
Chapter 4

Application to laboratory data

In order to check the main theoretically derived results of the stress sensitivity of porous
rock I applied the stress sensitivity approach to velocity vs. stress observations from
isotropic as well as anisotropic rocks. Hereby, main intention was to investigate, if there
are rocks where the stress sensitivity tensor has only one independent entry. If such
rocks are isostatically loaded the fit parameter D = θc/KdryS should be a universal
quantity for all properties of a given rock that depend mainly on the porosity and
geometry of the pore space.

In the case of isotropic rocks these properties are the elastic moduli as well as P-
and S-wave velocity. In fact, I will show that there are many rocks with an approxi-
matly isotropic stress sensitivity tensor. Moreover, I found that there are isotropic low
porosity crystalline rocks where the universality of D is even valid for the electrical
resitivity.

If D is a universal quantity of a given rock and the rock is isostatically loaded its
anisotropy does not change with load. Then, Thomsen’s and Tsvankin’s anisotropy
parameter, in the case of TI and orthorhombic media, respectively, should be indepen-
dent from the applied load. I will show that there are sedimentary as well as highly
metamorphic anisotropic rocks where parameter D is universal for all velocities in all
directions and where the anisotropy parameters are at least approximately constant.

4.1 General remarks on fit procedure

For any stress dependent property under consideration the fit procedure is a two-step
process. This is imposed by the postulated universality of parameter D. Again, the
basic fit equation in terms of, e.g., P- and S-wave velocity, looks like:

VP (Peff) = AP + KPPeff − BP exp(−DP Peff) (4.1)

VS(Peff) = AS + KSPeff − BS exp(−DSPeff) (4.2)

Fitting the equation to the data is done by means of a least-squares fit. In general,
this means, that a certain set of parameters is searched for, that leads to the minimal
deviation of the fit equation from the observed data. The squared sum of the deviation
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4.1. General remarks on fit procedure

is frequently denoted as χ2. Basically, χ2 reads (e.g., Press et al., 2002)

χ2 =

N−1
∑

i=0

[

yi − y(xi, a0...aM−1)

σi

]2

, (4.3)

where N is the number of observed data yi, and y(xi, a0...aM−1) are the values of the
assumed model with M adjustable parameters aj (j = 0,..., M - 1). χ2 is dimensionless
since σi is the standard deviation of the observed value yi. If σi is not known for the
considered data set a default value of 1 is usually assumed.

However, the fit equation used here, e.g., eq. (4.1), is not linear in its fit parameters
and cannot usefully be linearized. Thus, the fit procedure must be conducted itera-
tively. Here, the Levenberg-Marquardt Method (see, e.g., chapter 15, pp. 688 of Press
et al., 2002, for details) was used for this purpose, provided by the Matlab software
package. It turned out that it is necessary to fit velocities in km/s, and moduli in GPa
to avoid instabilities in the fit process due to numerical limitations.

A non-linear least squares fit requires the definition of initial values for the searched
for fit parameters. The fit procedure is highly sensitive to the initial guess for parameter
A. It was found empirically that A should be of the order of 90 to 95% of the maximum
value in the data. This order of magnitude usually corresponds to transition zone from
non-linear increase at low applied stress to linear increase for higher stress. In the
case of 176 velocity data sets from Freund (1992) it was possible to fit all 88 P- and
corresponding S-wave velocities completely automized by calculating the initial value
A to 95% of the maximum velocity of the certain P- and S-wave.

In general, the application of an iterative model optimization is fraught with prob-
lems. On the one hand site it is possible that the solution does not converge. Addition-
ally, it is possible that the solution converges at a local minimum of χ2. Consequently,
the obtained set of best fit parameters does not represent the searched for parameters.
However, the stress sensitivity approach has the advantage of knowing the physical
meaning of the certain fit parameters. Thus, convergence in a local minimum can
easily be identified if the fit parameters show non-physical values.

In the first step, eq. (4.1) and (4.2) are used to fit the corresponding data for a given
set of initial fit values. This gives a first set of best fit parameters AP , KP , BP , DP and
AS, KS, BS, DS. In the case of isostatic load and an isotropic stress sensitivity tensor
D = DP = DS should be valid.

In the second step parameter D is calculated as the mean of DP and DS. Then, the
data are refitted but now with a common and constant D. This definition of a constant
D makes the fit equation linear in its fit parameters and, hence, the second fit can be
conducted as a linear least squares fit.

The second step improves the quality of the fit in many cases, especially for rocks,
where DP and DS obtained from the first fit show a high degree of correspondence.
There are also rocks, where this procedure decreases the quality of the fit. However,
even for those rocks it was, in general, possible to fit the data quite well. The work
flow of the two step fit procedure is schematically illustrated in Fig. (4.1).

Figure 4.2 shows the best fit for the second fit as obtained from velocity observations
from a sillimanite gneiss of the KTB pilot hole (Berckhemer et al., 1997). Initial and
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First: non-linear least squares fit.
P-wave: AP, KP, BP, DP
S-wave: AS, KS, BS, DS

?

Second: linear least squares fit.
const. D = mean[DP,DS]
P-wave: AP’, KP’, BP’
S-wave: AS’, KS’, BS’

Final result:
VP = AP’+ KP’ ·P - BP’exp(-D ·P)
VS = AS’+ KS’ ·P - BS’exp(-D ·P)

Figure 4.1: Schematic illustration of the two step fit procedure. The fit equation
V = A + K ·P − B exp(−D ·P ) is non-linear in its parameters and their physical
meaning depends on the data under consideration. Thus, in the first step, a non-linear
least squares fit is separately applied to the all considered data of a certain sample. In
a next step the mean of all obtained parameters D is calculated. This D is used as a
constant value for all considered data. Taking D as constant value within the second
fit procedure makes the fit equation linear in its parameter. Hence, the second fit can
be conducted as a standard linear least squares fit.
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4.2. Elastic properties of isotropic rocks
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Figure 4.2: Best fit for P-wave (solid line) and S-wave (dashed line) data from a
sillimanite gneiss of the KTB pilot hole (Berckhemer et al., 1997). Parameter D was
determined to 0.038515 MPa−1.

best fit values are listed in Tab. 4.1. Parameters DP and DS agree quite well in the first

Table 4.1: Best fit results for first and second fit. χ2 gives the sum of the squared
deviation of best fit from data. The resulting velocities (for second fit) are plotted
with observations in Fig. 4.1

AP KP BP DP χ2 AS KS BS DS χ2

1. fit 6.052 0.000 1.274 0.045 < 0.001 3.560 0.000 0.556 0.032 < 0.001
2. fit 6.087 0.000 1.205 0.039 0.003 3.585 0.000 0.598 0.039 0.002

fit procedure. Thus, all parameters do not vary remarkably comparing their results for
the first and second fit. Although this is an example where the accuracy of the fit
slightly decreases from the first to the second fit (compare χ2 for P- and S-wave fit in
Tab. 4.1) the final parameter combination describes the laboratory observations very
well as illustrated in Fig. 4.2.

4.2 Elastic properties of isotropic rocks

The changes of elastic moduli of very different rock types as a function of an applied
load have been investigated by numerous researchers. Brace (1965) have analyzed
the stress dependence of low porosity crystalline rocks and were among the first who
identified the dominant role of crack closure on the stress dependence of elastic moduli.

Prasad & Manghnani (1997) focused their studies on the stress dependence of Michi-
gan and Berea sandstone. Differences in the stress dependencies of P-wave velocity and
quality factor between both rocks are addressed to distinct microstructures. Pore and
confining pressure were varied independently in order to investigate the variation of
the effective stress coefficient as a function of both quantities (see eq. 3.3). They found
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Application to laboratory data

that pore pressure effects do not cancel confining pressure effects at higher pore and
confining pressure. This lead them to the conclusion that the effective stress coefficient
is smaller than 1 and a function of pore and confining pressure.

Dvorkin et al. (1996) have analyzed the dependence of P- and S-wave velocities of
dry sandstones upon effective stress in ultrasonic laboratory experiments. Porosities of
the samples varied between 0.05 and 0.3, with a clay content ranging from 0.03 to 0.1.
They found that the stress sensitivity of sandstones decreases with increasing porosity
and that it was practically independent from clay content.

Eberhart-Phillips et al. (1989) have published results of P- and S-wave velocities
measurements from 64 different water saturated sandstones as a function of effective
stress, porosity, and clay content (C). Effective stress was understood as the difference
between confining stress and pore pressure. Since confining stress, and thus effective
stress, was isotropic, Eberhart-Phillips et al. (1989) use the term effective pressure Peff .

They were able to successfully fit all velocity observations with equation (1.1). The
best fit parameters for P- and S-wave velocities as well as the sample names, porosity,
and clay content are given in Tab. (1) off their publication. For most samples 17
measurements of P- and S-wave velocities have been conducted and fitted. Samples
with less than 6 measurements were ignored. Thus, their data summarize nearly 2000
laboratory measurements. All samples showed an exponential increase in both P- and
S-wave velocities up to approx. 20 MPa (0.2kbar) effective stress. Above this stress
level the increase in velocities tapers to a flat linear increase (compare Fig. 4.3). They
report differences in the stress sensitivity pattern for different rocks, particularly at
low effective stress. However, in contrast to Dvorkin et al. (1996), they argue that the
differences cannot be attributed to porosity.

Eberhart-Phillips et al. (1989) found that parameter D was quite similar for the
complete data set of 64 P- and corresponding S-wave velocities. A mean D of 0.167±0.053
(for Peff in MPa) was found for all velocities (compare exponential argument in equa-
tions (4.4) and (4.5)).

By combining the measurements from all samples, they found empirical best fit
equations for P- and S-wave velocity that read:

Vp = 5.77 − 6.49φ − 1.73
√

C + 0.446
(

Peff − e−16.7Peff
)

(4.4)

and

Vs = 3.70 − 4.94φ − 1.57
√

C + 0.36
(

Peff − e−16.7Peff
)

, (4.5)

where Peff is in kbar, φ and C are dimensionless, and velocities are in km/s. Their
model accounts for 95% of the variance and has an rms error of 0.1 km/s. Note,
eq. (4.4) and (4.5) were derived from the analyzis of the whole data set. For every
single rock sample eq. (1.1) was successfully applied.

Figure 4.3 shows representative P- and S-wave velocities as calculated for best-fit
data given by Eberhart-Phillips et al. (1989). The porosity of Fontainebleau sandstone
(Fig. 4.3(a)) was determined as 0.2 while the clay content was 0.0. In the case of
Berea 500 (Fig. 4.3(b)), Conotton (Fig. 4.3(c)), and Coconino sandstone (Fig. 4.3(d))
porosity was 0.195, 0.236, and 0.111 and clay content 0.09, 0.04, and 0.06, respectively.
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Figure 4.3: P- (red line) and S-wave (blue line) velocities of different sandstones. Ve-
locities were calculated from best fit parameters given in Tab. (1) in Eberhart-Phillips
et al. (1989).
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Application to laboratory data

Unfortunately, only the best fit parameters and porosities of the samples are listed
in Eberhart-Phillips et al. (1989). As discussed in section (4.1) this corresponds to
the first step of the two-step fit procedure, suggested for the application of the stress
sensitivity approach. Thus, P- and S-wave velocities for all samples are calculated
from the given best fit data. These resulting velocity-stress relations are refitted with
parameter D = (DP + DS)/2 kept constant. Since no observed velocities are given
it is not possible to determine the accuracy of the given best fit parameters and the
parameters obtained from the refit. The best fit parameters obtained from refitting
the velocities are listed in Tab. (F.2). For each sample P- and S-wave velocities could
be fitted succesfully with a certain universal parameter D. The parameter K is apprix.
zero indicating that stiff pore space closure is negligible for the stress dependence of
seismic velocities.

However, Fig. 4.4 shows a comparison of the velocities (shown in Fig.4.3 as lines,
here as dots) calculated from the given best-fit parameters with the velocities obtained
from refitting. Obviously, the obtained velocities match the given very well.

The same empirical relation (eq. 1.1) was used by Jones (1995) to fit ultrasonic P-
and S-wave velocity measurements on different water saturated sandstones at various
effective isostatic stresses. The effective stress was defined as the difference between
confining stress and pore pressure. Porosity (helium porosity) and density were mea-
sured on vacuum-dried samples. Ahead of the velocity measurements the samples were
vacuum-saturated with distilled, de-aerated water at a pressure of 10−4 Pa.

According to Jones (1995) the parameters K, B, and D do not correlate with porosity
or clay content and D is similar for all velocities. In contrast, the pressure independent
parameter A shows a linear decrease with initial porosity at room conditions. The
physical meaning of parameter A is given in eq. (3.57) and (3.56). It corresponds to
the velocity of a rock at Peff = 0 where the porosity consists of the stress independent
part φs0 of the stiff porosity only. Such an assemblage of spherical inclusions in a ho-
mogeneous isotropic material can be described by the upper Hashin-Shtrikman bounds
(Hashin & Shtrikman, 1963).

As in the case of the Eberhart-Phillips et al. (1989) data set the application of
the stress sensitivity approach is impeded by the fact that only the resulting best fit
parameters are given and not the velocity observations. Therefore, the velocities for an
effective stress up to 60 MPa were calculated for the given best-fit parameters. In the
next step the thereby obtained velocities were again fitted, now with a fixed parameter
D, calculated as the average of the D values for P- and S-wave given by Jones (1995).
Neglecting the stress dependence of density, saturated bulk and shear modulus were
calculated and fitted additionally. However, Fig. (4.5) illustrates at least for sample
E1(412) that Jones’ regression curve matches the observed velocities so well that a refit
of the given velocities is still reasonable.

P- and S-wave velocities were calculated for A, K, B, and D. As discussed for the
Eberhart-Phillips et al. (1989) data set these velocities were refitted. This is illustrated
in Fig. (4.6) and the best fit parameters are listed in Tab. 4.2.

Obviously, it was possible to fit the velocities with a very high accuracy. This was
expected since the D values given by Jones (1995) are very similar. Thus, the tensor
of stress sensitivity of this sample seems to be isotropic.
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Figure 4.4: P- (red dots) and S-wave (blue dots) velocities calculated from best fit
parameters given in tab. (1) in Eberhart-Phillips et al. (1989) and velocities calculated
from refitted parameters listed in Tab. F.2. Parameter D was 0.205, 0.115, 0.110, and
0.205 (all in 1/MPa) for Fontainebleau, Berea 500, Conotton, and Coconino sandstone,
respectively.

Table 4.2: Best fit parameters for regression of velocities for sample E1(412). Fit 1
shows the best fit parameters for this sample given by Jones (1995). Fit 2 gives the best
fit parameters obtained from refitting the data with a common and constant parameter
D.

P-wave S-wave
A K B D χ2 A K B D χ2

Fit 1 4.971 0.001 0.278 0.178 — 3.222 0.001 0.176 0.131 —
Fit 2 4.983 0.001 0.284 0.155 <0.001 3.211 0.001 0.169 0.155 <0.001
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Figure 4.5: This figure was taken from Jones (1995). It illustrates the accuracy of
Jones fit results for sample E1(412). Squares denote observed velocities, the line the
best fit.
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Figure 4.6: Fig. (4.6(a)): Best fit (solid lines) and velocities (dots) as calculated from
Jones (1995). Best fit was done with D = 0.155MPa−1 as the mean of DP = 0.178
and DS = 0.131 given by Jones (1995). Fig. (4.6(b)): Calculated bulk (blue dots)
and shear modulus (red dots) and regression (solid lines) where D = 0.182MPa−1

was found. Fig. (4.6(c)): Best fit of moduli with D = 0.155MPa−1 as obtained from
velocity regression.
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Freund (1992) has published P- and S-wave velocity measurements on 88 clastic
rock samples from the Rotliegendes formation. The samples were recovered from well
Salzwedel 2/64 in the northern part of Sachsen-Anhalt from 3340 to 3670 m depth.
In contrast to Eberhart-Phillips et al. (1989) and Jones (1995), he conducted the mea-
surements on oven-dried samples. The samples were dried over 2 weeks at 60◦ C. All
measurements were conducted in a hydrostatic pressure vessel over an effective stress
interval ranging from 8 to 300 MPa. Velocities were obtained by pulse-transmission
technique whereby ceramic transducers with frequencies of 1MHz were used. The errors
in the measurements are given as less than 2% and 3% for P- and S-waves, respectively.

All samples show typical stress dependencies of velocities. In the low pressure
regime an increasing load leads to a rapid non-linear increase in both P- and S-wave
velocities where P-waves are more sensitive to stress variations than S-waves. For
higher stress levels the increase in velocities with increasing stress is linear and shows a
very flat slope. The change in P-wave velocity between first loading level (8 MPa) and
maximum load (300 MPa) ranges from 6% to 80% for sample 53 and 139, respectively,
as shown in Fig. (4.7). The simultaneous increase in S-wave velocity is less pronounced.
As for P-wave velocity sample 53 shows the weakest increase of 5% and sample 139 the
strongest (53%).
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Figure 4.7: Samples 53 and 139 show the minimum respectively maximum increase in
P- and S-wave velocity.

It was possible to fit all 88 P- and S- wave data sets with a high accuracy. The
resulting fit parameters for the first and second fit are listed in Tab. (4.3). For some
representative samples, a comparison between the measured data and velocities cal-
culated from the the best fit parameters (second fit) listed in Tab. (4.3) is shown in
Fig. (4.8).

Obviously, parameter K for both P- and S-wave velocity is approximately zero.
Thus, the closure of stiff porosity can be assumed to be negligible over the applied
effective stress range. Hence, it is reasonable to assume that the bulk porosity stayed
more or less constant during the experiments, since compliant porosity is generally only
a very small part of bulk porosity.
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Sample Porosity Density Fit P-wave S-wave
A K B D χ

2 A K B D χ
2

120 0.036 2660 1 5.506 0.000 1.920 0.019 0.010 3.555 0.000 0.944 0.023 0.001
2 5.265 0.001 1.738 0.021 0.003 3.534 0.000 0.924 0.021 0.001

219 0.078 2480 1 4.729 0.000 2.211 0.039 0.009 3.201 0.000 1.253 0.042 0.004
2 4.745 -0.000 2.134 0.041 0.013 3.233 -0.000 1.211 0.041 0.007

41 0.036 2670 1 4.566 0.000 0.388 0.009 0.001 3.061 0.000 0.265 0.005 0.000
2 4.685 -0.000 0.505 0.007 0.001 2.970 0.000 0.174 0.007 0.000

95 0.011 2680 1 5.455 0.000 1.009 0.018 0.007 3.149 0.000 0.379 0.019 0.008
2 5.403 0.000 0.944 0.018 0.006 3.104 0.000 0.313 0.018 0.007

62 0.048 2600 1 4.941 0.000 0.560 0.008 0.003 3.143 0.000 0.328 0.011 0.001
2 4.835 0.000 0.456 0.009 0.002 3.197 -0.000 0.380 0.009 0.001

53 0.043 2630 1 4.727 0.000 0.297 0.010 0.001 3.041 0.000 0.148 0.011 0.000
2 4.705 0.000 0.273 0.010 0.001 3.039 0.000 0.144 0.010 0.000

60 0.050 2640 1 4.452 0.000 0.773 0.024 0.011 2.722 0.000 0.381 0.032 0.002
2 4.426 0.000 0.730 0.028 0.010 2.740 -0.000 0.351 0.028 0.003

56 0.050 2640 1 5.097 0.001 1.504 0.033 0.013 3.503 0.000 0.772 0.019 0.009
2 5.300 0.001 1.559 0.026 0.023 3.390 0.000 0.666 0.026 0.004

52 0.050 2600 1 4.761 0.000 0.714 0.016 0.001 3.131 0.000 0.398 0.022 0.000
2 4.631 0.000 0.621 0.019 0.001 3.108 0.000 0.377 0.019 0.000

309 0.086 2450 1 4.859 0.000 2.376 0.036 0.037 3.294 0.000 1.385 0.042 0.005
2 4.854 0.000 2.265 0.039 0.040 3.350 -0.000 1.312 0.039 0.014

308 0.114 2360 1 4.977 0.000 1.311 0.018 0.004 3.231 0.000 0.815 0.025 0.001
2 4.847 0.000 1.212 0.021 0.004 3.281 -0.000 0.838 0.021 0.002

294 0.149 2280 1 4.320 0.001 0.940 0.035 0.002 2.927 0.000 0.478 0.032 0.003
2 4.338 0.001 0.945 0.033 0.002 2.893 0.000 0.434 0.033 0.002

272 0.035 2540 1 5.159 0.001 3.639 0.081 0.008 3.381 0.000 1.225 0.040 0.009
2 5.271 0.001 3.176 0.061 0.037 3.243 0.001 1.268 0.061 0.003

27 0.018 2680 1 4.799 0.000 0.543 0.016 0.005 3.122 0.000 0.209 0.011 0.000
2 4.839 -0.000 0.560 0.014 0.006 3.083 0.000 0.172 0.014 0.000
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Figure 4.8: Best fit result (solid line) and observations (circles) for P- (red) and S-
wave (blue). Velocity data from Freund (1992). Parameter D was 0.007, 0.026, 0.021,
0.041, 0.061, and 0.021 1/MPa in the case of sample 41, 56, 120, 219, 272, and 308,
respectively.
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If the density of the samples is known it is possible to invert the velocity best
fit parameters for the stress sensitivity parameters as described by Shapiro (2003).
Although density was determined at room conditions only, it is reasonable that it is
approximately constant, since changes in porosity are negligible.

If both P- and S-wave velocities are fitted and the density of the sample is known
it is straightforward to invert the fit parameters for the stress sensitivity parameters
KdryS, µdryS, θc, θcµ, φc0 as shown by Shapiro (2003). The results of the inversion for
the samples mentioned above are listed in Tab. 4.4 and the results for all samples are
listed in Tab. (F.6).

Table 4.4: Stress sensitivity parameters KdryS, µdryS, θc, θcµ, φc0of sample 41, 56, 120,
219, 272, and 308.

Sample Porosity Density KdryS µdryS θc θcµ φc0

[—] [kg/m3] [GPa] [GPa] [—] [—] [—]

41 0.036 2670 27.210 23.555 191.747 68.545 0.002
56 0.050 2640 33.717 30.332 887.745 423.865 0.001
120 0.036 2660 29.458 33.214 612.250 369.637 0.001
219 0.078 2480 21.275 25.927 863.338 565.824 0.001
272 0.035 2540 34.953 26.710 2119.854 1013.172 0.001
308 0.114 2360 21.577 25.403 457.892 483.842 0.001

Initial crack porosity was found to be of the order of 0.001, thus it is, indeed, only
a very small part of the bulk porosity. θc and θcµ are both in the order 103, reaching
occasionally 103. Moreover, θc is roughly twice θcµ as shown in Fig. (4.9). Taking all
samples into account, this indicates that the dry matrix bulk moduli of the samples
are twice as sensitive to changes in compliant porosity than the corresponding matrix
shear moduli.

The above mentioned data set confirm that there are rocks where the parameter D
is approximately a universal quantity, i.e., that these rocks seem to have an isotropic
tensor of stress sensitivity. To illustrate this result Fig. (4.10) shows parameter DS

plotted as a function of corresponding DP . A linear regression of the data revealed
a correlation coefficient of 0.88. The slope of the linear regression was 0.92 with an
intercept of 0.003 and a coefficient of determination of R2=0.78.

According to eq. (3.56) and (3.56) parameter AP and AS represent the stress inde-
pendent P- and S-wave velocities of the considered rock with closed compliant porosity.
This is in agreement with the interpretation of the parameter by Freund (1992). Con-
sidering all samples, he found that parameters AP and AS are linear functions of
porosity and clay content. Since the density is given for all samples, AP and AS can
be used to calculate the corresponding moduli KdryS and µdryS. This is illustrated in
Fig. (4.11). A linear regression was applied to the data. The best fit approximations
read:

Kdry(φ) = −151.051 ·φ + 38.4559 (4.6)

µdry(φ) = −109.821 ·φ + 32.9837 (4.7)

The coefficients of determination R2 are 0.50 and 0.64 for Kdry and µdry, respectively.
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Figure 4.9: Linear regression of θc vs. θcµ for Freund (1992) data set. Least squares
fit: y = 0.368θC + 110.6, R2 = 0.55.
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Figure 4.10: Linear regression (blue line) of DP vs. DS (red circles) for all investigated
isotropic sandstone samples from Eberhart-Phillips et al. (1989); Jones (1995); Freund
(1992). Linear regression is y(x)= 0.92x + 0.003 with R2=0.78.
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Figure 4.11: Linear regression of KdryS(Fig. 4.11(a)) and µdryS(Fig. 4.11(b)) obtained
from parameters AP and AS from second fit of Freund (1992) data. Here, porosity is
denoted as n.

Beside the pure mathematical linear regression mentioned above, the physical mean-
ing of parameters AP and AS, as derived from the stress sensitivity approach, allow for
a physically constrained regression. Since KdryS and µdryS describe the moduli of a rock
with only stiff porosity, i.e., with only spherical inclusions, they should correspond as
a function of porosity to the upper Hashin-Shtrikman bounds (Hashin & Shtrikman,
1963).

The Hashin-Shtrikman bounds represent the smallest possible range of effective
elastic moduli of a porous medium as a function of the material moduli and porosity.
Hence, fitting the upper Hashin-Shtrikman bound to Kdry and µdry over the given
porosity range allows for an inversion of the effective bulk and shear modulus K0

respectively µ0 of the matrix forming grain material. These grain moduli are need in
order to apply Gassmann’s equation, e.g., if a fluid substitution analyzis is desired. As
shown in Fig. (4.11) KdryS and µdryS strongly scatter for low porosities. This represents
that the complete data set comprises five claystones, 26 siltstones, and 57 sandstone,
for which quite different effective grain moduli could be expected. Therefore, it was
tried to separate the sandstones from the clay- and siltstones by keeping only those
samples with a clay content less than 10%. This might be to restrictive since only
43 and not 57 data samples, as mentioned by Freund (1992), remained. However, the
resulting best fit of the upper Hashin-Shtrikman bounds to KdryS and µdryS are shown
in Fig. (4.12).

While the approximation of µdryS was quite successful, it is obviously less convenient
for KdryS. Using the upper Hashin-Shtrikman bound as an envelope was even worse.
If the derived physical meaning of parameter A is reasonable this indicates that the
mineralogical composition of the sandstones is probably not uniformly enough to be
represented with one effective mineral phase.

However, this example illustrates the advantage of using a physically constrained
regression based on the stress sensitivity approach instead of a pure mathematical
analyzis. It allows to decide physically constrained if the regression is sufficient for a

65



4.3. Elastic properties of anisotropic rocks

0 0.05 0.1 0.15 0.2
0

5

10

15

20

25

30

35

40

45

50
Freund Sandstones Kdrys

n [ − ]

[ G
P

a 
]

data
Hashin−Shtrikman upper bound

(a)

0 0.05 0.1 0.15 0.2
0

5

10

15

20

25

30

35
Freund Sandstones Gdrys

n [ − ]

[ G
P

a 
]

data
Hashin−Shtrikman upper bound

(b)

Figure 4.12: Regression of KdryS (Fig. 4.12(a)) and µdryS (Fig. 4.12(b)) from sandstones
with the upper Hashin-Shtrikman bound. Bulk and shear modulus K0 and µ0 of
effective grain material are 30 and 29 GPa, respectively.

certain task.

4.3 Elastic properties of anisotropic rocks

Lo et al. (1986) investigated the elastic properties of vacuum dried Berea sandstone,
Chicopee shale and Chelmsford granite at confining isostatic stress up to 100 MPa using
ultrasonic transmission method. All samples were treated as transversely isotropic.
Therefore, P-wave velocity was measured in the 1 (V11) and three direction (V33)
together with the corresponding S-wave velocities VSH1, VSV1, VSH3a, and VS3b. In
addition, VP and VSH as well as VSV were observed at an angle of 45◦ with respect to
the 3 axis. In the case of the sedimentary rocks Berea sandstone and Chicopee shale
the 3 axis was oriented normal to the bedding plane which was assumed to represent
the plane of isotropy. For Chelmsford granite the plane parallel to the cracks, denoted
as the ”fit plane”, was defined as the plane of isotropy. Three cylindric samples were
cut for each rock with respect to the assumed plane of isotropy.

A total of nine velocities was measured for each sample and six were used to calculate
the five independent entries of the stiffness matrix. VSH3a and VSH3b were averaged
to determine C44. Using an index notation for the velocities Vij where i denotes the
direction of propagation and j the polarization direction we obtain: VSH1 → V12,
VSV1→ V13, VSH3a/b → V31, VP11 → V11, and VP33 → V33. From observations
in the 45◦ direction only P-wave velocity was used, hence VP45 → V45.

The porosity of Berea sandstone was 17%. P-wave velocities increase by 21%
from approx. 3.2 to 4.1 km/s while S-wave velocity increases from 2.1 to 2.7 km/s
(Fig. 4.13(a)) by 22%. In general, anisotropy is weak and becomes less with increasing
load indicating the influence of crack closure on anisotropy, clearly shown by Thom-
sen’s anisotropy parameters (Fig. 4.13(c)). The stiffnesses C12, C13, C44, and C66 are
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Figure 4.13: Velocities (Fig. 4.13(a)), stiffnesses (Fig. 4.13(b)), and Thomsen parame-
ters (Fig. 4.13(a)) of Berea sandstone. Velocities from Lo et al. (1986)
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Figure 4.14: Velocities (Fig. 4.14(a)), stiffnesses (Fig. 4.14(b)), and Thomsen parame-
ters (Fig. 4.14(a)) of Chelmsford granite. Velocities from Lo et al. (1986)

less sensitive to stress than C11, and C33

The porosity of Chelmsford granite was 0.9%. P-wave velocities increase by approx-
imately 36% from around 3.5 to 5.5 km/s (Fig. 4.14(a)). S-wave velocities increase by
29% from roughly 2.5 to 3.5 km/s. Thus, especially P-wave velocity is more sensitive
to stress increase than in the case of Berea sandstone. Elastic anisotropy is strong
up to 50 to 60 MPa and depends remarkably on stress as shown by the Thomsen’s
parameters (Fig. 4.14(b)). This indicates that the anisotropy is mainly caused cracks.

In contrast, the anisotropy of Chicopee shale is mainly controlled by the bedding
plane and minor contributions of mineral constituents. S-wave velocities are more or
less independent from stress. P-wave velocities increase by 10% and less (Fig. 4.15(a)).
The anisotropy of Chicopee shale is weak. Especially Thomsen’s parameter δ is small
and fluctuates around zero (Fig. 4.15(c)). Parameter ε decreases continously while γ
stays more or less constant.

The stress dependence of anisotropy of the samples was investigated in terms of
stress sensitivity. For every sample every velocity was separately fitted. The obtained
D values were averaged and all velocities were refitted with this single parameter D.
Figure 4.16 compares the observed velocities with the best fit results. The best fit
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Figure 4.15: Velocities (Fig. 4.15(a)), stiffnesses (Fig. 4.15(b)), and Thomsen parame-
ters (Fig. 4.15(a)) of Chicopee shale. Velocities from Lo et al. (1986)

parameters are listed in Tab. (4.5).

All velocities of all samples could be fitted with a very high accuracy in both the
fist and second fit step. The closure of stiff porosity is negligible for all samples, since
parameter K is approximately zero. Comparing the best for parameters of both steps
shows that they vary only slightly. This is due to the similarity of parameter D for all
velocities in the first fit step, especially in the case of Berea sandstone. This indicates
that the tensor of stress sensitivity of all three samples is isotropic.

Since the samples were isostatically loaded an isotropic tensor of stress sensitivity
should result in a stress independent elastic anisotropy, hence, in constant Thom-
sen’s parameters. However, only parameter γ seems to correspond to this theoretical
condition. Berea sandstone and Chelmsford granite show an approximately constant
parameter ε above 20 MPa load while it continously decreases for Chicopee shale. The
strongest sensitivity to stress is shown by parameter δ below 40 MPa load, especially
in the case of Chelmsford granite.

There are a couple of possible reasons for this discrepancy between the theoretically
required stress independence of anisotropy and observations which might even occur
in combination. In the case of Berea sandstone and Chicopee shale the anisotropy
is small even in the low stress regime. Especially Berea sandstone approaches elastic
isotropy above 40 MPa. Thus, measurement errors occurring especially in the low
stress regime might effect anisotropy. However, it is most likely that the orientation of
the measurement coordinate system with respect to the rock texture might produced
a tilt of the true from the assumed TI symmetry axis. Moreover, it is also possible
that the rocks are only apparently transversely but, in fact, slightly orthorhombicaly
isotropic. In this case, a misalignment of the measurement coordinate system from the
symmetry planes might also result in the observed behavior of Thomsen’s parameters.

4.4 Anisotropic metamorphic rocks from the KTB

The following part shows results from the application of the stress sensitivity approach
to velocity vs. isostatic stress data from anisotropic metamorphic rock samples from the
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Figure 4.16: Measured velocities and best fits for Berea sandstone (Fig. 4.16(a)),
Chelmsford granite (Fig. 4.16(b)), and Chicopee shale (Fig. 4.16(c)). Parameter D
was 0.045, 0.032, and 0.021 per MPa, respectively. Velocities from Lo et al. (1986)
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Table 4.5: Best fit results for first and second fit of velocity data from Lo et al. (1986).
Sample Fit Velocity A K B D χ2

[km/s] [km/s/MPa] [km/s] [1/MPa]

Berea 1 V11 4.105 0.000 0.766 0.040 0.002
sandstone VP45 4.026 0.000 0.788 0.050 0.004

V33 4.008 0.000 1.086 0.048 0.002
V12 2.735 0.000 0.534 0.044 0.000
V13 2.707 0.000 0.525 0.043 0.000
V31 2.698 0.000 0.567 0.046 0.001

2 V11 4.086 0.000 0.780 0.045 0.002
VP45 4.041 0.000 0.768 0.045 0.005
V33 4.018 0.000 1.074 0.045 0.002
V12 2.733 0.000 0.537 0.045 0.000
V13 2.702 0.000 0.530 0.045 0.000
V31 2.699 0.000 0.565 0.045 0.001

Chelmsford 1 V11 5.852 0.000 1.901 0.028 0.002
granite VP45 5.716 0.000 1.919 0.029 0.004

V33 4.822 0.006 1.890 0.041 0.002
V12 3.531 0.000 0.979 0.033 0.001
V13 3.160 0.003 0.859 0.036 0.001
V31 3.499 0.000 1.128 0.026 0.000

2 V11 5.784 0.000 1.893 0.032 0.006
VP45 5.654 0.000 1.913 0.032 0.007
V33 5.199 0.003 2.213 0.032 0.003
V12 3.537 0.000 0.979 0.032 0.001
V13 3.260 0.002 0.952 0.032 0.000
V31 3.433 0.000 1.115 0.032 0.004

Chicopee 1 V11 5.697 0.000 0.342 0.029 0.000
shale VP45 5.490 0.000 0.458 0.023 0.000

V33 5.498 0.000 0.761 0.016 0.000
V12 3.317 0.000 0.117 0.016 0.000
V13 3.276 0.000 0.161 0.023 0.000
V31 3.159 0.000 0.137 0.019 0.000

2 V11 5.735 0.000 0.357 0.021 0.001
VP45 5.503 0.000 0.466 0.021 0.000
V33 5.417 0.000 0.705 0.021 0.001
V12 3.304 0.000 0.109 0.021 0.000
V13 3.282 0.000 0.164 0.021 0.000
V31 3.154 0.000 0.134 0.021 0.000
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pilot hole of the German Continental Deep Drilling Program (KTB). The measurements
were conducted at the Mineralogical-Petrographical Institute, University Kiel. Here, a
short summary of the experimental set up is given in so far, as it is important for the
application of the stress sensitivity approach. A detailed description can be found in
Kern & Schmidt (1990); Kern et al. (1991, 1994).

One key issue of the laboratory experiments was the determination of physical in
situ properties of the KTB rocks. Petrophysical rock characteristics like elastic wave
velocity, velocity anisotropy, shear wave splitting, density, crack porosity and radiogenic
heat production were measured over an effective stress and temperature range up to
600 MPa and 600◦ C, respectively.

For the velocity determination 2 MHz transducers are fixed to the back end side
of the pistons. Ultrasonic piezo elements alow for the determination of one P- and
two orthogonally polarized S-waves in each piston direction. The S-wave receivers are
oriented parallel to the cube edges. Therefore, the travel time through the sample is
obtained by subtracting the calibrated time needed for the pulse to travel to and from
the sample through the pistons from the total time measured by the transducers. This
technique allows for the simultaneous determination of three P- and six- corresponding
S-wave velocities as well as a direct observation of sample length changes in the three
orthogonal directions with increasing stress and temperature. The error for the deter-
mination of the seismic velocities is given as less than 1-2% for confining stresses larger
than 200 MPa (Popp, 1994). In addition, the deformation of the samples in the three
coordinate directions due to the applied load was measured. However, Popp (1994)
gives errors up to 10% for the strain measurements.

The samples used here cover a depth interval between 1546.85 m and 3885.69 m.
The experiments were carried out on cubic dry samples with 43 mm initial edge length
in a cubic anvil apparatus using the pulse transition technique (for details see Kern,
1982). Six pyramidal pistons are pressed in three orthogonal directions on the cubic
sample to apply a near-isostatic stress. The edges of the samples are with 1 to 2 mm
slightly larger than the contact sides of the pistons to account for the volume reduction
due to compression. The resulting free edges are sloped to guarantee a homogenous
stress distribution through out the sample.

The samples were oriented in the apparatus with respect to the macroscopically
visible texture, i.e., foliation and lineation. The x- and y-axis are oriented in the plane
of foliation, the z-axis normal to it. The x-axis is aligned parallel to lineation, the
y-axis orthogonally (Kern et al., 1991). The deviation of opposite sides of the cubic
samples from parallelism was 1/100 mm (Popp, 1994). To minimize friction between
the sample sides and the pistons the samples were sprayed with graphite.

All KTB data used here were measured on dry samples. The usage of dry samples
in ultrasonic velocity measurements has the advantage that frequency dependent Biot
type effects do not have to be taken into account. The stress dependent velocities of
ten randomly chosen samples were analyzed (Tab. 4.6).

The rocks are assumed to show either an orthorhombic or a more or less transversel
isotropy (Kern et al., 1991). However, the laboratory experiments were not conducted
in order to describe in detail the stress dependence of seismic velocities and anisotropy.
The main focus was on more general investigations of the stress dependence of various
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4.4. Anisotropic metamorphic rocks from the KTB

Name d [m] P [MPa] φc [%] Rock type
514 KTB 324 E11 1546.85 43.31 0.619 Meta-Gabbro
403 Cli 515 1783.03 49.92 0.004 Sillimanite-Muscovite-Biotit-Gneiss
602 A2a (530) 2471.10 69.19 0.351 Granat-Sillimanit-Biotit-Gneis
522 KTB 607 Albk 2485.75 69.60 0.392 Granat-Hornblende-Biotit-Gneiss
692 F1s (545) 2839.47 79.50 0.491 Sillimanit-Biotit-Gneis
KTB 737 B1d (549) 3011.44 84.32 0.194 Granat-Sillimanit-Muskovit-Biotit-Gneis
742 A1a (554) 3031.00 84.87 0.331 Lamprophyr
KTB 872 F1n (555) 3560.00 99.70 0.360 Sillimanite-Muscovite-Biotit-Gneiss
KTB 919 E1k (568) 3762.97 105.36 0.335 Granat-Amphibolit
KTB 955 C1e (558) 3885.69 108.80 0.560 Biotit-Hoernblende-Gneiss

Table 4.6: Name, depth (d), in situ pressure (P), surface crack porosity φc, and rock
type of the samples.

rock physical properties. Therefore, the cubic samples were cut with respect to the
macroscopically visible fabric elements, i.e., the foliation and, if present, lineations.
Assuming transversally or orthorhombically isotropic media it is reasonable to identify
the foliation as a significant reason for seismic anisotropy and, hence, in a first approx-
imation, the foliation plane as a plane of symmetry (orthorhombic medium) or even
the plane of isotropy (TI medium). However, this is just a rough approximation since
(a) the alignment of the phyllosillcates is probably not perfectly parallel and a possible
additional anisotropy due to (a) a preferred orientation of other anisotropic minerals as
well as (c) cracks is neglected. As a result it is possible that the foliation plane is tilted
with respect to the seismically effective symmetry (isotropy) plane. However, assuming
that the foliation plane represents a symmetry or isotropy plane in an orthorhombi-
cally or transversely isotropic medium, respectively, the direction of the measurement
coordinate system normal to the foliation plane is denoted as the 3-direction.

Both remaining directions lie within the foliation plane. They are distinguished with
respect to the orientation of the lineation. Per definition, the 1-direction is oriented
parallel and the 2-direction orthogonal to the lineation. In a TI medium this definition
is arbitrary since the foliation plane should represent the plane of isotropy. However, in
a rectangular measurement coordinate system with one axis parallel to the symmetry
axis only four independent velocities can be measured. Hence, the inversion of the
complete TI stiffness tensor is impossible.

If the medium is orthorhombic this definition of the reference coordinate system
is insufficient for the determination of the orthorhombic stiffness tensor. The nine
independent entries can be inverted from the velocity measurements only if they are
conducted in the planes of symmetry. Thus, it is most probable that the 1- and 2-
direction of the measurement coordinate system do not coincide with the symmetry
planes as illustrated in Fig. 4.17.

Figure (4.18) shows representative velocity-stress and strain-stress data of the KTB
samples 403Cli515 and KTB955C1e558. In the case of sample 403Cli515 three dis-
tinct P-wave velocities were observed (Fig. 4.18(a)). The P-wave velocity in the three
direction, normal to the macroscopically visible plane of foliation, is the slowest, ap-
proximately 1 km/s slower than V22 and V33 below 300 MPa effective stress. Above
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Figure 4.17: Mismatch between the measurement coordinate system and the symmetry
planes of orthorhombic medium.

400 MPa V33 increases stronger than V11 and V22. This corresponds to the behavior of
the simultaneously observed strains. Although S-waves do not show this post-400 MPa
increase this could indicate that for higher stress the stiff porosity closure becomes non-
linear and/or the grain stiffness becomes stress dependent, hence, the stress sensitivity
approach is no longer valid.

The mean strain reaches approx. 0.4% at 300 to 350 MPa. In contrast, the P- and
S- velocities change over the same range of applied stress with respect to the velocities
at 25 MPa by 3-7 and 2-8%, respectively. If we assume that the bulk deformation
of the sample below 350-400 MPa is a measure of the deformation of the pore space
only, this shows, that the influences of stress on velocities is one orders of magnitude
larger than on bulk porosity. However, in the case of sample KTB955C1e558 velocities
increase by 20-30% while strain reaches approx. 0.4%, hence the stress sensitivity of
velocities is 2 orders of magnitude larger.

Both stress-strain relations in 1 and 2 direction of sample KTB955C1e558 (Fig. 4.18(f))
clearly show a bulge below 350 MPa. Since there is no corresponding effect observable
in the velocities this might illustrate the higher strain measurement errors with respect
to velocity error.

Due to the above mentioned indications for a limited validity of the stress sensitivity
approach for higher stresses, the following considerations are restricted to observations
below 350 MPa inclusively.

Figure (4.19) shows the comparison between the observed velocities and the best
fit, sorted according to the direction of propagation. As mentioned above only V33
shows a remarkable stress sensitivity while the remaining velocities change only slightly
with stress. In summary, all velocities become approximately independent from stress
above 150 MPa. This might indicate the crack closing stress for sample 403Cli515 and
that the closure of stiff porosity seems to be negligible. According to T. Popp (pers.
communication) core observations indicate that the KTB rocks show no stiff porosity
at all.
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4.4. Anisotropic metamorphic rocks from the KTB
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Figure 4.18: Velocities and strain for sample 403Cli515 (4.18(a) - 4.18(c)) and
KTB955C1e558 (4.18(d) - 4.18(f)).

The interpretation of a negligible role of stiff porosity closure for the stress sensi-
tivity of the sample is supported by the best fit parameters, listed in tab. 4.7. For all
velocities parameter K is smaller than 0.001.

Sample KTB955C1e558 (see Fig. 4.18 and 4.20) shows a remarkable stronger in-
crease in seismic velocities with stress than sample 403Cli515. The velocities approach
a constant level at 200 MPa effective stress, indicating a slightly higher crack closing
stress than found for sample 403Cli515. A comparison of the three P- and the six
S-wave velocities shows that the sample is approximately isotropic, especially above
200 MPa. This is a hint that the weak anisotropy of the sample below 200 MPa is
crack induced. The difference in the stress dependence of velocities and anisotropy was
unexpected since both rocks are gneisses.

Figure (4.21) comprises the best fit D parameters for all P- and S-wave data. For
every direction the two D values of the S-waves are plotted against the corresponding
DP value. The data scatter around the solid line indicating DP = DS with a correlation
coefficient of 0.59. The linear regression of the data gave DS = 0.503DP + 0.01 with
a coefficient of determination of R2 = 0.35.

Although a detailed analyzis of the stress dependent anisotropy was not possible
due to uncertainties about the orientation of the measurement coordinate system with
respect to the orthorhombic symmetry planes, it was possible to calculate at least
Tsvankin’s parameters ε and γ. Fig. (4.22) shows the anisotropy parameters for weak
anisotropic samples. In all cases, the anisotropy is approximately independent from
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Figure 4.19: Velocities and best fit for KTB sample 403Cli515. Fig. 4.19(a) shows
velocities in 1, Fig. 4.19(b) in 2, and Fig. 4.19(c) in 3 direction. A universal parameter
D = 0.016 per MPa was found.

Table 4.7: Best fit parameters for KTB sample 403Cli515. Velocities are in km/s, A is
in [km/s], K in [km/s/MPa], and D in [1/MPa]. χ2 is dimensionless.

First fit Second fit
Vel. A K B D χ

2 A K B D χ
2

V11 6.651 0.000 0.262 0.012 0.001 6.640 0.000 0.282 0.016 0.001

V12 3.924 0.000 0.429 0.022 0.010 3.937 0.000 0.358 0.016 0.011

V13 3.225 0.000 0.203 0.010 0.000 3.211 0.000 0.224 0.016 0.001

V22 6.404 0.000 0.263 0.009 0.001 6.378 0.000 0.292 0.016 0.002

V21 3.242 0.000 0.445 0.029 0.001 3.258 0.000 0.304 0.016 0.003

V23 3.917 0.000 0.124 0.016 0.000 3.917 0.000 0.125 0.016 0.000

V33 5.590 0.000 0.443 0.011 0.001 5.568 0.000 0.483 0.016 0.002

V31 3.398 0.000 0.278 0.017 0.000 3.400 0.000 0.273 0.016 0.000

V32 3.263 0.000 0.210 0.015 0.001 3.261 0.000 0.214 0.016 0.001
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4.4. Anisotropic metamorphic rocks from the KTB
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Figure 4.20: Velocities and best fit for KTB sample 955C1e558. Fig. 4.20(a) shows
velocities in 1, Fig. 4.20(b) in 2, and Fig. 4.20(c) in 3 direction. A universal parameter
D = 0.019 per MPa was found.

Table 4.8: Best fit parameters for KTB sample KTB955C1e558. For units see Tab. (4.7)
First fit Second fit

Vel. A K B D χ
2 A K B D χ

2

V11 6.287 0.001 1.947 0.029 0.013 6.521 0.000 1.772 0.019 0.022

V12 3.764 0.000 0.968 0.017 0.000 3.756 0.000 1.008 0.019 0.001

V13 3.773 0.000 1.168 0.019 0.000 3.774 0.000 1.167 0.019 0.000

V22 6.524 0.000 1.640 0.017 0.001 6.502 0.000 1.739 0.019 0.004

V21 3.779 0.000 1.132 0.018 0.000 3.776 0.000 1.150 0.019 0.001

V23 3.823 0.000 1.053 0.017 0.001 3.809 0.000 1.114 0.019 0.002

V33 6.546 0.000 2.551 0.016 0.001 6.504 0.000 2.729 0.019 0.012

V31 3.787 0.000 1.058 0.018 0.000 3.783 0.000 1.080 0.019 0.000

V32 3.721 0.000 1.034 0.018 0.000 3.718 0.000 1.050 0.019 0.000
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Figure 4.21: DP vs. DS plot for all velocities of the KTB data set. Solid line indicates
DP=DS. Linear regression: DS = 0.503DP + 0.01, R2 = 0.35.

stress. In the case of isostatic effective stress, a stress independent anisotropy indicates
a tensor of stress sensitivity with only one effectively independent element, as can be
found in the case of isotropic rocks. This corresponds quite well the result of the
velocity fits, where all velocities of a certain sample could be fitted successfully with a
constant parameter D. Variations occur only at low stress. Only in the case of sample
955C1e558 (Fig. 4.22(b)) the ε parameters strongly vary.

Sample 403Cli515 and 692F1s545 illustrated in Fig. (4.23) show a stronger anisotropy
(above 10%). The anisotropy seems to depend on the applied load and decreases with
increasing stress. The decrease of anisotropy is in contrast to the universality of pa-
rameter D found from the velocity fits. However, this discrepancy might indicate that
the tensor of stress sensitivity of both samples has more than one effectively indepen-
dent entry. However, it might also result from the limitation of the stress dependent
Tsvankin’s parameters to weak anisotropic media, since the anisotropy of both samples
is not weak.

4.5 Stress dependent electrical resistivity.

Brace et al. (1965) have published data from stress dependent deformation and elec-
trical resistivity measurements simultaneously conducted on low porosity crystalline
rocks. The samples were isostatically loaded up to 1 GPa (10 kbar), whereby a constant
pore fluid pressure of approx. Pfl = 0 was maintained during the experiments. Although
all measurements were conducted on saturated samples the pore pressure during com-
pression was maintained approx. zero. Tap water, with a resistivity Ωt = 45−50ohmm
and a NaCl solution (Ωs = 0.3ohmm) were used as saturating fluids. The suite of
samples generally shows bulk porosities below 1%. In this study, we used five rocks,
namely Casco, Stone Mountain, and Westerly granite as well as Rutland quartzite, and
Cape Cod granodiorite.
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4.5. Stress dependent electrical resistivity.
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Figure 4.22: Tsvankin’s parameters for KTB samples 742A1a554 (Fig. 4.22(a)),
955C1e558 (Fig. 4.22(b)), 514KTB324E11 (Fig. 4.22(c)), 872F1n555 (Fig. 4.22(d)),
602A2a530 (Fig. 4.22(e)), and 522KTB607Albk (Fig. 4.22(f)).
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Figure 4.23: Tsvankin’s parameters for KTB samples 403Cli515 (Fig. 4.23(a)),
692F1s545 (Fig. 4.23(b)).
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Figure 4.24: Resistivity of rock samples saturated with tap water (4.24(a)) and salt
solution (4.24(b)) as well as bulk deformation of the samples (4.24(c)). Data from
Brace et al. (1965).

Pressure dependent resistivity for the mentioned rocks saturated with tap water
and salt solution are shown in Fig. 4.24(a) and 4.24(b), respectively, as well as strain
data (Fig. 4.24(c)).

Figure 4.25 and 4.26 show a comparison between the observations and the fit results
for Westerly and Casco granite (Fig. 4.27 and 4.28). It was possible to fit the bulk
modulus (Fig. 4.25(a) and 4.27(a)) as well as the resistivity data - sample saturated
with tap water (Fig. 4.25(b), 4.27(b)) and salt solution (Fig. 4.25(c), 4.27(c)) - quite
well. The best fit parameters for the initial fits are listed in tab. 4.9.

As representative examples the best fit parameters for Cape Cod granodiorite and
Casco granite are listed in tab. 4.10. Cape Cod stands for the worst agreement between
theory and observation concerning a common D and Casco for the best (compare the D
values in tab. 4.9). For Cape Cod we obtain a mean D of 0.043 1/MPa (bulk modulus
vs. resistivity of tap water saturated rock) and of 0.054 1/MPa (bulk modulus vs. resis-
tivity of rock saturated with salt solution). For Casco granite we found corresponding
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4.5. Stress dependent electrical resistivity.

0 50 100 150 200 250 300
5

10

15

20

25

30

35

40

45

50
Bulk modulus

P [MPa]

B
ul

k 
M

od
ul

us
 [G

P
a]

Best−fit
Observation

(a)

0 200 400 600 800 1000

4

4.5

5

5.5

Resistivity, saturated with tap water

P [ MPa ]

R
es

is
tiv

ity
 lo

g1
0 

[ o
hm

 m
]

Best−fit
Observation

(b)

0 200 400 600 800 1000
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5
Resistivity, saturated with salt solution

P [ MPa ]

 lo
g1

0 
[ −

]

Best−fit
Observation

(c)

Figure 4.25: Best fit of Westerly granite data. Bulk modulus (Fig. 4.25(a)), logarith-
mic bulk resistivity of rock saturated with tap water (Fig. 4.25(b)) and salt solution
(Fig. 4.25(c)) were fitted separately with A, K, B, and D as fit parameters. Circles
denote observations, lines the best fit.
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Figure 4.26: Second best fit of Westerly granite. Circles denote observations, lines best
fit. Figure (4.26(a)) and (4.26(b)) show the repeated fit (see text for details) of bulk
modulus and formation factor (salt solution saturated), respectively, with an averaged
and fixed parameter D=0.026 MPa−1. Figure (4.26(c)) and (4.26(d)) illustrate the
result of the repeated fit with a fixed D=0.025 MPa−1 for bulk modulus and formation
factor, respectively, where rock was saturated with tap water.
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Figure 4.27: Casco granite data. Bulk modulus (fig. 4.27(a)), logarithmic bulk resistiv-
ity of rock saturated with tap water (fig. 4.27(b)) and salt solution (fig. 4.27(c)) were
fitted separately with A, K, B, and D as fit parameters. Circles denote observations,
lines the best fit.
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Figure 4.28: Second best fit of Casco granite data. Circles denote observations, lines
best fit. Figure (4.28(a)) and (4.28(b)) show the repeated fit (see text for details) of
bulk modulus and resistivity (salt solution saturated), respectively, with an averaged
and fixed parameter D=0.022 MPa−1. Figure (4.28(c)) and (4.28(d)) illustrate the
result of the second fit for bulk modulus and resistivity (rock saturated with tap water),
respectively, with D=0.021 MPa−1
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4.5. Stress dependent electrical resistivity.

Table 4.9: Best fit parameters as obtained from fitting resistivity and dilatancy data
obtained from Westerly and Casco granite. In the case of resistivity Ω units are [ohm
m] for parameter A and B, [(ohm m) / MPa] for K, and [1/MPa] for D. Subscribes T
and S denote saturation with tap water and salt solution, respectively. In the case of
the bulk modulus K units are similar with [GPa] instead of [ohm m]. χ2 is the sum of
the squared deviations between the best fit model and the observations.

Westerly Casco
Parameter ΩT ΩS K ΩT ΩS K

A 2.900 3.769 37.9 3.126 4.184 49.5
K 0.001 0.001 0.03 0.002 0.002 -0.01
B 0.648 0.766 28.3 0.928 1.070 49.2
D 0.014 0.016 0.036 0.024 0.027 0.017

χ2 0.004 0.013 6.11 0.010 0.002 8.90

Table 4.10: Best fit parameter from second fit of Cape Cod and Casco data. Units are
as mentioned in tab. 4.9.

Westerly Casco
Parameter ΩT K ΩT K

D 0.025 0.021

A 2.799 41.5 3.178 42.3
K 0.001 0.017 0.002 0.022
B 0.613 31.1 0.957 42.3

χ2 0.016 10.97 0.011 10.70

Parameter ΩS K ΩS K

D 0.026 0.022

A 3.687 41.5 4.291 42.3
K 0.001 0.017 0.002 0.022
B 0.748 31.1 1.134 42.31

χ2 0.020 10.97 0.004 10.7

D values of 0.021 and 0.022.

For both examples presented above it was possible to fit static bulk moduli and
logarithmic formation factors for water and salt solution saturated samples success-
fully. Moreover, the repeated fit of static bulk modulus and resistivity of the tap water
saturated rock on the one hand and static bulk modulus and resistivity of salt solution
saturated rock on the other hand revealed approximately the same value for D. This
should be expectable as long as the bulk moduli of the saturating fluids are approxi-
mately equal and the experiments is conducted under drained conditions, i.e., as long
as the pore pressure is kept constantly zero.

The quality of best fits for the remaining three samples was as good as for the
mentioned two examples. In general, all logarithmic resistivity and dilatancy data
could be modeled quite well. The best agreement between the different D values was
obtained for Casco granite, as shown in tab. 4.10. Here, the first fit of the dilatancy
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Application to laboratory data

data delivered negative values for fit parameter K. However, a negative K does not
seem to be a physically meaningful result. Since the absolute magnitudes of all K
values for all samples are very small in comparison to the other parameters we assume
that negative K values result rather from numerics of the fitting process than from any
physical process occurring during compression. This might be interpreted in that way,
that the closure of stiff porosity does not effect the mentioned stress dependencies at
all and K could be eliminated from the fit equation when fitting bulk moduli data.

The good agreement between the parameter D for logarithmic formation factor and
bulk modulus data seem to support our assumption that it is a universal characteristic
for a given rock sample, not only for elastic moduli but also for transport properties
like the electrical resistivity. This is, of course, limited to rocks where only electrolytic
charge transport occurs. If these results are valid then the stress dependence of elec-
trical resistivity in low porosity rocks is also mainly controlled by the elastic stress
sensitivity and thus proportional to the inverse of an effective crack aspect ratio. In
sediments, where the amount of stiff porosity is in general 2 orders of magnitudes higher
than compliant porosity, the pressure dependence of electrical resistivity is controlled
by the pressure dependence of stiff porosity. However, the universality of parameter
D should also be valid in such rocks as long as the tensor of stress sensitivity has
effectively only one independent entry.

4.6 Stress dependence of Poisson’s ratio

In the following the stress dependence of ν for the dry rock sedimentary samples given
by Freund (1992) as well as for the dry metamorphic KTB rocks will be considered in
more detail. As already mentioned in section (3.5), in dry rocks the Poisson’s ratio is
usually constant for high stresses and increases with increasing effective stress in the
low stress regime. As mentioned in section (3.5) the Poisson’s ratio can theoretically
take values between -1 and 0.5. Since the Poisson’s ratio of the samples used here is
always 0 < ν < 0.35 all plots are given in this range for an easy comparison of the
different samples.

Figure (4.29) shows the confining stress dependent P- and S-wave velocities and
Poisson’s ratio for sample 140. The latter was calculated from the observed velocity
data using eq. (3.67). P-wave velocity is more sensitive to increasing stress than S-
wave velocity. Thus, the remarkable increase of ν with increasing stress shows the
exponentially saturating behavior typical for the velocities, too. The dotted blue line
in Fig. (4.29(a)) denotes Poisson’s ratio as calculated from eq. (3.69) with best fit
parameters obtained from velocity fits. For comparison, the solid blue line shows the
resulting stress dependence of ν assuming DP = DS. Both regressions describe the
observed stress dependence of ν quite well. Regarding the scatter of ν it is not obvious
which regression fits better.

The stress dependence of ν in the case of sample 51 is small as also indicated
by the stress dependence of P- and S-wave velocities (Fig. (4.30(a)) and (4.30(b)),
respectively). The stress dependence of Poisson’s ratio may even be approximated with
a straight line. This indicates that the closure of compliant porosity is less dominant
for the stress sensitivity of velocities. Carcione & Cavallini (2002) argues that rocks
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Figure 4.29: Sample 140:(left) Poisson’s ratio, calculated from observed velocities
(black squares), calculated with DP = 0.019 and DS = 0.023 (dashed blue line), and a
mean D = 0.021 (solid red line). (right) Observed (circles) P- (red) and S-wave (blue)
velocities and best fit (lines ) with D = 0.021 per MPa.

with mainly spherical voids show such a Poisson’s ratio. However, since the stress
sensitivity depends on θc rather than on the amount of stiff and compliant porosity, θc

seems to be small and/or φc0 is unusually small.

Sample 43 (see Fig.4.31) shows a different dependence of ν upon stress than the
above mentioned examples. Up to approximately 70 MPa load ν typically increases.
However, for higher stresses ν slightly decreases. This might result from measurement
errors but could illustrate the influence of cracks on ν since the compliant porosity
seems to be closed above approx. 100 MPa, as indicated by the more or less constant or
slightly linearly increasing velocities above that stress level. As for the other examples
Fig. (4.30(a)) also illustrates a comparison between ν calculated from first best fit
parameters with different D values for P- and S-wave velocities (dotted blue line) and
calculated from second fit with a common D = 0.021 per MPa. In this case, both curves
show a distinct behavior above 60 MPa where the latter deviates from the data while
the first describes the data exactly. This illustrates the stronger disagreement of fit
parameter D obtained from first P- and S-wave velocity fit, regarding the disagreement
for the two samples mentioned above. The deterioration of the regression due to the
second fit of the data with an averaged D is not visible in the velocities. As shown in
Fig. (4.31(b)) the regression of the velocity data with the averaged D parameter seems
to be perfect.

In contrast to the previously discussed stress dependence of Poisson’s ratio for
the sandstone data given by Freund (1992) the following examples illustrate the ν as
a function of stress obtained from saturated rocks, given by Eberhart-Phillips et al.

(1989). In saturated rocks the strength of compliant porosity is enhanced which, in
turn, increases the bulk modulus stronger than the shear modulus. As a consequence,
ν is usually larger in saturated rocks and decreases with increasing applied stress (Car-
cione & Cavallini, 2002).
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Figure 4.30: Sample 51:(left) Poisson’s ratio, calculated from observed velocities (black
squares), calculated with DP = 0.017 and DS = 0.018 (dashed blue line), and a mean D
= 0.017 (solid red line). (Right) Observed (circles) P- (red) and S-wave (blue) velocities
and best fit (lines ) with D = 0.017 per MPa.
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Figure 4.31: Sample 43:(left) Poisson’s ratio, calculated from observed velocities (black
squares), calculated with DP = 0.024 and DS = 0.017 (dashed blue line), and a mean D
= 0.021 (solid red line). (Right) Observed (circles) P- (red) and S-wave (blue) velocities
and best fit (lines ) with D = 0.021 per MPa.
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4.6. Stress dependence of Poisson’s ratio

Sample 51 (Fig. 4.32) represents an illustrative example for ν in saturated rocks.
Poisson’s ratio is higher than for the dry rocks mentioned before and decreases over
the entire range of applied stress (Fig. 4.32(a)). This corresponds to P- and S-wave
velocities which increase remarkably up to 200 MPa (Fig. 4.32(a)). Unfortunately,
Eberhart-Phillips et al. (1989) give only best fit data, hence, a comparison of the
regressions with observations is not possible. However, ν calculated from given best fit
data (solid red line) and from refitted best fit data agree very well up to ≈ 200 MPa.
Similar to the velocities, ν shows two different domains with respect to the slope of
the stress dependence. For stresses below approx. 30 MPa ν decreases rapidly and
non-linearly. For higher stresses the slope of the ν vs. stress relation is linear and more
flat. This behavior may result from measurement errors in the very low stress regime
or indicate the distinct sensitivity of ν to crack and compliant porosity closure. If the
latter is true the bend in the relation might be understood as an indicator for stress
magnitude where most cracks are closed.
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Figure 4.32: Fig. (4.32(b)): Poisson’s ratio calculated from Eberhart-Phillips et al. fit
parameter (solid red line) and from refitted best fit parameters (dashed blue line.).
Fig. (4.32(b)): P- and S-wave velocities calculated from best fit parameters (sample
51, saturated) given by Eberhart-Phillips et al. (1989).

The stress dependent Poisson’s ratio of the KTB rocks was investigated in a similar
manner. For each measurement direction one Poisson’s ratio was calculated from P-
and S-wave velocities. Therefore, a mean S-wave velocity was calculated from both
measured S-waves for a given direction. Then, the Poisson’s ratio was calculated from
the best fit parameters of P- and S-waves obtained from the first and the second fit.

A comparison of the different stress dependent relations for sample 403Cli515 is
given in Fig. (4.33). The stress dependence of Poisson’s ratio is small in all direc-
tions. However, the absolute magnitudes of Poisson’s ratio differ in all directions.
Both theoretical approximations, obtained from best fit parameters of first and second
fit, describe the observations quite well. They differ only slightly at approx. 50 MPa
effective stress. If the interpretation is valid that the Poisson’s ratio is a sensitive mea-
sure for a possible

”
isotropy“ of the stress sensitivity tensor, then, the good agreement

between both fit results and the data indicates that tensor of stress sensitivity of this
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sample is effectively isotropic. This is remarkable, since the elastic properties of the
sample seem to show an orthorhombic anisotropy (see Fig. 4.23(a)).

The same analyzis was done for KTB sample 955C1e558 (Fig. (4.34)). The Poisson’s
ratio in 1- and 2-direction is practically independent from stress (ν ≈ 0.25). In contrast,
the Poisson’s ratio in 3-direction shows a strong dependence upon stress, similar to the
velocities. A comparison of the data to best fit approximations obtained from the
best fit parameters of the first and fit shows that they differ stronger than for sample
403Cli515 at least in the 1- and 3-direction. However, taking measurement errors and
the influence of averaging S-wave velocities into account both approximations describe
the data well. In 2-direction both they completely coincide with the data.

Only KTB sample 522KTB607Albk shows a strong deviation of the Poisson’s ratio
calculated from first and second set of best fit parameters as illustrated in Fig. (4.35).
Especially in the 1-direction the Poisson’s ratio calculated from the second fit with a
common parameter D does not match the measured data. This can also be found for
the 2 direction, but here, the deviation decreases with increasing stress. However, in
contrast to all other Poisson’s ratios the approximation of the first fit deviates from
the data with increasing stress. In the 3-direction the Poisson’s ratio calculated from
the best fit parameters of the second fit deviates from the data below 100 MPa. This
is in contrast to the Poisson’s ratio calculated from the best fit parameters of the first
fit.

The stress dependent Poisson’s ratio of sample 522KTB607Albk differs from all
other samples. This might be understood as a hint that the tensor of stress sensitivity
of this sample has a symmetry that does not correspond to one of an isotropic medium.
However, this is in contrast to the practically stress independent anisotropy parameters
of the sample as shown in Fig. (4.22(f)).

The analyzis of the stress dependent Poisson’s ratio of the KTB rocks also indicates
that the Poisson’s ratio is a sensitive measure for a possible isotropic tensor of stress
sensitivity. With only one exception, sample 522KTB607Albk, the Poisson’s ratio
seems to support that all considered KTB rocks show stress sensitivities of an isotropic
medium, even the samples with a clear elastic anisotropy.

Most samples show a usually small deviations of the Poisson’s ratios calculated
from the fit parameters of the first and second fit below 100-150 MPa. This might be
caused by measurement errors. It has to be taken into account that the measurements
were conducted on cubic samples in a true-triaxial pressure vessel (see section (4.3) for
details). Hence, it might be possible that the state of stress, especially for low effective
stress, was rather quasi- than exactly isostatic.

4.7 Summary

In this chapter the stress dependence of various rock properties, i.e., seismic veloci-
ties, Poisson’s ratio, anisotropy, and electrical resistivity of very different rock types
was analyzed using the Stress Sensitivity Approach. This covers dry and saturated
sedimentary and crystalline metamorphic rocks. It was possible to fit almost all P-
and S-wave velocities of all samples very well. In this context, the main focus was to
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Figure 4.33: Stress dependent Poisson’s ratio for KTB sample 403Cli515 in 1-
(Fig. 4.33(a)), 2- (Fig. 4.33(b)), and 3-direction (Fig. 4.33(c)). Black diamonds in-
dicate Poisson’s ratio calculated from observed velocities. The blue and the red line
denote Poisson’s ratio calculated from best fit parameters obtained from first and sec-
ond fit, respectively.
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Figure 4.34: Stress dependent Poisson’s ratio for KTB sample 955C1e558 in 1-
(Fig. 4.34(a)), 2- (Fig. 4.34(b)), and 3-direction (Fig. 4.34(c)). Symbols and colors
correspond to Fig. (4.33).
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Figure 4.35: Stress dependent Poisson’s ratio for KTB sample 522KTB607Albk in 1-
(Fig. 4.35(a)), 2- (Fig. 4.35(b)), and 3-direction (Fig. 4.35(c)). Symbols and colors
correspond to Fig. (4.33).
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check, if there are rocks with a stress sensitivity tensor showing only one independent
element. In this case, all velocities of a certain sample should have the same parameter
D.

Even if rocks show exactly such a tensor of stress sensitivity it is not reasonable
to expect that a regression of P- and S-wave velocity data directly gives the same pa-
rameter D. This is mainly caused by measurement errors as well as numerical artefacts
introduced by the non-linear fit procedure. Thus, a two-step fit procedure was applied.
In the first step a non-linear least squares fit was iteratively applied to the observed
velocities. In the second step, the mean of all obtained parameters D of a given sample
was calculated and used as a universal constant for the repeated fit of the data. This
linearizes the fit equation in its parameters and enables a standard linear least squares
fit. It was found, that it was possible to apply this procedure quite successfully to all
samples, both isotropic as well as anisotropic. The accuracy of the second fit with a
constant parameter D was always in the order of the first fit, sometimes slightly better,
sometimes slightly less accurate. However, in any case, the second fit approximated
the observed velocities very well.

A cross plot of DS vs. DP comprising the fit parameters of all sedimentary samples
given by Eberhart-Phillips et al. (1989); Jones (1995) and Freund (1992) shows that
the parameters, in fact, line up along DP = DS (Fig. 4.36(a)). The scatter of the data
is caused by measurement errors as well as errors resulting from the first order approxi-
mations made in the derivation of the Stress Sensitivity Approach. The deviation from
the postulated universality of parameter D seems to increase with the magnitude of D.

However, a least squares linear regression of the data reveals a coefficient of deter-
mination R2 = 0.82 with respect to the regression line DS = 0.926DP + 0.002. This
shows that the result of an effectively isotropic tensor of stress sensitivity, resulting in
a universality of parameter D, is reasonable for many rocks.

This result was confirmed by analyzing the stress dependent anisotropy parameters
for VTI rocks given by Lo et al. (1986) and the anisotropic rocks of the KTB. If the
symmetry of the tensor of stress sensitivity corresponds effectively to the symmetry of
an isotropic medium the anisotropy of the rocks should be independent from an applied
isostatic load. This was, in general, found for the mentioned rocks.

However, it was also found that the stress dependence of Poisson’s ratio is most
sensitive to the deviations of the tensor of stress sensitivity from isotropy.

It was also shown that even the stress dependence of the logarithmic electrical for-
mation factor can be formulated in terms of the Stress Sensitivity Approach. If the
electrical resistivity of a rock can be described with Archies’s law, the stress depen-
dence of the rocks resistivity is also a function of pore space deformation. In contrast
to the stress dependence of elastic properties, the stress dependence of electrical re-
sistivity depends on the absolute magnitude of stiff and compliant porosity changes.
Thus, the stress dependence of resistivity is usually assumed to be independent from
stress in sedimentary rocks since the fractional part of the compliant porosity is negli-
gible. However, in low porosity crystalline rocks, it was possible to describe the stress
dependence of electrical resistivity and static bulk modulus with a universal parameter
D.
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Figure 4.36: DS vs. DP cross plot for all sedimentary (blue dots) samples from
Eberhart-Phillips et al. (1989); Jones (1995); Freund (1992) and crystalline KTB
rocks (green circles). The red line indicates DP = DS (Fig.4.36(a)). A linear least
squares regression of DP vs. DS is shown in Fig.4.36(b) as blue line and the same
data given in Fig.4.36(a) are illustrated as open red circles. The regression reads
DS = 0.926DP + 0.002 with a coefficient of determination R2 = 0.82.
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