The Stress Sensitivity Approach: Theory and Application

Der Spannungs-Sensitivitäts-Ansatz: Theorie und Anwendung

Zur Erlangung des des akademischen Grades

Doktor der Naturwissenschaften

am Institut für Geologische Wissenschaften der Freien Universität Berlin, in der Fachrichtung Geophysik genehmigte

Dissertation

von Dipl.-Geol. Axel Kaselow aus Düsseldorf

Tag der mündlichen Prüfung: Referent: Korreferent: 26.05.2004 Prof. Dr. S. A. Shapiro Prof. Dr. V. Haak

Summary

This thesis presents the theory and the first applications of the stress sensitivity approach for anisotropic media under arbitrary effective stress. This approach enables a rock physical interpretation of seismic velocity observations as a function of confining stress and pore pressure. The interpretation is based on already established and new rock physical quantities, defined within this approach.

The main objective of this thesis was to validate the key aspects of the theoretical results by analyzing stress dependent seismic velocity observations obtained from very different rocks in ultrasonic laboratory experiments. This also includes the identification of the special role of the stress dependent Poisson's ratio as well as the extension of the approach to the stress dependence of electrical resistivity. Therefore, an algorithm was developed and implemented that allows for an almost automized analyzis of the data.

The stress sensitivity approach formulates the stress dependence of velocities in terms of the variations of the dry rock matrix compliances via stress induced variations of the pore space geometry. Hereby, the closure of the compliant pore space dominates the stress sensitivity of the velocities.

The most important characteristic for the stress dependence of various rock properties is the tensor of stress sensitivity. It comprises the wide range of possible reactions of elastic rock properties to stress variations and is closely related to the non-linearity of rocks.

It is shown that there are many different isotropic and anisotropic rocks where this tensor can be reduced to one single scalar value. When such rocks are subjected to isostatic load all elastic compliances and seismic velocities in each direction can be described by an equation of the form:

$$\Gamma(P) = A_{\Gamma} + K_{\Gamma}P - B_{\Gamma}\exp(-DP),$$

where Γ is the property under consideration. The stress sensitivity approach provides the physical meaning of the fit parameters A, K, B, and D with respect to this rock property. Moreover, it was found that the parameter D is a universal quantity for all mentioned properties. This parameter is mainly controlled by the tensor of stress sensitivity.

The stress sensitivity approach was applied to P- and S-wave velocity-stress observations from different rock types ranging from isotropic and anisotropic dry and saturated sedimentary rocks to dry anisotropic metamorphic rocks from the KTB deep drilling site. For each of the samples it was possible to find a universal parameter D. It was found that for a certain rock the stress dependent Poisson's ratio is the most sensitive measure to evaluate if parameter D is a universal quantity.

Moreover, the stress sensitivity approach was extended within this thesis to the stress dependence of electrical resistivity. The derived formalism provides a rock physical interpretation why electrical resistivity is usually assumed to be independent from stress in many rocks. However, it was found that there are low porosity crystalline rocks where the universality of parameter D even holds for the stress dependence of electrical resistivity. As far as we know it is the first time that such a close and physically based connection between the stress dependence of elastic moduli and electrical resistivity was theoretically formulated and confirmed by data.

Results derived from the analyzis of stress dependent velocity observations on dry rocks of the KTB pilot hole were used to estimate reflectivity pattern changes of the SE2 fault zone induced by pumping and injection tests. In contrast to a pure mathematical regression of the laboratory data, the application of the stress sensitivity approach provides first order approximations of a set of rock physical parameters, e.g., the moduli of the grain material, required for such estimations.

Zusammenfassung

Die vorliegende Arbeit umfasst die Theorie des "Spannungs- Sensitivitäts-Ansatzes" für anisotrope Medien unter beliebiger Umgebungsspannung und Porendruck, sowie dessen erste Anwendung. Dieser Ansatz erlaubt es, seismische Geschwindigkeiten, die als Funktion von Umgebungsspannung und Porendruck gemessen wurden, gesteinsphysikalisch zu interpretieren. Diese Interpretation basiert sowohl auf allgemein bekannten gesteinsphysikalischen Parametern, als auch auf neuen Größen, die innerhalb dieses Ansatzes definiert wurden.

Den Hauptaspekt der Arbeit bildet die Überprüfung der wichtigsten theoretischen Aspekte des Stress-Sensitivitäts-Ansatzes anhand der Analyse spannungsabhängiger Geschwindigkeiten aus Labormessungen an verschiedenen Gesteinen. Dies umschliesst sowohl die Identifizierung der besonderen Rolle des spannungsabhängigen Poisson Verhältnisses als auch die Erweiterung des Ansatzes auf die Abhängigkeit des elektrischen Widerstandes von mechanischer Spannung.

Die Spannungsabhängigkeit von Geschwindigkeiten wird als das Resultat von spannungsinduzierten Variationen der elastischen Kennwerte der trockenen Gesteinsmatrix verstanden. Diese Variationen der Gesteinsmatrix werden wiederum auf die Deformationen der Porenraumgeometrie als Folge des Wirkens einer mechanischen Spannung zurückgeführt. Dabei spielt insbesondere das Schliessen von sogenannten "weichen" Poren (Rissen, Klüften und Kornkontaktbereichen) die entscheidende Rolle für die Spannungssensitivität der Geschwindigkeiten.

Der wichtigste Parameter für die Spannungsabhängigkeit verschiedener Gesteinseigenschaften ist der Tensor der Stress-Sensitivität. Er umfasst die gesamte Bandbreite möglicher Reaktionen elastischer Gesteinseigenschaften auf Spannungsvariationen und ist eng mit der Nichtlinearität von Gesteinen verbunden.

Es wird gezeigt, daß es viele isotrope und anisotrope Gesteine gibt, bei denen der Tensor der Stress-Sensitivität auf eine skalare Größe reduziert werden kann. Wenn solche Gesteine isostatisch belastet werden, können alle elastischen Module und Geschwindigkeiten mit einer Gleichung beschrieben werden, die folgende Form hat:

$$\Gamma(P) = A_{\Gamma} + K_{\Gamma}P - B_{\Gamma}\exp(-DP),$$

wobei Γ für die jeweils betrachtete Gesteinseigenschaft steht. Der Spannungs-Sensitivitäts-Ansatz liefert dabei die physikalische Bedeutung der Fit-Parameter A, K, B und D im Hinblick auf die betrachtete Eigenschaft. Es zeigt sich, daß der Parameter D, unter den genannten Randbedingungen eine universelle Größe für alle erwähnten Eigenschaften einer jeweiligen Gesteinsprobe ist. Dieser Parameter wir hauptsächlich vom Tensor der Stress-Sensitivität kontrolliert.

Der Spannungs-Sensitivitäts-Ansatz wurde auf spannungsabhängige P- und S-Wellen Daten von verschiedenen Gesteinen angewendet. Dies umfasst sowohl isotrope als auch anisotrope, trockene und gesättigte Sedimentgesteine, ebenso wie trockene anisotrope Metamorphite der KTB. Für nahezu alle Gesteinsproben war es möglich, einen jeweiligen universellen Parameter D zu finden. Für eine spezifische Gesteinsprobe ist das Poisson Verhältnis der empfindlichste Indikator für eine Bewertung dieser Universalität.

Zusammenfassung

Der Spannungs-Sensitivitäts-Ansatz wurde in Rahmen dieser Arbeit auf die Abhängigkeit des elektrischen Widerstandes von mechanischen Spannungen erweitert. Der hergeleitete Formalismus erlaubt eine gesteinsphysikalische Interpretation, weshalb der elektrische Widerstand normalerweise als unabhängig von mechanischen Spannungen angesehen wird. Es stellte sich heraus, daß es gering poröse kristalline Gesteine gibt, bei denen der Parameter D die gleiche Rolle als universelle Größe auch für die Abhängigkeit des elektrischen Widerstandes von mechanischen Spannungen spielt. Dies ist das erst Mal, soweit uns bekannt, daß ein so enger und physikalisch begründeter Zusammenhang zwischen der Abängigkeit elastischer Module und des elektrischen Widerstandes von mechanischen Spannungen theoretisch formuliert und anhand von Daten bestätigt werden konnte.

Die spannungsabhängigen Geschwindigkeitsmessungen an den trockenen Gesteinen der KTB Vorbohrung wurden benutzt, um Änderungen des Reflektionsmusters der SE2 Störungszone als Folge von Pump- und Injektionsversuchen abzuschätzen. Im Gegensatz zu den häufig verwendeten rein mathematischen Regressionen der Daten liefert der Stress-Sensitivitäts-Ansatz in erster Näherung einen Satz an gesteinsphysikalischen Kennwerten, wie z.B. den Kompressionsmodul des Matrixminerals, die für eine solche Abschätzung benötigt werden.

Contents

Sι	Summary									
Zι	Zusammenfassung									
1	Motivation									
	1.1	Introd	uction	1						
	1.2	Outlin	le	5						
2	Line	Linear elasticity								
	2.1	Basics	of elasticity	8						
		2.1.1	Hooke's Law	9						
		2.1.2	Isotropic media	11						
		2.1.3	Transversely isotropic media.	13						
		2.1.4	Orthorhombic media	14						
	2.2	Plane	waves in isotropic and anisotropic media	15						
		2.2.1	Transversely isotropic media	18						
		2.2.2	Orthorhombic media	22						
	2.3	Poroel	asticity	26						
3	Theory of elastic stress sensitivity									
	3.1	Stress	and pressure: terminology and effective stress concept $\ . \ . \ .$.	29						
	3.2	.2 Anisotropic stress sensitivity								
		3.2.1	Deformation of pore space	33						
		3.2.2	Elastic compliances	37						
		3.2.3	Stress dependence of porosity	40						
		3.2.4	Stress dependence of elastic moduli	41						

		3.2.5 Stress dependence of elastic anisotropy	2			
	3.3	Isotropic stress sensitivity	3			
	3.4	Stress sensitivity of electrical resistivity	:6			
	3.5	Stress sensitivity of Poisson's ratio 4	9			
4	App	plication to laboratory data 5	1			
4.1 General remarks on fit procedure		General remarks on fit procedure	1			
	4.2	Elastic properties of isotropic rocks	4			
	4.3	Elastic properties of anisotropic rocks	6			
	4.4	Anisotropic metamorphic rocks from the KTB	8			
	4.5	Stress dependent electrical resistivity	7			
	4.6	Stress dependence of Poisson's ratio	5			
	4.7	Summary 8	9			
5	Esti chai	Estimation of pore pressure variation induced reflectivity pattern changes at the KTB test site.				
5.1 Geological settings		Geological settings	5			
		5.1.1 Steep elements SE1 and SE2 as seismic reflectors 9	8			
	5.2	Seismic anisotropy	9			
	5.3	KTB fluids	1			
	5.4	Rock physical properties	3			
		5.4.1 Porosity of the KTB rocks	3			
		5.4.2 Permeability of the KTB rocks	6			
	5.5	Reflectivity of the SE2 and induced variations	2			
6	Con	nclusions 11	9			
	6.1	Open questions and outlook	1			
7	Appendices 12					
	А	Notations	4			
	В	Anisotropic stress sensitivity				
		P.1 Deformation of nove grace 12	10			
		D.1 Deformation of pore space	0			

	B.3	Stress dependence of porosity	137			
	B.4	Stress dependence of elastic moduli	139			
	B.5	Stress dependence of elastic anisotropy	141			
	B.6	Stress sensitivity versus third-order elastic constants	143			
	B.7	Symmetry properties of the stress sensitivity tensor	144			
\mathbf{C}	Stiffne	ss matrices	146			
D	Exact	velocities in VTI media	148			
Е	Ortho	chombic anisotropy parameters in terms of compliances	150			
F	Best fi	t results for sandstones	151			
G	Comm	on conversion factors in rock physics	163			
References						
List of figures						
List of tables						
Danksagung						
Lebenslauf						
Index						