
Chapter 3

Theory of elastic stress sensitivity

3.1 Stress and pressure: terminology and effective

stress concept

The main intention of this section is to introduce the pressure and stress related termi-
nology used in this thesis. It attempts to take the different definitions into account that
can be found throughout the literature. This attempt is surely not be completed, but
should help to place the ideas and results of this thesis more easily into the existing
concepts. Beyond this, the second part of this section is dedicated to more general
aspects of pressure terminology and gives a summary over some special units and unit
conversion factors.

As a consequence of the broad interest in the role of pore pressure and the overall
state of stress in the subsurface as well as the temporal evolution of these quantities
from both, academics as well as industry, on the hand, the related research was pushed
tremendously, but on the other hand confusion arose concerning the used terminology
and units. In a recent publication Bruce & Bowers (2002) took care of clarifying pore
pressure terminology. Apparently, one confusing aspect of pressure terminology arises
from mixing the terms for absolute pressure and pressure gradients. Especially the
latter might produce serious confusion since a gradient is always related to a reference
point. In practice, this can be the seafloor, the water table or even a point on a rig.
However, in the literature the terms ”pressure”and ”stress”are usually mixed when
stress is treated as isostatic.

Basically, a stress is a tensorial quantity while a pressure is a scalar. In situations
when all principal stress components are equal and shear stress is absent the state of
stress is denoted as a pressure. Such a shear stress free state of stress in a rock is often
called hydrostatic. Although this is common in rock physics literature, I will not follow
this line. A shear stress free state of stress in a rock is denoted as isostatic and the term
hydrostatic is restricted to fluid pressure (see Fig. 3.1). Distinguishing between both
terms accounts for the fact that an isostatic stress in a rock results from the applied
stress. In contrast, a hydrostatic pressure in a fluid results from a material property
of fluids, namely, that they can not resist any shear force.

In the following, definitions are given for the terminology most frequently used in
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Figure 3.1: Fig. 3.1(a): Triaxial stress with σ1 6= σ2 6= σ3, as usually found in the solid
brittle Earth’s crust. Fig. 3.1(b): Isostatic stress, as usually used in laboratory and
frequently denoted as hydrostatic pressure. Fig. 3.1(c): True hydrostatic pressure Pfl

as realized in fluids.

the literature. For instance, a normal or hydrostatic fluid pressure Pfl is defined as the
pressure in a certain depth z that is in equilibrium with the pressure exerted by the
weight of the overlying static fluid column with the fluid density ρfl, thus:

Pfl(z) =

∫ z

z=0

ρfl(z)gdz, (3.1)

where g is the acceleration due to gravity.
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Figure 3.2: Sketch of typical pore, overburden and differential pressure profile. Above
the seal the pore pressure increases linearly with a hydrostatic gradient with depth.
Note, the usage of overburden and differential pressure instead of the correct terms
overburden and differential stress accounts for the assumption of an isostatic state of
stress.

The pressure exerted by the pore fluid is commonly called pore pressure. Equivalent
expressions are fluid pressure or formation pressure. In many situations, especially in
hydrocarbon reservoirs, the pore pressure is higher than normal pressure. The excess
pressure above the normal pressure is called overpressure or geopressure (see Fig. 3.2).
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Theory of elastic stress sensitivity

In hydrocarbon reservoirs the pore fluid is a mixture of different fluid phases, e.g.,
brine, oil, and gas. They could show strong differences in specific density. The excess
pressure created by the density differences between brine (or water) and hydrocarbons
is called Buoyant pressure.

In the literature, (e.g., Dutta, 2002; Wang, 2001), the term overburden pressure,
also called confining pressure, lithostatic pressure, or geostatic pressure, is used to
express the stress at any depth which results from the weight of the overlying rock
strata and the pore filling fluid (see Fig. 3.2). This notation implies that the considered
state of stress is assumed to be isostatic. However, imagine a situation where tectonic
stress, i.e., laterally acting external stress, is absent. At any depth the weight of
the overburden induces a vertical stress and leads to compaction of the rocks. This
situation is similar to a uniaxial compression test. In such a test, the rock shortens
vertically and expands laterally. A measure for this deformation is the Poisson’s ratio
(see, eq.2.12). In the Earth’s crust, vertically compressed rocks can not expand to the
sites. Consequently, it can be shown from the theory of elasticity that the vertical
stress σv, exerted by the weight of the overburden, induces a horizontal stress σhor

(Thomsen, 1986):

σhor =
ν

1 − ν
σv. (3.2)

For a commonly used Poisson’s ratio ν= 0.25, the induced horizontal stress is 1/3 ·σv.
Therefore, it is only consequent to talk about overburden (or confining) stress rather
than overburden pressure. In contrast to field studies where the terms ”overburden”and
”confining”are both common, in laboratory experiments only the latter is used to
denote the externally applied stress.

Below the water table the pore space can be assumed to be saturated by at least one
fluid phase. Consequently, the actual state of stress in the subsurface results from both
the confining stress and the pressure in the fluid. In other word, the overburden stress
at any depth is carried by both, the rock matrix and the pore fluid. This obviously
has consequences for the mechanics of fluid saturated porous rocks.

Since it is uncomfortable to formulate equations of the physics of pore mechanics
in terms of confining stress σc and pore pressure Pfl it is common to combine them
to a single effective stress σe. This is, what is usually called, the concept of effec-

tive stress. It was first formulated by Terzaghi (1936). However, his results derived
empirically from experiments on different porous materials and theoretically were in
contrast to each other. While the experiments stated that only the difference between
confining stress and pore pressure was effective for rock and soil deformation, his theo-
retical considerations let him to the conclusion that the effective stress σe should equal
σc - φPfl, where φ is the porosity. Other theoretically derived results identify the Biot
coefficient α = 1 − Kdry/K0 instead of the porosity to be multiplied with the pore
pressure. Goulty (1998) discusses the effective stress for porosity reduction in shales
in detail and reworks different compaction studies from literature. These studies state
that in many geological situations the compaction of shales can not be fitted with the
pure difference between vertical stress and pore pressure, but need an effective stress
coefficient less than 1. Goulty states, that this need for an effective stress coefficient
arises to compensate the error induced by using the wrong confining stress, namely,
the vertical stress. In fact, the correct stress for compaction is the mean principal
stress. Moreover, Berryman (1992) has shown that an effective stress coefficient has
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3.1. Stress and pressure: terminology and effective stress concept

to be formulated for any rock property under investigation, i.e., there is no universal
effective stress coefficient.

However, in general a stress or a pressure is called ”effective”if it is formulated as
the difference between confining stress (pressure) on the one side and the pore pressure
times an effective stress coefficient n on the other side (eq. 3.3 and 3.5). In terms of
pressure, hence, assuming an isostatic confining stress, we have per definition:

Peff = Pc − n ·Pfl (3.3)

Pdiff = Pc − Pfl, (3.4)

where n is an effective stress coefficient. The pure difference between confining pressure
and pore pressure is denotes as differential pressure (eq. 3.4). A special case arises when
n = 1 (eq. 3.4). In this case, the effective pressure equals the differential pressure.
Sometimes, the difference between confining and pore pressure is also denoted as net

overburden pressure. In terms of a confining stress these equations become

σe = σc + n · δijPfl, (3.5)

σd = σc + δijPfl, (3.6)

where δij is the Kronecker delta function. Following consequently the pressure naming
scheme we might now denote σe as effective and σd as differential stress. Although
this terminology is consistent with the described physics it leads to confusion with the
definition for differential stress used in tectonophysics and rock mechanics. There, dif-
ferential stress describes the difference between the minimum and maximum principal
stress.

To avoid this conflict within this thesis ”effective stress” is strictly used when the
difference between confining stress σc and pore pressurePfl is considered. If a special
effective stress coefficient is needed this coefficient will be given explicitly. In fact, it
will be shown later in section (3.2.1) that in many rocks the pure difference between
confining stress and pore fluid pressure is effective for porosity changes.

The remarks made above should hopefully clarify the terminology used in this
thesis. For understanding this thesis it is not necessary to read through the rest of the
section. However, the last part of this section is dedicated to some further aspects of
stress/pressure terminology and the problem of unit conversion.

Especially in the hydrocarbon industry pore pressure prediction is a highly inter-
disciplinary task. Geoscientists try to get assumptions about the subsurface stress and
pore pressure. The resulting stress and pressure models are necessary for engineers
to reduce risks while drilling and to optimize reservoir development and depletion.
Unfortunately, the drilling community uses very different terminology related to mud
weights instead of stresses or pressures.

Some of the more commonly used terms of the drilling community are (Dutta, 2002)

• Differential pressure: Drilling engineers use this term in a completely different
sense than geoscientists. Here, it describes the difference between the hydrostatic
pressure exerted by the mud weight and the formation fluid pressure.

• Balanced drilling denotes the case when the hydrostatic pressure of the mud col-
umn is in equilibrium with the formation fluid pressure, i.e., when the differential
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Theory of elastic stress sensitivity

pressure (as used by the drillers) is equal to zero. This situation happened only
seldom.

• Overballanced drilling : describes the case when the hydrostatic pressure of the
mud column is greater than the formation fluid pressure. This is the usual case
while drilling.

• Underbalanced drilling : In this case the formation fluid pressure exceeds the
hydrostatic pressure of the mud column. If this happens hazardous blow outs
can occur.

• Effective circulating density : describes the apparent increased mud density of
a circulating mud column induced by an additional pressure (”backpressure”)
acting against the formation due to frictional effects in the mud column.

Drillers also prefer pressure or stress gradients rather than the absolute values.
Doing this requires a clear definition of the reference point. A local pressure gradient
defines pressure variations over small depth intervals. For a depth interval length
approaching zero this gradient is equal to the slope of the pressure vs. depth curve.
A simple example is the hydrostatic gradient of a water column due to the increasing
weight of the column with depth. If the density of the water is constant with depth
the hydrostatic gradient is constant.

A crucial gradient in reservoir management is the fracture gradient . It is a measure
for the pressure gradient where fracturing is induced in the affected rock. A comparison
between the fracture gradientt of a reservoirs seal rock and the natural formation
pressure gradient is important during reservoir exploration to get an assumption if
the seal was fractured during its geological development and hydrocarbons might have
escaped. Obviously, an artificially induced fracturing during reservoir development has
to be avoided for the same reason.

Another important pressure gradient in practice is the equivalent mud weight . This
is an example for difficulties that arise when different communities use different ter-
minology. Here, talking about pressure gradients leads to a weight, because the mud
weight is referred to a volume. This turns the weight into a density which converts to
a gradient. Obviously, expressing a pressure in terms of a density is scientifically incor-
rect, but engineers use this for practical reasons. Equivalent mud weights are usually
given in lb/gallon, pressure in psi and pressure gradients in psi/foot. The conversion
factor between equivalent mud weight and pressure is 1 lb/gal = 0.052 psi/ft and mud
density is related to pressure gradient as 1 psi/ft = 2.31 g/cm3. A table of the most
frequently used conversion factors is given in Appendix (G)

3.2 Anisotropic stress sensitivity

3.2.1 Deformation of pore space

Up to section 3.2.5 a comprehensive overview about the theory of the stress sensitivity
approach is given. A detailed description is given in Appendix (B) which reflects the
paper of Shapiro & Kaselow (2003).
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3.2. Anisotropic stress sensitivity

In order to quantify the deformation of the pore space geometry it is necessary to
define quantitatively (a) the bulk and the pore space volume Vb and Vp, respectively,
and (b) to introduce several compliances of the porous system which describe the
deformation of the system due to an applied load. This will be done following and
extending the approach of Brown & Korringa (1975).

The geometry of the sample bulk volume can be described in terms of a surface Σ
covering the sample as shown in Fig. (3.3). The surface normal is defined positive in the
outward direction. In the same way, a second surface Ψ is defined representing the inner
surface of the rock, i.e., it covers the interconnected pore space. The permeability of the
interconnected pore space is sufficient in order to equilibrate deformation induced pore
pressure gradients within the sample. Per definition, the positive normal direction of
the inner surface is pointing into the sample. Where the outer surface of the sample cuts
a pore it coincides with the inner surface and simultaneously seals the pore. However,
the normals point in opposite directions. In this way, it is possible to represent the

Σ Ψ

Figure 3.3: Sketch of bulk and pore space geometry. Both volumes are described in
terms of covering surfaces Σ and Ψ, respectively. The positive normal direction of Σ
points outward and in the case of Ψ into the sample. In 3D all pores are interconnected
and effective for fluid flow.

bulk and pore space volume of the rock sample in terms of the encasing surfaces Σ
and Ψ, respectively. Thus, it is possible to describe changes of both volumes by the
displacement of points on the surfaces Σ and Ψ.

The rock may be subjected to two different load components, an externally applied
confining stress σc

ij and an internally applied stress σf
ij, where i and j can be 1, 2, and 3.

Here, the latter load component is denoted as pore stress. In most realistic situations
this stress is a pressure, i.e., the pore pressure. Assume that the confining stress
and/or pore stress have changed from an initial state of stress (σc0

ij , σf0
ij ) to the current

state (σc
ij, σ

f
ij). As a result the bulk and pore space volume will be deformed. The

deformation of both volumes can be described by the displacement of the corresponding
surface points. All displacements are assumed to be very small in comparison to the
size of the rock volume under consideration. This can be observed in many laboratory
experiments where the deformations are usually in the order of 10−3 or even smaller.

The points of the external surface may have been displaced by ui(x̂), where x̂ is
a surface point. Following Brown & Korringa (1975) it is possible to introduce a
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Theory of elastic stress sensitivity

symmetric tensor:

ηij =

∫

Σ

1

2
(uinj + ujni)d

2x̂. (3.7)

Here, n is the surface normal at point x̂. Since ηij is related to the outer surface of
the sample it will be denoted as the outer surface tensor . In the case of a continuous
elastic body replacing the porous rock (i.e., a differentiable displacement is given at
all its points) Gauss’ theorem can be used to relate the integral over surface Σ to an
integral over the corresponding volume.

ηij =

∫

Vb

1

2
(∂jui + ∂iuj)d

3x. (3.8)

The integrand here is the strain tensor and Vb is the sample bulk volume. Thus,
εij = ηij/Vb is the volume averaged strain.

In this way the outer surface tensor ηij can be related to the deformation of the
rock sample. In the same way, it is possible to define a second symmetric tensor related
to the deformation of the pore space.

ζij =

∫

Ψ

1

2
(uinj + ujni)d

2x̂, (3.9)

Here, x̂ is a point of surface Ψ, ui is a component of the displacement of points x̂, and
ni is a component of the outward normal of Ψ. In analogy to the outer surface tensor
ηij, the tensorial quantity ζij will be denoted as the inner surface tensor .

If the pore space is completely filled with some material (e.g., a fluid or clay or
cement) then, in analogy with the outer surface tensor ηij, the pore volume averaged
inner surface tensor ζij/Vp will denote the volume averaged strain of this material, where
Vp denotes the volume of the pore filling material. Moreover, using the summation
convention, −ζii denotes a volume change of the pore filling material.

Up to this point two tensorial quantities ηij and ζij were introduced which describe
the bulk and pore space volume, respectively, in terms of encasing surfaces and the
deformation of these volumes through the displacement of the corresponding surface
points. However, these deformations result from the application of two stress fields.
These stress fields will be explained in more detail in the following.

As common in rock mechanics, stress acting compressional with respect to the solid
phase is defined negative. Assume that the stress σf

ij acting on the pore space surface
Ψ is isostatic. In this case, the diagonal elements of the stress tensor are identical and
shear stress is absent. This described the most realistic situation, namely, that the
pore space is filled with a fluid. In the literature, this state of stress is, in general,
denoted as hydrostatic, because it is typical for fluids. Since a more general situation
is considered here, where the pore space can be filled with an arbitrary material, this
state of stress is denoted as isostatic. In the case of an isostatic stress σf

ij it is possible

to define a scalar pressure Pp acting on the pore space surface: σf
ij = −δijPp.

As common in rock mechanics and already mentioned in section (3.1) both load
components are usually combined. Here, the difference between the external confining
stress and internal pore stress is defined as the effective stress σe:

σe
ij = σc

ij − σf
ij. (3.10)
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3.2. Anisotropic stress sensitivity

In the case of an isostatic pore stress, this gives:

σe
ij = σc

ij + δijPp. (3.11)

Assuming further a complete isostatic state of stress, i.e., also the external confining
stress is isostatic, gives:

σe
ij = δijσ

c
ij + δijPp = (−Pc + Pp)δij = −(Pc − Pp)δij, (3.12)

or, completely written in terms of pressure:

Peff = Pc − Pp, (3.13)

where Peff and Pc are the effective and confining pressure, respectively.

After considering the load components acting on a porous rock rock compliances
will be introduced which relate the acting stress to the deformation of the rock.

In analogy to the paper of Brown & Korringa (1975), three fundamental compliance
tensors of an anisotropic porous body can be defined which can be obtained from
appropriate laboratory measurement.

Sdry
ijkl =

1

Vb
(
∂ηij

∂σe
kl

)

∣

∣

∣

∣

σf

, (3.14)

Smt
ijkl =

1

Vb
(
∂ηij

∂σf
kl

)

∣

∣

∣

∣

∣

σe

, (3.15)

Sp
ijkl = − 1

Vp
(
∂ζij

∂σf
kl

)

∣

∣

∣

∣

∣

σe

. (3.16)

Again, Vb is the bulk volume of the porous body and Vp is the volume of the intercon-
nected pore space. Sdry denotes the compliance tensor of the drained rock matrix. It
is obtained in an experiment where the rock samples strain (in the sense of eq. 3.7) is
measured as a function of the effective stress while keeping σf

ij constant. This corre-
sponds to a compressional experiment on a dry sample or a drained experiment where
the confining stress is variable and the pore pressure is kept constant by letting the
pore fluid freely entering or leaving the sample. Smt and Sp are the compliance tensors
characterizing the grain material and the pore space, respectively. They are obtained
in experiments where the inner stress, i.e., the pore pressure, is changed, but the effec-
tive stress as defined above (eq. 3.11) is constant. Then, Smt

ijkl and Sp
ijkl are obtained

by relating the rock deformation to the bulk and pore volume, respectively.

The inner surface tensor ζij and the bulk volume of the sample can be used to define
an additional tensorial quantity, the so-called generalized porosity :

φij =
ζij

Vb
. (3.17)

The generalized porosity is related to the porosity and can be used together with the
above defined compliances of an anisotropic porous medium to derive an equation
that formulates the stress dependence of porosity. For details on this derivation, see
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Theory of elastic stress sensitivity

Appendix (B). This relation for the stress dependence of porosity upon the effective
stress and pore pressure reads:

δφ = (Sdry
klii − Smt

klii − φSdry
mmkl)δσ

e
kl − φ(Sp

iikk − Smt
mmkk)δPfl. (3.18)

It provides an exact relation describing the dependence of porosity on changes in
pore fluid pressure and confining stress. Hence, it formulates quite well the dependence
of porosity on a geologically realistic state of stress, although is it limited to elastic,
i.e, usually small, deformations. Consequently, it may provide a suitable formalism to
estimate porosity reduction with burial depth for already consolidated rocks in real
geological environments. In practice, the in situ stress is usually approximated with a
confining pressure, identical to the overburden pressure. Thus, taking also an isostatic
confining stress into account (i.e., also σe

kl = −δklPeff) eq. (B.23) reduces to:

δφ = (Sdry
llii − Smt

llii − φSdry
mmll)δPeff − φ(Sp

iikk − Smt
mmkk)δPfl. (3.19)

Equation (3.19) shows that generally the porosity is a function of both, the effective
stress as well as the pore pressure. Remember, effective stress is defined as the pure
difference between confining stress and pore pressure. If Smt

iikk = Sp
iikk, i.e., the rock

matrix is homogenous and/or the interconnected porosity is small then porosity changes
depend on the difference between confining stress and pore pressure only.

The stress sensitivity approach provides several precise results describing stress
dependencies of the pore space geometry. The compliance tensors Smt and Sp are
practically independent of effective stress at least up to a few hundred MPa. Thus,
in equation (3.19) only two quantities are significantly stress dependent: the porosity
φ and the dry rock matrix compliance tensor Sdry. Since porosity variations depend
on the dry rock compliances and the dry rock compliances depend, in turn, on the
porosity at least one more equation is required, which would mutually relate them. This
equation cannot be obtained exactly, since Sdry depends upon the complete geometry
of the pore space rather than on the magnitude of the porosity alone. Thus, a further
analysis requires to involve some empirical observations and heuristic assumptions.

3.2.2 Elastic compliances

Typical stress dependencies of elastic moduli, hence, seismic velocities, look like shown
in Fig. (3.4). Increasing effective stress leads first to a rapid non-linear increase of
seismic velocities. Then, for higher stresses, the velocity stress dependence tapers into
a flat linear relation. Occasionally, the linear part of the velocity-stress relation does
not show any further increase of velocities with increasing stress, at least up to some
hundred MPa (approx. 200-400 MPa, depending on the rock) effective stress. Although
it is a quite intuitive assumption that this velocity dependence upon stress results from
the closure of the porosity, many porosity measurements show that porosity does not
change at all or even very slightly while velocities change remarkably (e.g., Khaksar
et al., 1999). Thus, it is a common interpretation that the rapid increase of velocities
at low stresses results from the closure of cracks and grain contact vicinities. This part
of the porosity, denoted as the compliant porosity usually represents only a very small
fraction of the total porosity (< 1% in typical sandstones). Hence, even its complete
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3.2. Anisotropic stress sensitivity

closure does not change the bulk porosity remarkably. When this easily deformable
part of the bulk porosity is closed the velocity increase is caused by the closure of the
hardly deformable remaining stiff pores.
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Figure 3.4: Typical ultrasonic P- (red circles) and S-wave (blue circles) velocity as a
function of isostatic effective stress. This example shows a sandstone from Salzwedel

drilling site (data from Freund, 1992).

This distinct deformation behavior of stiff and compliant porosity is taken in ac-
count by formulating:

φ = φc + [φs0 + φs] , (3.20)

as already done by Shapiro (2003). Here, φ is the bulk interconnected porosity, φc

is the compliant porosity supported by cracks and grain contact vicinities. As a rule
of thumb, compliant porosity shows an aspect ratio γ (a relationship between the
minimum and maximum dimensions of a pore) less than 0.01 (see Zimmerman et al.,
1986). The second part, [φs0 + φs], comprises the stiff porosity supported by more or
less isometric or spherical pores (i.e., equidimensional or equant pores, see also Hudson
et al., 2001; Thomsen, 1995). The aspect ratio of such pores is typically larger than
0.1. Such a separation of the porosity into a compliant and a stiff part is very similar
to the definitions of stiff and soft porosity by Mavko & Jizba (1991) and others.

In turn, stiff porosity is further separated into a stress independent part φs0, which
is equal to the stiff porosity in the case of an effective stress σe = 0, and into a part
φs which describes an amount of stiff porosity due to a deviation of the effective stress
from zero. As mentioned above it is reasonable to assume that the relative changes of
the stiff porosity, φs/φs0, are small. In contrast, the relative changes of the compliant
porosity (φc- φc0)/φc0 can be very large, i.e., of the order of 1 where φc0 denotes the
compliant porosity in the unloaded case σe = 0. In general, the compliant porosity is
a very small quantity since it represents only a very small part of the bulk porosity.
As a rule of thumb, the amount of compliant porosity is much smaller than the stress
independent part of the stiff porosity φs0 and even than the absolute value of the stress
induced change of stiff porosity φs. Thus, the following inequality is usually valid:

φs0 � |φs| � φc. (3.21)
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Theory of elastic stress sensitivity

In sedimentary rocks the orders of magnitude for these quantities are approximately
φs0 = 0.1, |φs| = 0.01 and φc = 0.001. Inequality (3.21) may not be valid in low
porosity crystalline rocks. For instance, calculating the stress dependence of crack
porosity from strain measurements, as introduced by Brace (1965), Kern et al. (1991)
implicitly assume that the porosity of the KTB rocks consist of compliant porosity
only. However, this has no implication on the following considerations since even if a
rock shows no stiff porosity eq. (3.20) is still valid.

The definitions above are somehow ”asymmetric”definitions of stiff and compliant
porosity. This means, the stiff porosity is separated into a stress dependent and a stress
dependent part while the crack porosity is treated as a whole. This is justified by their
distinct deformation behavior and accounts for the assumption that under moderate
loads considered here (approx. 200 - 300 MPa, dependent on the rock under consider-
ation) the stiff porosity suffers small changes only. In contrast to this, the compliant
porosity can be significantly changed or even completely closed. Thus, the notation
system introduced above is convenient for describing such an ”asymmetric”behavior.

Taking into account that both stress dependent parts φs and φc of the porosity
introduced above are very small (of the order of the strain), it is reasonable to assume
a first, linear approximations of the skeleton compliances as functions of these quanti-
ties. Using the equivalent stress dependent parts of the generalized porosity a Taylor
expansion gives:

Sdry
ijkl(φ

s0
mn + φs

mn, φc
mn) = Sdrys

ijkl + Cdrysθs
ijklmnφs

mn + Cdrysθc
ijklmnφc

mn, (3.22)

where Sdrys
ijkl is the drained compliance tensor of a hypothetical rock with a closed

compliant porosity (i.e., φc = 0) and the stiff porosity equal to φs0. Further,

θs
ijklmn =

1

Cdrys

∂Sdry
ijkl

∂φs
mn

, (3.23)

θc
ijklmn =

1

Cdrys

∂Sdry
ijkl

∂φc
mn

, (3.24)

where the derivatives are taken in points φs = 0 and φc = 0, respectively. The θ
quantities in eq. (3.23) and (3.24) are individual for a given rock sample. We assume
that same load paths will give the same configuration of φs

ij and φc
ij. This means, only

non-hysteresis deformations are considered. As shown in Appendix (B.2) the tensorial
quantity θc

ijklmn is the most important rock characteristic for the stress dependence of
compliances and seismic velocities of porous rocks. This tensor is denoted as the Tensor

of stress sensitivity . It is analogous to the scalar dimensionless quantity introduced by
Shapiro (2003) as the piezosensitivity for isotropic rocks under isostatic load.

The symmetry of this tensor reflects to the symmetry of the drained matrix compli-
ance tensor of the rock under consideration. For example, the stress sensitivity tensor
of a triclinic medium has 56 independent components and 3 in the case of an isotropic
medium (see Appendix B.7 for details). The complexity of the stress sensitivity tensor
reflects the highly complex variety of possible reactions of elastic moduli of porous
systems due to applied stress.
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3.2. Anisotropic stress sensitivity

3.2.3 Stress dependence of porosity

Assume that stress induced changes of stiff and compliant porosity are independent of
each other. In this case, if the compliant pore space is closed then φc

ij = 0. Then, as
shown by eq. (B.36) in Appendix (B.3), the stress dependence of the stiff part of the
generalized porosity reads:

−δφs
ij = (Sdrys

klij − Smt
klij)δσ

e
kl. (3.25)

If this is valid then this relationship will also be valid for an arbitrary and usually small
φc. Therefore,

−δφc
ij = Cdrysθc

klijmnφ
c
mnδσe

kl. (3.26)

Taking into account that φs = 0 if no load is applied yields:

φs
ij = (−Sdrys

klij + Smt
klij)σ

e
kl. (3.27)

In order to derive an equation for the stress dependence of the elements of the
generalized compliant porosity tensor φc

ij similar to eq. (3.27) simplifying assumptions
have to be made. The derivation of this equation is given in Appendix (B.3). Consid-
ering orthorhombic media and assuming that the principal axes of the effective stress
tensor are aligned within the symmetry axes of the medium it is possible to show that
the stress dependencies of the diagonal elements φc

ii are given as:

φc
11 = φc0

11 exp(−θc
1σ

e
11C

drys), (3.28)

φc
22 = φc0

22 exp(−θc
2σ

e
22C

drys), (3.29)

φc
33 = φc0

33 exp(−θc
3σ

e
33C

drys). (3.30)

where a new notation θc
1, θc

2 and θc
3 for θc

111111, θc
222222 and θc

333333, respectively, was
introduced.

The basic assumption for the above mentioned considerations is that the dry rock
compliance tensor and the pore space are the rock characteristics most sensitive to
changes in effective stress. A mutual relation between both quantities was found
by taking the distinct deformation behavior of the stiff and compliant porosity into
account. Especially the stress induced closure of compliant porosity causes signifi-
cant stress induced changes of the dry rock compliance tensor. The new introduced
rock characteristic which describes the changes of the dry rock compliance tensor with
changes of generalized compliant porosity is the tensor of stress sensitivity. Taking
the most general case of an arbitrary anisotropic medium under non-isostatic load into
account shows that this tensor is of rank six. It is directly related to non-linear elastic-
ity of porous rocks. Detailed considerations about the tensor of stress sensitivity and
the deformation of the pore space are limited to orthorhombic media (for details see
Appendix B.3). The principal components of the effective stress tensor are assumed
to be aligned within the symmetry planes of the medium. These considerations in-
clude media that represent special cases of orthorhombic symmetry, i.e., TI, cubic, and
isotropic media. The stress sensitivity tensor of an isotropic medium has only three
independent entries. As shown in Appendix (B.3) the only realistic situation relevant
for a rock physical application arises if two of these entries are identically zero and only
one independent non-zero entry remains. In this case, the stress dependencies of the
principal elements of the generalized compliant porosity tensor are independent from
each other.
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Theory of elastic stress sensitivity

3.2.4 Stress dependence of elastic moduli

Although numerous simplifying assumptions were made the derived stress dependencies
of the dry rock compliances and the (generalized) porosity are still quite general with
respect to rocks and the state of stress that can be expected in rock physical practice.
Thus, in the following an arbitrary elastic characteristic Λ (e.g., a seismic velocity, a
stiffness or a compliance) of a porous drained body is considered.

However, this requires to take only those elastic characteristics into account that
dependent on stress via the stress dependence of the pore space. Thus, let us assume
that Λ, in a vicinity of the state where φs0 and φc as well as the effective stress are
identically zero, can be expanded into a Taylor series similar to eq. (3.22)) with respect
to the porosity (this should be valid for all such characteristics like seismic velocities
and elastic moduli):

Λ(φs0
ij + φs

ij, φ
c
ij) = Λdrys

[

1 + θsΛ
ij φs

ij + θcΛ
ij φc

ij

]

, (3.31)

where only the linear part of the Taylor expansion were kept. Λdrys is a hypothetical
rock characteristic, since it assumes that φs0 and Peff equal zero and φc is zero as well.
This is an unrealistic situation for rocks since it implicitly means that the rock would
have no crack-like porosity at all. Hence, the mentioned formulation of the Taylor
expansion is purely a mathematical concept. Here,

θsΛ
ij =

1

Λdrys

∂Λ

∂φs
ij

, (3.32)

θcΛ
ij =

1

Λdrys

∂Λ

∂φc
ij

(3.33)

and the derivatives are taken at φs = 0 and φc = 0, respectively. Substituting the
corresponding stress dependencies of the generalized porosity (equations 3.27 and 3.28
- 3.30) into eq. (3.31) gives:

Λ(τ) = Λdrys
[

1 + θsΛ
ij

(

Smt
ijK − Sdrys

ijK

)

σe
K + θcΛ

I φc0
I exp (−θc

IC
drysσe

I)
]

, (3.34)

where K and I can assume one of values 1, 2 or 3 denoting 11, 22 and 33, respectively.
In the exponent there is no summation over repeating indices.

A comparison of eq. (3.34) results with equation (1.1) shows a surprising but striking
result. In the case of isostatic load and if the tensor of stress sensitivity of the rock
corresponds to one of an isotropic medium all mentioned stress dependencies have the
same form A+KP−B exp (−PD). Thus, the theoretically derived stress dependencies
of all mentioned elastic rock characteristics have the same form as the empirically found
best fit equation. Especially the physical meaning of parameter D is important. If the
medium is isotropic or the stress sensitivity tensor corresponds to one of an isotropic
medium the fit parameter D reads

D = θcCdrys. (3.35)

Thus, it is independent from the property under consideration, in other words, it is a
universal quantity for the mentioned rock characteristics.
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3.2. Anisotropic stress sensitivity

If Λ is understood in terms of seismic velocities this a rough approximation since the
use of a Taylor expansion implies small changes of velocities with stress. In the case of
significant velocity variations due to an applied stress this approximation might become
erroneous. However, it was found that the error introduced by using an equation of
the form A + KP −B exp (−PD) for seismic velocities is usually negligible, as will be
shown in section (3.3).

3.2.5 Stress dependence of elastic anisotropy

Since a quite general relation of the stress dependent dry rock compliances has already
been derived it is only consequent to analyze the corresponding stress dependence of
elastic anisotropy. Since significant changes of elastic rock characteristics are produced
by changes of compliant porosities only it is reasonable to neglect the contributions of
the stiff porosity to stress dependences of elastic moduli in the following. Remember
that orthorhombic symmetry is considered. However, the limitation to situations where
the principal axes of the effective stress tensor are oriented normal to the symmetry
planes is strongly restrictive and my only be satisfied in carefully conducted laboratory
experiments.

Here, only weak anisotropic media are considered. In this case, the dry rock compli-
ance tensor Sdrs

ijkl of the medium is weakly anisotropic only or may even be approximated
as isotropic. In addition, the stress sensitivity tensor and φc0

ij are assumed to show an
even weaker anisotropy. This means that the stress sensitivity tensor corresponds
effectively to one of an isotropic medium. As shown in Appendix (B.5) Tsvankin’s
parameters simplify to:

ε(1) = ε
(1)
0 + A1θ

cφc0(E2 − E3), (3.36)

ε(2) = ε
(2)
0 + A1θ

cφc0(E1 − E3), (3.37)

δ(1) = δ
(1)
0 + A1θ

cφc0(E2 − E3), (3.38)

δ(2) = δ
(2)
0 + A1θ

cφc0(E1 − E3), (3.39)

δ(3) = δ
(3)
0 + A1θ

cφc0(E2 − E1), (3.40)

γ(1) = γ1
0 + A2θ

cφc0(E3 − E2), (3.41)

γ(2) = γ2
0 + A2θ

cφc0(E3 − E1), (3.42)

where ε0, δ0, and γ0 refer to these parameters in the unstressed state. Here,

A1 =
2

3

S11

S44(S44 − 4S11)
, (3.43)

A2 =
1

6

1

S44
, (3.44)

Ei = exp
(

−θc
i σ

e
iiC

drys
)

, (3.45)

where no summation over repeated indices is applied in eq. (3.45). If stress changes
are small the exponential functions Ei in these equations can be expanded in Taylor
series. In the special case of a completely isostatic load and an isotropic tensor of stress
sensitivity all Ei terms become equal, i.e.,

E1 = E2 = E3 = E = exp(−θcC
drysPeff) (3.46)
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Hence, in equations (3.36) to (3.42) the right hand sides reduce to the initial values of
the anisotropy parameters in the unstressed state. This means, if the rock is weakly
anisotropic and the stress sensitivity corresponds effectively to one of an isotropic
medium the initial elastic anisotropy of the rock will not change under an isostatic
stress.

Considering initially isotropic rocks the situation reduces to the one considered
in Shapiro (2003). Quantity θc is then the piezosensitivity introduced in that paper.
Moreover, even in the case of initially anisotropic rocks only one single quantity D =
θcC

drys controls the exponential parts of the stress dependence of any compliance, of
any stiffness and of any elastic wave velocity. It will be shown in section (4.3) that
there are anisotropic sedimentary and as well as metamorphic rocks which show this
interesting phenomenom.

3.3 Isotropic stress sensitivity

In the previous sections a general first order stress dependence of anisotropic elastic
rock characteristics under non-isostatic effective stress was derived. Although almost
all rocks or geological formations show at least weak anisotropy and the state of stress in
the Earth is always non-isostatic the simple assumption of isotropic rocks and isostatic
stress is the most frequently and successfully used one in seismics and rock physics.
Thus, in the following, the stress dependence of elastic moduli and seismic velocities in
isotropic rocks under isostatic load will be considered. The constitutive equations were
first introduced by Shapiro (2003). There, the stress dependencies of the dry matrix
bulk and shear moduli were derived in the same way as shown for the more general
case of anisotropic rocks under non-isostatic load.

As given by eq. (B.27) the compliances of a rock are related to the dry matrix bulk
modulus, grain bulk modulus, and pore bulk modulus, Kdry, K0, and Kp, respectively,
according to:

1

Kdry,mt,p
= Smt,dry,p

1111 +Smt,dry,p
2222 +Smt,dry,p

3333 +2(Smt,dry,p
1122 +Smt,dry,p

1133 +Smt,dry,p
2233 ) ≡ Smt,dry,p

iikk .

Note, in the literature (e.g., Mavko et al., 1998) bulk moduli Kmt and Kp are usually
denoted as K0 and Kφ, respectively. In the following, the latter notation is used.

Replacing the compliances in eq. (3.19) with the corresponding bulk moduli as given
above leads to stress dependence of porosity in isotropic rocks under isostatic load in
terms of bulk moduli:

δφ =

(

1

Kdry

− 1

K0

− φ
1

Kdry

)

δPeff − φ

(

1

Kφ

− 1

K0

)

δPfl. (3.47)

In analogy to the corresponding equation for anisotropic rocks (eq.B.22) eq. (3.47)
shows that the pure difference between isostatic confining stress and pore pressure is
effective for stress induced porosity variations if the porosity is small and/or the rock
is in the Gassmann limit (i.e., K0= Kφ). As done in the case of anisotropic rocks, in
the following, it is assumed that the rock is in the Gassmann limit.
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3.3. Isotropic stress sensitivity

Again, assuming that the dry matrix bulk modulus can be approximated as a
function of stiff and compliant porosity in terms of a Taylor expansion at Kdry = KdryS

as shown for the dry rock compliances, gives:

1

Kdry

(φs0 + φs, φc) =
1

KdryS

[1 + θsφs + θcφc] , (3.48)

with

θs = KdryS
∂Cdry

∂φs
, (3.49)

θc = KdryS
∂Cdry

∂φc

. (3.50)

KdryS is a hypothetical bulk modulus of the rock in the unstressed state if the poros-
ity of the rock would consist of the stress independent part of the stiff porosity only.
Shapiro (2003) introduced θc as a new rock physical characteristic, the elastic piezosen-
sitivity. This notation was changed to stress sensitivity to avoid confusion arising from
misleading associations with effects of piezoelectricity. Remember, the scalar stress
sensitivity represents the single effectively independent entry of the stress sensitivity
tensor in the case of an initially isotropic medium (for details, see Appendix B.7).

Using equation (3.48) with the stress dependent formulations for φs and φc as given
by Shapiro (2003) yields for the stress dependence of the dry matrix bulk modulus:

Kdry(Peff) = KdryS

[

1 + θs

(

1

KdryS

− 1

K0

)

Peff − φc0θc exp

(

− θc

KdryS

Peff

)]

. (3.51)

In the same way a corresponding equation for the dry matrix shear modulus can
be derived which reads

µdry(Peff) = µdryS

[

1 + θsµ

(

1

KdryS
− 1

K0

)

Peff − φc0θcµ exp

(

− θc

KdryS
Peff

)]

. (3.52)

As expected from the stress dependence of dry compliances, the stress dependencies
of Kdry and µdry also have the form of eq. (1.1). Moreover, Shapiro (2003) has shown
that the stress dependence of the saturated bulk modulus corresponds to eq. (1.1) as
well.

Once the stress dependencies of KdryS and µdryS are derived it is straightforward to
obtain the stress dependencies of P- and S-wave velocities. Therefore, in the case of dry
rock velocities the bulk and shear moduli given in eq. (2.14) and (2.13) are replaced by
the corresponding stress dependent relations (3.51) and (3.52). Hereby, it is reasonable
to neglect the stress dependence of the rock density. Thus, the stress dependence of
seismic velocities of isotropic rocks under isostatic effective stress in terms of the stress
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sensitivity approach read:

VSdry(Peff) =

[[

µdryS

[

1 + θsµ

(

1

KdryS
− 1

K0

)

Peff

− φc0θcµ exp

(

− θc

KdryS
Peff

)]]

ρ−1

]1/2

(3.53)

VPdry(Peff) =

[[

KdryS

[

1 +
4

3
µdryS + (θs +

4

3
θsµ)

(

1

KdryS
− 1

K0

)

Peff

−(θc +
4

3
θcµ)φc0 exp

(

− θc

KdryS

Peff

)]]

ρ−1

]1/2

(3.54)

Obviously, the stress dependencies of seismic velocities have the form

V (P ) =
√

A + KP − B exp(−DP ). (3.55)

Shapiro (2003) gives linear approximations of eq. (3.53) and (3.54) assuming small
variations (approx. 10% or smaller) of the velocities with stress. These approximations
read:

VSdry(Peff) ≈ VSdryS +
1

2
VSdrySθsµ

(

1

KdryS
− 1

K0

)

Peff

−1

2
VSdrySθcµφc0 exp

(

− θc

KdryS

Peff

)

(3.56)

VPdry(Peff) ≈ VPdryS +
1

2
VSdrySθsHs

(

1

KdryS

− 1

K0

)

Peff

−1

2
VPdrySθcHcφc0 exp

(

− θc

KdryS
Peff

)

, (3.57)

with

VSdryS =

√

µdryS

ρ
, andVPdryS =

√

KdryS + 4
3
µdryS

ρ
,

and

Hs =

KdrySθs

θsµ
+

4µdryS

3

KdryS +
4µdryS

3

, Hc =

KdrySθc

θcµ
+

4µdryS

3

KdryS +
4µdryS

3

If these approximations are sufficient the stress dependence of the velocities has also
the form of equation 1.1.

In order to clarify the error introduced by fitting the linear approximations (3.56)
and (3.57) in comparison to the exact relations (3.53) and (3.54) the dry sandstone
sample 131 from Freund (1992) is considered. Figure (3.5(a)) shows the stress depen-
dent P-wave velocity (red dots). The velocity increased from 3.18 km/s at 8 MPa to
5.11 km/s at 300 MPa effective stress, hence, by 60%. The linear approximation solu-
tion was obtained by fitting the observed P- and S-wave velocities with equation (1.1).
Assuming negligible density variations with stress Kdry and µdry were calculated from
the velocity data and fitted with equations (3.51) and (3.52). The obtained best fit
parameters for Kdry and µdry were then used to calculate the stress dependent P-wave
velocity with equation (3.54). The resulting P-wave velocity is shown as dashed blue
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3.4. Stress sensitivity of electrical resistivity

line in Fig.(3.5(a)). The dashed green line shows the P-wave velocity obtained from
the best fit parameters obtained from applying the linear approximation to the data.
Obviously, both velocities fit the observed velocities with a very high accuracy. A vis-
ible deviation of the approximation from the exact solution appears for P → 0 only.
Figure (3.5(b)) shows the relative deviation VPrd of the approximation VPapprox from
the exact solution VPexact, calculated as

VPrd =
VPexact − VPapprox

VPapprox
(3.58)

At zero effective stress the error due to the application of the linear approximation in
contrast to the exact equation is 8% and decreases rapidly. At 8 MPa (first observation
stress) the deviation is 0.8% only. Taking into account that Freund (1992) gives an
error in measurements of 2% and 3% for P- and S-wave, respectively, the error due
to the application of the linear approximation seems to be negligible, although this
sample shows a strong increase of velocities with stress.
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Figure 3.5: Fig. (3.5(a)): Exact stress dependent P-wave velocity (green dashed line)
and linear approximation (blue dashed line) fit observed P-wave velocities (red dots)
quite well. Fig. (3.5(b)): The maximum error introduced due to the application of
the approximation is 8% at zero confining stress. At the first observed velocity the
deviation has already decreased to 0.8%.

3.4 Stress sensitivity of electrical resistivity

In the previous part of this thesis it was shown that the stress dependence of various
elastic characteristics of porous rocks might be understood as a result of pore space
deformation. If this approach is valid it should also be possible to extend it to other
rock properties, as long as they depend somehow linearly on the porosity. Especially
the transport properties of rocks, i.e., electrical resistivity and hydraulic conductivity
(or likewise permeability) are potentially important candidates for such considerations.
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However, the dependence of the transport properties on porosity is highly compli-
cated and not straightforward, since they do not depend on the amount and geometry
of the pore space alone, but also on its connectivity. In fact, there are numerous ex-
amples in the literature where permeability and porosity are positively correlated and
not less examples for which a negative correlation is reported. Some approaches exist
to describe the influence of stress on permeability where fluid flow is assumed to be
controlled by fractures, (e.g., Gangi, 1978; Tsang & Witherspoon, 1981; Raven & Gale,
1985). However, these approaches are usually based on specific assumptions about the
geometry of the fractures in terms of the cubic law. Specific considerations about the
geometry of the fractures do not correspond to the more general treatment of cracks
and fractures as considered in the stress sensitivity approach. Thus, permeability will
not be considered in the following.

Electrical resistivity and porosity are also related to each other in a quite com-
plex manner. Beside the influence of the connectivity of the pore space on the rocks
resistivity, a reasonable and applicable analyzis of the porosity dependence may be
additionally impeded by clay minerals and highly conductive ore phases. However,
Archie (1942) found a quite simple empirical resistivity-porosity relation for rocks,
where only electrolytic charge transport through an interconnected pore space occurs.
This relation will be considered in the next section.

It is well known that electrical resistivity is remarkably more sensitive to porosity,
temperature, and fluid saturation than seismic velocities (e.g., Wilt & Alumbaugh,
1998). Numerous laboratory experiments have been conducted in the past to under-
stand the electrical properties of very different rock types. A review of these studies
can be found, e.g., in Wyllie (1963); Olhoeft (1980); Parkhomenko (1982). However, in
high porosity reservoir rocks electrical resistivity is usually assumed to be independent
from changes of the in situ stress field. For example, Daily & Lin (1985) found that
the electrical conductivity primarily resulted from electrical volume conduction and
that resistivity is not affected by changing elastic moduli through crack closure due to
compression as long as the large aspect ratio pores remain open. Lockner & Byerlee
(1985) compared the stress dependent complex resistivity of Westerly granite with the
one of Berea sandstone. They found that the stress dependence of electrical resistivity
is much smaller in sandstones than in granites. For one granitic sample the real part
of the low-frequency conductivity dropped of by 94 % at 200 MPa confining isostatic
stress whereas the conductivity of the sandstone decreased by only 24 %. Crystalline
rocks seem to behave like sandstones when partially saturated (Brace & Orange, 1968).

This section attempts to explain observations referred to above. It follows the
concept of stress sensitivity, introduced before. However, the dependence of electri-
cal resistivity and hydraulic on porosity is more sophisticated. In order to obtain a
stress dependence of electrical resistivity using the load dependent deformation of the
pore space, we have to restrict the derivations to rocks where only electrolytic charge
transport through an interconnected pore space occurs.

Formulating the stress dependence of electrical resistivity in terms of stress sensi-
tivity as presented for elastic moduli and compliances requires the limitation to rocks
where only electrolytic charge transport is assumed to take place, i.e., surface conduc-
tivity should be negligible and highly conducting mineral phases should not be present.
In other words, we restrict our considerations to rocks where electrical resistivity can
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3.4. Stress sensitivity of electrical resistivity

be described by the well known Archie’s law(Archie, 1942).

1

Ω
=

1

FΩfl

=
1

Ωfl

φm. (3.59)

Here, Ωfl is the resistivity of the pore fluid, F is the formation factor, φ is the porosity,
and m is Archie’s cementation exponent. In general, m is in the range 1 ≤ m ≤ 2 but
occasionally reaches 2.3 (Berryman, 1992). Archie’s law shows that electrical resistivity
is in general not a linear function of porosity. In fact, only in the special case m = 1
electrical resistivity linearly depends on porosity. However, equation (3.59) shows that
the logarithm of resistivity depends linearly on porosity.

Rearranging equation (3.59), using again φ= φs0+ φs+ φc and taking the logarithm
gives:

log
Ω

Ωfl
= −m · log φ = −m · log(φs0 + φs + φc). (3.60)

Obviously, the logarithm of the formation factor F = Ω/Ωfl is a linear function of
porosity.

Using a Taylor expansion gives:

log
Ω

Ωfl

= −m log φs0 −
m

φs0

φs −
m

φs0

φc. (3.61)

Now using the stress dependent formulations for φs and φc as given by Shapiro
(2003), finally gives:

log
Ω

Ωfl

= −m log φs0 −
m

φs0

(

1

KdryS

− 1

K0

)

P − m

φs0

φc0 exp

(

− θc

KdryS

P

)

(3.62)

Comparing equation (3.62) with (1.1) illustrates the physical meaning of the fit pa-
rameters A, K, B, and D in the case of stress dependence of logarithmic formation
factor:

A = −m log φs0, (3.63)

K = − m

φs0

(

1

KdryS
− 1

K0

)

, (3.64)

B =
m

φs0
φc0, (3.65)

D =
θc

KdryS

. (3.66)

Fit parameter A corresponds exactly to Archie’s law if φ in equation (3.59) is equal to
the stress independent part φs0 of the bulk porosity. In the case of fit parameter D we
obtain the same expression as for elastic moduli and seismic velocities.

Here, however, the fit parameters K and B are significantly different in comparison
to their corresponding formulation in the case of elastic moduli and velocities. The
magnitudes of K and B are proportional to 1/φs and φc/φs0, respectively, while they
are proportional to θcφs and θcφc in the case of the other elastic moduli and velocities.
This has an important consequence. In most reservoir rocks stiff porosity and even the
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stress induced change in stiff porosity is much larger than compliant porosity. Despite
this fact the closure of the crack porosity is dominant for the stress dependence of
the elastic moduli and velocities. These properties are rather sensitive to the relative
changes of the different porosity domains, expressed in the θ terms (|θs| � |θc|), than
to the absolute changes (Shapiro, 2003).

In contrast, equation (3.62) states that the stress dependence of electrical resistivity
is controlled by the absolute change of the porosities. Consequently, the change in stiff
porosity controls electrical resistivity as a function of effective stress in reservoir rocks
and not the change in compliant porosity. In turn, the stress dependence of stiff
porosity can be neglected over the effective stress range of interest (up to 200 MPa).
This might be the reason that electrical resistivity is usually assumed to be independent
from stress.

3.5 Stress sensitivity of Poisson’s ratio

From many laboratory experiments it is known that Poisson’s ratio ν or likewise the
Vp/Vs-ratio, is one of the rock physical parameters most sensitive to lithology and to
the type of rock saturating fluid. Domenico (1984) examined sandstone, limestone and
dolomite P- and S-wave data. He found that these rock types are clearly separated
by ν (see Tab. 3.1) and addresses the separation of sandstones and limestones to the
distinct Poisson’s ratio of the dominant matrix minerals, namely quartz (ν = 0.056)
and calcite (ν = 0.316).

Table 3.1: Typical Poisson’s ratio for sandstone, limestone, and dolomite (Domenico,
1984)

Rock type Poisson’s ratio

Sandstone 0.17–0.26
Limestone 0.27–0.29
Dolomite 0.29–0.33

Carcione & Cavallini (2002) suggest the existence of a precise relation between
Poisson’s ratio one the one side and pore pressure and fluid type on the other side
for isotropic and anisotropic rocks. They found that ν is approximately constant at
high differential pressure and decreases for dry rocks at low differential pressure. In
contrast, they found an increasing ν at low differential pressure when the rocks are
saturated. Moreover, in samples of equal porosity they found that ν depends on the
aspect ratio of the cracks and pores and the saturating fluid. Rocks consisting mainly
of stiff porosity show a less sensitivity of ν upon effective stress. Thus, it is consequent
to investigate ν in terms of the stress sensitivity approach.

Assuming isotropic rocks Poisson’s ratio can be calculated from the elastic moduli
and seismic velocities. The corresponding relations read:

ν =
1

2

(

1 − 1

a − 1

)

, with a ≡
(

Vp

Vs

)2

(3.67)
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and

ν =
3K − 2µ

2(3K + µ)
(3.68)

Assuming a material with very high rigidity (µ, Vs → ∞) or a fluid (µ, Vs → 0) shows
that −1 < ν < 0.5.

In order to define the stress dependence of ν in terms of terms of the stress sensitivity
approach it is straightforward to insert the corresponding equations for moduli and
velocities into equations (3.67) and (3.68). This gives for eq. (3.67):

ν =
1

2






1 − 1

(

AP +KP Peff−BP exp(−DPeff)
AS+KSPeff−BS exp(−DPeff)

)2

− 1






, (3.69)

and

ν =
3AK − 2Aµ + (3KK − 2Kµ)Peff − 3BK exp(−DKPeff) − 2Bµ exp(−DµPeff)

2 [3AK + Aµ + (3KK + Kµ)Peff − 3BK exp(−DKPeff) − Bµ exp(−DµPeff)]
(3.70)

for eq. (3.68). Considering the physical characteristics defining the fit parameters used
in eq. (3.70) and assuming that D = DK = Dµ gives:

ν =
3KdryS − 2µdryS + (3θs − 2θsµ)

(

1
KdryS

− 1
K0

)

Peff − (3θc + 2θcµ)φc0 exp(−θc/KdrySPeff)

2
[

3KdryS + µdryS + (3θs + θsµ)
(

1
KdryS

− 1
K0

)

Peff − (3θc + θcµ)φc0 exp(−θc/KdrySPeff)
]

(3.71)
In the same way eq. (3.69) can be expanded towards the physical rock characteristics
behind the used fit parameters and simplified by assuming DP = DS.
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