
Chapter 2

Linear elasticity

This chapter introduces the theoretical background and summarizes the most impor-
tant constitutive equations of the stress sensitivity approach for arbitrary anisotropic
media under arbitrary load. Therefore, it starts with some general remarks the prin-
ciples of linear elasticity for anisotropic media as defined by Hooke’s Law. This will
include the definitions of the important elastic parameters, e.g. the compliances of
anisotropic rocks, bulk modulus, shear modulus, and Young’s modulus, and the defi-
nition of the stress and strain tensor.

Section (2.1.2) to (2.1.4) explain the elastic properties of isotropic, transversely
isotropic and orthorhombic media in more detail. Among the different symmetry
classes these types of anisotropy represent the most important symmetry classes for
geophysical applications. The detailed description of these media covers their gen-
eral symmetry properties and the most common geological features responsible for the
anisotropy. Moreover, aspects of plane wave propagation through these media are
considered. Thereby, the well known Thomsen’s parameters for vertical transversely
isotropic media as well as their equivalents for orthorhombic media, the Tsvankin’s
parameters, will be introduced.

From section (2.3) on the media under consideration are no longer treated as
monophase materials only, as done in classical elasticity and seismics. The descrip-
tion of the media approaches the more realistic situation of a porous rock. This leads
to the fundamental concept of poroelasticity. However, it is beyond the scope of this
thesis to consider all aspects of the mechanics of and wave propagation through poroe-
lastic media. Hence, the considerations made here are limited to aspects concerning
the deformation of porous media.

From section (3.2) to section (3.2.5) a summary of the derivation of the stress sen-
sitivity approach for anisotropic media under non-isostatic load is given. The complete
derivation of the approach is given in Appendix (B) which reflects the paper of Shapiro
& Kaselow (2003).
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2.1. Basics of elasticity

2.1 Basics of elasticity

When a force, either internal or external, is applied to a continuum every point of this
continuum is influenced by this force. It is common to denote internal forces as body

forces and external forces as contact forces. The most common body force results from
the acceleration due to gravity. Body forces are proportional to the volume of the
medium and to its density and have the unit force per volume. Contact forces depend
on the surface they are acting on and have the unit force per area.

Imagine external forces acting on a continuum. In general, these forces will lead to
a deformation of the medium resulting in changes of size and shape. Internal forces
acting within the medium try to resist this deformation. As a consequence the medium
will return to its initial shape and volume when the external forces are removed. If
this recovery of the original shape is perfect, the medium is called elastic.

The constitutive law relating the applied force to the resulting deformation is
Hooke’s Law. It is defined in terms of stress and strain. The exact form of the stress,
the state of stress, at an arbitrary point P of the continuum depends on the orientation
of the force acting on P and the orientation of the reference plane with respect to a
reference coordinate system. To quantify the state of stress at a point P resulting from
the force F, P is imagined as an infinitesimal small cube. The stress acting on each
of the six sides of the cube can be resolved into components normal to the face and
within it. This situation is illustrated in Fig. (2.1) for the plane normal to the 2 axes.
In the following, a plane oriented normal to an axes i is called the i-plane.
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Figure 2.1: Stress components acting on the 2-plane.

A stress σij is defined as acting on the i-plane and being oriented in the j direction.
Components of the stress tensor with repeating indices, e.g. σ11, are denoted as normal
stress while a stress component with different indices is called a shear stress. Conse-
quently, this gives six shear and three normal stress components acting on the cube. If
the medium is in static equilibrium the sum of all stress components acting in the 1,2,
and 3 direction and the total moment is zero. This means:

σij = σji.
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Linear elasticity

Thus, the stress tensor σij completely describes the state of stress at any point P of
the continuum.

σij =





σ11 σ12 σ13

σ21 σ22 σ32

σ31 σ32 σ33



 , with i, j = 1, 2, 3 (2.1)

Normal stresses with positive values directed outward from faces are called tensional

stress, and negative values correspond to compressional stress. The SI unit for stress
is Pa. In geoscientific practice, stresses are usually given in mega pascal (1 MPa =
106P). 1 A special state of stress is found when all normal stresses are equal, i.e.,
σ11 = σ22 = σ33 and all shear stresses are zero. Then, the stress tensor is independent
of the reference coordinate system, and the stress can be understood as a scalar, thus,
as a pressure. This pressure is given as P = −σii. Such a stress state is often denoted as
hydrostatic, because it is similar to the pressure in a fluid, which is always equal in all
directions. However, this state of stress in a solid material depends on the orientation
and magnitude of the externally or internally applied forces. In a fluid, it results
from the general property of fluids that they can not resist shear stress. Therefore, this
state of stress in a solid material should be correctly denotes as isostatic and hydrostatic

should refer to pressure in a fluid.

As mentioned above, when an elastic body is subjected to stress, changes in size
and shape occur and these deformations are called strain. Per definition, strain is the
relative (fractional) change of a dimension of a body. In the three dimensional case the
strain at point P is determined by the strain tensor εij, assuming the deformations to
be sufficiently small:

εij =





ε11 ε12 ε13

ε21 ε22 ε32

ε31 ε32 ε33



 , with i, j = 1, 2, 3 (2.2)

The elements of the strain tensor with repeating indices are denoted as normal strain,
all others as shear strain. Just as the stress tensor the strain tensor has six independent
components, e.g.,

εij = εji.

The volume change of a body is given by the diagonal elements εii of the strain tensor
only. Normalizing this volume change to a unit volume defines the dilatation ∆ of a
body:

∆ = εii, (2.3)

where summation over repeated indices is assumed.

2.1.1 Hooke’s Law

Stress and strain are related to each other by Hooke’s Law where the strain is assumed
to be sufficient small that stress and strain depend linearly on each other. Such a
medium is called linear elastic. In its general form Hooke’s law reads:

σij = Cijklεkl, with i, j, k, l = 1, 2, 3 (2.4)

1Especially in the hydrocarbon industry, different units are very common, e.g., psi or lbs. For more
details on pressure terminology and conversion factors, see section 3.1 and appendix G, respectively.
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2.1. Basics of elasticity

The fourth-rank tensor Cijkl is called the stiffness tensor and consists of 81 entries.
It holds the elastic constants of a medium. This tensor actually links the deformation of
a medium to an applied stress. In general, Hooke’s law leads to complicated relations,
but simplifies remarkably, especially in the case of isotropic media.

Each component of stress σij is linearly dependent upon every component of strain
εkl and vice versa. Since all directional indices may assume values 1, 2, and 3 one
obtains 9 relations. Each of this relations involves one component of stress and nine
components of strain.

Since the stress tensor is symmetrical, i.e. σij = σji, only six of these equations are
independent. This is also valid for the strain. Thus, also only six terms of the right
side of eq. (2.4) are independent.

Alternatively, one may express the strain as a linear combination of stress

εij =
3

∑

k=1

3
∑

l=1

Sijklσkl, i, j = 1, 2, 3. (2.5)

In this case, Sijkl is called the elastic compliance tensor and its elements are called
compliances. Both tensors C and S have the same symmetry and it is:

CijklSklmn = Iijmn (2.6)

For simplicity, it is useful to apply the Voigt notation to express the 3 x 3 x 3 x
3 stiffness tensor Cijkl as a 6 x 6 stiffness matrix CIJ . This means, that each pair of
indeces ij(kl) is replaced by one index I(J), according to Tab. (2.1).

ij(kl) I(J)
11 1
22 2
33 3

23,32 4
13,31 5
12,21 6

Table 2.1: Voigt notation: Scheme for index replacement(Thomsen, 2002).

Not all matrices are tensors. A tensor is a matrix with elements that depend upon
an assumed coordinate ”frame of reference”, and that transforms (when referred to
a different ”frame of reference”) according to a certain transformation rule. The 6
x 6 matrix c is not a tensor. When a tensor transformation is necessary it has do
be performed either directly on Cijkl or, more efficiently, by using the 6 x 6 Bond

transformation matrices together with CIJ (Auld, 1990).

As mentioned, in its most general form the stiffness tensor has 81 entries. However,
due to the symmetry of stress and strain the number of independent entries reduces to
36:

Cijkl = Cjikl = Cijlk = Cjilk
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Linear elasticity

Moreover, the existence of a unique strain energy potential requires that

Cijkl = Cklij.

Thus, the number of independent entries in the stiffness tensor reduces to 21. A medium
characterized by such a stiffness tensor is called triclinic. Crystals are organized due
to their macroscopical symmetry in 32 classes which are subdivided into 7 systems.
In seismics only three symmetry classes are important: orthorhombic, transversel (or
hexagonal), and isotropic (Thomsen, 2002). In some cases, when dealing with rock or
mineral properties, also cubic symmetry might be considered (Mavko et al., 1998). The
certain stiffness tensors of the mentioned media are given in Appendix (C) in Voigt
notation.

2.1.2 Isotropic media

In the most simple symmetry case of an isotropic elastic solid, the material has only two
independent elastic moduli, called the Lamé constants, λ and µ. In such a medium the
elastic properties at any point P are independent from direction. The Lamé constants
are related to the stiffness tensor Cijkl by

Cijkl = [λδijδkl + µ(δikδjl + δilδjk)]εkl, (2.7)

where δ is the Kronecker delta function defined as

δij =

{

0 for i 6= j
1 for i = j

, i, j = 1, 2, 3. (2.8)

The stiffness tensor of isotropic media in Voigt notation explicitly reads:
















C33 C12 C12 0 0 0
C12 C33 C12 0 0 0
C12 C12 C33 0 0 0
0 0 0 C55 0 0
0 0 0 0 C55 0
0 0 0 0 0 C55

















,

with
C12 = C33 − 2C55

and

C55 = µ and C33 = K +
4

3
µ

The shear modulus µ is a measure of resistance to shear stress, according to:

σij = 2µεij, with i 6= j. (2.9)

In a fluid the shear modulus always equals zero and the deformation of a solid material
is small if µ is high. Its physical unit is Pa, and is usually given for rocks in GPa (1GPa
= 109Pa).

The second Lamé parameter λ is important as a combination with other elastic
constants, e.g., the Young’s modulus E, the bulk modulus K, and Poisson’s ratio ν.

11



2.1. Basics of elasticity

µ K λ E ν
3(K−λ)

2
λ + 2µ

3
K − 2µ

3
9Kµ

3K+µ
λ

2(λ+µ)

λ
(

1−2ν
2ν

)

µ
[

2(1+ν)
3(1−2ν)

]

2µν
1−2ν

2µ(1 + ν) λ
3K−λ

3K
(

1−2ν
2+2ν

)

λ
(

1+ν
3ν

)

3K
(

ν
1+ν

)

µ
(

3λ+2µ
λ+µ

)

3K−2µ
2(3K+µ)

E
2(1+ν)

E
3(1−2ν)

Eν
3(1+ν)(1−2ν)

3K(1 − 2ν) 3K−E
6K

Table 2.2: Relationships between the different elastic moduli (Thorne & Wallace, 1995).

The bulk modulus K is defined as the ratio of an applied isostatic stress to the
fractional volumetric change. It is also called incompressibility , following the com-

pressibility C = 1/K:
1

3
σii = Kεii. (2.10)

In a uniaxial state of stress (e.g., σ11 6= 0, σ22 = σ33 = 0), Young’s modulus E
relates the stress to the resulting strain in the same direction.

σii = Eεii. (2.11)

The Poisson’s ratio ν is also defined for an uniaxial stress state and relates the
lateral strain (j-direction) to axial strain (i-direction):

ν = −εjj

εii
, (2.12)

where no summation over repeated indices is implied. In contrast to the other elastic
parameters which have the physical unit of a pressure the Poisson’s ratio is dimension-
less.

The mentioned elastic parameters can be obtained for a given rock sample in the
laboratory by strain measurements during uniaxial or triaxial compression tests, de-
pendent on the desired parameter.

A large collection of typical orders of magnitude for the mentioned elastic parame-
ters for the most important rock forming minerals is given in, e.g., Mavko et al. (1998).

In the case of an isotropic linear elastic material the bulk modulus and the shear
modulus, as well as the density ρ of the material define the compressional and shear
wave velocity VP and VS, respectively. This dependence reads:

VS =

√

µ

ρ
, (2.13)

VP =

√

K + 4
3
µ

ρ
. (2.14)

An additional parameter often used in rock physics is the P-wave modulus M :

M = V 2
P ρ. (2.15)
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Linear elasticity

Considering eq. (2.13) and (2.14) it is possible to calculate the elastic parameters of
an isotropic medium when P- and S-wave velocity and the medium density are known
or can be reasonably assumed. From many observations it is known that the elastic
parameters obtained from so-called static laboratory compression test differ from those
obtained by inverting the wave velocities. Popp (1994) found the discrepancy between
the ”static” and ”dynamic” moduli of samples from the KTB pilot hole to be on the
order of 10 % whereby dynamic moduli are usually higher than static.

The assumption of an isotropic medium is frequently used in geophysical applica-
tions. An obvious reason for this is that the constitutive equations are much easier
than for anisotropic media and can thus be understood and evaluated more intuitively.
Moreover, less parameters have to be determined to describe the model and thereby,
the computational costs are remarkably lower, especially when dealing with seismic
field data. However, also the limitation to an isotropic model has proven to be suffi-
cient in many field studies there are situations where a more sophisticated approach is
required which takes the anisotropy of the medium into account.

2.1.3 Transversely isotropic media.

The most simple anisotropic model is that of a transversely isotropic (TI) medium.
Such a medium is characterized by the existence of a single plane of isotropy and
one single axis of rotational symmetry, the normal to the isotropy plane. Any plane
containing the axis of symmetry represents a plane of mirror symmetry. All seismic
signatures in such a medium depend only on the angle between the direction of wave
propagation and the symmetry axis.

The vast majority of anisotropic field and laboratory studies assume TI symmetry.
A reason is that this symmetry is assumed to be dominant for the intrinsic anisotropy
of shales, caused by the preferred orientation of clay minerals. Shales represent almost
75% of the clastic fill of sedimentary basins (Tsvankin, 2001), which host many hy-
drocarbon reservoirs. The second prominent source for TI symmetry is periodic thin
layering, also common in sedimentary basins. Thin layering means an interbedding
of thin isotropic layers with different elastic properties on a scale small in comparison
with the wavelength. This case is illustrated in Fig. (2.2), where the x3 axis represents
the symmetry axis.

Due to the frequent application of this model to sedimentary basins with more or
less horizontal layering some special cases of TI symmetry have been established. A TI
medium with a vertical axis of symmetry and thus a horizontal plane of isotropy is called
a vertical transversel isotropic (VTI) medium. However, in many geological settings
layers are dipping for numerous reasons, e.g., when approaching a saltdome flank, in
overthrust areas or due to block rotation associated with normal faulting. In such cases
the symmetry axis may be tilted with respect to the earth’s surface. Such a medium
shows an effective anisotropy of a tilted transversel isotropic (TTI) medium. Tilting
the symmetry axis all the way up to the horizontal produces a horizontal transversel

isotropic (HTI) medium. Such a symmetry is usually assumed to be caused by a set
of parallel vertical cracks embedded in an isotropic background medium (Tsvankin,
2001; Bakulin et al., 2000a). Both VTI as well as HTI symmetry can be understood as
special cases of the more complex orthorhombic symmetry class (see section 2.1.4 and
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2.1. Basics of elasticity

x3
Isotropy Plane

Figure 2.2: TI medium with vertical symmetry axis (VTI medium).

2.2.2).

The stiffness tensor in Voigt notation for VTI media, when we assume that the axis
of symmetry is the 3-axis, has the form (e.g., Tsvankin, 2001)

CVTI
IJ =

















C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C55 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

















, (2.16)

with
C12 = C11 − 2C66.

Note, in many publications, e.g., the fundamental paper of Thomsen (1986), C44 is
used in eq. (2.16) instead of C55. However, this is just a question of notation since
C44 = C55 in VTI media.

2.1.4 Orthorhombic media

Orthorhombic media are characterized by three mutually orthogonal planes of sym-
metry. If the axes of a Cartesian reference coordinate system are aligned within the
symmetry planes, i.e., if the coordinate planes coincide with the symmetry planes, the
stiffness matrix of the orthorhombic system has nine independent entries and reads
(Tsvankin, 2001):

COrtho
IJ =

















C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

















. (2.17)
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Figure 2.3: Symmetry planes in orthorhombic media where anisotropy arises from a
system of parallel vertical fractures embedded in a VTI medium, after Tsvankin (2001).

In sedimentary basins orthorhombic symmetry is commonly caused by parallel verti-
cal fractures embedded within a VTI background medium (see 2.1.3) as illustrated in
Fig. (2.3). It may also arise due to two or three mutually orthogonal fracture sets, or
due to two identical fracture systems criss-crossing with an arbitrary angle (Tsvankin,
1997). Such sets of fractures are common, e.g., for thick sandstone beds and granites.
Bakulin et al. (2000b) conclude that orthorhombic symmetry thus might be the most
realistic symmetry for many geophysical problems. Despite this conclusion, the ap-
plication of orthorhombic anisotropy in seismic inversion and processing is obstacled
by the large number of nine independent entries of the stiffness matrix. Moreover, if
the orientation of the symmetry planes is unknown, as it is usually the case in seismic
field experiments the number of unkowns increases to 12, since the angles between the
symmetry planes and the coordinate planes of the reference observation system have
to be determined additionally.

2.2 Plane waves in isotropic and anisotropic media

The considerations concerning waves in anisotropic media presented in this thesis are
limited to the case of weak anisotropy only, i.e., media with an anisotropy below 10-
20 %. This is consistent with most seismic applications and research, since the algebraic
complexity of the exact constitutive relations for all magnitudes of anisotropy is the
primary obstacle in analyzing seismic data. For details on these equations, their simpli-
fication in the case of weak anisotropy and the resulting benefit in seismic applications
see Appendix D and, e.g., Thomsen (1986).

In contrast to isotropic media the seismic velocities in anisotropic media vary de-
pending on the direction of propagation with respect to the symmetry properties of the
medium in anisotropic media. An analytical description of plane waves in arbitrary
anisotropic media can be derived using the elastodynamic wave equation (eq. 2.18) as,
e.g., given by Tsvankin (2001).

ρ
∂2ui

∂t2
− Cijkl

∂2uk

∂xj∂xl
= 0 (2.18)
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2.2. Plane waves in isotropic and anisotropic media

Here, ρ is the density of the medium, ui is the displacement vector, t is time and xi

are the Cartesian coordinates and summation over repeated indices is implied. We see
that the anisotropy of the medium enters equation (2.18) via the stiffness tensor Cijkl.
In this context, talking about anisotropic media includes isotropic media as well, since
also the stiffness tensor of an isotropic can be inserted into equation (2.18).

Inserting a harmonic plane wave representation like

uk = Uk exp(iω(njxj/V − t)) (2.19)

into equation 2.18 leads to the Christoffel equation (Musgrave, 1970):





G11−ρV 2 G12 G13

G21 G22 − ρV 2 G23

G31 G32 G33 − ρV 2









U1

U2

U3



 = 0, (2.20)

where Gij is the Christoffel matrix, which is a function of the material properties and
the direction of wave propagation:

Gij = Cijklnjni. (2.21)

Here, ni is the direction vector of wave propagation. In a more compact way, the
Christoffel equation can be written as:

[

Gik − ρV 2δik

]

Uk = 0 (2.22)

Alternatively to the velocity of a wave the concept of slowness is frequently used in
wave theory. However, the slowness is simply defined as the inverse of the velocity V.
Thus, the slowness vector is given by:

pi =
ni

V
(2.23)

The Christoffel equation describes a standard eigenvalue(ρV 2)-eigenvector(Ui) problem
with the eigenvalues determined from

det
[

Gij − ρV 2δij

]

= 0. (2.24)

For any specific direction ni in an anisotropic media, the solution of cubic equa-
tion (2.24) yields three possible values of the squared velocity V, namely, one P-wave
velocity and two S-wave velocities. Thus, in any anisotropic medium the shear wave is
split into two modes with different velocities, except in some special directions where
both S-wave velocities coincide. This leads to so-called shear wave singularities. In this
context, isotropy can be understood as a special case of anisotropy where both S-wave
velocities always coincide in all directions.

Since the Christoffel matrix is real and symmetric all polarization vectors of the
three modes are mutually orthogonal. However, none of them is necessarily parallel or
perpendicular to the phase direction. As a consequence, there are no pure longitudinal
or transverse waves in anisotropic media, except for some special directions. Therefore,
the velocities are usually denoted as

”
quasi-P“-wave and

”
quasi-S1“- and

”
quasi S2“-

wave.
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Figure 2.4: Graphical illustration of the difference between phase Θ and group angle
Ψ (after Thomsen (1986)).

For any particular phase the phase velocity surface can be constructed by plotting
the phase velocity as the radius vector, for a given point source, in all directions of
propagation. In the same way the corresponding slowness surface can be obtained.
The shape of the slowness surface is directly related to the shape of the wavefront
from point sources and to the presence from shear wave singularities. In homogeneous
isotropic media, both surfaces as well as the wavefront are spherical.

However, the energy of a wave propagates with the group (or ray) velocity. This
velocity describes rays used in seismic ray theory and is thus important for seismic
traveltime and inversion methods. Group and ray velocity may differ due to dispersion
or anisotropy. In homogeneous isotropic media the ray and phase vector point into the
same direction. In homogeneous but anisotropic media their directions can differ since
the wavefront is no longer spherical.

Let the phase vector being denoted as ki. It is locally always normal to the slowness
wavefront. The phase velocity is also called the wavefront velocity, since it is the
propagation velocity of the wavefront along the phase vector. In contrast, the ray
vector points always from the source to the considered point on the wave front. The
difference between phase and ray angle is illustrated in Fig. (2.4).

In contrast to the phase velocity the group velocity can not be obtained directly
from the Christoffel equation. In its most general form the group velocity vector in
arbitrary anisotropic media can be written as (e.g., Tsvankin, 2001)

VG = gradk(kV ) =
∂(kV )

∂k1
i1 +

∂(kV )

∂k2
i2 +

∂(kV )

∂k3
i3, (2.25)

where ki is the wave vector (see Fig. 2.4), V is the phase velocity and ii is the unit
coordinate vector. The magnitude of k is k = ω/V where ω is the angular frequency.
Using an auxiliary coordinate system [x,y,z] which is rotated by the azimuthal phase
angle φ around the x3 axes of the original [x1, x2, x3] coordinate system, the components
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2.2. Plane waves in isotropic and anisotropic media

of the group velocity vector are given by (Thomsen, 1986):

VGx = V sin θ +
∂V

∂θ

∣

∣

∣

∣

φ=const

cos θ, (2.26)

VGz = V cos θ − ∂V

∂θ

∣

∣

∣

∣

φ=const

sin θ, (2.27)

VGy =
1

sin θ

∂V

∂φ

∣

∣

∣

∣

θ=const

. (2.28)

The y-axis in eq. (2.28) points in the direction of increasing azimuthal angle φ counter-
clockwise from the x1-direction of the original coordinate system. The group velocity
vector in vertical symmetry planes of any anisotropic media is completely determined
by equations (2.26) and (2.27).

2.2.1 Transversely isotropic media

Phase velocity and polarization of waves in transversely isotropic media can be obtained
from the Christoffel equation (2.22) and the stiffness tensor for TI media (eq. 2.16).
Here, the stiffness tensor for VTI media is used since this is the most important case
in seismics and rock physics. However, the Christoffel matrix for VTI media reads
(Tsvankin, 2001):

G11 = C11n
2
1 + C66n

2
2 + C55n

2
3 (2.29)

G22 = C66n
2
1 + C11n

2
2 + C55n

2
3 (2.30)

G33 = C55

(

n2
1 + n2

2

)

+ C33n
2
3 (2.31)

G12 = (C11 + C66) n1n2 (2.32)

G13 = (C13 + C55) n1n3 (2.33)

G23 = (C13 + C55) n2n3 (2.34)

Due to rotational symmetry in VTI media it is sufficient to analyze only one vertical
plane containing the axis of symmetry. Taking, e.g., the [x1, x3] plane into account,
n2 = 0 and inserting eq. (2.29) to (2.34) into the Christoffel equation (2.22) gives:




C11n
2
1 + C55n

2
3 − ρV 2 0 (C13 + C55)n1n3

0 C66n
2
1 + C55n

2
3 − ρV 2 0

(C13 + C55)n1n3 0 C55n
2
1 + C33n

2
3 − ρV 2









U1

U2

U3



 = 0

(2.35)

Equation (2.35) clearly states that the three wave modes split into a set of in-plane
polarized waves, i.e., waves where particels move within the [x1, x3] plane (U2 = 0),
and one pure transversely polarized wave. If we express the direction unit vector ni in
terms of the phase angle Θ with the symmetry axis, i.e.,

n1 = sin Θ and n3 = cos Θ

and setting the determinant of the Christoffel equation to zero gives for the pure
transversely polarized mode, the so-called SH-wave:

VSH =

√

C66 sin2 Θ + C55 cos2 Θ

ρ
(2.36)
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This shear wave is called SH-wave to emphasize its purely horizontal polarisation. For
the in-plane waves we obtain in a similar manner:

2ρV 2
P (Θ) = (C11 + C55) sin2 Θ + (C33 + C55) cos2 Θ + M, (2.37)

2ρV 2
P (Θ) = (C11 + C55) sin2 Θ + (C33 + C55) cos2 Θ − M (2.38)

with

M =

√

(

(C11 + C55) sin2 − (C33 + C55) cos2 Θ
)2

+ 4 (C13 + C55)
2 sin2 Θ cos2 Θ.

If we consider a wave propagating into the three direction, i.e., Θ = 0, we obtain
for the three modes:

VP (0) = V33 =

√

C33

ρ
, (2.39)

VSV (0) = V31 =

√

C55

ρ
, (2.40)

VSH(0) = V32 =

√

C55

ρ
, (2.41)

where notation Vij means propagation in the i-direction while polarization is in the
j-direction. Obviously, both S-wave velocities coincide in the case of vertical propaga-
tion, creating a shear wave singularity in the direction of symmetry. Thus, the above
mention separation of the Christoffel equation into P-SV and SH-waves is unique in this
special case, since any combination of polarization directions U1 and U2 can form the
corresponding eigenvector. Moreover, taking the rotational symmetry of VTI media
into account, it is clear that the polarization of both shear waves can lie anywhere in
the horizontal isotropy plane. Thus, the actual polarization of both S-waves depends
on the source. Consequently, the notation VSV (0) = V31 and VSH(0) = V32 is only valid
in the case of a properly oriented source.

Now, let us consider a plane wave propagating in the 1-direction, that means,
Θ = 90◦. We obtain:

VP (90) = V11 =

√

C11

ρ
, (2.42)

VSV (90) = V13 =

√

C55

ρ
, (2.43)

VSH(90) = V12 =

√

C66

ρ
. (2.44)

Due to the rotational symmetry, we can write immediately the corresponding velocities
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2.2. Plane waves in isotropic and anisotropic media

for propagation in the 2-direction:

VP (90) = V22 =

√

C11

ρ
, (2.45)

VSV (90) = V23 =

√

C55

ρ
, (2.46)

VSH(90) = V21 =

√

C66

ρ
. (2.47)

We have formulated nine velocities which would be observed if velocities of a VTI
sample would be measured in an orthogonal coordinate system and the axis of sym-
metry would be aligned parallel to the 3-axis of the measurement coordinate system:





V11 V12 V31

V21 V22 V32

V31 V32 V33



 =











√

C11

ρ

√

C66

ρ

√

C55

ρ
√

C66

ρ

√

C11

ρ

√

C55

ρ
√

C55

ρ

√

C55

ρ

√

C33

ρ











Obviously, such a measurement arrangement lacks a fivth independent velocity, neces-
sary for a complete inversion of the stiffness tensor. Therefore, an additional P-wave
velocity (VP45) is measured at an angle of 45◦ with the symmetry axis. In this case, the
five independent entries of the stiffness tensor can be determined from the following
equations (e.g., Lo et al., 1986):

C11 = ρV 2
11 (2.48)

C12 = C11 − 2ρV 2
11 (2.49)

C33 = ρV 2
33 (2.50)

C55 = ρV 2
12 (2.51)

C13 = −C55 +
(

4ρ2VP45 − 2ρVP45 (C11 + C33 + 2C55)

+ (C11 + C55) (C33 + C55))
1/2 (2.52)

As mentioned before phase and ray velocity may differ in anisotropic media. How-
ever, analytical relationships among them have already been derived in detail (e.g.
Thomsen, 1986; Berryman, 1979). Here, the relation will be given for TI media.

Although the previously introduced equations allow for a calculation of elastic ve-
locities in VTI media and the inversion of the stiffness tensor, their formalism does not
provide an intuitive insight. It is almost impossible to get an assumption about the
degree of, e.g., quasi P-wave anisotropy, from looking at the stiffness tensor and the
constitutive equation.

To overcome this problem Thomsen (1986) introduced three anisotropy parameters
ε, δ, and γ, which represent combinations of certain elements of the stiffness tensor.
The use of these Thomsen parameters has a couple of striking advantages:

• They are nondimensional, i.e., they allow for a statement like
”
anisotropy is X%“.
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• In the special case where polar anisotropy reduces to isotropy, the particular
combinations become zero.

• If these parameters are less then 0.1, the medium can be assumed to be
”
weakly

anisotropic“.

• In the case of weak anisotropy exact equations for seismic velocities and group
and polarization angles can be linearized in Thomsen’s parameters and thus re-
markably simplified.

In combination with two velocities VP0 and VS0 transversel anisotropy can be de-
scribed in terms of these parameters. Note, despite the frequent association of Thom-
sen’s parameters with weak anisotropic media they are basically derived for any degree
of anisotropy. In fact, only the definition of δ differs in the

”
strong“ and weak anisotropy

case (see Appendix D for details). However, in the weak anisotropy approximation the
Thomsen’s parameters are given as:

VP0 ≡
√

C33

ρ
, (2.53)

VS0 ≡
√

C44

ρ
, (2.54)

ε ≡ C11 − C33

2C33

, (2.55)

γ ≡ C66 − C44

2C44

, (2.56)

δ ≡ (C13 + C44)
2 − (C33 − C44)

2

2C33 (C33 − C44)
. (2.57)

VP0 and VS0 are P- and S-wave velocity, respectively, in the direction of the symmetry
axis, in VTI media the 3 or z-axis. Remember, both S-waves coincide in this spe-
cial direction. The physical meaning of the weak anisotropy approximation is that of
an isotropic background medium, represented by VP0 and VS0, perturbated by small
anisotropy represented in terms of ε, γ, and δ. If a rock is weakly anisotropic the three
phase velocities can be approximated by (Thomsen, 1986):

VP (Θ) = VP0

(

1 + δ sin2 Θ cos2 Θ + ε sin4 Θ
)

(2.58)

VSV (Θ) = VS0

(

1 +
V 2

P0

V 2
S0

(ε − δ) sin2 cos2

)

(2.59)

VSH(Θ) = VS0

(

1 + γ sin2 Θ
)

, (2.60)

Considering a plane P-wave propagating in the 3-direction (Θ = 0), eq. (2.58) gives:

VP (Θ = 0) = VP0. (2.61)

Now considering a plane P-wave propagating in the 1-direction (Θ = 0). In this case,
eq. (2.58) gives:

VP (Θ = 90) = VP0 (1 + ε) . (2.62)

Thus, it is clear from eq. (2.61) and (2.62) that ε is close to the fractional difference
between horizontal and vertical P-wave velocity and is thus often simplistically denoted
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2.2. Plane waves in isotropic and anisotropic media

as the P-wave anisotropy. An equivalent measure for the SH-velocity is γ, as shown in
eq. (2.56) and (2.60).

The physical meaning of δ is not as obvious as in the case of ε and γ. It determines
the second derivative of the P-wave phase function at vertical incidence (Tsvankin,
2001):

d2VP

dΘ2

∣

∣

∣

∣

Θ=0

= 2VP0δ. (2.63)

The first derivative of the phase velocity at vertical incidence (Θ = 0) is equal to
zero. Thus, δ controls the dependence of VP in the vicinity of the symmetry axis.
Equation (2.63) shows that the P-wave velocity increases with increasing Θ if δ is
positive and decreases if δ is negative (see also eq. 2.58).

2.2.2 Orthorhombic media

In equivalence with TI media phase velocities and polarization in orthorhombic media
can be derived from the Christoffel equation, which reads (Tsvankin, 2001):

G11 = C11n
2
1 + C66n

2
2 + C55n

2
3, (2.64)

G22 = C66n
2
1 + C22n

2
2 + C44n

2
3, (2.65)

G33 = C55n
2
1 + C44n

2
2 + C33n

2
3, (2.66)

G12 = (C12 + C66) n1n2, (2.67)

G13 = (C13 + C55) n1n3, (2.68)

G23 = (C23 + C44) n2n3, (2.69)

where ni is the unit vector in the phase (slowness) direction. Considering the [x1, x3]-
plane, the Christoffel equation (2.22) in terms of the phase angle Θ with the x3-axes
(n1 = n2 = sin Θ, n3 = cos Θ) becomes:





C11n
2
1Θ + C55n

2
3Θ − ρV 2 0 (C13 + C55) sin Θ cos Θ

0 C66n
2
1Θ + C44n3Θ

2 − ρV 2 0
(C13 + C55)n1n3 0 C55n

2
1Θ + C33n

2
3Θ − ρV 2









U1

U2

U3



 = 0

(2.70)
Comparing eq. (2.70) with the corresponding equation for VTI media (eq. 2.35) shows
that they are identical for the in-plane polarized wave modes and also for the pure
transversely polarized mode if C44 = C55. Thus, in-plane polarized waves in the
[x1, x3]-plane of an orthorhombic medium depend on the same elastic stiffnesses as
in a VTI medium. Moreover, as in VTI media, equation 2.70 splits into two indepen-
dent equations for the in-plane polarized P and VSV waves on the one hand side and
the pure transverse motion VSH on the other hand side.

Considering, for example, a plane wave propagating in the 3 direction, i.e., Θ = 0,
gives for the P-wave (U1 = U2 = 0), the SV-wave (U3 = U2 = 0), and the SH-wave
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(U1 = U3 = 0), respectively:

VP =

√

C33

ρ
(2.71)

VSV =

√

C55

ρ
(2.72)

VSH =

√

C44

ρ
. (2.73)

For a wave propagating in the same plane but in the 1 direction equation (2.70) gives:

VP =

√

C11

ρ
(2.74)

VSV =

√

C55

ρ
(2.75)

VSH =

√

C66

ρ
. (2.76)

The phase velocity functions for each wave mode in the [x1, x3]-plane are sufficient
for the determination of group velocity and group angle and thus for all kinematic
signatures. This means, as a consequence, that the kinematics of wave propagation in
the [x1, x3]-plane can be described completely by well known VTI equations. In the
same way, phase velocities in the remaining [x1, x2]- and [x2, x3]-plane can be described
in a similar way by using the appropriate components of the stiffness tensor.

This equivalence between kinematic aspects of wave propagation in orthorhom-
bic and VTI media is limited by some dynamic aspects and cuspoidal S-wave group
velocity-surfaces near shear-wave point singularities in the symmetry planes of or-
thorhombic media. Such cuspoidal features cannot exist in VTI media (see, e.g.,
Tsvankin, 1997, 2001, for details).

However, it is reasonable to assume, that the equivalence between orthorhombic
and VTI media can be used to simplify the constitutive relations for orthorhombic
media and, thus, to obtain equations, applicable in practice. In fact, Tsvankin (1997)
introduced Thomsen-style anisotropy parameters for weak anisotropic, providing the
full advantage of the anisotropy parameters of TI media for orthorhombic media. In
analogy to VTI media, two vertical velocities, VP0 and VS0, are defined as the body
wave velocities of an isotropic reference (or background) velocity model. Although
both split shear waves at vertical incidence can be chosen, preference is usually given
to the S-wave polarized in the x1-direction. This ensures that the new notation for the
in-plane polarized waves in the [x1,x3]-plane are identical to Thomsen’s notation in the
VTI case (Tsvankin, 1997). Thus, we obtain per definition:

VP0 ≡
√

C33

ρ
(2.77)

VS0 ≡
√

C55

ρ
(2.78)
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2.2. Plane waves in isotropic and anisotropic media

In the following, a superscript will be assigned to Tsvankin’s parameters indicating the
symmetry plane, for which the parameters are defined. The superscript corresponds
to the normal direction of the plane under consideration, i.e, (2) corresponds to the
[x1,x3]-plane. In analogy to VTI media, we can define:

ε(2) ≡ C11 − C33

2C33
(2.79)

δ(2) ≡ (C13 + C55)
2 − (C33 − C55)

2

2C33 (C33 − C55)
(2.80)

The analogy with VTI media can be used to derive the kinematic signatures and
polarizations of the in-plane polarized waves in the [x1,x3]-plane by substituting the
Thomsen parameters in the exact equation for VTI media with the above defined VP0,
VS0, ε(2), and δ(2). Thus (Tsvankin, 1997),

V 2
P (Θ) = V 2

P0

(

1 + ε(2) sin2 Θ − f

2

±f

2

√

(

1 +
2ε(2) sin2 Θ

f

)2

− 2(ε(2) − δ(2)) sin2 2Θ

f



 , (2.81)

where

f ≡ 1 − V 2
S0

V 2
P0

. (2.82)

Equation (2.81) corresponds to the P-wave if the ’+’ sign is chosen in front of the
radical, otherwise to the SV-wave.

Hence, this gives in the weak anisotropy limit (Tsvankin, 1997):

VP (Θ) = VP0

(

1 + δ(2) sin2 Θ cos2 Θ + ε(2) sin4 Θ
)

(2.83)

In the same way, γ(2) and all parameters for the remaining planes can be defined
as:

γ(2) ≡ C66 − C44

2C44
(2.84)

ε(1) ≡ C22 − C33

2C33
(2.85)

δ(1) ≡ (C23 + C44)
2 − (C33 − C44)

2

2C33 (C33 − C44)
(2.86)

γ(1) ≡ C66 − C55

2C55
(2.87)

The phase velocity functions for the in-plane polarized waves in the [x2,x3]-plane can
thus be obtained by substituting the appropriate parameters in eq. (2.81). Moreover, in
eq. (2.82) VS0 should be replaced by VS1, the vertical velocity of the in-plane polarized
S-wave, given as

VS1 =

√

C44

ρ
(2.88)
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Comparing the yet introduced 6 Tsvankin’s parameters plus the two vertical veloc-
ities shows that they can be used instead of the 8 stiffness coefficients C11, C22, C33,
C44, C55, C66, C23, C13, of the orthorhombic stiffness matrix. The remaining element
C12 can be replaced by:

δ(3) ≡ (C12 + C66)
2 − (C11 − C66)

2

2C11 (C11 − C66)
. (2.89)

In summary, the Tsvankin’s parameters introduced above are:

• VP0: the vertical P-wave velocity;

• VS0: the velocity of the vertically traveling S-wave polarized in the x1-direction;

• ε(1): the VTI parameter ε in the [x2,x3]-plane (approximately the fractional dif-
ference between the P-wave velocities in the x2 and x2 direction;)

• δ(1): the VTI parameter δ in the [x2,x3]-plane, responsible for near-vertical in-
plane P-wave variations. It also influences the SV-wave velocity.

• γ(1): the VTI parameter γ in the [x2,x3]-plane (approximately the fractional
difference between the SH-wave velocities in the x2 and x2 direction;)

• ε(2): the VTI parameter ε in the [x1,x3]-plane;

• δ(2): the VTI parameter δ in the [x1,x3]-plane;

• γ(2): the VTI parameter γ in the [x1,x3]-plane;

• δ(3): the VTI parameter δ in the [x1,x2]-plane, where the x1 axis is used as the
symmetry axis.

Here, it is important to emphasize that the introduced Tsvankin notation can be
used in orthorhombic media of arbitrary strength. Moreover, it is straightforward to
use them for obtaining weak anisotropy approximations as in the case of Thomsen’s
notation for VTI media.

In reflection seismic experiments (i.e., near vertically propagating waves) aiming at
anisotropic rocks shear wave splitting is a frequently used signature of the medium,
describing the time delay between both observed S-waves VS0 and VS1. This splitting
is conveniently described by the fractional difference between C44 and C55, assuming
C44 > C55:

γ(S) ≡ C44 − C55

2C55
=

γ(1) − γ(2)

1 + 2γ(2)
≈ VS1 − VS0

VS0
(2.90)

γ(S) is identical to Thomsen’s parameter γ in HTI media with x1 as the symmetry axis.

Characterizing the elastic properties of a material with the introduced elastic con-
stants alone implies that it is either a single phase void free medium or the constants
have to be understood ”only”as bulk properties, averaged over the size of the sample
in a laboratory test or over the wave length in seimic measurements. In seismology
and especially in exploration seismics this way of understanding the elastic properties
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of rocks, controlling the propagation of seismic waves through the earth, was sufficient
when seismic data were primarily interpreted for subsurface structures and velocity
models.

However, rocks are obviously always multiphase media, consisting of an assemblage
of different minerals and voids of various size and shape, filled with one or more liquid
and/or gaseous phase. When it is desired to extract information about, e.g., lithology,
porosity, pore fluids, and fluid saturation from seismic data, a more sophisticated
description of the seismic parameters of rocks is required.

2.3 Poroelasticity

All concepts of elastic media, isotropic as well as anisotropic, and of wave propagation
through such media mentioned up to this point assume homogeneous linear elastic
bodies. In other words, they are formulated as if the medium would consist of only
one single material phase. However, there is obviously no real rock which corresponds
to those assumptions. Therefore, these theoretical models can only approximate what
is really happening when a wave travels through rocks.

If it is desired to interprete seismic velocities or bulk elastic parameters, e.g., the
bulk and shear modulus of a rock, in terms of the elastic properties of the rock forming
constituents and their geometrical relationships among each other, a detailed knowledge
is required how the mentioned small scale properties influence the bulk properties of
the material.

First considerations about the deformation of porous rocks and soils were done
by Terzaghi (Terzaghi, 1936, 1943). He found theoretically, that there is an effective
stress which controls the changes in bulk volume of a sample and influences its failure
conditions. He defined the effective stress σe as

σe = σc + φδijPfl, (2.91)

where σc is the confining stress, Pfl is the pore pressure, φ is the porosity, and δij is the
Kronecker Delta function. In contrast, he found in experiments with sand, clay, and
concrete that the simple difference between σc and Pfl is effective rather than the one
theoretically derived, given in eq. (2.91).

The first comprehensive theory of the elasticity of porous media was derived by
Maurice A. Biot and published in a series of papers (Biot, 1940, 1941, 1956a,b, 1962).
He developed a detailed formalism for the pore and bulk compressibility and derived
equations for the consolidation of porous materials as well as for seismic wave propa-
gation in porous rocks. His formalism incorporates some, but not all mechanisms of
viscous and inertial interaction between a pore fluid and the rock matrix. A general
fact in the elasticity of porous media is that an incremental load, applied to a saturated
rock, e.g., by a passing seismic wave, induces an incremental change in pore pressure,
which resists the compression and thus stiffens the rock. To what extend the fluid
stiffens the rock depends on the rock and fluid properties.

One fundamental result of the Biot theory is that there is a second compressional
wave in porous media, the so called slow wave. The behavior of this wave depends
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strongly on the frequency. Below a critical frequency, which depends on the permeabil-
ity of the material and the viscosity of the fluid, the slow wave propagates diffusive-like
and remarkably slower than the fast P- and S-wave and above the critical frequency as
a usual seismic wave. The slow wave is generated when fluid and matrix move out of
phase and the fast wave when they are in phase. Due to its very high attenuation it is
usually not observable in seismic experiments.

Biot’s low frequency limit velocities for the fast P- and S-wave are identically with
the results derived by Gassmann (1951). The Gassmann equations allow for a predic-
tion of seismic wave velocities of a porous rock saturated with one fluid from velocities
of the rock saturated with another fluid. Gassmann’s equations are limited to low
frequencies, as usually used in seismic experiments, since it is based on the assumption
that the induced incremental pore pressure change can be equilibrated throughout the
pore space (Mavko et al. (1998)). This means that there is sufficient time for the pore
fluid to flow to eliminated wave induced pore pressure gradients. Following Mavko
et al. (1998) the Gassmann’s equations are given as:

Ksat

K0 − Ksat
=

Kdry

K0 − Kdry
+

Kfl

φ(K0 − Kfl)
(2.92)

µsat = µdry. (2.93)

Here, Ksat is the bulk modulus of a rock with porosity φ, and saturated with a fluid
having a bulk modulus Kfl. The pores are assumed to be statistically isotropic but
no limiting assumptions are made about the pore geometry. Kdry is the bulk modulus
of the dry rock matrix and K0 the bulk modulus of the grain material. Obviously,
the shear modulus µsat of the saturated rock is equal to the shear modulus µdry of the
dry matrix, since a fluid has no resistance to shear and, hence, the S-wave propagates
through the matrix material only.

The word ”dry”in this relation does not mean that the sample is saturated with
gas, e.g., air. It further refers to an incremental deformation of the rock matrix by
an incremental load but the pore pressure is held constant. This corresponds to a
”drained”experiment where pore fluid can flow freely in or out of the sample to insure
a constant pore pressure. It also concerns to an ”undrained”experiment in which the
sample is saturated by a fluid with zero bulk modulus. This is approximately given for
an air filled rock at room conditions. Moreover, Mavko et al. (1998) emphasize that
”dry”does not correspond to very dry rocks, such as those, prepared in a vacuum oven.
Adding a first few percent of fluid to such very dry rocks decreases the frame moduli,
probably due to disrupting surface forces acting on the pore surfaces.

These fundamental concepts have been modified and extended by many researchers
in a broad field of applications in the last decades. A complete revision of all these mod-
ification is not possible here. Thus, just some fundamental conceptual extensions are
summarized. For instance, Gassmann’s equations were extended towards anisotropic
media in order to enable the calculation of the effective moduli of an anisotropic rock
saturated with a fluid from the elastic moduli of the same but dry rock by Brown & Ko-
rringa (1975). There formulations address the fluid substitution problem in anisotropic
media. However, this approach assumes that the matrix is macroscopically homogenous
and the rock is completely saturated.

Berryman & Milton (1991) limited their modification to the isotropic case but
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extended Gassmann’s equation to rocks that are composites of two porous phases.
Their approach can be used to calculate, e.g., the effective moduli of a sandstone with
embedded shaly patches.

In two publications Dvorkin & Nur (1993) and Dvorkin et al. (1994) established a
model that unified the Biot ”global flow” mechanism and the ”local flow”squirt flow
mechanism. While the Biot model states a global fluid flow induced by a passing seismic
wave between large discontinuities the squirt flow suggests that a passing seismic wave
introduces pore pressure fluctuations on all scales of pore space heterogeneities, leading
to a fluid flow between small cracks and larger pores. Theses effects might become
important in ultrasonic laboratory experiments but are negligible in the in situ seismic
frequency band. However, the must be considered if results from ultrasonic velocity
and attenuation data from laboratory observations should be extrapolated to seismic
field data.
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