.163 0.005 0.365 0.255 2.426 0.004 0.507 0.255
0.162 4.058 0.006 0.467 0.135 2.375 0.004 0.464 0.135
0.180 4.095 0.004 0.571 0.120 2.319 0.003 0.510 0.120
0.177 4.021 0.005 0.477 0.150 2.297 0.004 0.504 0.150
0.167 3.687 0.004 0.328 0.190 2.039 0.001 0.346 0.190
0.131 3.948 0.003 0.536 0.155 2.145 0.003 0.474 0.155
0.205 4.281 0.001 0.706 0.220 2.646 0.001 0.753 0.220
0.187 4.615 0.002 0.775 0.175 2.879 0.002 0.729 0.175
0.136 4.106 0.002 0.436 0.095 2.231 0.004 0.254 0.095
0.194 4.084 0.004 0.648 0.170 2.422 0.003 0.529 0.170
0.059 4.866 0.002 0.108 0.155 3.059 0.002 0.120 0.155
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Table F.3: Best fit parameter for P and S-wave velocities given by Jones (1995). Pa-
rameter A is given in [m/s], K in [m/s/MPa], B in [m/s], and D in [1/MPa].
Sample AP KP BP DP AS KS BS DS

8VBP(20) 4350.1 2.299 624.539 0.089 2933.0 0.416 537.449 0.065
1DYK(101) 4131.4 3.503 810.914 0.160 2589.1 1.470 477.110 0.080
2MYK(77) 3900.3 3.330 563.386 0.112 2272.1 3.129 830.622 0.186
B79 3644.2 2.592 868.560 0.141 2194.8 1.932 866.219 0.156
5SU(452) 4386.6 2.862 522.414 0.095 2683.0 2.703 574.732 0.112
FD(444) 4557.8 3.283 531.470 0.179 2591.0 2.044 480.020 0.106
HW(448) 5160.9 0.004 323.722 0.063 3035.6 0.000 338.094 0.060
RS(443) 4273.3 3.113 734.308 0.133 2552.8 1.444 458.371 0.095
TS(451) 4395.8 3.121 333.616 0.177 2665.8 2.389 459.456 0.132
1SU(453) 4325.2 3.583 831.067 0.085 2740.1 0.975 841.897 0.059
4SU(447) 4410.1 0.906 836.454 0.062 2734.3 0.000 779.174 0.052
E5(8) 4716.6 1.200 292.243 0.181 3050.0 0.720 317.893 0.191
8HBP(21) 4182.1 2.830 700.572 0.113 2709.3 0.000 443.190 0.047
1VSF(225) 3886.9 2.934 653.575 0.107 2370.7 1.225 476.317 0.062
E1(410) 5020.2 1.055 176.818 0.153 3240.1 0.672 164.918 0.174
E1(412) 4970.7 1.198 278.439 0.178 3221.6 0.665 176.181 0.131
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F. Best fit results for sandstones.

Table F.4: Refitted best fit parameter for P and S-wave velocities for Jones (1995) data
set. Porosity φ is dimensionless, density ρ is given in [kg/m3], parameter A in [km/s],
K in [km/s/MPa], B in [km/s], and D in [1/MPa].
Sample φ ρ AP KP BP DP AS KS BS DS

1SU(453) 0.117 2656 4.420 0.002 0.912 0.072 2.618 0.003 0.731 0.072
4SU(447) 0.091 2632 4.471 0.000 0.892 0.057 2.673 0.001 0.721 0.057
E5(8) 0.135 2640 4.714 0.001 0.291 0.186 3.052 0.001 0.319 0.186
8HBP(21) 0.159 2668 4.322 0.000 0.808 0.080 2.549 0.002 0.295 0.080
1VSF(225) 0.161 2661 3.974 0.001 0.721 0.085 2.274 0.003 0.391 0.085
E1(410) 0.105 2635 5.016 0.001 0.175 0.164 3.243 0.001 0.166 0.164
E1(412) 0.107 2638 4.983 0.001 0.284 0.154 3.211 0.001 0.169 0.154
8VBP(20) 0.136 2680 4.409 0.001 0.673 0.077 2.670 0.001 0.482 0.077
1DYK(101) 0.133 2662 4.218 0.002 0.860 0.120 2.492 0.003 0.399 0.120
2MYK(77) 0.159 2722 3.837 0.005 0.520 0.149 2.328 0.002 0.856 0.149
B79 0.238 2648 3.628 0.003 0.859 0.148 2.209 0.002 0.874 0.148
5SU(452) 0.104 2652 4.363 0.003 0.504 0.103 2.705 0.002 0.591 0.103
FD(444) 0.099 2688 4.596 0.002 0.550 0.142 2.532 0.003 0.438 0.142
HW(448) 0.033 2680 5.167 0.000 0.329 0.061 3.029 0.000 0.332 0.061
RS(443) 0.158 2736 4.321 0.002 0.766 0.114 2.512 0.002 0.427 0.114
TS(451) 0.090 2684 4.410 0.003 0.340 0.154 2.640 0.003 0.443 0.154
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Table F.5: Best fit parameters for data given by Freund (1992) obtained from second
fit. Parameter A is given in [km/s], K in [km/s/MPa], B in [km/s], and D in [1/MPa].
χ2 is dimensionless. P and S indicate best fit parameters for P-wave and S-wave fit.

Sample AP KP BP DP χ2 AP KP BP DP χ2

8 5.017 0.000 0.608 0.023 0.004 3.286 0.000 0.267 0.023 0.000
10 4.644 0.000 0.598 0.023 0.007 3.087 0.000 0.263 0.023 0.000
17 4.796 0.000 0.715 0.018 0.002 2.671 0.000 0.232 0.018 0.000
21 4.567 0.000 0.590 0.016 0.003 3.006 0.000 0.263 0.016 0.002
22 5.193 0.000 1.142 0.035 0.018 3.205 0.000 0.348 0.035 0.000
24 5.348 0.000 1.096 0.016 0.007 3.390 0.000 0.409 0.016 0.000
25 5.068 0.000 0.771 0.026 0.003 3.390 0.000 0.390 0.026 0.001
27 4.839 0.000 0.560 0.014 0.006 3.083 0.000 0.172 0.014 0.000
34 4.362 0.000 0.828 0.016 0.012 2.604 0.000 0.236 0.016 0.001
38 4.987 0.000 0.674 0.018 0.001 3.305 0.000 0.415 0.018 0.001
41 4.685 0.000 0.505 0.007 0.001 2.970 0.000 0.174 0.007 0.000
43 5.006 0.000 0.580 0.021 0.001 3.038 0.000 0.253 0.021 0.000
44 4.757 0.000 0.417 0.026 0.008 3.138 0.000 0.214 0.026 0.001
48 5.011 0.001 0.597 0.016 0.007 3.468 0.000 0.399 0.016 0.002
51 4.615 0.000 0.443 0.017 0.001 3.110 0.000 0.268 0.017 0.000
52 4.631 0.000 0.621 0.019 0.001 3.108 0.000 0.377 0.019 0.000
53 4.705 0.000 0.273 0.010 0.001 3.039 0.000 0.144 0.010 0.000
55 4.631 0.000 0.472 0.017 0.009 3.082 0.000 0.242 0.017 0.002
56 5.300 0.001 1.559 0.026 0.023 3.390 0.000 0.666 0.026 0.004
58 4.790 0.000 0.690 0.022 0.012 3.036 0.000 0.227 0.022 0.001
60 4.426 0.000 0.730 0.028 0.010 2.740 0.000 0.351 0.028 0.003
62 4.835 0.000 0.456 0.009 0.002 3.197 0.000 0.380 0.009 0.001
65 4.722 0.000 0.665 0.028 0.021 3.120 0.000 0.310 0.028 0.006
73 4.037 0.000 0.683 0.022 0.023 2.570 0.000 0.241 0.022 0.001
74 4.221 0.000 0.384 0.019 0.001 2.778 0.000 0.128 0.019 0.001
78 4.575 0.000 0.605 0.028 0.007 3.091 0.000 0.467 0.028 0.002
81 4.555 0.000 0.709 0.028 0.014 2.918 0.000 0.256 0.028 0.002
90 4.064 0.000 0.647 0.025 0.007 2.522 0.000 0.159 0.025 0.000
91 5.122 0.000 1.748 0.023 0.032 3.283 0.000 0.831 0.023 0.004
95 5.403 0.000 0.944 0.018 0.006 3.104 0.000 0.313 0.018 0.007
102 5.333 0.000 1.670 0.022 0.020 3.239 0.000 0.615 0.022 0.002
107 5.159 0.001 1.905 0.032 0.000 3.358 0.000 0.887 0.032 0.008
108 5.174 0.001 2.317 0.023 0.017 3.548 0.000 1.298 0.023 0.003
116 5.212 0.000 1.789 0.025 0.021 3.190 0.000 0.840 0.025 0.002
120 5.265 0.001 1.738 0.021 0.003 3.534 0.000 0.924 0.021 0.001
123 5.365 0.000 0.724 0.012 0.004 3.453 0.000 0.379 0.012 0.001
126 4.142 0.000 0.520 0.016 0.012 2.472 0.000 0.224 0.016 0.000
131 4.935 0.001 2.345 0.036 0.002 3.334 0.000 1.321 0.036 0.006
134 4.730 0.001 1.535 0.036 0.009 3.022 0.001 0.654 0.036 0.001
135 4.382 0.000 1.567 0.022 0.006 3.043 0.000 0.981 0.022 0.003
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Sample AP KP BP DP χ2 AP KP BP DP χ2

139 5.195 0.000 2.977 0.029 0.024 3.244 0.000 1.433 0.029 0.005
140 4.402 0.000 0.927 0.021 0.003 2.907 0.000 0.426 0.021 0.001
146 4.671 0.000 1.007 0.017 0.008 2.840 0.000 0.484 0.017 0.000
159 4.865 0.000 0.648 0.018 0.005 3.136 0.000 0.287 0.018 0.000
165 4.778 0.001 0.430 0.040 0.004 3.067 0.000 0.231 0.040 0.001
172 4.035 0.000 0.720 0.023 0.015 2.452 0.000 0.281 0.023 0.000
191 4.966 0.001 1.474 0.046 0.018 3.262 0.000 0.751 0.046 0.011
196 3.949 0.000 0.592 0.009 0.009 2.417 0.000 0.138 0.009 0.001
202 5.091 0.001 2.086 0.032 0.017 3.210 0.000 0.610 0.032 0.003
205 4.572 0.000 0.458 0.029 0.002 3.013 0.000 0.195 0.029 0.000
206 3.839 0.000 0.532 0.017 0.001 2.585 0.000 0.260 0.017 0.001
213 4.673 0.000 2.328 0.052 0.008 3.106 0.000 1.148 0.052 0.003
216 4.667 0.001 1.970 0.030 0.013 3.164 0.001 1.145 0.030 0.004
218 4.955 0.000 0.913 0.036 0.014 3.345 0.000 0.458 0.036 0.003
219 4.745 0.000 2.134 0.041 0.013 3.233 0.000 1.211 0.041 0.006
221 4.910 0.000 1.625 0.037 0.008 3.309 0.000 0.877 0.037 0.005
222 5.082 0.000 3.307 0.064 0.027 2.871 0.000 0.916 0.064 0.002
223 4.304 0.001 0.920 0.042 0.020 2.586 0.001 0.284 0.042 0.000
230 5.084 0.001 1.816 0.029 0.002 3.518 0.000 1.046 0.029 0.004
235 5.671 0.000 2.120 0.030 0.055 3.240 0.001 0.632 0.030 0.003
240 4.793 0.000 1.545 0.035 0.033 2.822 0.000 0.373 0.035 0.001
246 4.933 0.000 0.612 0.024 0.011 2.895 0.000 0.132 0.024 0.000
253 5.422 0.000 2.403 0.035 0.024 3.172 0.000 0.770 0.035 0.003
254 5.436 0.000 2.093 0.034 0.050 3.321 0.000 0.680 0.034 0.001
256 4.686 0.000 2.083 0.040 0.012 3.121 0.000 1.034 0.040 0.007
258 4.442 0.000 2.078 0.052 0.005 2.924 0.000 1.051 0.052 0.001
261 5.283 0.000 2.231 0.028 0.060 3.236 0.001 0.912 0.028 0.003
265 4.879 0.001 1.537 0.067 0.014 2.952 0.000 0.381 0.067 0.004
266 5.047 0.000 2.110 0.032 0.008 3.040 0.000 0.794 0.032 0.001
267 4.598 0.001 1.225 0.041 0.021 3.023 0.000 0.355 0.041 0.001
272 5.271 0.001 3.176 0.061 0.037 3.243 0.001 1.268 0.061 0.003
281 5.375 0.000 2.602 0.036 0.083 3.324 0.001 1.271 0.036 0.024
287 4.478 0.000 1.230 0.033 0.019 2.720 0.000 0.363 0.033 0.003
288 4.293 0.001 1.834 0.027 0.002 2.988 0.000 1.099 0.027 0.004
294 4.338 0.001 0.945 0.033 0.002 2.893 0.000 0.434 0.033 0.002
296 4.678 0.000 1.333 0.019 0.025 2.492 0.001 0.122 0.019 0.000
299 5.035 0.000 2.729 0.053 0.072 2.933 0.001 1.006 0.053 0.005
302 4.606 0.001 1.690 0.031 0.011 3.180 0.000 0.867 0.031 0.010
303 4.981 0.001 2.195 0.048 0.003 3.153 0.000 0.982 0.048 0.001
304 5.118 0.000 2.248 0.038 0.008 3.383 0.000 0.932 0.038 0.005
305 4.382 0.001 1.470 0.038 0.022 2.959 0.000 1.045 0.038 0.003
306 4.690 0.000 1.622 0.026 0.014 3.018 0.000 0.683 0.026 0.001
307 4.203 0.001 1.565 0.031 0.008 2.670 0.001 0.505 0.031 0.005
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Sample AP KP BP DP χ2 AP KP BP DP χ2

308 4.847 0.000 1.212 0.021 0.004 3.281 0.000 0.838 0.021 0.002
309 4.854 0.000 2.265 0.039 0.040 3.350 0.000 1.312 0.039 0.014
314 5.649 0.000 2.475 0.027 0.014 3.367 0.000 1.016 0.027 0.001
320 5.519 0.000 2.262 0.037 0.029 3.478 0.000 0.995 0.037 0.001
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Table F.6: Stress sensitivity parameters inverted from velocity best fit parameters.
Velocity data from Freund (1992).

Sample Porosity Density KdryS µdryS θc θcµ φc0

[—] [kg/m3] [GPa] [GPa] [—] [—] [—]

8 0.037 2620 28.232 28.291 657.054 306.059 0.001
10 0.051 2590 22.937 24.688 518.429 230.881 0.001
25 0.018 2660 27.550 30.575 727.456 403.516 0.001
38 0.026 2620 27.010 28.612 486.822 411.076 0.001
44 0.017 2720 25.836 26.781 661.880 394.445 0.000
48 0.022 2650 24.055 31.868 377.012 342.729 0.001
51 0.037 2630 22.101 25.431 381.265 295.863 0.001
52 0.050 2600 22.269 25.120 423.730 335.502 0.001
56 0.050 2640 33.717 30.332 887.745 423.865 0.001
58 0.022 2670 28.461 24.607 620.814 207.790 0.001
60 0.050 2640 25.282 19.824 709.376 446.156 0.001
65 0.044 2620 24.422 25.497 690.441 345.846 0.001
74 0.036 2640 19.868 20.369 381.467 115.189 0.001
78 0.026 2670 21.877 25.504 621.770 913.125 0.000
81 0.033 2660 24.977 22.653 702.173 259.875 0.001
90 0.066 2560 20.561 16.286 507.097 122.627 0.001
91 0.069 2560 30.378 27.590 710.966 401.630 0.001
102 0.037 2610 37.704 27.387 822.748 360.926 0.001
108 0.026 2640 26.346 33.237 594.059 371.033 0.002
116 0.037 2640 35.892 26.864 884.960 551.052 0.001
120 0.036 2660 29.458 33.214 612.250 369.637 0.001
134 0.090 2440 24.887 22.285 895.376 426.717 0.001
165 0.043 2620 26.946 24.643 1065.802 744.676 0.000
202 0.026 2630 32.018 27.107 1021.572 294.819 0.001
205 0.026 2670 23.484 24.239 685.357 296.968 0.000
216 0.067 2510 21.179 25.125 635.334 444.239 0.002
218 0.067 2510 24.166 28.088 875.181 465.280 0.001
219 0.078 2480 21.275 25.927 863.338 565.824 0.001
221 0.073 2530 24.056 27.697 879.744 539.742 0.001
240 0.069 2500 30.871 19.913 1074.494 292.082 0.001
253 0.026 2590 41.408 26.053 1453.165 577.676 0.001
254 0.030 2610 38.741 28.789 1306.338 474.410 0.001
256 0.089 2470 22.164 24.052 893.994 486.949 0.001
266 0.064 2500 32.874 23.101 1059.993 490.119 0.001
267 0.106 2350 21.056 21.470 862.103 215.656 0.001
281 0.048 2560 36.255 28.282 1311.063 849.622 0.001
287 0.123 2350 23.928 17.392 793.062 257.087 0.001
288 0.112 2370 15.467 21.161 419.381 288.318 0.003
294 0.149 2280 17.470 19.077 581.111 275.813 0.001
302 0.097 2410 18.629 24.371 579.337 297.475 0.002
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Sample Porosity Density KdryS µdryS θc θcµ φc0

304 0.091 2410 26.342 27.582 1011.514 417.009 0.001
305 0.130 2350 17.694 20.577 664.280 760.748 0.001
307 0.127 2330 19.014 16.604 586.644 189.746 0.002
309 0.086 2450 21.076 27.494 823.188 540.679 0.001
320 0.041 2570 36.849 31.084 1369.537 714.220 0.001
131 0.041 2570 24.495 28.569 879.669 582.687 0.001
107 0.026 2660 30.810 29.998 997.361 521.117 0.001
123 0.022 2680 34.539 31.960 420.790 278.417 0.001
126 0.011 2780 25.040 16.990 398.955 229.628 0.001
135 0.116 2370 16.240 21.946 349.670 267.524 0.002
139 0.047 2610 33.822 27.462 983.477 607.393 0.001
140 0.143 2340 18.966 19.776 399.742 195.279 0.002
146 0.086 2460 27.221 19.846 472.006 309.500 0.001
159 0.044 2610 27.539 25.667 489.816 242.354 0.001
191 0.047 2560 26.831 27.232 1235.545 735.931 0.001
196 0.032 2720 21.229 15.886 200.447 47.348 0.002
206 0.043 2680 15.606 17.915 262.068 133.994 0.002
213 0.078 2480 22.253 23.924 1151.787 624.081 0.001
21 0.036 2660 23.436 24.034 374.084 175.226 0.001
222 0.063 2470 36.653 20.359 2331.910 829.996 0.001
22 0.033 2630 34.906 27.011 1233.971 399.610 0.001
230 0.036 2690 25.126 33.296 717.818 460.236 0.001
235 0.022 2680 48.680 28.137 1472.862 561.772 0.001
246 0.036 2650 34.862 22.217 847.807 201.767 0.000
24 0.033 2650 35.182 30.461 557.101 222.427 0.001
258 0.107 2440 20.329 20.867 1051.065 613.222 0.001
261 0.038 2560 35.712 26.809 1011.464 506.695 0.001
265 0.073 2460 29.977 21.431 2022.637 529.567 0.000
272 0.035 2540 34.953 26.710 2119.854 1013.172 0.001
172 0.010 2770 22.906 16.651 525.434 250.720 0.001
223 0.112 2420 23.251 16.188 983.906 348.865 0.001
27 0.018 2680 28.784 25.475 390.508 116.704 0.001
296 0.110 2350 31.974 14.594 604.917 69.301 0.001
299 0.075 2480 34.423 21.332 1836.867 892.491 0.001
303 0.079 2450 28.310 24.356 1372.822 726.543 0.001
306 0.092 2430 23.943 22.128 627.752 288.243 0.002
308 0.114 2360 21.577 25.403 457.892 483.842 0.001
314 0.014 2690 45.181 30.504 1210.071 651.233 0.001
34 0.043 2650 26.448 17.973 419.076 135.950 0.001
41 0.036 2670 27.210 23.555 191.747 68.545 0.002
53 0.043 2630 25.823 24.290 267.420 178.467 0.001
55 0.044 2630 23.092 24.989 388.553 225.602 0.001
62 0.048 2600 25.356 26.572 238.421 471.070 0.001
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Sample Porosity Density KdryS µdryS θc θcµ φc0

73 0.036 2660 19.936 17.569 437.368 159.168 0.001
95 0.011 2680 43.790 25.824 800.530 346.088 0.001
43 0.018 2680 34.196 24.730 704.296 397.625 0.000
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Common conversion factors in rock physics

The subject of pressure and stress and their spatio-temporal evolution is important
for geologists, geopysicists, and engineers. As a result of the wide spread ’pressure
community’, many different units used for quantification of physical units can be found
in the literature. The listed conversion factors should help to deal with this diversivity.
Conversion factors taken from Mavko et al. (1998) are marked with A and those taken
from Messinger & Langenscheidt-Redaktion (2001) with B. If a mark is missing for
a certain factor, the factor belongs to the last mark given above within the reference
column.

Table G.1: Conversion factors.

Weights

1 g (gramm) 0.001 kg A
1 kg (kilogramm) 2.204623 lb
1 lb (pound) 0.4535924 kg

16 oz (avior.)
1 ton (USA) 2000 lb

907.2 kg
1 ton (imperial) 2240 lb

1016 kg
1 ton (metric) 1000 kg

2.204.662 lb
1 oz (avior.) (ounce) 28.3495 g
1 oz (troy) (ounce) 31.10348 g

Length units.

1 m (meter) 100 cm A
0.001 km
39.37 in
3.2808399 ft

1 cm (centimeter) 0.01 m
10−5 km
0.3937 in
0.032808399 ft

1 km (kilometer) 1000 m
0.62137 mi

1 in (inch) 2.540005 cm
1 ft (foot) 30.48006 m

12 in
1 mi (mile) 1.60935 km
1 mi (nautic) 1.852 km

1.15077 miles
continuned on next page
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Square measures.

1 cm2 (square centimeter) 0.0001 m2 B
0.154991 square inch
0.001076 square foot

1 m2 (square meter) 104 cm2

1 km2 (square kilometer) 106 m2

1 square inch 6.452 cm2

1 square foot 144 square inches
929.029 cm2

1 square mile 2.59 km2

Cubic measures

1 cm3 (cubic centimeter) 10−6m3

0.0610238 in3

1 m3 (cubic meter) 104 cm2

1 km3 (cubic kilometer) 109 m3

1 l (liter) 0.001 m3

0.264172 gls
0.035315 ft3

1 in3 (cubic inch) 16.387 cm3

1 ft3 (cubic foot) 1728 in3

0.02832 m3

1 gl (brit.) (gallon) 4.5459 l
1 gl (amer.)
dry measure 4.405 l
liquid measure 3.7853 l
1 bl (brit.) (barrel) 36 gls

163.6561 l
1 bl (amer.)
liquid measure 31.5 gls

119.228 l
petroleum 42 gls

158.971 l

Density measures

1 g/cm3 1000 kg/m3 A
0.036127 lb/in3

62.42797 lb/ft3

1 lb/in3 27.6799 g/cm3

1 lb/ft3 0.016018 g/cm3

Forces

1 N Newton 1 kgm/s2 A
1 dyne 10−5 N

Pressure and stress

1 Pa (pascal) 1 N/m2 A
continuned on next page
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1 MPa (mega pascal) 106 Pa
145.0378 psi
10 bars

1 psi (pounds per square inch) 0.006895 MPa
6894.6497 Pa

1 bar 105 Pa
1 kbar 100 MPa
1 atm (76 cm Hg) 1.01325 bars

≈ 0.1 MPa

Permeability

1 Darcy 9.86923x10−13m2 A
1.06x10−11ft2

1 m2 1.01325x1012 Darcy
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