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Abstract
The eye’s retina is considered to be part of the central nervous system with similar structure

and cellular composition like the brain. Thus, it has gained an important role in identifying struc-

tural changes that provide useful diagnostic information in many neurological disorders. Over

the last decade, innovative advances in optical imaging technology have allowed us to identify

these changes in the retinal architecture. Especially optical coherence tomography (OCT) has

become a powerful imaging modality in ophthalmology and vision science. OCT non-invasively

acquires in micrometer resolution, three-dimensional (3D), cross-sectional images of biological

tissues in vivo, producing in-depth views of the retina. With the 3D data sets, we can use 3D

modeling, and detection tools to allow more intuitive visualization and quantification of the

structure in the data set, similar to the 3D tools created for magnetic resonance imaging or

computed tomographic scans.

However, current OCT technology being mainly applied in the analysis and quantification

of ophthalmological diseases, lacks tailored image analysis methods for many changes caused

by neurological disorders. The focus of this thesis lies on the development of segmentation and

analysis methods to quantify two major components of the retina in confocal scanning laser

ophthalmoscopy (cSLO data - 2D image) and in OCT data (3D OCT volume data), the retinal

blood vessels, and the optic nerve head (ONH). The difficulty in developing robust and accurate

methods for detecting these structures consists in the heterogeneous aspect of the data, coming

from the natural anatomical diversity of the subjects, artifacts during data acquisition, especially

in patients rather than in data from healthy control, and most importantly from certain structural

changes that occur in the data during the disease course.

We present four approaches for extracting features from the retinal vasculature and for the

ONH in multiple sclerosis (with its subtypes), neuromyelitis optica spectrum disorder and ido-

pathic intracranial hypertension. The first two approaches focus on the detection of the vascu-

lature in SLO images. We propose a new 2D model of the vessel profile that accounts for the

central reflex seen in this particular image type in order to quantify the vessel inner and outer

boundary. Furthermore we developed new filter response measures for vessel enhancement

based on Morlet wavelet, the Hessian tensor, and an optimal oriented flux approach, and tested
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their capability of correctly detecting the vessel inner and outer boundary, curvature especially

in junction regions. In case of the ONH, we present a robust approach in detecting a reference

surface for the volume computation in atrophic and swelled ONH. Moreover, we present a novel

algorithm for the detection of the ONH center directly in the 3D OCT volume. The basic idea of

this method is to use the information from the computed reference surface to reduce the compu-

tation to a sub-volume (a reduced volume) in the ONH region. Furthermore we address several

challenges present in our data: motion artifacts due to eye/head movements by using a modified

thin plate spline fitting that is able to model the natural curvature of the retina, artifacts arising

from the shadows created by the presence of blood vessel by incorporating contextual textural

features in a 3D grow-cut setting.

We evaluate our methods in various clinical settings. To demonstrate the effectiveness of

our novel methods, we applied them on various patient and healthy control datasets.
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Chapter 1

Introduction

Medical image analysis is an interdisciplinary field of science. Therefore, research questions

always arise from two different perspectives: from the clinician’s point of view, that has spe-

cific questions about a certain disease and needs quantifiable measures extracted from the image

data for further comparison with other clinical parameters, and the algorithmic side, that is

concerned with specific technical problems. This thesis deals with segmentation and analysis

of three-dimensional (3D) spectral domain optical coherence tomography (SDOCT) data and

two-dimensional (2D) confocal scanning laser ophthalmoscopy (cSLO) data of the retina. We

propose four algorithms to extract structures of the retina. These comprise the blood vessels, the

inner limiting membrane (ILM), the retinal pigment epithelium (RPE) and the optic nerve head

(ONH) center. The choice of these specific structures was motivated by the need of automated

tools for the analysis of the changes that the retina might undergo under the effect of neuro-

logical disorders. The difficulty in developing robust and accurate methods for detecting these

structures consists in the heterogeneous aspect of the data, coming from the natural anatomical

diversity of the subjects, artifacts during data acquisition, especially in patients compared to

data from healthy controls, and most importantly from certain structural changes that occur in

the data during the disease course. Especially these later changes represent the greatest cha-

llenge in the algorithm developing process, as assumptions about the data in healthy subjects no

longer hold and the patterns seen are difficult to model. The goal of this chapter is to motivate

our research, and to list our main contributions. Finally, an overview of the whole thesis is

given.
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1.1 Motivation

The eye’s retina is formed during embryogenesis from neural tissue and can thus be considered

part of the central nervous system (CNS) with similar structure and cellular composition like

the brain [Purves et al., 2001].

Over the last decade, innovative advances in ocular imaging technology have allowed us

to identify structural changes in the retinal architecture that correlate with tissue-specific me-

chanisms of the CNS. Especially SDOCT has become a powerful imaging modality in ophthal-

mology and vision science. SDOCT non-invasively acquires high-resolution, 3D, cross-sectional

images of biological tissues in vivo, producing in-depth views of the retina. However, with op-

tical coherence tomography (OCT) being originally an ophthalmo-logic tool, most research and

developed imaging algorithms have been performed in ophthalmology with the focus on differ-

ent anatomical changes, which are not or only in part applicable to neurological disorders. Also,

the majority of studies has been done when OCT was still a 2D technique. There are two main

structures that will be the focus of this research project: the retinal blood vessel network and the

ONH.

Retinal blood vessel segmentation

The motivation for segmentation and analysis of the retinal blood vessel network has two com-

ponents, a medical one, and a technical one. There has been extensive work on retinal blood

vessel segmentation based on fundus photography [Chaudhuri et al., 1989, Gang et al., 2002,

Hoover et al., 2000, Soares et al., 2006, Sofka and Stewart, 2006, Staal et al., 2004, Zhang et al.,

2015]. The characteristics of vessels play an important role in a variety of medical diagnoses in

ophthalmology with a special focus on diabetic retinopathy, a severe disease which causes blind-

ness among working age people [Franklin and Rajan, 2014]. Also, new studies have shown that

retinal vascular caliber has been linked with increased cardiovascular risk and is predictive of

cardiovascular pathology, including stroke and coronary heart disease [Sun et al., 2008]. Despite

these results, little is known about vascular retinal changes in neurological disorders. Therefore,

one aim of the research is to develop specialized image segmentation techniques to detect the

retinal vasculature and analyze the different parameters extracted from this structure in neuro-

logical disorders.
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Furthermore, cerebral veins gained increasing attention in the treatment of multiple sclerosis

(MS). A concept termed chronic cerebrospinal venous insufficiency (CCSVI) was introduced

suggesting that compromised cerebral venous outflow might contribute to MS pathology [M.

and Z., 2012]. However, several studies could not confirm cerebro-cervical venous congestion,

but instead showed either normal or reduced veins compared to healthy subjects [Diaconu et al.,

2012]. Yet, little is known about retinal veins in MS to support or object the CCSVI hypothesis.

The technical aspect focuses on the detection of retinal blood vessels to be further used as

landmarks for the analysis of other anatomical structures in the retina, as for example the ONH

region. Unlike the brain cortical surface, the surface of the ONH region presents no known folds

or visible landmarks [Gibson et al., 2010]. Therefore, the identification of specific topographic

features and local shape structures such as blood vessels is a key prerequisite to obtain anato-

mically meaningful registrations for further analysis.

ONH volume computation

The ONH is the retina’s central structure where all nerve fibers converge and form the optic

nerve connecting the retina with the visual brain areas. It is a prime target for structural changes

both in the form of swelling and destruction.

With OCT being originally a mainly ophthalmologic tool, most ONH research has been

performed in opthalmological diseases like glaucoma. Glaucoma is the second-leading cause

of blindness characterized by gradual damage to the optic nerve and resultant visual field loss.

The hallmark of glaucoma is cupping of the optic disc, which is the visible manifestation of

the ONH 3D structure [Abràmoff et al., 2010]. In neurological disorders like multiple sclerosis

or neuromyelitis optica spectrum disorders, neuroinflammatory diseases, acute optic neuritis

(ON) is a characteristic or even crucial manifestation of the disease [Zimmermann et al., 2014].

ON is an inflammatory attack to the optic nerve. After initial swelling due to edema in the

acute phase, degeneration of the retina occurs [Balcer, 2006, Schneider et al., 2013]. A case

of extreme swelling of the ONH occurs in idiopathic intracranial hypertension (IIH), which can

lead to vision loss.

Only recently 3D ONH imaging became available, opening ONH investigation for changes

in neurological disorders. While stereo fundus photography provides the ability to extract some
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3D shape information of the ONH [Juan et al., 2010], only SDOCT provides true 3D infor-

mation [Abràmoff et al., 2009, Bhavna et al., 2014, Hu et al., 2010a]. These studies focus on

different anatomical changes, which are not or only in part applicable to neurological disor-

ders. Thus, current methods regularly fail when applied in neurological conditions like ONH

swelling. Our main goal was to segment the RPE, that provides a reference surface for the ONH

volume, as well as the ONH center computation. When specific image analysis methods are po-

tentially available for neurological disorders, retinal OCT imaging can become a powerful tool

as "window to the brain” in many neurological disorders. The applications range from initial

differential diagnosis of several neurologic conditions, longterm control of changes, to therapy

monitoring. Consequently, this scientific field is currently highly dynamic and covers many

relevant neurological disorders.

1.2 Summary of main achievements

Our objective in this work is to build a framework of methods to extract features from the retinal

vasculature from 2D cSLO data and for the ONH in 3D SDOCT data. These methods should

be specially tailored for neurological disorders like MS (with its subtypes), neuromyelitis optica

spectrum disorder (NMOSD) and IIH. In our research the following objectives were obtained:

• Detection of blood vessel inner and outer diameter in cSLO images presented in

Section 3.2

We developed a tool to extract the diameter of blood vessels in order to investigate diffe-

rences in patients with MS compared to healthy control (HC), and to test the hypothesis of

CCSVI in the retinal vasculature. Vessels in the cSLO image, unlike fundus photographs

present a strong central reflex. To correctly identify the vessel we constructed a 2D model

of the vessel profile. Furthermore we incorporated this method in a semi-automated tool

for the use in a clinical study.

• Detection of the entire blood vasculature in cSLO images presented in Section 3.3

The retinal vessel network can serve as a map of landmarks for further analysis of the

ONH, and for registration for follow-up scans. In order to detect the whole vessel network

we derived different vesselness filters, a notion introduced by [Frangi et al., 1998] to
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denote filters that enhance vessels, and improved some existing techniques, for enhan-

cing tubular structures. We defined more adequate enhancing measures by incorporating

information about the vessel directionality and diameter in a multi-scale setting.

• RPE lower boundary segmentation for ONH volume computation presented in

Chapter 4

RPE lower boundary can serve as a reliable reference surface for ONH volume computa-

tion. Thus we developed an automatic segmentation approach for computing ONH volu-

me from 3D SDOCT scans that is robust and applicable in healthy, but most importantly in

swelled ONH. In the case of extreme swelling like in IIH data, RPE detection can become

extremely challenging as ONH OCT scans tend to have regions of strong varying inten-

sity values caused by the edema. Additionally, scans are characterized by an increased

intrinsic speckle noise making a reliable differentiation of intraretinal layers challenging

to impossible.

• Bruch’s membrane opening points detection for ONH center and ONH volume com-

putation presented in Chapter 5

Bruch’s membrane opening (BMO) points were shown to provide reliable landmarks even

in case of strong changes in the ONH structure. Therefore we developed a fully automated

BMO points detection algorithm that is tailored to detect ONH features in very hetero-

geneous data directly in the 3D volume. We address several major challenges present

in our data: motion, distortions artifacts due to eye/head movements but more important

anatomical structure modifications due to atrophy or swelling. To this end, we developed

a two-stage thin-plate spline fitting (TPS). By deriving a modified multi-scale wavelet

filter, we suppressed the shadows artifacts produced by the presence of vessels. In con-

trast to previous methods that use characteristics of data of glaucomatous eyes (atrophic

ONH), our approach is able to handle atrophic, normal and swelled ONH. In particular,

we devised reliable features by combining texture analysis in the context of a sub-band

filtering technique and integrate this hybrid analysis in a 3D grow-cut based segmentation

setting.
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1.3 Publications

The content of this thesis builds on the following papers:

Ella Maria Kadas, Falko Kaufhold, Christian Schulz, Friedemann Paul, Konrad Polthier and

Alexander U. Brandt,

3D optic nerve head segmentation in idiopathic intracranial hypertension,

Bildverarbeitung für die Medizin 2012, Informatik aktuell, pages 262-267, 2012.

Falko Kaufhold, Ella Maria Kadas, Christoph Schmidt, Hagen Kunte, Jan Homann, Hanna

Zimmermann, Timm Oberwahrenbrock, Lutz Harms, Konrad Polthier, Alexander U. Brandt

and Friedemann Paul,

Segmentation of the optic disc in 3D oct scans of the optic nerve head,

PLoS ONE, Jan. 2012.

Philipp Albrecht, Christine Blasberg, Sebastian Lukas, Marius Ringelstein, Ann-Kristin Müller,

Jens Harmel, Ella Maria Kadas, David Finis, Rainer Gutho, Orhan Aktas, Hans-Peter Hartung,

Friedemann Paul, Alexander U. Brandt, Peter Berlit, Axel Methner and Markus Krälmer,

Retinal pathology in idiopathic moyamoya angiopathy detected by optical coherence to-

mography,

Neurology, Apr. 2015.

and several posters:

Ella Maria Kadas, Timm Oberwahrenbrock, Hanna Zimmermann, Sebastian Papazoglou, Friede-

mann Paul, Konrad Polthier and Alexander U. Brandt,

Quantification of retinal vessels in multiple sclerosis,

ECTRIMS European Committee for treatment and research in multiple sclerosis conference

(ECTRIMS Congress Lyon 2012).
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Ella Maria Kadas, Janine Mikolajczak, Wolf Lagreze, Hanna Zimmermann, Friedemann Paul

and Alexander U. Brandt,

Robust optic nerve head analysis based on 3d optical coherence tomography,

NANOS North American Neuro-Ophthalmology society (NANOS Congress San Diego 2015).

Hanna Zimmermann, Ella Maria Kadas, Alina Freing, Falko Kaufhold, Friedemann Paul and

Alexander U. Brandt,

Characterizing neuronal damage in multiple sclerosis using optic nerve head volume,

ECTRIMS European Committee for treatment and research in multiple sclerosis (ECTRIMS

Congress Lyon 2012).

Hanna Zimmermann, Ella Maria Kadas, Timm Oberwahrenbrock, Friedemann Paul and Alexan-

der U. Brandt,

Optic nerve head volume as a marker for neuronal damage after optic neuritis in multiple

sclerosis and neuromyelitis optica ,

ACTRIMS American Committee for treatment and research in multiple sclerosis-ECTRIMS Eu-

ropean Committee for treatment and research in multiple sclerosis (MS Boston Congress 2014).

1.4 Overview of the thesis

This thesis is structured in 7 chapters, where:

• In Chapter 2 we introduce the mathematical and computational background used and

adapted in our algorithms. Also, the background information regarding the anatomy of

the anterior visual system is presented, explaining the role of the retina and its connection

to the brain as part of the central nervous system in vision. We also discuss the struc-

tures of the retina and their changes and characteristics in neurological disorders. The

blood vessels and the ONH are two components of the retina that are studied in this work.

The different imaging techniques to visualize these components are presented, with spe-

cial focus on optical coherence tomography, that constitutes the technique used in this

research.
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• In Chapter 3 we present the two algorithms used for the retinal blood vessel detection.

In Section 3.2, we describe a semi-automated algorithm for the detection of retinal vessel

diameter, validate and evaluate the measurements obtained with our algorithm in a clinical

study with MS and HC data. In Section 3.3 we present three approaches developed to

detect the entire retinal vasculature, and compare their performance.

• In Chapter 4 we present a robust method for detecting a reference surface for optic nerve

head volume computation even in the case of extremely swollen optic nerve head.

• In Chapter 5 we describe methods for the ONH volume computation derived from the de-

tection of the ONH center, that is tailored to account for various characteristics in several

neurological disorders.

• In Chapter 6 we discuss the advantages, performance and drawbacks of the algorithms

developed and compare them to previous methods.

• In Chapter 7 we summarize concluding remarks and possible future avenues of research.



Chapter 2

Background

In this chapter we introduce mathematical and computational key concepts that were modified

and adapted in the development of our approaches to extract the retinal blood vessel profile,

the entire retinal vasculature, and to compute the ONH volume. Also several anatomical struc-

tures are presented in order to understand the role of the retina in the visual system, as well

as its connection to the central nervous system. We also briefly describe the retinal anatomy,

with the focus on the retinal blood vessels and the ONH, as these structures represent the main

features that we extract and analyze in our research. There are several imaging techniques

that are extensively used mainly in ophthalmology to visualize the structures previously men-

tioned. We describe some of these techniques in order to understand previous approaches that

have been proposed for the analysis of the retinal blood vessels, ONH, and retinal layers. Espe-

cially SDOCT with its capability of acquiring high-resolution, 3D, cross-sectional images of the

retina, has become a powerful imaging modality in ophthalmology and vision science, and is the

imaging technique used in our studies. As we are interested in analyzing the blood vessels, and

the ONH in neurological disorders, we describe important characteristics of the retina in MS,

NMOSD and IIH. Also we present important OCT parameters for the retina and its changes that

have been established in previous studies.

2.1 Computational and mathematical approaches for retinal fea-

ture extraction

This section introduces mathematical and computational concepts that were modified and adapted

in the development of our approaches to address different technical aspects when segmenting

9



10 Chapter 2. Background

the retinal blood vessel, the RPE lower boundary and the BMO points (the last two structures

both employed in ONH volume computation).

2.1.1 Basics and Notations

I represents a n-dimensional gray scale image I:Ω → R, with the image domain Ω ⊂ R
n. Vec-

tors, and vector-valued functions are represented by bold lower-case letters, i.e. v and v(x).

vT denotes the transpose of vector v.

Scalar fields

A scalar field is defined as a map s(x), x ∈ Ω that assigns a scalar to each point in the domain Ω.

Vector fields

A vector field is defined as a map v(x), x ∈ Ω, that assigns an n-dimensional vector v =

(v1, ..., vn)
T to each point in the domain Ω. Unless normalized, vectors encode a direction and

a magnitude. The gradient of a smooth scalar field s(x) is defined by the first order spatial

derivative of the scalar field. It is given by

∇s =
(
∂s

∂x1
, ...,

∂s

∂xn

)
, (2.1)

where ∂s
∂xi

denotes the partial derivative in the ith component of x. The gradient points towards

the direction of strongest change in the scalar field. Divergence of a n-dimensional vector field

v(x), with n ∈ {2, 3}, can be defined as

div v =
n∑

1

∂vi
∂xi

. (2.2)

If a flow field v(x) is considered as transporting mass then a positive divergence value at a

specific location can be interpreted that mass spreads outward from that point. A negative diver-

gence value indicates a sink location and zero divergence that mass is transported with neither

loss nor gain. A vector field that is divergence free has neither sources nor sinks of mass.
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Tensors

Tensors are multi-linear mappings that generalize and extend the concept of scalars, vectors and

matrices. In fact, tensors of order zero are scalars and tensors of order one are vectors. Tensors

are independent of specific reference frames, that is, they are invariant under coordinate trans-

formations. More precisely, the tensor components change according to the transformation into

another basis but the characteristics of the tensor are preserved. Consequently, tensors can be

analyzed using any convenient reference frame. In this thesis we deal only with tensors up to

order two. Order two tensor allows to encode anisotropic properties which vary as function of

direction. In computer science mostly tensors using the indicial notation appear. Thus a second

order tensor T ∈ R
n×n can be represented by a (n×n) square matrix T . However, it requires a

fixed coordinate basis. Generally, in this case the tensor is represented with respect to a specific

Cartesian basis, thus uniquely defined by its components and represented as a matrix. For a two

dimensional tensor, this leads to a 2× 2 matrix representation:

T =



T11 T12

T21 T22


 (2.3)

Given a tensor T in indicial notation, T is called

• symmetric if Tij = Tji

• asymmetric if Tij 6= Tji

• anti-symmetric or skew-symmetric if Tij = −Tji

If for all non-zero vectors v

• if vTTv > 0, T is called positive definite

• if vTTv > 0, T is called positive semi-definite

• otherwise T is called indefinite

Symmetric 2D tensors are defined by the three independent scalars T11, T22, T12 = T21. For

specific reference frames, however, the tensor representation becomes more simple. Symmetric

tensors can be represented as diagonal matrices. The basis for such a representation is given

by the eigenvectors corresponding to the diagonal matrix. A vector v is called eigenvector of
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T according to the eigenvalue λ if Tv = λv. The eigenvalues are defined as the roots of the

characteristic polynomial. The complete transformation of T from an arbitrary basis into the

eigenvector basis is given by

UTTU =



λ1 0

0 λ2,


 (2.4)

where the diagonal elements λ1, λ2 are the eigenvalues and U is the orthogonal matrix that is

composed of the normalized eigenvectors, U = (v1,v2).

Symmetric tensors have real eigenvalues, and the normalized eigenvectors constitute an or-

thonormal basis. The diagonalization is computed numerically via singular value decomposi-

tion, or principal component analysis. Positive definite tensors have eigenvalues and a deter-

minant greater than zero. For semi-positive definite tensors the same holds for greater or equal

than zero. For indefinite tensors none of these assumptions can be made.

Unless stated differently, eigenvalues are named λ1, λ2 and v1, v2 are the corresponding

eigenvectors, such that always λ1 ≤ λ2 . Accordingly, λ1 is referred to as the minor eigenvalue

and λ2 as the major eigenvalue. The eigenvectors represent the directions of maximal and

minimal variation encoded by the tensor, the eigenvalues give the maximal magnitude of this

variation, sometimes also referred to as amplitude.

Invariants of a tensor are scalar functions of the tensor components which remain constant under

a basis change.

• I1 = tr(T ) = λ1 + λ2

• I2 =
1
2(tr(T )

2 − tr(T 2)) = λ1λ2

• I3 = det(T ) = λ1λ2

Flux

The flux of a vector field over the closed boundary of a region is the quantification of the amount

of the vectors, which flows into or out of that region along the boundary surface normal direc-

tion. Mathematically, in the Euclidean space, the flux of a vector field v over the closed boundary

of a region S is defined as:

FC =

∫

∂S

〈v, n〉 dA, (2.5)
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where dA is the infinitesimal area on closed boundary ∂S, n is the outward normal of ∂S.

It provides a measure of how well the vector field are aligned with the normal vectors of the

surface. By convention positive flux leaves a closed surface, and negative flux enters a closed

surface. Inward/Outward flux depends on the sign of n.

2.1.2 Scale-space representation of image data

Scale is a very important concept in the human vision. When one looks at a scene, its contents

is instantaneously viewed at multiple scales. This fact, that objects appear in different ways de-

pending on the scale they are observed, has an important influence on the process of describing

them in the computer vision and image processing context. The content of each pixel or voxel

of an image is the result of a physical observation. A key notion is the one of sampling. Each

observation is done through a multi-size aperture, where the aperture size is represented by the

scale parameter. When analyzing an unknown scene, there is usually no way to a priori know

what scales are appropriate for extracting the relevant information. The information that can be

obtained is determined by the relationship between the size of the structures in the scene and

the size (resolution) of the operators applied. Also the questions of what represents relevant

information and which computation should be done at which scale depends on the goal of the

analysis, and its application field.

In order to restrict the space of possibilities, one starts with the assumption that no prior

information is available about the objects in the image, namely one considers an "uncommitted

vision system" and represents the input data at multiple scales. This involves generating a pa-

rameter class of derived signals in which the fine-scale information is sequentially suppressed.

One important requirement is that the structures at coarse scales in the multi-scale representa-

tion should be derived as simplifications of corresponding structures at finer scales. The new

parameter represents the resolution of the image. The stack of images as, see Figure 2.1 is called

the scale-space. Scale-space theory offers a solid mathematical framework to model the multi-

scale nature of image data [Lindeberg, 1994]. A main result is that convolution by the Gaussian

kernel and its derivatives is established as the unique scale-space filter [Lindeberg, 1994].

The derivation of Gaussian scale space has been accomplished in many ways. A funda-

mental approach has been presented by [Witkin, 1983], discussing the blurring properties of

one-dimensional signals. The extension to more-dimensional images was made in 1984 by
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Original

image

Coarser

levels

of

scale

FIGURE 2.1: A multi-scale representation of a signal (image) is an ordered set

of derived signals at different levels of scale.

[Koenderink, 1984], who, also, was the one to give the first proof of the necessity of Gaussian

smoothing for generating a scale-space representation. He showed that this scale-space repre-

sentation of images may be viewed as the solution of the diffusion equation. [Koenderink, 1984]

motivates the diffusion equation formulation by stating two criteria. Casuality: any feature at a

coarse level of resolution should be derived from one (or more) at a finer level of resolution, i.e,

"no spurious features" should be generated when the resolution is reduced. The reverse doesn’t

need to be true. Homogeneity and isotropy: The blurring is required to be space invariant.

[Lindeberg, 1994] considered those kernels in one dimension that share the property of

not introducing new local extrema under convolution. In order to show that these kernel are

represented by the Gaussian, he combined the semi-group structure with additional conditions:

"the non-creation of local extrema", the existence of a continuous scale parameter and, the

kernels are required to be symmetric and satisfy smoothness in the scale direction.

Although these two works are the start of scale-space theory in the Western literature the idea

was already twenty years old. The Japanese Taoizo Iijima, as [Weickert et al., 1999] presented,

wrote a paper deriving the Gaussian as unique filter.
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In the following we present the motivation of using Gaussian smoothing based on work pre-

sented by [Florack, 1993]. In his approach an image is just a physical observation of a scene of

the real world. Local image structure depends on resolution. The smallest scale of interest will

be called the "inner scale", whereas the largest scale of interest will be called the "outer scale".

The "inner scales" are limited to a finite range determined by the resolution of the sampling de-

vice (grid size) and by the field of view. If we consider additional constraints (stated as axioms

later in this subsection), one arrives at the Gaussian filter family, as a physical motivation and a

mathematical model for multi-scale representation of the data.

Scale and resolution

In his approach I can be interpreted also as the luminance of an observed scene, which

has the initial luminance I0. Consider also σ as the width of the aperture function in the spa-

tial domain, and ω the spatial frequency vector. Also the physical sampling system should be

independent of a particular coordinate system, therefore invariant under orthogonal coordinate

transformation: translation and rotation.

Scale space axioms

The requirements of scale space can be stated as axioms. In essence, these represent the mathe-

matical formulation for uncommittedness.

• Spatial shift invariance means that all locations in the field of view are a priori equivalent.

So there is no preferred location that should be measured differently.

• Spatial isotropy indicates that there is no a priori preferred orientation, horizontal and

diagonal structures are measured equally.

• Spatial scale invariance does not differentiate between objects of different size.

• Linearity signifies that there is no preferred way to combine observations.

Linear shift invariance implies that a rescaled image must be a convolution of the original

image by some kernel G(x;σ):

I(x;σ) = {I0 ∗G(x;σ)} (x;σ), (2.6)



16 Chapter 2. Background

∗ is defined as the convolution operation for two arbitrary functions f and g

f ∗ g =

∫ ∞

−∞
f(u)g(x− u)du. (2.7)

In the Fourier domain convolution becomes multiplication

I(ω;σ) = I0(ω) · Ĝ(ω;σ). (2.8)

The Pi Theorem, see [Florack, 1993] for details, states that, because of scale invariance,

there are only two independent dimensionless variables in this case. These can be chosen to be

Ĝ = I
I0

and Ωω = σω. Then, according to the Pi Theorem Ĝ(ω;σ) = I
I0

= Ĝ(Ωω).

Spatial isotropy implies that Ĝ depends only on the magnitude (Euclidean length) of the

vector Ωω, so Ĝ(Ωω) = Ĝ(Ω). σ is chosen such that, for a fixed ω, the hypothetical zero-scale

limit will leave the initial image unscaled, so

lim
Ω→0

Ĝ(Ω) = 1. (2.9)

Also it is required that the infinite-scale limit gives a complete spatial averaging of the initial

image

lim
Ω→∞

Ĝ(Ω) = 0. (2.10)

Performing several rescalings successively should be consistent with performing a single

rescaling. More specifically if σ1, σ2 are the scale parameters associated with two rescalings

Ĝ(Ω1), Ĝ(Ω2) respectively, then the concatenation of these should be a rescaling Ĝ(Ω3) corre-

sponding to a scale parameter σ3 = σ1⊕σ2. This means that the observation increases the inner

scale and the total scaling must be consistent with performing just a single rescaling. The oper-

ator ⊕, with the group of positive real numbers,
{
R
+
0 ;⊕

}
, constitute a commutative semi-group.

A result from the theory of semi-groups is that, see [Florack, 1993]

Ĝ(Ω1)Ĝ(Ω2) = Ĝ [(Ω1 +Ω2)
p] . (2.11)
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A general solution to this constraint is

Ĝ(Ω) = exp [(αΩ)p] . (2.12)

To single out a unique scale-space kernel a final constraint on the parameter p is set. It is required

that the D spatial dimension to be separable

Ĝ(Ω) =
D∐

i=1

Ĝ(Ωi), (2.13)

in which Ωi is given by the magnitude of the projection vector (Ωω · êi)êi. This makes σ to a

real length, so we are able to determine σ from scalings along the coordinate axes because an

isotropic rescaling can be obtained either directly through Ĝ(Ω) or through a concatenation of

rescalings Ĝ(Ωi) by the same amount in each of the independent spatial directions êi, i = 1...D

separately. The separability requirement fixes p = 2 because the length of the total projection

vector is calculated by the Pythagoras formula from the magnitude of the constituent projection

vectors (Ωω · êi)êi. A convenient choice for is α2 = −1
2 if we want a real solution, so α2 is

real. Additionally from Equation 2.10 α2 is negative. So finally we get the Gaussian kernel in

the Fourier domain

Ĝ(Ω) = exp(−1

2
Ω2), (2.14)

which is in the spatial domain

G(x;σ) =
1√
2πσ2

exp
(x · x
2σ2

)
. (2.15)

Gaussian derivatives

The Gaussian kernel is now established as the unique scale-space operator to change scale. One

of the most useful results in linear scale-space theory is that the spatial derivatives of the Gaus-

sian, together with the zero-th order Gaussian form a complete family of differential operators

[Florack, 1993]. If we want to take the derivative of an observed image, i.e the convolution of

the image with the Gaussian function, we get the following result due to the fact that we can



18 Chapter 2. Background

commute the differential and the convolution operators

∂

∂x
(I ∗G) = I ∗ ∂G

∂x
. (2.16)

This means that the derivative is given at a given scale. Thus, in order to differentiate discrete

data, the inner scale is increased. This is a consequence of the regularization of the differenti-

ation process. Regularization is the technique to make data “behave well“ when an operator is

applied to it. The data could e.g. be functions, that are impossible or difficult to differentiate,

or discrete data where a derivative seems to be not defined at all. In our case the discrete image

is the distribution and the test function is the infinitely differentiable Gaussian kernel. Differen-

tiation is now done by integration, i.e., by the convolution integral. It may be counterintuitive

to perform a blurring operation when differentiating, but differentiation always involves some

blurring. It is important to notice that the operator is regularized, not the data.

The human visual system samples the outside world on multiple scales. On the retina lie

receptive fields, groups of receptors assembled in such a way that they form a set of apertures

of widely varying size. Neurophysiological studies by [Young, 1987] have shown that there are

receptive field profiles in the mammalian retina and visual cortex, which can be well modeled

by superpositions of Gaussian derivatives.

Nonlinear scale-space

In the isotropic scale-space all structure is blurred, also the regions of particular interest like

edges. In linear scale-space there is no preference: all information is processed in the same

way (uncommitness). We consider only scale-spaces which preserve the luminance. Then the

change of luminance over scale can be expressed as the divergence of a flow, where the flow

denoted by F in general is a function of the local image structure given by the gradient. As

noted before [Koenderink, 1984] showed that the generating equation of linear scale-space is

the linear diffusion equation

∂I

∂s
= ∇ · ∇I = ∆I =

∂2I

∂x∂x
+

∂2I

∂y∂y
. (2.17)

Note the s in the diffusion equation has the dimension of the squared spatial dimension, so it

takes the role of the Gaussian variance. The relation to the standard deviation is σ2 = 2s.
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If some information of the image (like preserving edges) is incorporated, while keeping the

properties of scale-space then it is possible to create the nonlinear scale-space [Nielsen et al.,

1996]. There are two essential properties for a multiresolution representation to be a scale-

space: the image should be simplified, and it should be possible to establish relations over scale

[Florack, 1993]. We give two examples of nonlinear multiresolution representations which have

the essential scale-space properties.

Gradient dependent diffusion

This case, where the flow F = c(‖∇I‖)∇I is some scalar function of the gradient, was first

proposed by [Perona and Malik, 1990]. They proposed F to be a decreasing function of the

gradient

c(x, s) = c(‖∇I(x, s)‖) = e−
c(‖∇I‖)2

k2 , (2.18)

k is a parameter controlling the diffusivity, and s represents the scale(time). So that the nonlinear

diffusion equation becomes

∂I

∂s
= ∇ · (c∇I). (2.19)

In this process the diffusion directions are always collinear to the image gradient ∇I and its

perpendicular ∇I⊥.

Tensor dependent diffusion

In this case the flow F = D(S)∇I is no longer a function of a scalar entity as above, but a

function of a tensor. An example is the structure tensor as given by [Weickert, 1999] in 2D

S0 = G(x, y;σ) ∗




∂2I
∂x2

∂2I
∂x∂y

∂2I
∂y∂x

∂2I
∂y2


 , (2.20)

where σ is called the integration scale. This tensor captures the orientation of the local structure,

when integrated over the volume determined by the integration scale. The eigenvectors of this

tensor give the principle directions of the structure. A diffusion tensor D which is a function

of the structure tensor S can be designed such that diffusion is done along edges and not across

them, as it will be explained in detail in Subsection 2.1.3.
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2.1.3 Coherence enhancing diffusion

Structure tensors are matrix representations of partial derivative information. In the field of

image processing and computer vision, it is typically used to represent the gradient or "edge"

information. It is a more powerful description of local patterns as opposed to the directional

derivative, providing a local description of the anisotropy in a neighborhood of an image. A

simple structure descriptor is the image gradient. As seen in Subsection 2.1.2 the image gradient

of a discrete image I is given by ∇Iσ, the gradient of a Gaussian-smoothed version of I , Iσ =

Gσ ∗I . ∗ denotes the convolution operation andGσ is a Gaussian kernel with standard deviation

σ. At x = (x, y)T the kernel is given by

Gσ(x) :=
1

2πσ2
e

(

−
|x|2

2σ2

)

, (2.21)

where σ denotes the noise scale, and it makes the edge detector ignorant of details smaller than

O(σ). The magnitude of the gradient, ‖∇Iσ‖, reflects the maximum change in pixel values,

and the phase θ = tan−1

(
∂Iσ
∂x
/∂Iσ
∂y

)
is directed along the orientation corresponding to the

maximum change. Although ∇Iσ is useful for detecting edges, it is unsuited for finding isotropic

structures, where there is no preferred direction of the gradient. In this case, the magnitude is

zero. An example is a black circle on a white background, where we have gradient information,

but no preferred phase, it zeros itself out, thus ‖∇Iσ‖ = 0. The same result is reached if the

original input is a uniform region, for example, a region containing the same gray values. Again

‖∇Iσ‖ = 0 as there is no gradient information.

To make the structure descriptor invariant under sign changes, ∇Iσ is replaced by its tensor

product S0(∇Iσ) = ∇Iσ(∇Iσ)T [Brox et al., 2006]. This matrix is symmetric and positive

semi-definite, and its eigenvalues By convolving S0 component-wise with a Gaussian Gρ the

structure tensor is obtained as

Sρ(∇Iσ) = Gρ ∗ (∇Iσ∇ITσ ). (2.22)

The structure tensor written in matrix form Sρ =



S11 S12

S21 S22


 is a symmetric, positive semi-

definite matrix, since it results from averaging of symmetric positive semi-definite matrices.
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TABLE 2.1: Eigenvalue classification of the structure tensor in 2D images

Condition Rank(Sρ) Description

λ1 = λ2 = 0 0 I is constant in the neighborhood ρ.

λ1 > 0, λ2 = 0 1

I , in the neighborhood ρ varies along the direction v1
and is constant along the direction v2;

the gradient of I is always a multiple of v1.

λ1 > 0, λ2 > 0 2

The gray values change in all directions in the neighborhood ρ;

then v1 is the direction that is maximally aligned with the gradient;

in the special case when λ1 = λ2, we speak of an isotropic

gray value structure as it changes equally in all directions.

Gaussian smoothing not only improves the orientation information with regard to noise, but also

creates a scale-space with the integration scale ρ. This scale parameter determines the size of the

neighborhood considered for the structure analysis. Besides the information on orientation and

magnitude of structures, which is already present in the gradient, the structure tensor measures

the homogeneity of orientations within the neighborhood of a pixel [Medioni et al., 2000]. This

information can be extracted by using the eigendecomposition

Sρ =

[
v1 v2

]


λ1 0

0 λ2






v1

v2


 , (2.23)

where λ1, λ2 are the eigenvalues of Sρ and v1, v2 are the corresponding eigenvectors. In order

to be consistent with the notation introduced by [Weickert, 1999] we consider λ1 ≥ λ2. These

values, λ1, λ2 represent the ρ-weighted average of the square of the directional derivative of Iσ

along v1, v2 respectively. If we take a close look at the eigenvalues we can distinguish the cases

summarized in Table 2.1.

The eigenvector v2 corresponding to the smallest eigenvalue determines the dominant orien-

tation of the local structure, while the trace of Sρ, tr(Sρ) = S11+S22, determines its magnitude.

It is the orientation with the lowest fluctuations, the so called coherence orientation. The coher-

ence in 2D image data is often expressed by λ1/λ2 or by the measure (λ1 − λ2)
2 [Brox et al.,

2006], yet also other measures based on the eigenvalues may be reasonable. In this sense the

coherence is defined as a measure of the relative discrepancy between the two eigenvalues of

the tensor. It is an indicator of the degree of anisotropy of the gradient in the window ρ, namely
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how strongly is it biased towards a particular direction (and its opposite) [Medioni et al., 2000].

For example the expression (λ1 − λ2)
2 becomes large for anisotropic structures.

Although structure tensors are applicable to many domains, they have gained a considerable

interest in the image processing and computer vision domains. Using gradient-based structure

tensors, local patterns of contours and surfaces may be inferred through a diffusion process

[Arseneau and Cooperstock, 2006]. We are especially interested in the coherence enhancing

diffusion described by [Weickert, 1999], for its capability of enhancing flow-like structures.

The goal of anisotropic diffusion filtering is to adapt locally to the data but also to the

direction of smoothing. It allows, for example, to smooth along image edges while inhibiting

smoothing across edges. The nonlinear diffusion filtering result u(x,s), with a scale parameter

s ≥ 0, of a scalar initial image I is given as the solution of a diffusion equation

∂u

∂s
= div (D∇u), (2.24)

D denotes the diffusion tensor. I is taken as initial condition,

u(x, 0) = I(x) (2.25)

and boundary conditions

〈D∇u,n〉 = 0. (2.26)

n denotes the outer normal and 〈., .〉 the usual Euclidean scalar product.

Flow-like structure enhancement

[Weickert, 1999] derived the diffusion tensor for 2D images based on the eigenvalues of the

structure tensor, by requiring that the diffusion should act like a smoothing process mainly along

the coherence direction v2 (with the previous notation) and the smoothing should increase with

the coherence (λ1 − λ2)
2. Thus D should have the same eigenvectors as the structure tensor,

but with eigenvalues defined as
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µ1 : = α

µ2 : =





α if λ1 = λ2

α+ (1− α)e
−C

(λ1−λ2)
2 , otherwise,

(2.27)

with C > 0 and a small parameter α ∈ (0, 1).

Note in flat regions we have µ1 = µ2 = α and the tensor D is defined to be isotropic.

Along the image contours, we have µ1 > µ2 > 0 and D is anisotropic, mainly directed by the

smoothed direction v2. This approach significantly improved the smoothing orientation, simul-

taneously reducing noise. Note also that the anisotropic diffusion has been defined as the case

where the diffusivity is a scalar function varying with the location in the image. The diffusion

proposed by [Perona and Malik, 1990], presented in Subsection 2.1.2, limits the smoothing of

an image near the pixels with a high gradient magnitude (edge pixels). As the diffusion near an

edge is very weak, the noise smoothing near the edge is also small.

2.1.4 Hessian based vesselness for vessel segmentation

In order to analyze the local behavior of an image I , differentiation is computed in the setting

of the linear scale space theory, by defining it as a convolution with derivatives of Gaussian as

introduced in Subsection 2.1.2

∂

∂x
I(x, σ) = sγI(x) ∗ ∂

∂x
G(x, σ). (2.28)

The parameter γ was introduced by [Lindeberg, 1998] to define a family of normalized deriva-

tives. This normalization is particularly important for a fair comparison of the response of

differential operators at multiple scales. [Lindeberg, 1998] suggested that if there is no pref-

erence of vessels with particular width, γ should be set to 1. The Gaussian kernel is defined

as in Equation 2.21. Note some important properties of the Gaussian and its second derivative,

that makes these kernel so attractive for vessel enhancement. Gaussian blurring can reduce the

influence of noise and properly shape the intensity on the vessel cross section into a Gaussian

profile, so as to ensure a large value of the second derivative across the vessel cross section, even
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in the case of a plateau-like profile or in slight intensity variation at the vessel center. Its second

derivative kernel at scale σ generates a probe kernel that measures the contrast between the re-

gions inside and outside the range (−σ, σ) in the direction of the derivative, therefore tuning the

filter response to a specific vessel scale, see Figure 2.2A and B.
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FIGURE 2.2: The second order derivative of a Gaussian kernel probes in-

side/outside contrast of the range (−σ, σ). In this example σ = 2.5. A. ∂2G
∂x2 . B.

∂2G
∂y2

A common method for vessel enhancement filtering is based on the eigenanalysis of the

Hessian matrix that captures the second order structure of local intensity variations in the prox-

imity of each pixel. [Frangi et al., 1998] analyzed the meaning of the Hessian eigenvalues and

gave an intuitive geometrical interpretation of the eigensystem. As we are working on a 2D

image, the Hessian matrix is given as:

Hσs(I) =




∂2I
∂x2

∂2I
∂x∂y

∂2I
∂y∂x

∂2I
∂y2

.


 (2.29)

The Hessian matrix Hσs is calculated at the position x and scale σs. By eigenvalue de-

composition we have: a small eigenvalue λ1 with its corresponding eigenvector v1 indicating

the direction of a tubular structure and a large eigenvalue λ2 associated with the eigenvector v2

perpendicular to the tubular structure. Table 2.2 summarizes the conditions for the eigenvalues

of the Hessian for the detection of different structures that we can find while applying this de-

composition in a discrete image.

Frangi’s vessel enhancement
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TABLE 2.2: Possible patterns in 2D depending on the value of the eigenvalues

λk, k ∈ 1, 2. The eigenvalues are ordered |λ1| ≤ |λ2|, sgn is the sign function

λ1 λ2 orientation pattern

|λ1| ≈ 0 |λ2| ≈ 0 noise no preferred direction

|λ1| ≈ 0 |λ2| ≫ 0, sgn(λ2) = −1 tubular structure (bright)

|λ1| ≈ 0 |λ2| ≫ 0, sgn(λ2) = 1 tubular structure (dark)

|λ1| ≫ 0, sgn(λ1) = −1 |λ2| ≫ 0, sgn(λ2) = −1 blob structure (bright)

|λ1| ≫ 0, sgn(λ1) = 1 |λ2| ≫ 0, sgn(λ2) = 1 blob structure (dark)

The vesselness feature V (σs) proposed by [Frangi et al., 1998] is calculated at the position x

using the equation for the “dissimilarity measure” RB defined as

RB =
λ2
λ1

(2.30)

and the equation for the "second order structuredness" S defined as

S =
√
λ21 + λ22 (2.31)

as

V (σs) =





0, if λ1 > 0

e
−

R2
B

2β2 (1− e−
S2

2c2 ),

(2.32)

where β and c are constants which control the sensitivity of the filter. RB accounts for the

deviation from blob-like structures, but can not differentiate background noise from real ves-

sels. Since the background pixels have a small magnitude of derivatives (≈ 0) and, thus small

eigenvalues(≈ 0). In regions with high contrast compared to the background, S will become

larger since at least one of the eigenvalues will be large in magnitude (≫ 0). Thus S helps to

distinguish between noise and background.

The scale so far is a free parameter: if the scale to choose is unknown, one would calculate

them all. It is known that an operator gives maximal output if its size (in this context the scale

parameter) is tuned best to the object [Lindeberg, 1994]. In practice calculations of the vessel-

ness are performed for certain range of scales σ1, ..., σn. σ represents a real length, pixels or

voxel, which also incorporates the image resolution (µm or mm). The range is taken from the

smallest to the thickest expected vessel thickness with an increment of 1.0 to enhance vessels

with different thicknesses. The thickness of the vessels is either known a priori (for example
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from the anatomical information, data acquisiton type, and image resolution), or can be approx-

imated by direct measurements. Also note that in this setting we use an isotropic scaling, i.e.

σ is the same along each coordinate axis. The results are combined by a weighted maximum

projection

V (x) = max
smin≤s≤smax

Vσs(x). (2.33)

To see an example of the vesselness response, consider the ideal white vessel on a black

background, see Figure 2.3A.

The image has the size 128×128 with a vessel radius of 4 pixels at the image center to the left

and right. The result of taking the maximum response over a range of 10 scales, σ ∈ {1, 2.., 10}

is shown in Figure 2.3B. Each σ is given in pixels. Figure 2.3C shows that the maximum of the

vesselness response is obtained at σ = 5 pixels, the red circle in the image. Figure 2.3D shows

the response of the vesselness at the row in the middle of the vessel (the red arrow in Figure

2.3A) at each scale. Again we can see that the maximum response is obtained at σ = 5 pixels.

The method was developed for CT angiography images, but it has been applied in a wide

variety of vessel segmentation algorithms and detection of tubular objects in different modal-

ities. With a far better background suppression performance and the flexibility of changing

parameters, Frangi’s method is generally considered the most satisfactory among these methods

[Olabarriaga et al., 2003]. However, as the Hessian matrix is a local quantity, any Hessian matrix

based measures depending upon the eigenvalues and the eigenvectors will be sensitive to local

intensity structures and also intensity abnormalities, noise which can give false positive results,

and discontinuous responses along vessel direction. These effects are undesirable for both ves-

sel enhancement and visualization improvement. Moreover, it tends to suppress junctions since

junctions cannot be characterized as a curvilinear model. Also one of the disadvantages is the

computational requirement. As [Frangi et al., 1998] proposed, the method calculates the Hes-

sian matrix and the given measures for increasing neighborhood sizes, until the neighborhood is

bigger than the expected thickest vessel. Given high resolution images, this can easily increase

from 20 to 30 iterations per pixel [Budai et al., 2013].
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FIGURE 2.3: A. An example of a blood vessel white on a black background.

The image has the size 128 × 128 with a vessel radius of 4 pixels at the image

center to the left and right. B. The maximum vesselness response taken over

a range of scales σ ∈ {1, 2.., 10} pixels. C. A graph showing the maximum

vesselness response at each scale. The red circle shows the maximum point of

the vesselness response over all scales. D. The vesselness response at the middle

row through the vessel (red arrow in Figure A) for each scale.
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2.1.5 Optimally oriented flux as a descriptor for tubular structures

With the motivation to address the problem of segmenting thin elongated structures in grey value

images, [Vasilevskiy and Siddiqi, 2002] derived the geometric flow which maximizes the rate

of increase of flux of an auxiliary vector field through a curve or a surface.

Let C(p, t) be a smooth family of closed curves evolving in the plane. Here t parametrizes

the family and p parametrizes the given curve. Without loss of generality, assume that 0 6

p 6 1, i.e. that C(0, t) = C(1, t). Consider also a vector field V defined for each point

(x, y)T ∈ R
2. The total inward flux of the vector field through the curve is given by the contour

integral

Ft =

∫ 1

0
〈V,N〉

∥∥∥∥
∂C

∂p

∥∥∥∥ dp =
∫ L(t)

0
〈V,N〉 ds, (2.34)

where L(t) is the Euclidean length of the curve and N is the normal to C. Intuitively, the

inward flux through a planar closed curve provides a measure of how well the curve is aligned

with the direction perpendicular to the vector field. The main theoretical result of [Vasilevskiy

and Siddiqi, 2002] is that the direction in which the inward flux of the vector field V through the

curve C is increasing most rapidly is given by

∂C

∂t
= div (V)N. (2.35)

In other words, the flow which maximizes the rate of increase of the total inward flux is ob-

tained by moving each point of the curve in the direction of the inward normal by an amount

proportional to the divergence of the vector field.

The intuition behind using the flux maximizing flow for blood vessel segmentation is illus-

trated in Figure 2.4A. Here a cross section through an idealized blood vessel (a bright region

in a uniform darker background) is depicted. It is clear that if one considers the gradient of

the image ∇I to be the vector field V whose inward flux through the evolving surface is to be

maximized, then the optimal configuration is for the evolving surface to align itself locally to

the blood vessel boundaries.

For the analysis of tubular structures, it is useful to compute flux in a 2D circular region.

Therefore, the chosen flux value at a particular location is the maximum (magnitude) flux over
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the range of radii, corresponding to a range of blood vessel widths see Figure 2.4B. Normaliza-

tion over the scales is simply done by division by the number of entries in the discrete sum that

approximates Equation 2.35.

Optimally Oriented Flux

A B

C (p, r)

FIGURE 2.4: A. An illustration of the gradient vector field in the vicinity of a

blood vessel (the vessel has high intensity compared to the background). As-

suming a uniform background intensity, at its centerline, the total outward flux

at the scale of the vessel’s width is negative. Outside the vessel, at a smaller

scale, the total outward flux is positive. B. A curvilinear structure is represented

as an envelope of a family of circles with continuously changing center points

and radii, where p represents the location of a point in the original image do-

main, r ∈ [0, rmax] represents the radius of the circle centered at p (rmax is the

largest allowed thickness of the vessel to be captured), C(p, r) represents a path

composed by center points of a family of circles.

[Law and Chung, 2008] introduced the concept of optimally oriented flux (OOF) to detect 3D

curvilinear structures. This concept is completely different than the flux based approach intro-

duced by [Vasilevskiy and Siddiqi, 2002] which is included in a global energy to be minimize

along the tubular structures, while flux defined by [Law and Chung, 2008] is a local feature

which allows to define a local metric in order to minimize a path energy. At a position x the

OOF is defined by outward oriented flux along a direction ρ. It is calculated by projecting the

image gradient, denoted here as v = ∇I , along the direction of ρ prior to the computation of

the flux in a local circular region Dr.

f(x, r,ρ) =

∫

∂Dr

[(v(x+ h) · ρ)ρ] · ndL, (2.36)

where Dr represents a circular region with radius r, dL is the infinitesimal length on boundary

∂Dr, ρ = (ρ1, ρ2)
T is the direction along which the gradient is projected, n = (n1, n2)

T is the
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outward unit normal of ∂Dr, v = (v1, v2)
T is the gradient of an image I , h = rn, thus

f(x, r,ρ) =

(
ρ1 ρ2

)


∫
∂Dr

v1(x + rn)n1dL
∫
∂Dr

v2(x + rn)n1dL
∫
∂Dr

v1(x + rn)n2dL
∫
∂Dr

v2(x + rn)n2dL




︸ ︷︷ ︸
Qr,x



ρ1

ρ2




= ρTQr,xρ.

(2.37)

Each entry in the matrix Qr,x, at the ith row and jth column can be rewritten as

qi,jr,x =

∫

∂Dr

vi(x+ rn)njdL =

∫

∂Dr

[vi(x+ rn)ej ] · ndL, (2.38)

where e1, e2 are the unit vectors along x, respectively y directions. Using the divergence

theorem each qi,jr,x can be expressed by

qi,jr,x =

∫

Dr

div [vi(x+ y)ej ]dS =

∫

Dr

∂

∂ej
vi(x+ y)dS, (2.39)

where y is the position vector inside the circle Dr. In practice, v is obtained from a Gaussian

smoothed image, which ensures the differentiability of the discrete image signal I , see Subsec-

tion 2.1.2, v = ∇(Gσ ∗ I) where Gσ is a Gaussian function and ∗ represents the convolution

operation. σ is taken to be 1. Thus vi(x) = (Gei,σ ∗I)(x). Gei , σ is the first derivative of Gaus-

sian along the direction ei. Furthermore, the surface integral in Equation 2.39 can be extended

to the whole image domain Ω using a step function 1Dr given as

1Dr =





1,
√
x2 + y2 ≤ r

0, otherwise.

(2.40)

Thus Equation 2.39 becomes

qi,jr,x =

∫

Ω
1Dr(y)[Geiej ,σ ∗ I)(x+ y)]dS = [(1Dr ∗Geiej ,σ)(x)] ∗ I(x), (2.41)

where Geiej ,σ is the second derivative of G. Hence Equation 2.36 becomes

f(x, r,ρ) = ρT [(1Dr ∗Geiej ,σ)(x)] ∗ I(x)ρ. (2.42)
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To detect vessels having higher intensity than the background region, one would be interested in

finding the vessel direction which minimizes f(x, r,ρ), i.e. we are looking for argmin
ρ

f(x, r,ρ).

By differentiating the above equation with respect to ρ, minimization of function f is in turn

acquired as solving a generalized eigenvalue decomposition problem.

Solving the generalized eigendecomposition problem gives two eigenvalues, λ1(x, r) and

λ2(x, r), where λ1(x, r) ≤ λ2(x, r) and two eigenvectors ω1(x, r) and ω2(x, r), i.e. λ1(x, r) =

f(x,ω1(x, r), r) and λ2(x, r) = f(x,ω2(x, r), r).

As the evaluation of Equation 2.36 is grounded on analyzing image gradients along the

boundary of the disc Dr, the OOF detection results are only induced when the disc boundary

touches the object boundary. Along the vessel direction, ω2(x, r), |λ2(x, r)| ≈ 0 inside the

vessel as the image gradient ‖v(x)‖ ≈ 0 along ω2(x, r). Along ω1(x, r), |λ1(x, r)| depends

on r of the local disc Dr and the position x, the position where OOF is evaluated. To exemplify

the variation of |λ1(x, r)| see Figure 2.5 as following:

Local disc A
Local disc B Local disc C

Image gradient

Vessel boundary

FIGURE 2.5: Three examples of computing OOF using different radii at various

positions at a vessel

• for the local disc A when r is the radius of the vessel, and v(x) is projected along

ω1(x, r), the projected gradient at the contacting positions between the boundary ofDr is

aligned along the orientation ofDr outward unit normal
n(x)

‖n(x)‖ , i.e.
v(x)·ω1(x,r)
‖ω1(x,r)‖

ω1(x,r)
‖ω1(x,r)‖

=

c n(x)
‖n(x)‖ , c is a constant. Thus |λ1(x, r)| ≫ 0 and λ1(x, r) < 0.

• for the local disc B at the contacting position between the boundary of Dr, the image

gradients v(x) that point to the center of the vessel are not aligned along the disc outward

unit normal
n(x)

‖n(x)‖ . Therefore |λ1(x, r)| will be smaller than in case of the local disc A.
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• for local disc C there is no contacting position between the boundary of Dr and the vessel

boundary. Thus |λ1(x, r)| ≈ 0 and random.

To see an example of the OOF response, consider the ideal white vessel on a black background,

see Figure 2.6A. The image has the size 128× 128 with a vessel radius of 4 pixels at the image

center to the left and right. The result of taking the maximum response over a range of 10 radii,

r ∈ {1, 2.., 10} is shown in Figure 2.6B. Each radius is given in pixels. Figure 2.6C shows

that the maximum of the OOF response is obtained at r = 5 pixels, the red circle in the image.

Figure 2.6D shows the response of the OOF at the row in the middle of the vessel (the red arrow

in Figure 2.6A) at each radius. Again we can see that the maximum response is obtained at

r = 5 pixels. Some important properties of the OOF are

• it discovers the structure direction by finding an optimal projection axis which minimizes

the oriented flux.

• detection response is induced from the intensity discontinuities at the object boundary

when the local circle touches the object boundary of the structure.

• it can be utilized to distinguish between regions inside and outside curvilinear structures.

• it is localized at the boundary of the local spherical region (distinct from the Hessian

matrix, OOF does not consider the region in the vicinity of the structure where a nearby

object is possibly present, thus is robust against the disturbance introduced by closely

located objects)

• it allows the possibility of defining measures for identifying structures in a specific shape

(not only curvilinear) by using combinations of its eigenvalues

• multi-scale detection is easy to integrate, as the normalization for the detection of OOF

using a set of radii (r in Equation 2.36) requires only dividing the computational result of

Equation 2.36 by 2πr (the length of the circular region)

• by using fast Fourier transform, the complexity of evaluating Equation 2.39 and thus

Qr, x is O(NlogN) compared to using the conventional spatial implementation in the

entire image domain with pixels is O(KN) (K is the number of orientation samples

taken on the circumference of the circle)



Chapter 2. Background 33

 

 

1 2 3 4 5 6 7 8 9 10

20

40

60

80

100

120 −0.2

−0.1

0

0.1

0.2

0.3

1 2 3 4 5 6 7 8 9 10
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

A B

C

D

radius

radius

M
a

x 
re

sp
o

n
se

R
e

sp
o

n
se

 a
t 

th
e

 m
id

 r
o

w
 o

f 
th

e
 v

e
ss

e
l i

m
a

g
e

O
O

F
 r

e
sp

o
n

se

FIGURE 2.6: A. An example of a blood vessel white on a black background.

The image has the size 128 × 128 with a vessel radius of 4 pixels at the image

center to the left and right. B. The maximum OOF response taken over a range

of radii r ∈ {1, 2.., 10} pixels. C. A graph showing the OOF response at each

radius. The red circle shows the maximum point of the OOF response. D. The

OOF response at the middle row through the vessel (red arrow in Figure A) for

each radius.
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OOF has been developed to supply information of curvilinear structures for extracting ves-

sels in a vascular image [Law and Chung, 2008]. Its performance has been extensively tested

in vascular images in phase contrast magnetic resonance angiographic volumes (the image in-

tensity represents the blood flow speed inside the vasculature). The challenges for extraction

algorithms are represented by the presence of closely located vessels due to the complicated ge-

ometry of vascular structures, and the small and low intensity vessels in images with relatively

high background noise level. The OOF based method was capable of discovering the small sep-

aration between the closely located vessels and in high level noise conditions. Furthermore, for

tracking curvilinear structure centerlines, it was able to estimate the structure direction and to

guide the centerline tracking process in a robust way.

2.1.6 Thin plate spline

TPS is a commonly used basis function for representing coordinate mappings from R
2 to R

2.

This interpolation algorithm was borrowed from continuum mechanics and was introduced to

morphometrics by [Bookstein, 1989]. It generates a deformation grid (mapping function) be-

tween two point configurations that maps the actual points exactly and is otherwise as smooth

as possible. The spline surface represents a thin metal sheet that is constrained not to move

at grid points. The construction is based on choosing a function that minimizes an integral that

represents the bending energy of the resulting surface. Let vi denote the target function values at

locations in the plane, with i = 1, 2, ..., p. We assume that the locations (xi, yi) are all different

and are not collinear. The idea of TPS is to choose a function f(x, y) that exactly interpolates

the data points (xi, yi) and minimizes the bending energy

Ef =

∫∫

R2

[(
∂2f
∂x2

)2

+

(
∂2f
∂x∂y

)2

+

(
∂2f
∂y2

)2]
dxdy. (2.43)

This least bent surface is given by the following equation

f(x, y) = a1 + axx+ ayy +

p∑

i=1

wiU(‖(xi, yi)− (x, y)‖), (2.44)

where U(r) = r2 log r. The first three terms correspond to the linear part which defines a flat

plane that best matches all control points (this can be seen as a least square fitting). The last
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term corresponds to the bending forces provided by n control points. There is a coefficient wi

for each control point.

In order for f(x, y) to have square integrable second derivatives, it is requiered that

p∑

i=1

wi = 0 (2.45)

and
p∑

i=1

wixi =

p∑

i=1

wiyi = 0. (2.46)

Together with the interpolation conditions, f(xi, yi) = vi, this yields a linear system for the

TPS coefficients

L =



K P

P T O






w

a


 =



v

o


 , (2.47)

where Kij = U(‖(xi, yi)− (xj , yj)‖), the distance between two control points, the ith row of

P is (1, xi, yi), O is a 3 × 3 matrix of zeros, o is a 3 × 1 column vector of zeros, w and v are

column vectors formed from wi and vi, respectively, and a is the column vector with elements

a1, ax, ay. We will denote the (p + 3) × (p + 3) matrix of this system by L =



K P

P T O


;

note that L is nonsingular as shown in [Powell, 1996]. Therefore the data defines the function

f uniquely. To find the unknown coefficients, that is the matrix



w

a


, we can either find the

inverse L−1, or solve it as a linear system. Since L is by definition symmetric, the last system in

Equation 2.47 can be easily solved with for instance a LU decomposition. When there is noise

in the specified values vi, one may wish to relax the exact interpolation requirement by means

of regularization. This is accomplished by minimizing:

H [f ] =

n∑

i=1

(vi − f(xi, yi))
2 + λEf . (2.48)

The regularization parameter λ, a positive scalar between 0 and 1, controls the amount of

smoothing. The limiting case of λ = 0 reduces to a least square approximation by a linear

polynomial. TPS coefficients in the regularized case can be solved by replacing the matrix K

by K+λI , where I is the p×p identity matrix. A 2D TPS can be fit to a 3D segmented surface

to obtain a smooth (smoothness controlled by λ) 3D reference plane with respect to which the
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dataset is flattened. The limitation of this method consists in the fact that since inverting L is an

O(p3) operation, consequently solving for the TPS coefficients can be very expensive when p is

large.

An example of a 2D TPS surface with 10 control points and different regularization param-

eters is given in Figure 2.7A with λ = 0, Figure 2.7B with λ = 0.5, Figure 2.7C with λ = 1.

2.2 Anterior visual system

In order to explain the role of the retina and its connection to the CNS we present in this section

some basic anatomical background about the anterior visual system.

2.2.1 Visual pathway

The human visual system is a complex system and requires communication between its major

sensory organ, the eye, and the core of the central nervous system, the brain, to interpret external

stimuli into sight images. Vision depends mainly on one sensory organ, the eye. The human

eye is one of the most complicated structures as illustrated in Figure 2.8A, and it requires many

components to allow our advanced visual capabilities. The eye has three major layers:

• the sclera, which maintains, protects, and supports the shape of the eye and includes the

cornea

• the choroid, which provides oxygen and nourishment to the eye and includes the pupil,

iris, and lens

• the retina, which allows us to piece images together

All vision is based on the perception of electromagnetic rays. These rays, in the form of light,

must pass through the cornea, which focuses the rays. They then enter the eye through the pupil,

the black aperture at the front of the eye. The pupil acts as a gatekeeper, allowing as much or

as little light to enter as is necessary to see an image properly. The pigmented area around the

pupil is the iris. Along with supplying a person’s eye color, the iris is responsible for acting as

the pupil’s stop. Two layers of muscles contract or dilate the pupil to change the amount of light

that enters the eye. Behind the pupil is the lens, similar in shape and characteristics to a camera
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FIGURE 2.7: 2D TPS surface with 10 control points (black dots) and different

regularization parameters. A. λ = 0. B. λ = 0.5. C. λ = 1.
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lens. Together with the cornea, the lens adjusts the focal length of the image being seen onto the

back of the eye, the retina. Visual reception occurs at the retina where photoreceptor cells called

cones and rods give an image color and shades. The image is transduced into neural impulses

and then transferred through the optic nerve to the brain for processing, see Figure 2.8C. The

visual cortex in the brain interprets the image to extract form, meaning, memory and context

[UTHMedicalSchool].

2.2.2 Retina anatomy and structures

The retina is a complex structure approximately 0.5 mm thick consisting of alternating layers

of cell bodies and cell processes and lines the back of the eye [Kolb]. It is formed during

embryogenesis from neural tissue, therefore, part of the central nervous system. It contains five

types of neurons: the visual receptor cells (the rods and cones), the horizontal cells, the bipolar

cells, the amacrine cells, and the retinal ganglion cells, see Figure 2.8A. The innermost layers

are located nearest the vitreous chamber, whereas the outermost layers are located adjacent to

the retinal pigment epithelium and choroid. The structures and layers seen in the retina are as

illustrated in Figure 2.9, and are described briefly below:

• ILM is the boundary between the retina and the vitreous body.

• Retinal Nerve Fiber Layer (RNFL) consists of unmyelinated axons of the ganglion cells

that form the optic nerve.

• Ganglion Cell Layer (GCL) contains the nuclei of the ganglion cells.

• Inner Plexiform Layer (IPL) contains axons of bipolar, and the dendrites of the amacrine

and ganglion cells.

• Inner Nuclear Layer (INL) contains the nuclei of horizontal, bipolar, amacrine and Müller

cells.

• Outer Plexiform Layer (OPL) consists of photoreceptor axons, and dendrites of horizontal

and bipolar cells.

• Outer Nuclear Layer (ONL) consists of the cell bodies of the photoreceptor (both rods

and cones) cells.
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FIGURE 2.8: A. Gross anatomy of the human eye and detail of the retina [Fuen-

santa and Doble, 2012]. B. Schematic representation of the course of the gan-

glion cells axons in the retina before they exit through the optic nerve and of the

retinal vessel distribution [UTHMedicalSchool]. C. The visual pathway. The

quadrants of the visual fields are color-coded to show transmission of informa-

tion to the retinae and to the primary visual cortices where the image is first

perceived. Modified image from [Stedman’sMedicalDictionary, 2015]
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• The inner segments (IS) consists of the photoreceptors.

• The inner segments-outer segments (IS/OS) consists of the junction between the inner

segments and the outer segments .

• RPE is a single layer of cells between the retina and the choroid.

Inner limiting membrane

Nerve �ber layer

Ganglion cell layer

Inner plexiform layer

Inner nuclear layer

Outer plexiform layer

Outer nuclear layer

Phototreceptors layer

(rods and cones)

FIGURE 2.9: Light micrograph presenting a cross section of the retina, image

modified from [Kolb].

Light passing through the cornea, lens and vitreous must pass through most of the retinal

layers before reaching the light-sensitive portion of the photoreceptors; the outer segment in

the receptor layer. In the region of the fovea where the image of the central visual field center

is focused, the retina consists of fewer layers thereby minimizing the obstacles to forming a

clear image on the fovea. The area around the fovea, the surrounding macula, is thicker be-

cause it contains the cell bodies and processes of retinal neurons receiving information from the

receptors in the fovea.
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The axons of the retinal ganglion cells form the nerve fiber layer of the retina on their course

to the optic disc illustrated in Figure 2.8B. At the optic disc, these exit the eye and form the optic

nerve. The fibers of the optic nerve that originate from ganglion cells in the nasal half of the

retina cross in the optic chiasm to the opposite optic tract see Figure 2.8C. Consequently, each

optic tract has within it axons representing the contralateral half of the visual field.

2.2.3 Retinal blood supply

Usually, the only arterial blood supply to the inner retina is from the central retinal artery that

runs along the inferior margin of the optic nerve sheath and enters the eye at the level of the optic

nerve head as illustrated in Figure 2.10A. Within the optic nerve, the artery divides to form two

major trunks and each of these divides again to form the superior nasal and temporal and the

inferior nasal and temporal arteries that supply the four quadrants of the retina. The retinal

venous branches are distributed in a similar pattern. The major arterial and venous branches

and the successive divisions of the retinal vasculature are present in the nerve fiber layer close

to the internal limiting membrane as seen in Figure 2.10B. The retinal arterial circulation in the

human eye is a terminal system with no communication with other arterial systems. Thus, the

blood supply to a specific retinal quadrant comes exclusively from the specific retinal artery and

vein that supply that quadrant. Any blockage in blood supply therefore results in infarction.

Optic

nerve Fovea

Cental retinal vein

Central retinal arteria
Sclera

Choroid Retina

Choroid

Super�cial capillary plexus

Deep capillary

plexus

A B

FIGURE 2.10: A. Drawing of the human eye along the superior–inferior axis

through the optic nerve, showing the vascular supply to the retina and choroid.

The retinal vessels are supplied by the central retinal artery. B. Drawing show-

ing the vasculature of the retina and choroid. Retinal arterioles and venules lie

on the vitreal surface of the retina while capillary plexi lie in just beneath the

surface and in the inner nuclear layer. Drawings adapted from [Anand-Apte and

Hollyfield, 2011]
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The arteries and veins generated from the retinal arteries and veins form an extensive capil-

lary network in the inner retina as far as the external border of the inner nuclear layer. This can

be visualized in Figure 2.10B. The arteries around the optic nerve are approximately 100 µm in

diameter with 18 µm thick walls. These decrease in diameter in the branched arteries located

in the deeper retina to around 15 µm. The major branches of the central vein close to the optic

disk have a lumen of nearly 200 µm with a thin wall made up of a single layer of endothelial

cells having a thin basement membrane (0.1 µm) [Anand-Apte and Hollyfield, 2011].

2.2.4 Optic nerve head

The optic nerve has, by convention, been divided anatomically into four regions: intraocular,

intraorbital, intracanalicular and intracranial. The first of these, the intraocular portion, is ap-

proximately 3 mm in length and is the focus of our research. Once the optic nerve exits the eye,

there is an intraorbital portion. The optic nerve then passes into the optic canal - the intracanali-

cular. Upon exiting the optic canal, the nerve runs an intracranial course, until it reaches the

optic chiasm. The optic nerve is enclosed in meningeal sheaths in its intraorbital and intra-

canalicular portions; these sheaths are continuous with those that line the brain. The intraocular

portion of the optic nerve begins where 1.2 to 2.0 million ganglion cell axons converge and turn

90◦ to start their exit from the eye [Stedman’sMedicalDictionary, 2015].

The ONH illustrated in Figure 2.11 is the location where the ganglion cell axons leave the

eye to form the optic nerve. There are no photosensitive cells at this region and is thus, insen-

sitive to light and is called the blind spot. The optic nerve head also shows a number of large

blood vessels as this is the location from which the vessels that supply the ocular tissue enter

and leave the eye. The optic disc or ONH is a vertically oval structure containing a peripheral

‘rim’ composed primarily of neural tissue (as well as blood vessels and supporting cells) and,

usually but not always, a more central depression known as the ‘cup’ that is devoid of neural

tissue. The outer-most limit of the optic disc is known as the disc margin, and clinicians identify

this landmark ophthalmoscopically as a reflective ‘halo’ or crescent at the innermost periphery

of the neuroretinal rim. Clinicians usually refer to this sign, and therefore to the disc margin, as

‘Elschnig’s ring’. The disc margin represents an important landmark as it defines the extent to

which neural tissue is confined to the ONH and as such is of central importance in defining the
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size of the ONH. It is also a key landmark in the quantification of structural parameters used in

ONH imaging.

Optic nerve head
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Retina

Retinal pigment epithelium

Choroid

Optic nerve

Sclera

Border

Tissue

FIGURE 2.11: Anatomy of the optic nerve head, image modified from [Fuen-

santa and Doble, 2012].

There is considerable variability in optic disc size within populations, with disc area ranging

from approximately 0.80 mm2 to approximately 6.00 mm2. Optic disc size has been observed

to follow a near Gaussian distribution and in the non-highly myopic white population the mean

optic disc area is 2.5 mm2 . Men have larger optic discs than women. Optic discs are generally

larger in black subjects, with average disc area being approximately 12% bigger compared to

white subjects [Strouthidis et al., 2009a].

Bruch’s Membrane Opening

The neural canal opening (NCO), see Figure 2.11, is a 3D planar structure that occurs at the
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level of the RPE and the Bruch’s membrane (BM) and marks the anatomic entrance to the neu-

ral canal. This structure is referred to as the BMO in the literature and in non-human primate

eyes, the NCO colocalizes to the BMO. The anatomy in humans is more complicated than in

primates, and these separate structures can’t truly be discerned in SD-OCT images [Strouthidis

et al., 2009a], therefore we will use them interchangeably. The BM is the anterior surface of the

choroid and the BMO is the location at which the optic nerve passes through this membrane.

The border tissue of Elschnig, see Figure 2.11, is a flange or strut of connective tissue arising

from the sclera to meet BM and, in doing so, acting as the junction between the innermost

termination of the choroid and the adjacent retinal ganglion cell axon bundles.

The lamina cribrosa, see Figure 2.11, is effectively a connective tissue ‘scaffold’ that anchors

the bundles of optic nerve axons to each other and to the walls of the scleral canal. Along with

the peripapillary sclera that surrounds the intraocular optic nerve, the lamina cribrosa represents

the chief load-bearing tissue of the ONH [Strouthidis et al., 2009a].

2.3 Retinal imaging techniques

Retinal imaging has developed rapidly during the last years and is now widely used in the

clinical care and management of patients with retinal diseases [Abràmoff et al., 2010]. In this

section we present some of the main techniques utilized for the analysis of the retina and its

structures.

2.3.1 Fundus photography

Fundus camera is a specialized microscope with an attached camera designed to photograph the

interior surface of the eye – retina, fovea and ONH. These photographs allow medical profes-

sionals to monitor the progression of diseases like glaucoma and macular degeneration [Abrà-

moff et al., 2010]. The device automatically or manually detects the pupil center. In the next

step the device automatically focuses to the retina, several images are scanned and the inten-

sity of the patient’s eye illumination is set. The images scanned are evaluated and the average

intensity of the image is calculated [Abràmoff et al., 2010].
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2.3.2 Stereo fundus photography

Stereo photography creates two images of the same subject taken from two positions, that of

the photographer’s left and right eye. After being processed, the images are then presented to

the appropriate eye for viewing and the viewer’s brain recreates the 3D view. The goal of this

process is to recreate the image as if the viewer were at the site of the photographer. These

images can be further used to create a 3D reconstruction of the ONH shape [Abràmoff et al.,

2010].

2.3.3 Confocal scanning laser ophthalmoscopy

cSLO is an ophthalmic non-invasive imaging technology that uses laser light to illuminate the

retina. The scanning laser ophthalmoscope uses a focused laser beam to scan over the area of the

fundus to be imaged. At any instant only a small spot on the fundus is illuminated, and the light

returned from this spot inside the eye determines the brightness of a corresponding point (pixel).

If a pinhole, called a confocal aperture, is placed in front of the detector the image obtained is

said to be confocal. The volume of tissue from which back scattered light is accepted by the

confocal aperture is called a voxel. In the confocal mode, an image is built up of light scattered

back from a layer of voxels, and the image is thus taken from a thin section of equal thickness to

the depth of a voxel. In this way an optical section is produced, as light from structures outside

the plane of the voxels will not contribute to the image [Woon et al., 1992].

2.3.4 Heidelberg retina tomograph

Heidelberg Retina Tomograph (HRT) is designed to scan the retinal surface with a diode laser,

which has a wavelength of 670 nm. The precision of the method is based on the principle of

confocality. The scanning process is vertical and horizontal, by multiple focal plans, generating

a total of 64 sections, of 384 × 384 pixels each. If the focal plane is moved to different depths

along the optic nerve and further optical sections are acquired, the result will be a layered 3D

image (tomography). These sections are computer reassembled, making the calculation of the

heights of different structures of the optic disc possible [Dascalu et al., 2010].
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2.3.5 Optical coherence tomography

OCT first described in 1991, is a noninvasive imaging technique that can reveal layers of the

retina by looking at the interference patterns of reflected laser light. OCT became widely pop-

ular in 2002 with the release of Stratus OCT, a time-domain technology (TDOCT). Only four

years later, several companies started to release the next generation technology, SDOCT, which

improved upon TDOCT by capturing more data in less time at a higher axial image resolu-

tion, around 5 µ m [Schuman, 2008]. OCT is frequently compared to ultrasound, because

their basic principles are analogous, with OCT using light as its source. Both methods create

a cross-sectional image by measuring the echo time delay and intensity of the reflected and

backscattered light or ultrasound. OCT images use this information to depict variations in op-

tical reflectance through the depth of the tissue along a point, creating what is known as an

A-scan. These single axial scans through the tissue can be gathered linearly across the tissue,

making one cross-sectional image, known as a B-scan, and a collection of parallel B-scans can

be used to gather a 3D data set. OCT has a much higher axial resolution than ultrasound, 10

µm for TDOCT and 5 to 7 µm for SDOCT vs 150 µm for ultrasound at a frequency of 10

MHz.

Optical coherence tomography uses low-coherence interferometry to see the time difference

corresponding to the distances between structures. The process starts with a broad-bandwidth

laser or superluminescent diode low-coherence light source, the beam from which travels to a

beam splitter. One half of the light goes to a mirror at a known position on a reference arm,

and the other goes to the sample arm, where it is scattered and reflects off of tissue structures.

Light from the reference and sample arms travels back to the beam splitter and recombines to

form an interference pattern, which is sensed by a photodetector. The light beams combine

constructively only if the light from the tissue and the light from the reference mirror are at

almost exactly the same distance. The width of the signal envelope defines the resolution of the

interferometer and is determined by the coherence length of the light used; the shorter the coher-

ence length, the finer the resolution. The coherence length is dependent on the bandwidth, with

broader bandwidths producing lower-coherence light [Schuman, 2008]. Figure 2.12 presents a

schematic of an SDOCT system.

The advantage of SDOCT over TDOCT consists in the use of a stationary mirror, and the
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FIGURE 2.12: A. Schematic of a SDOCT system [OBEL].

interference pattern is split by a grating into its frequency components and all of these compo-

nents are simultaneously detected by a charge-coupled device. The charge-coupled device has

an array of photodetectors, each sensitive to a range of specific frequencies. Each frequency

detected corresponds to a certain depth within the tissue after Fourier transform of the received

signal, allowing all points along each A-scan to be gathered simultaneously, greatly accelerating

scan speed.

Profiles of several A-scans can be observed in Figure 2.13. These A-scans can then be

acquired along a transverse plane through the tissue and assembled into B-scans, as is done with

TDOCT.

SDOCT is capable of acquiring 3D image data in a very short time. For example at 16,000

A-scans per second, SDOCT can acquire a B-scan image containing 2048 A-scans in 0.13 sec-

onds [Schuman, 2008]. This faster speed allows for 3D data sets to be gathered, composed of

a series of rapidly acquired B-scans. Figure 2.14 shows how a 3D scan is built upon several

B-scans. These 3D data sets may be subject to motion artifacts in between B-scans, but as OCT

technology improves, there is less movement artifact, since scanning time is shorter, and many

SDOCT systems have also a built-in eye tracker.

With the 3D data sets, we can use 3D modeling, and detection tools to allow more intuitive

visualization of the structure in the data set, similar to the 3D visualization tools created for
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FIGURE 2.13: An optical coherence tomography cross-sectional image - B-

scan (grayscale image) is built up from many A-scans.
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FIGURE 2.14: A 3D volume is built up from several B-scans.
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magnetic resonance imaging or computed tomographic scans.

Currently, the most common four commercially available SDOCT devices in the US are:

Cirrus HD-OCT (Carl Zeiss Meditec, Dublin, CA, USA), RTVue-100 (Optovue Inc., Fremont,

CA, USA), Spectralis OCT (Heidelberg Engineering, Heidelberg, Germany), and Topcon 3D-

OCT 2000 (Topcon Corporation, Tokyo, Japan).

2.4 Retina in neurological disorders and OCT parameters

The eye’s retina, as part of the CNS with similar structure and cellular composition like the

brain, has gained an important role in identifying structural changes that correlate with tissue-

specific mechanisms of the CNS. SDOCT as described in 2.3.5, is a powerful imaging modality

providing depth views of the retina. The application of image analysis tools in analyzing the

retina range from initial differential diagnosis of several neurologic conditions, longterm control

of changes to therapy monitoring. This scientific field is currently highly dynamic and covers

many relevant diseases like MS, clinically isolated syndrome (CIS), NMOSD, Alzheimer’s dis-

ease, Parkinson’s disease, SUSAC syndrome, IIH. The main focus of our research is in MS,

CIS, NMOSD and IIH.

2.4.1 Retina in MS

MS is one of the most common diseases of the CNS. It involves an immune-mediated process in

which an abnormal response of the body’s immune system is directed against the CNS, which

is made up of the brain, spinal cord and optic nerves. There are four courses of the disease:

relapsing-remitting MS (RRMS), secondary-progressive MS (SPMS), primary-progressive MS

(PPMS), progressive-relapsing MS (PRMS). Today, approximately 2 500 000 people around the

world have MS, and more than 140 000 in Germany. Despite the high costs for the treatment per

patient and per year there is no drug that can cure MS, [DMSG]. Acute ON is the presenting

symptom in 15%–20% of MS patients and occurs in up to 70% of patients during the course

of the disease [Balcer, 2006]. ON is an inflammatory attack to the optic nerve. After initial

swelling due to edema in the acute phase, degeneration of the retina especially in the RNFL

occurs [Albrecht et al., 2007]. Figure 2.15 shows the segmented retinal layers from a macular

volume OCT scan.
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Standard parameters of the assessment of structural changes of the retina in MS are the

peripapillary RNFL thickness from a ring scan centered at the ONH and total macular volume

(TMV) of all layers. OCT ring scans with their corresponding B-scan are presented in Figure

2.16. The first OCT data from MS patients were reported in 1999. With the new generation

of SDOCT, retinal imaging with enhanced resolution, and 3D scans, it is possible to detect

even subtle changes in the range of a few µm. Consequently, different layers from intraretinal

layer segmentation see Figure 2.15, besides the RNFL, like GCL, often combined with the IPL,

(GCIPL), became an important outcome parameter in OCT studies in MS [Saidha et al., 2011].

Numerous OCT studies consistently found that ON leads to significant thinning of the RNFL

with a mean RNFL reduction of approximately 20 µm after ON, which corresponds to a 20%

loss in RNFL thickness [Petzold et al., 2010].

BM

FIGURE 2.15: Retinal layer segmentation in a 3D spectral domain optical co-

herence tomography scan of the macula [Oberwahrenbrock et al., 2013].

Even in the absence of ON, it had been shown that the RNFL is about 10 µm thinner when

compared to that of healthy controls [Talman et al., 2010].

Also recent SDOCT study in a cohort of CIS patients showed that degeneration of retinal

neurons occurs very early in the course of the disease [Oberwahrenbrock et al., 2013].

Although still a very active research topic, many studies have shown relationship between

RNFL and GCIPL thickness reduction and several MRI-derived measurements of brain atrophy

[Gordon-Lipkin et al., 2007, Zimmermann et al., 2013].

Cerebral veins gained increasing attention in MS. A concept termed CCSVI [M. and Z.,

2012] was introduced suggesting that compromised cerebral venous outflow might contribute to

MS pathology. However, several studies could not confirm cerebro-cervical venous congestion,
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A B C

FIGURE 2.16: Comparison between HC (A), MS (B) and NMOSD (C) for

RNFL thickness. The RNFL thickness is usually acquired by a peripapillary

ring scan. Image analysis provides the thickness values for the overall ring, but

also for the sectors: S - superior, N - nasal, I - inferior, T - temporal. A, B,

C - SLO images with ring scan (green circle), and the B-scan of the acquired

ring, RNFL thickness is measured between ILM (red line) and RNFL(blue line).

Peripapillary RNFL thickness values in different sectors. Black numbers display

the sectoral mean thickness measurements of the subject; Sectors are classified

in comparison to the reference group. Green: thickness values within the fifth

and 95th percentile range. Yellow: first to fifth percentile range. Red: less than

the first percentile.
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but instead showed either normal or reduced veins compared to HC. Yet, little is known about

retinal veins in MS to support or object the CCSVI hypothesis.

In summary, the retinal imaging in OCT, in MS has allowed for assessment of structure-

function correlations that make the anterior visual pathway and acute ON ideal models for test-

ing novel agents for neuroprotection and repair but are also promising for clinical routine [Sakai

et al., 2011].

2.4.2 Retina in NMOSD

Both NMOSD and MS are neuroinflammatory diseases with acute ON as a characteristic or even

crucial manifestation [Zimmermann et al., 2014]. NMOSD frequently presents bilaterally and

even simultaneously ON and visual impairment is often more severe and the risk of recurrence

is higher than in MS. RNFL reduction after ON is more pronounced in NMOSD than in MS

(55–83µm versus 74–95 µm, respectively) [Syc et al., 2012] see Figure 2.16C.

To our knowledge the only study that addresses retinal vasculature involvement in NMOSD

is from [Green and Cree, 2009]. In this study vascular changes were found, including attenuation

of the peripapillary vascular tree and focal arteriolar narrowing. These findings show that some

of the injury seen in NMOSD may be vascularly mediated. These inner retinal vascular changes

are reminiscent of blood vessel wall thickening previously reported in the optic nerve and spinal

cord at autopsy, suggesting that vascular changes may be detectable during life [Green and Cree,

2009].

2.4.3 Retina in IIH

IIH, also known as pseudotumor cerebri, is a clinical syndrome of unknown etiology charac-

terized by increased intracranial pressure (ICP) which typically affects young, obese women

of childbearing age. Clinical symptoms include headache, visual disturbances, pulsating tinni-

tus, photopia, eye pain, diplopia and nausea. Papilledema with subsequent visual field loss is

the most feared clinical consequence, which mainly determines the therapy and outcome of the

syndrome. Patients with newly diagnosed IIH presented RNFL thickening compared to healthy

controls, which decreased after three months under IIH treatment, visible and quantifiable in

the ring scan with OCT [Heidary and Rizzo, 2010]. 3D SDOCT, ONH center scans, provides

the possibility to quantify the whole volume of the swelling. The swelled ONH region in IIH
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patients presents as an extreme elevation of the ONH with varying sizes. Intraretinal layers are

hardly recognizable due to edema as in can be observed in Figure 2.17.
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FIGURE 2.17: A. SLO images with ring scan (green circle), and the B-scan of

the acquired ring, and peripapillary RNFL thickness values in different sectors.

S - superior, N - nasal, I - inferior, T - temporal. A, B, C - SLO images with

ring scan (green circle), and the B-scan of the acquired ring, RNFL thickness

is measured between ILM (red line) and RNFL(blue line). Peripapillary RNFL

thickness values in different sectors. Black numbers display the sectoral mean

thickness measurements of the subject; Sectors are classified in comparison to

the reference group. Green: thickness values within the fifth and 95th percentile

range. Blue: last fifth percentile range. Violet: more than the last percentile. B.

3D SDOCT ONH volume scan showing the extreme elevation due the swelling.

2.5 Data and optical coherence tomography device used in our re-

search

All data, patients and HC, was obtained at the NeuroCure Clinical Research Center at the

Charité- Universitätsmedizin Berlin.

All images in our research were acquired with Spectralis OCT from Heidelberg Engineering

(Spectralis software version used 5.3.3.0, Eye Explorer software 1.6.4.0), an SDOCT system.

The Spectralis system is 100 times faster than TDOCT and acquires 40,000 A-scans per second.

It has integrated into its system cSLO fundus imaging, which not only offers the possibility
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of a new perspective of the retina, but also enables accurate and repeatable alignment of OCT

for repeated measurements of the same subject. High speed image acquisition is combined

with custom TruTrackTM technology to actively track the eye during imaging. This technology

minimizes motion artifact and enables noise reduction.
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Retinal blood vessel segmentation

In this chapter two algorithms are presented: a semi-automated tool for the detection of the

inner and the outer boundary of retinal blood vessel at 15 positions for each blood vessel in

the close vicinity of the ONH, and three fully automated approaches to detect the whole reti-

nal vasculature. Until recently, the study of retinal vessel diameters for clinical purposes has

remained largely a research tool because it is laborious, although improvements in the com-

puterized analysis have the potential to change this [Zheng et al., 2009]. The semi-automated

algorithm described here was developed to offer a practical alternative to manual measurements

for a wide range of studies in neurological disorders using cSLO images, while offering impor-

tant benefits in terms of robustness and repeatability. The fully automated algorithm presenting

three approaches for the detection of the entire vasculature in cSLO images centered on the

ONH arised from a technical need of extracting possible landmarks for further registration pur-

poses, as blood vessels and blood vessel crossings, can provide unique features for follow-up

registrations of the ONH.

3.1 Previous approaches in retinal blood vessel

segmentation

Many studies on 2D segmentation of retinal blood vessels from a variety of medical images

have been performed [Nayan and Deshpande, 2015]. Vessel segmentation algorithms are criti-

cal components of circulatory blood vessel analysis systems [Abràmoff et al., 2010]. Most of the

techniques presented in this section were developed to quantify retinal vascular disorders studied

in ophthalmology and use fundus photographs. These disorders include hypertensive retinopa-

thy (high blood pressure causing narrowing of blood vessel), retinal vein occlusion (causing

57
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narrowing or obstruction), diabetic retinopathy (causing damage that in most cases leads to

blindness). Manual segmentation of retinal blood vessels is a time consuming and tiresome task

which also requires skill and training, consequently the need for automatic tools [Nayan and

Deshpande, 2015].

Vessel network in Fundus photography

Typical edge detection techniques, such as Sobel operator, Canny border detector, and Prewitt

operator are not appropriate for vessel detection [Nayan and Deshpande, 2015]. In fundus pho-

tographs more than one processing algorithm is needed to acquire acceptable results, and before

segmenting the image it is convenient to do preprocessing tasks. One common preprocessing

task is to obtain the grayscale image from the green channel [Nayan and Deshpande, 2015].

Generally, blood vessels are darker than the background, although there are areas where the

vascular network is not visible because its level is similar to the background. Several studies

showed that the green channel saves the best pixel information. Contrast enhancement is also

one of the most common preprocessing tasks, performed in both healthy and pathological retinal

images [Nayan and Deshpande, 2015].

Existing vessel segmentation techniques on the conventional fundus photographs can be

divided into several major categories: matched filter based, thresholding based, region growing

based, model based, tracking based, multi-scale based, and classification based methods.

The matched filter (MF) method consists in convolving the image with a directional filter

designed according to the vessel profile. The kernel is created to model a feature in the image at

some unknown orientation and position. The MF response indicates the presence of the feature.

The following properties are utilized in order to design the matched filter kernel: the diameter

of the vessels decreases as they move radially outward from the optic disk; the cross-sectional

pixel intensity profile of these line segments approximates a Gaussian curve; vessels usually

have a limited curvature and may be approximated by piece-wise linear segments. [Chaudhuri

et al., 1989] proposed a method based on a 2D Gaussian filter. [Gang et al., 2002] designed

different filter parameters to increase the MF based on a second-order Gaussian filter. The MF

can be used as the first step for other segmentation methods. The filter response enhances the

vessel pattern features, thus improving the performance of thresholding or tracking processes.

[Hoover et al., 2000] introduced a piece-wise thresholding probe algorithm on the MF response
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image to improve the accuracy of the segmentation. [Zhang et al., 2015] proposed a novel

extension of the MF approach namely the MF-FDOG to detect retinal blood vessels. The MF-

FDOG is composed of the first-order derivative of Gaussian (FDOG). The vessels are detected

by thresholding the retinal image’s response to the MF and the threshold is adjusted by the

image’s response to the FDOG. Compared with the MF, the MF-FDOG can better distinguish

the true vessel structures from non-vessel structures such as blobs and lesions. The MF provides

high quality results, but the main disadvantage of these methods is their requirement for vessel

profiles computation to compare large regions for each pixel in the image, resulting in long

computational time. Also MF alone cannot handle vessel segmentation in pathological retinal

images, therefore it is often employed in combination with other image processing techniques.

[Soares et al., 2006] applied complex Morlet filters for feature extraction and supervised

classification for the detection of blood vessels in retinal fundus images. In this method the

magnitude outputs at several scales obtained from 2D complex Morlet filters were assigned to

each pixel as a feature vector. Then a Bayesian classifier was applied for classification of the

results into vessel or no vessel pixels.

The performance of algorithms based on supervised classification is better in general than

the unsupervised ones. However, these methods do not work very well on images with nonuni-

form illumination as they produce false detection. They also fail in some images on the border

of the optic disc, or that present hemorrhages and other types of pathologies [Nayan and Desh-

pande, 2015].

Vessel tracking algorithms are more robust in those situations [Quek and Kirbas, 2001].

They try to find a vessel-like structure in the already segmented region and track the given ves-

sels. These algorithms can recognize vessel endings much easier, but they may have difficulties

at bifurcations and vessel crossings, where the local structures do not look like usual vessels

anymore.

As already mentioned, a main characteristic of the retinal blood vessels is that their width

decreases as it travels radially outward from the optic disk and such a change in vessel caliber is a

gradual one. Therefore methods employing a scale-space representation for vascular extraction

have been extensively used in order to separate out information related to the blood vessel having

varying width at different scales. [Dizdaro et al., 2012] proposed a vesselness measure that

extracts tubular structures based on the basis of the eigenvalue analysis of the Hessian. In their
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approach the principal directions in which the local second order structure of the image can be

decomposed, are computed. The direction of the smallest curvature along the vessel is further

employed for the final segmentation.

Hessian-based filters, however, can not distinguish step edges from vessels effectively. MF

provide a better result in these cases. To solve the problem of false detection of edges, [Sofka

and Stewart, 2006] proposed an algorithm using the edge information at the boundary of vessels.

A vessel should have two edges, one on each side of it. This property can be used to effectively

distinguish between vessels and edges in the image. The proposed enhancement filter combines

the advantages of Hessian based filters, MF, and edge information.

[Martínez-Pérez et al., 1999] presented a method based on the scale-space analysis of the

first and second derivative of the intensity image which gives information about its topology

and overcomes the problem of variations in contrast inherent to retinal images. The local max-

imum over scales of the magnitude of the gradient and the maximum principal curvature are

used as features for a region growing procedure. The growth is constrained to regions of low

gradient magnitude and then the borders between regions will be defined by growing vessel and

background classes without gradient restriction.

One of the disadvantages of multi-scale methods is the computational requirement. To over-

come this problem [Budai et al., 2013] presented an algorithm based on the vessel enhancement

method published by [Frangi et al., 1998] in combination with a multiresolution framework to

decrease the computational needs and to increase the sensitivity by using a hysteresis threshold-

ing. The evaluation on the public databases DRIVE [DRIVE] and STARE [STARE] showed that

the proposed algorithm increased in both sensitivity and accuracy compared to Frangi’s method

while reducing the computational complexity.

Blood vessel network in cSLO

Color images provide much more information, which is not available in cSLO images. The algo-

rithms in previous studies did not work satisfactorily on cSLO image due to the low global/local

contrast, non-uniform illumination and noise. Segmentation based on the cSLO images is fo-

cused on detecting only the main vasculature and branching points for the registration purposes

and motion artifacts correction that occur during eye movement. The method proposed in [Ricco

et al., 2009] is a simplified implementation of the technique based on MF, which uses hysteresis
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thresholding to find ridges in the divergence of the image gradient.

The only work that approached the segmentation directly from the cSLO images is by [Xu

et al., 2008]. Their approach is a hybrid algorithm using MF, mathematical morphology, contrast

enhancement and thresholding probe for segmentation. The results of this method were not

compared to a ground truth data set, but rather presented in an experimental set-up, by focusing

on the potential this method has in providing a vessel map for registration purposes.

Unfortunately there is no ground truth data for cSLO images, as most of the algorithms are

based on fundus photographs for which there are two main public available databases (DRIVE

[DRIVE] and STARE [STARE]).

Contributions

In our semi-automated tool, in order to account for the strong central reflex seen in cSLO im-

ages, especially in large vessels, we developed a new filter response, based on MF, one of the

most commonly used methods in vessel segmentation in fundus photographs [Chaudhuri et al.,

1989, Gang et al., 2002, Hoover et al., 2000, Zhang et al., 2015]. This new approach is based on

a double Gaussian directional filter and it is able to model the vessel profile containing the cen-

tral reflex in different orientations, providing a better feature response compared to the previous

filters for fundus photographs.

We also tested our algorithm in a clinical study, to test the hypothesis of CCSVI in MS,

details of the results are presented in Subsection 3.2.3, and were presented at the ECTRIMS

conference in 2013 [Kadas et al., 2012b].

In the second, fully-automated approach, we first extended the work of [Weickert, 1999] on

coherence diffusion enhancement to adapt the diffusion tensor introduced in Section 2.1.3 to

the local structure of the image. By deriving a vesselness map containing the enhanced blood

vessels based on the eigenvalues of the structure tensor we compute the percentage of the vessels

in the image and therefore the texture characteristics of the image. In a similar manner we use a

different map, the coherence response, to establish a threshold for isotropic structures. Based on

the enhanced vessel image we propose three methods to extract the entire vasculature. All three

approaches extend known approaches by addressing different challenges or known problems as

follows:

• Approach 1. extends the work proposed by [Soares et al., 2006] in using a 2D Morlet
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wavelet filtering by making use of the principal curvature of the Hessian tensor in cases

of large vessels with a strong central reflex

• Approach 2. proposes a method to account for the weak response of the well-known

Frangi’s vesselness filter in cases of vessel crossing by incorporating information of vessel

directionality from the eigenvectors of the Hessian tensor

• Approach 3. extends the OOF response, on the vessel boundaries, using a combination of

the eigenvalues and eigenvectors of the Hessian tensor of the OOF, in order to detect not

only the vessel centerline but also its boundary.

3.2 Semi-automated tool for detection of blood vessel inner and

outer diameter in cSLO images

The vessel diameter detection algorithm presented in this subsection was developed to detect

the retinal blood vessel inner and outer diameter in cSLO images, centered at the ONH which

accompany the peripapillary ring SDOCT scan, see Subsection 2.4.1, and have an image size of

1536× 1536 pixels with a resolution of 6 µm/pixel. The steps of the algorithm are provided in

Figure 3.1.

The cSLO image, unlike the standard retinal photographs (5 MPixel (2592 × 1944)), has a

lower resolution with non-uniform illumination, low global/local contrast and high background

noise, which makes vessel segmentation on cSLO images a challenge. Blood vessels usually

appear darker relative to the background in cSLO images due to lower reflectance compared to

the retinal surface. They have small curvatures that may be approximated by piece-wise linear

segments, a characteristic that was integrated into our method. Another important aspect of the

vasculature in cSLO images is the strong light reflex along vessels centerline, see Figure 3.2A,

compared to fundus photographs see Figure 3.2B. The presence of the central reflex makes

algorithms developed for fundus photographs, presented in Section 3.1, unsuitable.

The algorithm creates three concentrical circles centered on the ONH of diameter 3.2 mm,

3.4mm and 3.8mm. The circle of 3,4mm represents the ring scan of the OCT device, at which

position the RNFL thickness is measured, a well established parameter in order to detect nerve

fiber degeneration, see Subsection 2.4.1. The center of the ONH is already provided by the
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 Inner and outer dia-

meter at 15 posi-
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in case of  low image
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FIGURE 3.1: Illustration of the semi-automated blood vessel inner and outer

diameter algorithm’s steps.
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Vein
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Arteria
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FIGURE 3.2: A. cSLO image showing a part of a vein and a part of an arteria

with central reflex B. Fundus photograph of the same subject image showing the

same part of a vein and a part of an arteria as in A. Note the lack of the central

reflex.
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center of the circle with 3.4 mm from the OCT device. The user labels the vessels intersecting

the circle in arteries (a), veins (v) and unknown (u) see Figure 3.3 according to the following

criteria [Motte et al., 2014]:

• arteries close to the ONH are brighter than veins

• arteries are usually thinner than their neighboring veins

• arteries and veins alternate near the optic disc

• arteries never cross arteries and veins never cross veins

• arteries take a straighter course than veins

• vessels coming from a branching of another already classified vessel is labeled from the

parent vessel

• vessels that do not meet the criteria from above are labeled with unknown

The user then marks a region of interest (ROI) line using the ImageJ ROI Manager, perpendic-

ular on the labeled vessel’s profile, at the position of the intersection with the three circles, see

Figure 3.3.

Noise removal and vessel enhancement

Due to the low contrast in the cSLO image, blood vessels are difficult to detect by only a single

global threshold. To overcome the low contrast without introducing artifacts from non-uniform

illumination specific to cSLO images, a contrast enhancement process is applied only in a 10

mm × 10 mm square centered on the ONH. Contrast limited adaptive histogram equalization

(CLAHE) [Zuiderveld, 1994] is used for contrast enhancement by limiting the maximum slope

in the transformation function. It targets small regions in the image, called tiles, rather than the

entire image. Each tile’s contrast is enhanced. The size of a tile is set to 25 pixels, in order to

limit noise amplification that might be present in the image, especially in areas with pixels that

have similar intensity, like the non-vessel area, and to ensure that the tile size is larger than the

diameter of a vessel itself. The parameter of the maximum slope is set to 2.5 to enhance the

contrast between vessel wall compared to the background. The result of applying CLAHE on

the original vessel Figure 3.4A is shown in Figure 3.4B.
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FIGURE 3.3: The region of the cSLO image that will be used for the computa-

tions performed by the vessel diameter detection algorithm with the 3 concen-

trical circles centered on the ONH and the labeled vessels by the user with a

zoomed in region of the user defined initial ROIs at each labeled vessel.
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To reduce the speckle noise present especially in the non-vessel areas, which consider-

ably affects the accuracy of the vessel wall detection, we applied a well established technique,

anisotropic diffusion [Perona and Malik, 1990], to constrain the diffusion process to contiguous

homogeneous regions, but not cross region boundaries. The number of iterations was set to 15,

and the threshold height to 0.5 based on the histogram in a small window of 20 × 20 pixels

around the selected vessel ROI, which showed that vessel walls usually have an intensity that is

half of the background intensity. The result of applying this filter is shown in Figure 3.4C.

A B C

FIGURE 3.4: A. Part of a vessel with a slight curvature. B. The response of

applying contrast limited adaptive histogram equalization. C The response of

the anisotropic diffusion.

3.2.1 Double-Gaussian profile analysis

To account for the central reflex present in cSLO images, see Figure 3.5A, for an example of

an artery and Figure 3.5B for an example of a vein, we created a double-Gaussian (DG) model.

This model is used to imitate the vessels central light reflex that extends the Gaussian shaped MF

used in fundus photographs, see Figure 3.6A. Gaussian shaped matched filter and its extension

has been used for vessel detection before in fundus images [Chaudhuri et al., 1989]. The profile

of the filter which is designed to match that of a blood vessel is defined as

f(x, y) = h1
1√
2πσ1

exp

(−(x cos θ + y sin θ)2

2σ1

)
, (3.1)

for |x| 6 (t · σ1) , y 6
L
2 , where, σ represents the scale of the filter; L is the length of the

neighborhood along the y-axis; h1 is a constant representing the height of the Gaussian curve, θ

is the rotation angle of the filter kernel and t is a constant and is usually set to 3 because more
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A

B

C

FIGURE 3.5: A. Cross section of an artery. B. Cross section of a vein. C.

Cross section of a vessel classified as unknown. Magenta points represent the

outer boundary points; green points represent the inner boundary points. These

points are an example of manually defined outer/inner diameter by the user and

represent the positions that our algorithm should detect as outer/inner boundary

points.
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than 99% of the area under the Gaussian curve lies within the range [−3σ, 3σ]. Figure 3.6B

shows the cross section model profile for a vessel without a central reflex. This model for the

vessel profile is however unsuited for the central reflex seen in vessels in cSLO images. For this

purpose, in our DG filter a second small Gaussian curve is subtracted from the main Gaussian

curve. The second Gaussian is oriented at the same angle and controlled by same parameters

as the first one see Figure 3.6A . The parameters of the second Gaussian control the height and

width of central light reflex and the matched filter kernel is expressed as:

f(x, y) = h1
1√
2πσ1

exp

(−(x cos θ + y sin θ)2

2σ1

)
− h2

1√
2πσ2

exp

(−(x cos θ + y sin θ)2

2σ2

)

(3.2)

h2

h1
h1

σ1σ1

σ2

00 +x +x-x-x

A B

yy

FIGURE 3.6: A. Cross section of vessel model profile without central reflex, σ1
represents the scale, h1 the height of the Gaussian curve used to model the pro-

file. B. Cross section of vessel model profile with central reflex, σ1 represents

the scale, h1 the height of the Gaussian curve used to model the profile, σ2 rep-

resents the scale, h2 the height of the second Gaussian curve substracted from

the first one, in order to create the double-Gaussian profile that fits the vessel

model.

The angle θ is computed from the orientation of the ROI provided by the user. The length

parameter is set to 14 pixels in order to enhance the vessel in a small window centered at the

initial ROI, which is large enough for the detection of the four new ROIs, parallel to the initial

one, by the algorithm. The resulting vessel response is computed by applying the DG in this

window, and extracting the maximum response of the filter for σ1 ∈ {2, 2.5, 3, 3.5, 4, 4.5, 5}

pixels. We set σ2 = 0.3 · σ1 and h1 > h2, as the central reflex curve peak is lower than the
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background peak, see Figure 3.5A and B. The response for a vessel with a slight curvature can

be seen in Figure 3.7A. The advantage of applying this filter, which accounts for the central

reflex, consists of its property to emphasize both vessel wall and lumen. The filter response is

further used to guide the detection of four ROIs parallel to the initial one (two below and two

above).

Detection of initial outer boundary points

Note that there is no single ‘correct’ vessel edge definition, and one is primarily interested in

changes in diameter determined using the same method. This is true also for vessel edge defini-

tion in fundus photographs, as noted in [Bankhead et al., 2012]. Thus in our setting we define

the points corresponding to the maximum response for the initial ROI set by the user on the

vessel response image obtained after applying DG to represent the vessel outer boundary. This

definition matches the one manually set by the user, see magenta points in Figure 3.5A, Figure

3.5B and Figure 3.5C.

Canny edge detection and removal of spurious pixels

To create a feature map of the vessels we first use a Canny edge detection filter on the smoothed

image, which uses a hysteresis thresholding. After scaling the image gray values to lie between

0 and 1, we use upper and lower thresholds of 0.2 and 0.75, respectively, and discard regions

containing fewer than five pixels above the upper threshold. Figure 3.7B shows an example of

the Canny filter response.

A B

FIGURE 3.7: Part of a vessel with a slight curvature. A The dual-Gaussian

response. B. The Canny edge response
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Tracing outer boundary points

In the next step the outer boundary points are detected using a tracing approach, that combines

information from the Canny edge response image and the DG response image. Denote by pi(qi)

the point detected at a previous step to correspond to the outer boundary of the vessel on the

left(right) side in the initial ROI, and by ∇pi(∇qi) the direction of its corresponding gradi-

ent vector. The location of the next boundary point, pi+1, is estimated using the following

extrapolation update equation

pi+1 = pi + a· ∇pi ⊥, (3.3)

where a = 2 pixels is the step size and ∇pi ⊥ is a direction vector perpendicular to ∇pi.

This direction is along the vessel. The same equation is applied for the detection of the point

qi+1. The final position for the points pi+1 and qi+1 is set by computing the maximum points

on the line connecting pi+1 and qi+1 in the DG image. We have observed that in the case

of low contrast between vessel boundary and lumen the DG response is too small causing

∣∣xpi+1 − xpi
∣∣ < 5 pixels. In this case the minimum point on the line connecting midpi+1,qi+1

and xpi in the Canny response image is taken as the final position for pi+1. midpi+1,qi+1 is the

mid point of the line connecting the points pi+1 and qi+1. In a similar way the point qi+1

is updated if
∣∣xqi+1 − xqi

∣∣ < 5 pixels. This is especially the case when dealing with vessels

classified as unknown.

Detection of inner boundary points

In order to detect the vessel inner diameter, a well established method is used on the smoothed

image: Half-Height Full-Width - the standard half-height method, which uses thresholds set

half-way between the maximum and minimum intensities to either side of an estimated center

point, on the denoised original profile of the ROIs, see Figure 3.8. In the case of vessels where

the inner diameter is not visible, see an example in Figure 3.5C, there is no maximum peak

detected, and therefore, the method delivers only one value between the two outer boundary

points. Thus the inner boundary is set to have 0 length.

The output of the algorithm is 15 measurements, illustrated in Figure 3.9A, containing the
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HHFW points

dual-Gaussian maximum points

inner diameter

outer diameter

FIGURE 3.8: Vessel profile of one ROI detected by the algorithm with inner

and outer boundary points, HHFW = Half-Height Full-Width. The gray values

in the graph belong to the values from the smoothed image (the original image

after applying the anisotropic diffusion filter).

inner and outer diameter for a blood vessel from 15 ROIs. The final measurement for a single

blood vessel is computed as the average value of those 15 results.

3.2.2 Validation

There is no gold-standard data base of segmented vessels for cSLO images, as in the case of

fundus photographs. Therefore the results provided by the algorithm were visually corrected by

the user and wrongly detected boundaries were discarded from the final result (from 218.517

measurements, 6.492 were discarded; this corresponds to an error rate of 3%). Figure 3.9B

illustrates an example of a vessel with a falsely detected inner boundary (at the 3rd. ROI from the

left) and low contrast between the boundary and the background. In order to test the reliability

of the method, 58 eyes with 735 vessels of HC were examined using the algorithm by two

independent users. The ICC was 0.995 for the outer diameter, and 0.970 for the inner diameter

differing slightly between the vessel types (arteries, veins or unknown), see Table 3.1.

The distribution of the measured vessels according to diameter size and type is illustrated

in Figure 3.10. It can be observed that especially in case of small vessels the classification

into artery or vein was nearly impossible, and thus these measurements were disregarded in the

clinical study described in Subsection 3.2.3. Our algorithm was able to accurately detect only

66% of the inner diameter of the 218.517 marked vessels. Therefore the outer diameter was
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A

B

FIGURE 3.9: A. A close up with correctly (by our definition and a visual inspec-

tion from the user) delimited inner and outer diameter of a vessel. B. A close

up of a small vessel with low contrast and a wrongly delimited inner boundary

with its profile.

TABLE 3.1: Intraclass correlation coefficient of the vessel inner and outer di-

ameter measurements between the two graders.

Inner diameter Outer diameter

Vessel type No. ICC No. ICC

All 735 0.995 511 0.970

Arteria 303 0.935 274 0.946

Vein 205 0.996 188 0.980

Unknown 227 0.980 49 0.825
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TABLE 3.2: Demographic overview of MS patients and HC. SD = standard

deviation.

Patients HC

Subjects No. 108 96

Eyes No. 216 192

Gender No. male 35 29

female 73 67

Age Mean (+−SD) 42 (+−12) 39 (+−12)

Disease type No. CIS 27

RRMS 64

SPMS 17

ON No. of eyes 74

Disease duration

(months)
Mean (+−SD) CIS 8 (+−9)

MS 116 (+−83)

RNFL thickness (µm) Mean (+−SD) 87.7 (+−14.5) 98.6 (+−9.6)

TMV (mm3) Mean (+−SD) 8.41 (+−0.4) 8.63 (+−0.34)

chosen as parameter for the statistical analysis as there is a strong correlation between inner and

outer diameter [Bilger, 2014].

3.2.3 Results in a clinical study

Our algorithm was applied in a clinical study to investigate the differences in retinal blood

vessels in patients with MS or CIS. 108 patients and 96 age- and sex-matched HC were included

in the study, see Table 3.2. The age difference between HC and patients was not significant (T-

test: p = 0.19 ). Between HC and MS patients there was no significant difference both in

average arterial diameter (GEE: p = 0.332) and average venous diameter (GEE: p = 0.908)

[Bilger, 2014]. Patients with a high disease duration and/or ON had a slightly reduced vessel

diameter, especially in the average venous diameter, compared to the group of matched HC,

although this difference was not significant [Bilger, 2014]. However, there was a significant

correlation between the standard OCT parameters (RNFL thickness an TMV) and the blood

vessel outer diameter both for arteries and for veins [Bilger, 2014].

Statistical analyses were performed with SPSS 19 (IBM SPSS Statistics Version 19, Release

19.0.0.1, IBM, Armonk, NY, USA).
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FIGURE 3.10: Distribution of the blood vessels (2654 vessels with: No. of

arteries = 1078, No. of veins = 777 and No. of unknown = 799) corresponding

to HC according to diameter size and blood vessel type.

Development environment

Algorithm development was done as an ImageJ plugin using Java SDK 1.6 (Oracle, Redwood

Shores, CA, USA) and ImageJ version 1.46e (W. Rasband, http://imagej.nih.gov/ij) (Schneider,

Rasband, and Eliceiri 2012) on Mac OS X (Apple, Cupertino, CA, USA, Intel Core i5, 4GB

memory). Our approach requires 15 seconds for the automated part of the computation (after

the user labeled the vessels).

3.3 Automated detection of the entire retinal vasculature in cSLO

images

We developed an automated vessel detection tool for the segmentation of the entire retinal vascu-

lature in ONH centered cSLO images. These images are acquired together with the 3D SDOCT

ONH scan and have an image size of 768× 768 pixels with a resolution of 11.4878 µm/ pixel.

Our main motivation focuses on a technical aspect, as retinal blood vessels could be further used

as landmarks for the registration of different ONH scans. An important characteristic of the
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ONH region is that, unlike the brain cortical surface, the ONH surface presents no known folds

or visible landmarks. Considering our special interest in characterizing even subtle changes in

the ONH structure, that we hypothesize to be present especially in the acute ON phase (see

Section 2.4), the identification of specific topographic features and local shape structures such

as blood vessels is a key prerequisite to obtain anatomically meaningful registrations for further

analysis in this direction. As described in Section 3.1, the cSLO image is typically a grey scale

image with non-uniform illumination, low global/local contrast and high background noise [Xu

et al., 2008]. Therefore we first address the issues mentioned, to prepare the images for further

analysis as follows.

Nonuniform illumination correction

To correct variable non-uniform illumination, especially the vignetting observed in cSLO im-

ages illustrated in Figure 3.11A, we applied a computationally efficient approach presented in

[Zheng et al., 2009]. The method uses the sparseness property of the gradient probability dis-

tribution to estimate the intensity nonuniformity in medical images. It is a fast and accurate

method tailored specifically for the illumination artifacts seen in medical imaging like magnetic

resonance imaging, computer tomography, X-ray, ultrasound. For our images we have chosen

the non-parametric approach, with the bias field represented parametrically with the bipolyno-

mial presented in [Zheng et al., 2009]. The parametric one produces larger errors when the

nonuniformity is severer [Zheng et al., 2009], a drawback observed also in our experiments in

images like the second and third image in Figure 3.11A.

Anisotropic coherence diffusion for enhancement of flow like structures

To adapt the diffusion tensor D introduced in Section 2.1.3 to the local structure of the image

we derived methods to compute the main variables ρ from Equation 2.22 and C from Equation

2.27 as follows.

The eigenvalues of the tensor integrate the variation of the gray values within a neighbour-

hood of size O(ρ). They describe the average contrast in the eigendirections. In order to get the

integration scale ρ to reflect the characteristic size of the texture of the image, we introduce a
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A

B

C
FIGURE 3.11: A. Original cSLO images with different degrees of non-uniform

illumination. B. Non-uniform illumination corrected cSLO images. C. Bias

field approximation of the non-uniform illumination.
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simple vesselness property based on the eigenvalues of the structure tensor Sρ

vesselnessMap(x) =





0, if λ1 > 0

|λ1| − |λ2| , otherwise

. (3.4)

The vesselness map containing the enhanced blood vessels is shown in Figure 3.12A. To detect

the percentage of vessel structures from the image, we apply the thresholding method proposed

by [Otsu, 1979]. The area containing the vessels in the binary image obtained is computed as a

percentage of the whole image area. This is the value we set for ρ.

C is another important variable in the computation of the diffusion. It acts as a thresh-

old parameter. Structures with coherence measures (λ1 − λ2)
2 ≪ C are regarded as almost

isotropic, and the diffusion along the coherence direction (the smallest eigenvector) tends to α.

For (λ1 − λ2)
2 ≫ C, the diffusion along the coherence direction tends to its maximal value,

which is limited by 1. To set this parameter we apply a similar approach as for ρ, but on the co-

herence (λ1 − λ2)
2 result image map. The coherence result is depicted in Figure 3.12B. Figure

3.12C illustrates the structure tensor Sρ smallest eigenvector orientation in degrees of the origi-

nal image. It depicts the coherence orientation. The eigenvalue corresponding to this direction

of the diffusion tensor D of the original image is illustrated in Figure 3.12D. The result of the

original image seen in Figure 3.13A is shown in Figure 3.13B. It can be observed that it shows

less smoothing across the vessel boundaries compared to the well-known anisotropic diffusion

by [Perona and Malik, 1990], see Figure3.13C.

We implemented three approaches in order to test their ability to detect the retinal vessel

map. Our main goal was to detect a connected vessel network with clear defined crossings in

order to further use these crossing as possible landmarks for registration purposes.

3.3.1 Approach 1. Extended 2D Morlet filtering with principal curvature en-

hancement

The steps of the proposed method can be seen in Figure 3.14

In order to detect oriented features (segments, edges) in an image like the blood vessels in

our case, we applied a wavelet which is sensitive to directions. An example of such a wavelet is
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FIGURE 3.12: A. The gradient orientation map of the original image. B. The

coherence (λ1 − λ2)
2 of the original image. C. Diffusion structure orientation

in degrees. D. The diffusivity perpendicular to the gradient. E.
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A B C

FIGURE 3.13: A. The original image, with a zoomed in area corresponding to

the red rectangle. B. The result after applying the coherence diffusion enhance-

ment with the parameters : ρ = 0.5, C = 0.7, step size = 0.25 after 20 iteration

steps, with a zoomed in area corresponding to the red rectangle. C. The result

after applying the anisotropic diffusion defined by [Perona and Malik, 1990]

with parameters k = 30, step size = 1/7, after 20 iterations, with a zoomed in

area corresponding to the red rectangle.
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FIGURE 3.14: The steps of the algorithm in Approach 1.

the 2D Morlet wavelet (MW) as proposed by [Antoine et al., 1993] is defined as

ψM (x) = eik0·xe−
1
2
|Ax|2 , (3.5)

where k0 is the wave vector defining the frequency of the complex exponential,A = diag
[
ǫ−

1
2 , 1

]
,

ǫ ≥ 1, is a 2 × 2 diagonal matrix that defines the anisotropy of the filter (its elongation in any

desired direction). Examples for the real part of the 2D MW from Equation 3.5 for different

settings of the variables ǫ, k0, with a different scale (dilation) parameter at different orientation

can be seen in Figure 3.15. As described in [Soares et al., 2006], 2D MW has the capability of

directional selectiveness and detection of oriented features. It provides a decomposition of an

image into details having different resolutions and orientations.

The MW is a complex exponential modulated Gaussian. We use the notation employed by

[Soares et al., 2006], where the f ∈ L2 is an image represented as a square integrable function
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Є = 8, k0 = [0 3],  a = 4, θ = 0° Є = 1, k0 = [0 5],  a = 4, θ = 0° Є = 2, k0 = [0 3],  a = 4, θ = 0°

Є = 8, k0 = [0 3], a = 4, θ = 45° Є = 8, k0 = [0 3], a = 2, θ = 0°

FIGURE 3.15: Real part of the MW, with varying parameters. ǫ parameter of

the diagonal matrix A that defines the anisotropy of the filter, k0 vector that

defines the frequency of the complex exponential, a scale (dilation), θ is the

rotation angle, see Equation 3.5 and Equation 3.6.
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defined over R2. Then the continuous wavelet transform is defined as:

Tψ(b, θ, a)(x) =
1

a

∫
ψ∗[a−1r−θ(x− b)]f(x)d2x, (3.6)

where ψ, ψ∗, b, θ and a denote the analyzing wavelet, its complex conjugate, the displacement

vector, the rotation angle and the dilation parameter. In our approach, in Equation 3.5, we have

set the parameter ǫ to 4, making the filter elongated and k0 = [0, 3], i.e., a low-frequency com-

plex exponential with few significant oscillations perpendicular to the large axis of the wavelet,

and a to 2. This characteristic is especially suited for the detection of directional features and

has been chosen in order to enable the MW transform to present stronger responses for pixels

associated with the blood vessels. The choice of the parameters is similar to [Leandro et al.,

2001]. In their work [Leandro et al., 2001] performed extensive experiments with the MW for

different sets of parameters, where they have shown that many sets of parameters lead to similar

(good) results, suggesting that this is not so critical. For each pixel position and considered scale

value, we are interested in the response with maximum modulus over all possible orientations.

Thus, the MW transform is computed for θ spanning from 0◦ up to 180◦ at steps of 10◦. The

algorithm used in our approach is presented Algorithm 1.

Data: I

Result: Tmax(b, θ, a)(x)

Initialization: Tmax(b, θ, a)(x) = 0, a = 2, k = [0, 3], ǫ = 4 ;

for each θ ∈ {0◦, 10◦, ..., 180◦} do

compute IF = FT (I) ;

compute ψ∗
M ;

compute ψ∗
MF = FT (ψ∗

M );

compute IW = IF · ψ∗
MF ;

compute T (b, θ, a)(x) = IFT (IW );

Tmax(b, θ, a)(x) = max(Tmax(b, θ, a)(x), |T (b, θ, a)(x)|);

end

Algorithm 1: Algorithm for 2D MW transformation of the image I; FT represents the Fourier

transform, IFT represents the inverse Fourier transform

Figure 3.16A shows a section of a cSLO enhanced by the coherence diffusion filter. The

result of applying the 2D MW transformation to this section is shown in Figure 3.16B.
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A B C

D E F

FIGURE 3.16: A. Part of an original cSLO image. B. The resulting image after

applying the 2D MW. C. The resulting image after performing morphological

opening and morphological reconstruction using the opening as a mask. D. The

resulting image after applying Ostu’s threshold method. E. The resulting image

after enhancing the large vessels and Otsu’s threshold. F. The final resulting

image.
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In order to further enhance the vessels from the background we make use of morphological

operations. First we perform a morphological opening with a line structuring element of length

L = 17 pixels rotated over 12 angles from 0◦ up to 180◦. By taking the maximum response

of the openings performed and reconstructing the image using the opening as a mask, we en-

hance the vessels. To suppress the background we take the minimum response of the openings

performed and reconstruct the image using the same opening as a mask, see Figure 3.16C.

We first split the image into 9 blocks in order to treat separately regions close to the ONH

with large vessels that give a strong response after the MW filtering step, and regions at the

periphery of the ONH, which contain rather small vessel with lower contrast to the background,

and apply the Otsu’s threshold method [Otsu, 1979] on each of these blocks, see Figure 3.16D.

To detect large vessels (large in this sense means the vessel with a diameter larger than 14

pixels) and their inner and outer boundary we compute the major eigenvalue, λ2, corresponding

to the maximum principal curvature of the Hessian matrix see Section 2.1.4 over 5 scales from 3

to 7 pixels on the coherence diffusion enhanced image. Since our best approximation of vessel

radius at this stage of the algorithm is the scale factor, we used this in the computation of λ2.

Thus, vessels with diameter d ≈ 2σ are most strongly detected when the scale factor is σ.

We normalize each feature along scales by d and then keep the local maximum over scales.

We employ again Otsu’s threshold method to detect the final response, see Figure 3.16E. Thus

the final vessel map is comprised by the MW response and the maximum principal curvature

response, see Figure 3.16F.

3.3.2 Approach 2. Improved vesselness response at vessel crossings

In this subsection we present another approach to segment the entire vasculature of the cSLO

image, by deriving a new vesselness response filter. Figure 3.17 shows the main steps of this

approach. Unfortunately, the Hessian-based vesselness [Frangi et al., 1998] and second order

informations derived from the Hessian are only applicable to a limited extent as the measures are

erroneous especially around bifurcations and crossing vessels. These errors arise due to the fact

that the assumptions for the detection of the tubular structure, see Subsection 2.1.4, no longer

hold. For an example see Figure 3.18A, which illustrates a part of a cSLO image with vessel

crossings and Figure 3.18C showing the response of applying the vesselness method as proposed

by [Frangi et al., 1998]. At the bifurcation of a small vessel from a large one the intensity
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Remove
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FIGURE 3.17: The steps of the algorithm of Approach 2.

profile along the small vessel direction is no longer homogeneous but drops significantly at the

boundary of the larger vessel. In terms of second order structure, the intensity profile along the

small vessel direction results in a significant negative second order derivative, i.e., λ1 ≪ 0 see

Figure 3.19A. On the other hand, the estimated curvature perpendicular to the small vessel is

DCBA

FIGURE 3.18: A. Part of an original cSLO image with vessel crossings. B. The

response of the coherence diffusion. C. The response of Frangi’s vesselness, see

how vessels are disconnected at crossings. D. The proposed vesselness response

showing better results at vessel crossings.

influenced by the surrounding main vessel, which affects the magnitude of λ2 > 0 see Figure

3.20A. Both effects mislead the vesselness filter in the immediate vicinity of the large branch,

which results in a trench along the main branch see Figure 3.18C.

To overcome this problem we propose a different approach based on the fact that the eigen-

vector v1 corresponding to the smallest eigenvalue λ1 is aligned to the vessel direction inside a

vessel. Thus |λ2 〈v,v1〉|, will be maximized at a vessel point x, when v1 is aligned to the vessel

direction v. We choose, v = [cosθ, sinθ], θ spanning from 0◦ up to 180◦ at steps of 10◦.
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FIGURE 3.19: A. λ1. B Its corresponding eigenvectors. Both eigenvalues and

eigenvectors are shown for the scale σ = 3. Black circles indicate a position of

vessels crossing.
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FIGURE 3.20: A. λ2. B. Its corresponding eigenvectors. Both eigenvalue and

eigenvector are shown for the scale σ = 3. Black circles indicate a position of

vessels crossing.
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As in [Frangi et al., 1998] our vesselness is obtained by computing this introduced measure

as a maximum response over a range of 12 scales, varying from 1.5 to 7 with a step size of 0.5.

New hysteresis thresholding

The final response is computed using a new derived hysteresis thresholding. The high threshold

(set at 0.05) indicates a strong principal curvature response. Pixels with a strong response act

as seeds that expand to include connected pixels that are above the low threshold. Unlike the

hysteresis threshold method [Yu et al., 2014], in our approach, the lower threshold is a function

depending on each pixel’s eigenvector and the surrounding ones. Each pixel’s low threshold

is set by comparing the direction of the major (or minor) eigenvector to the direction of the 8

adjacent pixel’s major (or minor) eigenvectors. This can be done by taking the absolute value of

the inner product of a pixel’s normalized eigenvector with that of each neighbor. If the average

dot product over all neighbors is high enough then we set the low threshold to be 1/5 of the high

threshold, 1/2 otherwise. The final result can be seen in Figure 3.18D.

3.3.3 Approach 3. New vesselness response based on OOF

In this approach we make use of the eigenvalues and eigenvectors of the OOF filter. The main

steps of the proposed method can be seen in Figure 3.21. λ1 and λ2 are the eigenvalues of

INPUT

 cSLO image 

Non-uniform

illumination

correction

Anisotropic

coherence di�usion

enhancement

New vesselness

response based on

OOF

Hysterisis

thresholding 

OUPUT

Binary mask

of the vasculature

Remove

the optic disc

FIGURE 3.21: The steps of the algorithm of Approach 3.

the OOF see Figure 3.22B and Figure 3.22C. λ1 ≤ λ2 and two corresponding eigenvectors are

denoted by v1 and v2. v1 is perpendicular to the vessel direction and v2 is parallel to it at a

position on the vessel’s centerline and the scale r is equal to the vessel’s radius.
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FIGURE 3.22: A. Part of a vessel from the original cSLO image. B. λ1 of the

OOF. C. λ2 of the OOF. Both eigenvalues are shown for the scale σ = 4

The image gradient ∇I at the object boundary of a strong intensity curvilinear structure

points to the centerline of the structure. Inside the structure, when the local circular region

boundary ∂Dr, see Equation 2.36, touches the object boundary, at the contacting position of

these two boundaries, the image gradient is aligned in the opposite direction of the outward

normal. Along the vessel direction, v2, the magnitude of the eigenvalue λ2 is small inside

the vessel as image gradient magnitudes are minor along the vessel direction. Along the first

eigenvector v1, the magnitudes of λ1 varies according to the radius of the local disc and also the

positions where OOF is evaluated. Thus to obtain a high response inside the vessel but also on

the boundary we define a new OOF vesselness measure as

vess =

∣∣∣∣argmin
r

(λ1(x, r) 〈∇I,v1〉)
∣∣∣∣+ argmax

r
(λ2(x, r) 〈∇I,v2〉). (3.7)

The final response is taken by hysteresis threshold with lower threshold 0.25 and upper 0.6

on the vesselness response. This was found to provide satisfactory results, and removing spuri-

ous response at non-vessel regions.

Remove the optic disc

We apply this step to all our approaches to remove the region on the ONH. At this low intensity

region, all vessels gather, strongly influencing the detection of single vessels. We emphasize

that our main goal is to create a vessel map for registration purposes, therefore we just roughly

estimate and remove the ONH region from our final resulting images. This is performed using
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some simple operations: first a strong Gaussian smoothing is applied with σ = 7 in the original

image, the intensity is normalized to lie between [0, 1], and a simple binary threshold 0.3, found

in our experiments to provide a satisfactory result in segmenting the ONH region, is applied.

The binary mask is then dilated using morphological operation, with a disc element of 10 pixels

and an ellipse is fitted to the obtained mask.

3.3.4 Experimental results

In the absence of a ground truth database we are not able to directly compare the three ap-

proaches. Therefore we show two particular examples, with a "normal" vessel network from a

HC and one with strong curvature from a patient with IIH, to provide a better insight in the per-

formance of the detection of the vessels (inner and outer boundary) see Figure 3.23. A detailed

comparison between the results is presented in Section 6.2. From the computational time point

of view, the OOF vesselness was the fastest with 2.1 to 3 seconds, followed by the modified

Frangi vesselness measure, 4.3 to 5.8 seconds, and the MW enhancement technique 5.6 to 6.9

seconds.

Development environment

Algorithm development was done using Matlab R2011A with Spline library (Mathworks, Ger-

many) on Mac OS X (Apple, Cupertino, CA, USA, Intel Core i5, 4GB memory).
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FIGURE 3.23: From top to bottom: first row original images, second row the re-
sult with Morlet filtering, third row the result with the modified Frangi’s method,

last row the result from the modified OOF.



Chapter 4

RPE lower boundary segmentation for

ONH volume computation

This chapter presents a reliable approach for the detection of the RPE boundary from 3D

SDOCT ONH scan. The RPE lower boundary is used as a reference surface for the compu-

tation of the ONH volume. The presented method is able to extract the RPE from data of HC

as well as from data with swelled ONH. As described in Section 2.4 there are several cases like

ON, or IIH which causes a swelling of the ONH. In order to quantify the edema, the compu-

tation of its volume is needed. However, current algorithms presented in Subsection 4.1 fail to

satisfactorily segment the ONH in cases of swelling, as segmentation is especially challenging

in diseases that show profound ONH alterations.

In cases of extreme swelling like in IIH, OCT scans tend to have regions of strong varying

intensity values caused by the edema. Additionally, scans are characterized by an increased

intrinsic speckle noise making a reliable differentiation of intraretinal layers challenging to im-

possible. To exemplify cases of severe swelling we illustrate two ONH scans from IIH patients.

These can appear as a "hill", see Figure 4.1A, or as a "volcano", see Figure 4.1B, with varying

sizes. In this region the retinal layers or other structures, like the BMO, are hardly recognizable.

4.1 Previous approaches in RPE lower boundary segmentation

There has been an extensive work in developing robust algorithms for intraretinal layers segmen-

tation in SDOCT images, from early approaches [Ishikawa et al., 2005, Rossant et al., 2009b],

93
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FIGURE 4.1: 3D SDOCT volume of two different swelled regions. One A. that

has a hill form, and B. with a "volcano" shape, [Kadas et al., 2012a].

relying mainly on 2D information heavily based on edge profiles and largely validated on nor-

mative datasets rather than on data of patients, to 3D based approaches like graph-cuts that in-

corporate 3D contextual information [Bhavna et al., 2014, Garvin et al., 2008, Lee et al., 2010].

While [Garvin et al., 2008, Lee et al., 2012] proposed 3D graph-cuts in volumes centered at

the macula from HC, [Bhavna et al., 2014] further developed this technique by incorporating

textural information, for macula and ONH centered volume scans, from HC and from patients

with glaucoma. There are several aspects regarding these approaches when considering the seg-

mentation of the RPE. First the common denominator of all of these methods is that these rely

on the observation that the RPE is one of the most hyper-reflective layer among all intraretinal

layers, thus providing a good contrast for segmentation. Also in the macula scans this layer

is not interrupted as in the ONH centered ones, making the segmentation less prone to errors.

The method proposed by [Bhavna et al., 2014] adapted the graph-cuts technique also on ONH

centered scans, but this method was tailored for HC and glaucoma volume data sets. Although

in the case of glaucoma the ONH undergoes a degeneration process, the RPE presents negligible

changes [Strouthidis et al., 2009b].

In contrast, in the swelled ONH region, the retinal layers or other structures, like the BMO,

are hardly recognizable. Also, the assumption of hyper-reflectivity of the RPE no longer holds.

Another approach [Hu et al., 2010b] that assessed the detection of the ONH structural change

in 3D OCT scans, use the BMO as a basis for a longitudinally stable reference plane. In IIH

patients this structure can be partly or entirely affected by the swelling, therefore hardly visible.

Also as presented by [Scott et al., 2010] the commercial machines were not specifically designed

for papilledema, so the commercial algorithm frequently failed with severe papilledema. Our
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main assumption was that the papilledema is enclosed by the inner limiting membrane (ILM)

and RPE lower boundary.

Contributions

The work presented in this chapter presents several advantages over other RPE boundary seg-

mentation techniques:

• the algorithm is able to detect RPE from 3D SDOCT images in the area of the optic disc

which exhibits regions with strong intensity inhomogeneities, low or no intraretinal layer

contrast, therefore contradicting the hypothesis that the RPE is one of the most hyper-

reflective layers within a retinal SDOCT image

• it determines the position of the RPE also from eyes with a strong natural curvature

• it is robust against missing layer information and strong variations caused by ONH edema,

by using reliable information only from a sub region of the ONH scan

• it can be further used to quantify ONH swelling (volume and maximal height) in patients

with unclear symptoms, or ONH regions with unusual retinal structure and poor signal

quality

The algorithm was published in [Kadas et al., 2012a].

Furthermore our algorithm was applied in two important clinical studies. In [Kaufhold

et al., 2012] we were able to show that although peripapillary RNFL thickness did not show

differences between HC and IIH patients, the newly developed 3D parameters: ONH volume

(ONHVV) and ONH maximum height (ONHH) were able to discriminate between HC, treated

and untreated patients. Both ONHV and ONHH measures were related to levels of ICP, see de-

tails in Subsection 4.4. In the second clinical study [Albrecht et al., 2015] investigated whether

patients with moyamoya angiopathy without obvious retinal pathologies may have subtle sub-

clinical retinal changes. The main finding in the investigation was a pronounced reduction of

the ONHV (computed with our algorithm) in moyamoya angiopathy compared with HC, see

details in subsection 4.4. The results were published in Neurology, one of the most important

neurology journals.
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4.2 Algorithm description

In the following section we present a detailed description of the proposed algorithm. Spatial

ONH scans were performed using a custom protocol for high-resolution optic nerve head imag-

ing with 145 B-scans focusing on the optic nerve head with a scanning angle of 15◦× 15◦ and a

resolution of 384 A-scans per B-scan. While the ILM is provided by the OCT device’s software,

the RPE is detected with the presented algorithm. The RPE is our key ingredient. It separates

the other layers from the choroid see Figure 2.15. In the presented algorithm, we detect the RPE

around the ONH and extend it through the ONH as a theoretical lower bound to volume and

height measurements. An overview of the algorithm is provided is Figure 4.2

INPUT

 3D OCT ONH scans

ILM

Noise removal RPE Region RPE initial pixels

RPE curve ONH volume and 

height

OUPUT

ONH volume and 

height

FIGURE 4.2: Steps of the RPE lower boundary detection algorithm.

Noise removal

Given a B-scan from the 3D OCT scans, the intrinsic speckle noise is reduced by denoising each

B-scan using anisotropic diffusion as described in [Perona and Malik, 1990], with a number of

iterations set to 10. Then a relatively homogeneous region from the corresponding ILM to the

INL is created by dilating the ILM with a disc structure of radius 4 pixels. After that, each

B-scan is smoothed with a large Gaussian filter, size [7, 7], with σ = 5. The resulting image

contains three regions in the following order from top to bottom: light gray, black and gray, see

Figure 4.3A and B.
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4.2.1 RPE Region

The regions we assumed to contain the RPE are the two lower ones. Two curves are detected to

bound the search area for the RPE from these regions. The candidate pixels for the construction

of the curves are found per column

• for the upper one from top to bottom, starting at the ILM

argmin
ILM(i)<j<n

{I(p(yi, zj)) < 60 for 1 < i < m}

• for the lower one from bottom to top

argmax
ILM(i)<j<n

{I(p(yi, zj)) > 20 for 1 < i < m} ,

where m×n is the total number of pixels in each B-scan, and I(p) the intensity value at a point

p. The two intensity threshold values were found by experiments with our data set such that

RPE regions with low intensity values are also taken into account. Fitting a cubic spline to the

set of top and lower resulting pixels two boundary curves C1 and C2 shown in Figure 4.3A and

Figure 4.3B, respectively.

4.2.2 RPE Initial Pixels

Having the two curves C1 and C2 from the previous step, RPE pixels candidates within the

bounded region are now chosen. Previous reports [Chiu et al., 2010] defined RPE consisting

of pixels having the highest intensity value among all other layers. In the present data this

observation is not reliable due to strong artifacts from ONH swelling. To ensure a spatial choice

that respects the anatomical position of this layer, we use information about pixel intensity and

position in the gray value profile of each column in a B-scan. For each profile the set P of peaks

is detected. From each of these sets, a point p with d(p, C1) > 20px is added to a list L which

meets the condition
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p = argmin
i

{d(pi, C1) , ∀s ∈M}

where d(pi, C1) represents the distance from the candidate point p to the corresponding point

of the upper bounding curve C1, d(pi, s) represents the distance between two points, M =

{x|I(pmax)− I(s) < 10 , ∀s ∈ P}, I(p) the gray value of a point in the intensity profile and

pmax represents the maximum peak.

CBAy

z

FIGURE 4.3: A.The upper border. B. Lower border. C. The processed image

containing the RPE region and the two starting points mark by crosses. Green

points contain the upper boundary, and blue ones the initial RPE pixels. The

arrow suggests the search direction for RPE pixels included into the list before

the spline fitting step, [Kadas et al., 2012a].

From the list L of each B-scan the final selection of points to create the curve describing

the RPE layer is constructed. Outliers might still be present in L in B-scans that contain the

region of the edema. In this region the only reliable RPE information is at the left, respectively

right side of each scan. Two lists L1 and L2 are created from pixels in L. For each side a point

p(yi, zi) in the first quarter from left and right of the scan with minimal zi coordinate is detected.

These give the starting reference height for creating two lists. Starting from these seed points to

the right and left, pixels are added iteratively to the corresponding list if they meet the following

conditions, see Figure 4.3C



|yi − zi−1| < 5px, for |zi − zi−1| < 5px

|yi − zi−1| < 10px, for |zi − zi−1| < 15px.

In the case of missing image information, RPE segmentation data from the previous scan is

taken into account.
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4.2.3 RPE Curve

Finally having the two lists, a least square spline approximation is applied to L1
⋃
L2, with

knots and order of the spline, quadratic or cubic, depending on the number of pixels of L1, re-

spectivelyL2. The scan alignment step is performed by column shifting as described in [Rossant

et al., 2009a].

ONH Volume and Height

For the volume measurement a threshold of 20 pixels was applied from the reference height

computed at the right side and left side of each B-scan. The areas found on each B-scan, mul-

tiplied by the spatial spacing were summed up to obtain the final volume. The threshold of 20

pixels was found through experiments to provide a satisfying result in images from IIH patients

as well from healthy controls. The height value represents the maximum height of the ONH.

Figure 4.4 illustrates the capability of the algorithm to correctly detect the RPE in ONH with

different degree of swelling and different image quality.

FIGURE 4.4: These images belong to different patients at different position

relative to the ONH, and are representative for the different changes that occur

in this region. The blue line represents the ILM, while the red one stands for

RPE, [Kadas et al., 2012a].
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TABLE 4.1: Differences in RPE detection for 2900 B-scans between first expert

manual grader and the proposed algorithm (Column I), between the second ex-

pert manual grader and the proposed algorithm (Column II). Column III reports

the differences between the two manual graders. Each pixel is 3.8717 µm. SD

= Standard deviation

RPE Differences Manual Grader 1 Manual Grader 2 Manual Grader 1
(2900 Bscans) vs. Algorithm vs. Algorithm vs. Manual Grader 2

Mean Difference 1.3247 µm 1.4310 µm 1.1572 µm
SD 0.3024 0.3128 0.309

4.3 Validation

To determine the accuracy of the RPE detection we conducted an automatic versus manual

segmentation validation study. This study included five randomly selected HC and five IIH

patients. In total, 3D scans from 20 eyes, each with 145 B-scans, were manually segmented by

two expert graders and compared to the results of the automatic segmentation. The results in

Table 4.1 show that the automatic algorithm accurately detected the RPE in HC scans a swell

as in scans from IIH patients. The quantitative results indicate a very good agreement and

high correlation between the manual graders and our set of measurements. Furthermore, the

agreement was comparable to the agreement between two manual graders.

4.4 Results of two clinical studies

IIH

To evaluate 3D SDOCT volume scans as a tool for quantification of ONH volume as a potential

marker for treatment effectiveness and disease progression in IIH in a clinical study, 37 eyes

from 19 IIH patients and 38 eyes from 19 matched HC were enrolled, see Table 4.2. ONHV

was significantly increased in IIH patients (2.3 ± 1.3 mm3) compared to healthy controls (1.1

± 0.5 mm3, GEE, B = 1.2, SE = 0.3, p < 0.001), see Figure 4.5A. Maximal ONHH was el-

evated in IIH (108.0 ± 17.5 µm) compared to HC (102.5 ± 6.9 µm), however, this difference

was statistically not significant (GEE p = 0.101), [Kaufhold et al., 2012]. We further divided

the patient group into treated and untreated patients. Untreated patients (n = 6) showed a higher

ONHV than treated (n = 13) patients (GEE, p < 0.001), see Figure 4.5B. Both medically treated

and untreated patients had an increased ONHV compared to controls which did not hold true

for ONHH, [Kaufhold et al., 2012]. Statistical analyses were performed with SPSS 19 (IBM
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TABLE 4.2: Demographic overview of IIH patients and HC. SD = standard

deviation.

IIH HC

Subjects No. 19 19

Eyes No. 37 38

Gender No. male 2 2

female 17 17

Age Mean (+−SD) 38 (+−13.8) 37.6 (+−12.9)

Disease duration

(months)
Mean (+−SD) 40 (+−37)

RNFL thickness (µm) Mean (+−SD) 99.1 (+−18.1) 99.2 (+−8)

TMV (mm3) 8.48 +−0.4) 8.67 (+−0.38)

ONHV (mm3) Mean (+−SD) 2.3 (+−1.25) 1.08 (+−0.49)

ONHH (mm) Mean (+−SD) 0.42 (+−0.07) 0.4 (+−0.03)

SPSS Statistics Version 19, Release 19.0.0.1, IBM, Armonk, NY, USA). For the evaluation of

OCT parameters relationship between HC and IIH, and treated and untreated patients we per-

formed GEE analyses with working correlation matrix structure “exchangeable” accounting for

inter-eye/intra-patient dependencies.

BA

FIGURE 4.5: A. Groups differences in ONHV between IIH patients (black bar)

and controls (white bar). B. Group difference in ONHV between medically

untreated (gray bar) and treated (vertical lines bar) IIH patients. Error bars

represent 1x standard deviation =p < 0.001, [Kaufhold et al., 2012].
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MoyaMoya

To investigate whether patients with moyamoya angiopathy without obvious retinal pathologies

such as retinal infarctions or the congenital morning glory anomaly may have subtle subclinical

retinal changes, [Albrecht et al., 2015] enrolled 25 patients with idiopathic moyamoya angiopa-

thy and 25 age and sex matched HC (mean age 40 years and 78% females in both groups).

Moyamoya disease is a rare progressive cerebrovascular disorder, caused by blocked arteries at

the base of the brain, the basal ganglia, [M. et al., 1998]. Patients with moyamoya angiopa-

thy sometimes also have embolic retinal infarction, and can present morning glory anomaly, a

rare congenital abnormality of the optic disc characterized by a funnel-shape excavation of the

posterior fundus that incorporates the optic disc, resembling the morning glory flower [Lee and

Traboulsi, 2008]. The main finding of this study was a pronounced reduction of the ONH vol-

ume in moyamoya angiopathy compared with controls (0.76+−0.45 mm3 and 1.47+−0.50 mm3,

respectively; p < 0.0001), which was associated with a less pronounced reduction of the retinal

nerve fiber layer in macular volume scans (0.97+−0.11 mm3 and 1.10+−0.10 mm3, respectively;

p < 0.001) [Albrecht et al., 2015]. Autofluorescence and MultiColor confocal scanning laser

ophthalmoscopy images revealed no pathologies except for one branch retinal artery occlusion,

which was excluded from the analysis of the OCT measures, [Albrecht et al., 2015]. Statistical

analyses were performed using Microsoft Excel, Prism 5.0 (GraphPad, La Jolla, CA), and SPSS

Statistics 20 (IBM, Armonk, NY). GEE models accounting for within-subject inter-eye correla-

tions using an exchangeable correlation structure correcting for age and sex were applied to test

for differences in the OCT measures between patients with moyamoya angiopathy and controls.

Development environment

Algorithm development was done using Matlab R2011A with Spline library (Mathworks, Ger-

many) on Mac OS X (Apple, Cupertino, CA, USA, Intel Core i5, 4GB memory). The algorithm

requires 1.5 to 2 minutes for the whole computation.



Chapter 5

BMO points detection for ONH center

and ONH volume computation

We propose an algorithm for the detection of the BMO points directly in the 3D SDOCT scans

centered on the ONH. Our main goal was to provide assessments of the ONH shape for the

further application in investigating neurological disorders like MS (with its sub types), NMOSD,

and IIH. BMO points provide a stable reference for the computation of the ONH even in cases

where the morphology of the ONH might undergo changes under the influence of a disease, a

characteristic presented in detail in Section 5.1. Therefore our approach focuses on detecting

these points, thereby providing the necessary information for deriving important parameters for

clinical analysis. These parameters consists of measurements of different areas of the ONH and

the volume region comprised in a cylinder around the ONH center point.

5.1 Previous approaches in ONH volume computation

ONH is one of the main components on the retina. Assessment of its 3D shape is often studied

in eye diseases [Abràmoff et al., 2010]. Although ONH measurements are still performed ex-

tensively on 2D fundus photographs, 3D shape of the ONH can fully reveal reliable parameters

[Bhavna et al., 2014]. We present the methods that had been developed and the histological

motivation towards quantifying the ONH in 3D OCT data. All of the methods discussed in

this section were developed to investigate ophthalmological diseases, the majority focusing on

extracting features to characterize glaucoma. Glaucoma is the second most common cause of

blindness, characterized by progressive damage of the optic nerve [Quigley and Broman, 2006].

103
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ONH in fundus photography

Although various ocular imaging instruments, such as HRT and OCT, provide 3D information

and clinically useful quantitative assessment of glaucoma diagnosis and management, it is still a

clinical standard and routine to perform subjective optic disc assessment using disc photographs

[Abràmoff et al., 2010]. The disc assessment usually consists in the manual delimitation of the

optic disc and optic cup by glaucoma specialists and the computation of the ratio of the optic

cup and neuroretinal rim surfaces, or cup-to-disc ratio. However, it has been shown that manual

computation is time-consuming with substantial interobserver variability [Xu et al., 2006].

ONH in stereo disc photography

Stereo disc photograph has been used to document structural abnormality/changes in glauco-

matous 3D reconstruction of the ONH shape [Abràmoff et al., 2010]. One of the limitations of

stereo disc photography, however, is that there is no fully automated ONH quantification method

available. Conventional ONH evaluation consists in manually labeling the disc and cup margins

and consequently generating several disc parameters from these two structures. This procedure

is time consuming and prone to high intra- and inter-observer variability [Xu et al., 2006].

[Juan et al., 2010] developed a fully automated algorithm to perform a volumetric measure

of the optic disc using conventional stereoscopic ONH photographs. A hybrid approach was

used, where the cup margin was located at a fixed distance from the disc margin for average

size cups, and a relative distance for large and small cups. Image features, such as pixel inten-

sity value, gradient, and contour smoothness, were extracted and used in the computation of the

deformable model. The limitation of this study was the substantial failure rate of the algorithm

method (23.8%). The main causes of the failures were the presence of pathologic features such

as peripapillary atrophy, which reduced the visibility of the disc margin.

ONH in HRT

The HRT shows the 3D surface topography of the ONH, which allows for quantitative analysis

of glaucomatous changes of the ONH. The commercial software available defines the optic cup

to be 50µm below the mean surface height along a six degree annulus at the temporal inferior

disc margin. Although it is a well-defined method for ONH analysis, it requires manual de-

limitation of the disc margin to define a reference plane that is then used to calculate the cup
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margin. Because accurate determination of the disc margin depends on the skill of the operator,

calculation of the cup margin is also affected by it [Juan et al., 2010].

Comparison of ONH parameters in stereo disc photography, TDOCT and HRT

[Juan et al., 2010] also compared algorithm-produced parameters with manual photogramme-

try, by using HRT and OCT measurements. The optic disc margin was manually delineated at

the border of Elschnig’s ring and the disc parameters were generated by the HRT3 software.

The OCT used in the study was a TDOCT, in which the software defines the optic cup below

a reference plane located 150 µm superior to the RPE/BM tips. The disc margin was auto-

matically defined at the termination of the RPE in each of 6 radially sampled cross-sectional

retinal images. The OCT software generated a disc margin by interpolating these 12 detected

points. Manual correction was required if the disc margin was not correctly placed at the end

of RPE. Non-constant bias was noted for most measurements between the methods indicating a

difference that changes with the imaging modality employed. Therefore, measurements are not

inter-changeable between modalities.

It should be noted that all the presented methods used subjective input for their ONH defi-

nition.

BMO points as a stable parameter for ONH center and ONH volume computation

The choice of BMO points for the computation the ONH center has an important anatomical mo-

tivation. Several studies conducted compared these landmarks and the optic disc in histological

ONH, SDOCT and fundus photographs [Kotera et al., 2009, Reis et al., 2012, Strouthidis et al.,

2009b]. These have proven that BMO points are a stable parameter even in case of changes that

ONH undergoes during degeneration, as in diseases like glaucoma. We present a short summary

of these findings in order to explain prior approaches that focus on detecting these points, as well

as our choice in developing the BMO points detection algorithm presented in this chapter that

employs these points for ONH center and volume computation.

In a series of recent publications [Strouthidis et al., 2009b] have proposed three important

concepts that are necessary to understand optic disc margin anatomy within 3D histomorphome-

tric and SDOCT reconstructions of the monkey ONH. The first concept is that of a NCO, which
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is the anatomic opening in BM through which retinal ganglion cell axons must pass to enter

the choroidal and scleral portions of the neural canal. The second concept is that of a ‘neural

canal’ which is the axonal pathway through the eye wall. The neural canal begins at the NCO,

and then extends through a choroidal component, bound on either side by the border tissue. The

neural canal terminates at the point at which the optic nerve leaves the globe. The third concept

is that, what the clinician perceives to be the disc margin is not a single anatomic structure, but

is instead variable structure with some portions being the NCO, and others the border tissue or

the anterior scleral canal opening, depending upon the 3D architecture of these structures.

When examining the 3D point cloud generated from the human SDOCT ONH volume

[Strouthidis et al., 2009b] have confirmed their previous histomorphometric report that the BMO

and not the disc margin will become the basis for an SDOCT reference plane for the ONH.

Within SDOCT volumes, the innermost termination of the presumed RPE/BM signal was de-

lineated as the BMO. Furthermore, clinical co-localization of SDOCT detected disc margin

anatomy will provide the clinician with the necessary information for the interpretation of the

disc in glaucomatous ONH.

Subsequently, [Kotera et al., 2009] have compared the photographic disc margin with the

SDOCT defined disc margin in glaucomatous eyes. In that study, a high concordance between

the photographic disc margin and the SDOCT disc margin was found. Unlike the previous study,

the observers delineated either the termination of the RPE or the termination of the “highly

reflective, curved line”, which connected to the straight signal identified as the RPE. This highly

reflective, curved line is the signal identified as border tissue. Additionally [Kotera et al., 2009]

have shown cases where the termination of the RPE identified by SDOCT coincided with the

termination of visible retinal pigment at the edge of peripapillary atrophy.

[Reis et al., 2012] emphasized the findings previously presented. They have shown that

BM and its terminations are key structures of the ONH and their variations. Assessing the

neuroretinal rim requires a stable and consistent anatomical landmark and an actual anatomical

border and, as such, recognizing BMO may prove vital. They also showed that the clinically

identified disc margin is a clinical construct that does not reference a consistent anatomical

structure within or between eyes.

In all the approaches mentioned before, BMO points were manually delimited.
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BMO points detection for ONH center and ONH volume computation

A first attempt to quantify the ONH from 3D OCT images is presented in the work of [Abrà-

moff et al., 2009]. The purpose of this preliminary study was to determine the performance of

the algorithm’s cup–rim segmentation from SDOCT images to planimetry by glaucoma experts

in patients with glaucoma or suspicion of glaucoma. In this study automatic segmentation of

3D SDOCT scans, centered at the ONH, by a novel voxel column classification algorithm was

presented. Reference standard from fundus photographs was used as truth in the training phase.

However, this approach has the limitation that the algorithm essentially mimics the subjective

assessment of 2D parameters by human experts. It is not based on objective anatomic land-

marks within the 3D volumes, and the optic disc margin does not overlap with a single constant

anatomic structure in 3D OCT.

To overcome this limitation [Hu et al., 2010a] presented an automated graph-theoretic ap-

proach to identify the BMO and cup. BMO-based metrics were compared with the reference

standard for cup and disc margins from the images manually delineated by glaucoma experts.

Four intraretinal surfaces, ILM, IS/OS, the inner boundary of the RPE/BM complex, and the

outer boundary of the RPE/BM complex were segmented. The 3D OCT volume was flattened

based on the second segmented surface, the IS/OS. A projection image from a thin layer at the

RPE/BM complex was created for correspondingly comparing the NCO-based parameters with

those of fundus photographs. Finally the projection image is unwrapped to polar coordinates

and a signed edge-based term is used as a cost function in a directed graph to simultaneously

segment the (optimal) BMO and cup boundaries. The BMO and cup boundaries were finally

smoothed using a B-spline.

There are several limitations to this preliminary study. Because of the large variations in

the surface of the ONH, intraretinal layer segmentation differences can occur and cause a non-

optimal flattening problem (i.e., the BMO points do not lie on a plane after flattening). For the

2D measurements on the projection image, the non-optimal flattening problem was corrected

by extrapolating the average radial positions outside the estimated BMO with those inside it.

Although small discrepancy existed between the BMO and the clinical disc margin in some

eyes, the relative stability of the BMO reference plane and the objective nature of the algorithm

makes the measurements of the BMO-based 2D or 3D glaucomatous parameters in 3D OCT

scans more reproducible than those of the reference standard.
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[Bhavna et al., 2014] proposed a different approach to detect the BMO boundaries to over-

come an important issue in the method proposed by [Hu et al., 2010a], namely the fact that the

surfaces detected by [Hu et al., 2010a] do not actually exist inside of the BMO. Therefore in

the graph-based segmentation step the surfaces are pulled away from the true locations near the

boundary of the BM towards deeper underlying structures. The method proposed by [Bhavna

et al., 2014] combines a graph-theoretic approach in the 3D SDOCT and a 2D projection image

from retinal layers by considering the BMO as a “hole” embedded with multiple surrounding

surfaces. An iterative approach that simultaneously segments the surfaces in the RPE-complex

as well as the BMO is proposed. In particular, the general framework of their approach re-

flects an extension of the graph-theoretic approach by incorporating costs associated with this

additional structure (the hole boundary).

The method begins with an initial segmentation of three surfaces, namely the ILM, the

IS/OS line and the BM in the volumetric image. In order to find a smooth representation of a

surface that cuts through the optic nerve disruption, a TPS is fit to the segmentation of the BM.

A projection image was then created using this interpolated smooth surface after fitting the TPS

to the IS/OS line. This projection image is then polar transformed so that the BMO boundary

appears as a line in the image instead of a circle, and was segmented using a graph-theoretic

approach similar to the method proposed by [Hu et al., 2010a].

Next, given this “fixed” set of hole boundary columns, the corresponding optimal set of fea-

sible surfaces that meets at the hole boundary in the volumetric image is found in an iterative

manner. The cost function for boundary also incorporated textural features learned from a train-

ing set. The biggest drawback for the iterative approach proved to be the presence of the end

point of the border tissue. The machine-learning based “corner” detection was able to locate the

BMO point. However the endpoints of the border tissue share “corner”-like features, and the

classifier was not able to differentiate between them, leading to the preferential detection of the

border tissue.

Contribution

The method presented in this chapter extends the RPE detection of our previous approach [Kadas

et al., 2012a], and improves several aspects of previous ONH volume detection algorithms as

follows:
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• it detects the BMO points directly in the 3D SDOCT scans, without making use of any

projection images as in the approaches proposed by [Bhavna et al., 2014, Hu et al., 2010a]

• it is able to detect BMO points in swelled, normal and atrophic ONH, and does not rely

on features specific to glaucoma (atrophic ONH) unlike all approaches presented in the

previous section

• it reduces the search of the RPE region from the previous algorithm [Kadas et al., 2012a],

by first approximating the ONL

• to account for motion artifacts and sudden jumps in consecutive scans, but also for the

natural curvature of the retina, we propose an efficient two-stage TPS, that improves the

approach proposed by [Garvin et al., 2008] without making use of the orthogonal scans

presented in the work of [Bhavna et al., 2014]

• we significantly reduce the computational time by extracting a sub-volume from the initial

3D SDOCT scans that approximates the BMO region

• we present a modified grow-cut algorithm that requires no user interaction, where we

redefine the strength function by incorporating information from the sub-volume with

suppressed vessels and enhanced RPE using textural filters; also we address the slow

convergence of the algorithm by reducing the number of unknown labeled voxels in the

initialization stage.

We tested our algorithm in a clinical study in order to investigate how well ONHV correlates

to OCT standard measurements in HC, MS, NMOSD and IIH. A detailed description of the

study is presented in Section 5.4. Our results were also presented at the NANOS conference in

February 2015 [Kadas et al., 2015].

5.2 Algorithm description

In the following section we present a detailed description of the proposed BMO detection al-

gorithm. Spatial ONH scans were performed using a custom protocol for high-resolution ONH

imaging with 145 B-scans focusing on the optic nerve head with a scanning angle of 15◦ × 15◦

and a resolution of 384 A-scans per B-scan. The main steps of the algorithm are illustrated in
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Figure 5.1.
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FIGURE 5.1: The main steps of the BMO detection algorithm.

Removing scans containing erroneous data

Although the OCT device used for the data acquisition is equipped with a tracking system to

reduce motion artifacts, the scans used in our research, however, are prone to some artifacts,

which are thought to be caused by a number of factors such as motion of the eye, positioning of

the camera, or defocus. These artifacts not only make it difficult to visualize the data, but they

also affect the further processing of the images. Therefore our first step consists in preparing the

data for computation, by removing erroneous data. There are three types of artifacts commonly

seen in our OCT ONH scans:
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• missing information, i.e. the B-scan wasn’t acquired entirely and the information is miss-

ing on the y axis, or on the z axis, see Figure 5.2A.

• bad illumination and noise present in different regions of the B-scan make the detection

of the retinal layers inapplicable, see Figure 5.2B.

• the entire B-scan contains only noise and random data, see Figure 5.2C.

A B Cy

z

FIGURE 5.2: A. B-scan with missing information on the right side. B. B-scans

with noise and bad illumination C. B-scan with erroneous data

In order to remove these B-scans we make use of the ILM boundary information provided

by the OCT device, as follows. If the ILM pixel position information is missing more then

50 pixels to left, to the right, or is at the upper border (pixels with position 1 on the z axis),

or on the lower border (pixels at maximal position on the z axis) of the B-scan, the B-scan is

regarded as having missing information. These criteria are fulfilled also by B-scan containing

an erroneous part (bad illumination, or extreme noisy information). In the case of complete

erroneous data, the ILM position information is either partly or entirely missing. The ONH scan

protocol consists of 145 scans, comprising an area of major interest in the study of the ONH

feature analysis. In order to maintain consistency among our data for further comparison, we

need the entire scan information. Consequently we discard 3D scan that contains erroneous

data in more then 5 B-scan, if these are among the first 10, or the last 10 B-scans (in the x axis

direction), or in more then 3 B-scans if these are between scan number 10 and 135 (as the region

between these scans contains the valuable information - BMO region). The removed B-scans, if

these fit the aforementioned criteria, are replaced by interpolated neighboring B-scans.
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5.2.1 Detection of ILM, ONL and RPE lower boundary

In the second step of our method the goal is to detect the ILM and the RPE lower boundary, and

to approximate the ONL. We need the ILM and RPE lower boundary for the volume and for

the parameters computation, described later in Subsection 5.2.5. Our approach does not make

use of other retinal layer segmentation. We only approximate the ONL region for reducing the

computational load in a further step, when we define the partial 3D volume used for the BMO

points computation. It is well known that retinal layers in OCT scan are identified by two retinal

surfaces separated by dark-to-bright or bright-to-dark transition of voxel intensities from top to

bottom in OCT scan [Garvin et al., 2008]. The RNFL and RPE are distinctively bright, while

the IPL and OPL are of medium intensity and the INL and ONL have low intensity, see Figure

2.15.

ILM is a hyper-reflective membrane delimiting the retina from the vitreous. Therefore the

only difficulty in applying a direct detection using the gradient magnitude, to detect the transition

from dark-to-bright, occurs when the vitreous contains different regions with high reflectivity

or there is a second membrane detached from the ILM that causes the gradient to present a

high magnitude before the ILM. To account for this problem our method starts by creating

three multi-scale OCT volumes subsampled by a factor of 2 in the z axis. Level 1 represents

full resolution, and level 3 is the lowest resolution. This subsampling process has the effect of

reducing speckle noise in OCT volumes of low resolutions so that ILM and ONL have clear

borders in the low resolution. At each level we apply a 2D Gaussian smoothing ( σ = 3 pixels

isotropic) on each B-scan. The ILM and ONL borders are detected in an iterative manner as

follows.

The maximum gradient magnitudes of the dark-to-bright transition from top to bottom are

detected, at level 3, representing the initial ILM and ONL borders. The positions are smoothed

by applying a 5 pixels moving average filter on each B-scan separately. This averaging step

acts to smooth out smaller outlying boundary points, often caused by variations in the pixels

intensity. These positions provide the approximate z-positions of ILM and ONL in level 2 by

multiplying the z-positions of borders in level 3 by 2. The process of detecting the maximum

gradient is repeated at level 2 and at level 1, with the difference that abrupt jumps in the positions

of the ILM or ONL boundary points are replaced with positions detected prior at level 3, level
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2, respectively. These abrupt jumps are defined by pixel positions that are more then 5 pixels

higher/lower then the neighboring pixel positions on the z axis.

The reason for not applying a 3D smoothing filter at this stage is the presence of another

motion artifact, we address in the next subsection. This artifact, illustrated in Figure 5.3, has the

drawback of leading to altered image information propagated through the entire volume when

3D contextual information is used at this stage.

y

z

FIGURE 5.3: Three consecutive B-scan showing strong displacement on the z
axis.

The RPE lower boundary detection is based on our previous method described in Section

4, with the main difference in the Step 2 of the algorithm. In our current approach we reduce

the computation load of the cubic polynomial fitting for the two regions by using the ONL

approximated positions, to delimit the search area for the RPE lower boundary pixel candidates.

5.2.2 Modified TPS fitting

The method described in this step addresses the presence of motion artifacts using a modified

TPS fitting. Moreover, this approach helps to constrain the search area for the final segmenta-

tion, by reducing the algorithm sensitivity to the retinal curvature. The main motivation in using

TPS as a smoothing preprocessing step is its capability not only to remove motion artifacts

but also to reconstruct the “true” shape of the retina, namely an ellipsoidal shape dependent

of the curvature of the eye ball [Bhavna et al., 2014]. Furthermore compared to 1D (A-scan

correction) and 2D (B-scan correction) approaches it incorporates 3D contextual information,

therefore reducing the artifacts that might arise in previous methods by interpolation only of
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1D, 2D information [Garvin et al., 2008]. The artifact correction process needs a stable surface

to which a TPS can be fit. Therefore, the RPE lower boundary is used, as it can be reliably

detected in OCT volumes, as we have seen in our previous RPE lower boundary detection al-

gorithm in Section 4. At this stage, the method considers evenly distributed grid points on the

surface defined by the RPE lower boundary curves. The number of grid points is set to 10 in the

x direction and 20 in the y direction, with the regularization parameter λ = 0.7. One important

difference at this step compared to other works using TPS [Garvin et al., 2008], [Bhavna et al.,

2014] consists of the definition of the grid points over the entire RPE surface, without discarding

points in the ONH region. The reasoning behind this choice is that the RPE curves detected in

our previous algorithm (Section 4) already created a hypothetical extension of this anatomical

structure through the ONH. This choice of grid points has proven to provide a smooth surface

that reduces the artifacts in the yz plane.

While demonstrating robustness against any small local errors in the initial segmentation

result of the RPE lower boundary and reducing the motion artifacts, TPS is still sensitive to

sudden height changes in the original scan, see Figure 5.3. To account for this effect we mod-

ified the method by introducing an additional correction step that removes the extreme points

in a first TPS least-square approximation stage then performs the actual TPS fitting described

above. The outline of the algorithm is presented in Algorithm 2
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Data: RPE surface S coordinates

Result: TPS coordinates S1

Initialization: resample grid points on S ;

compute surface S0 = TPS with λ = 0 (least-squares approximation);

compute meani and SDi (standard deviation) for each list li of coordinates in S0;

compute reference meanR = mean with SDR = min(SDi);

compute list of extreme points L0 of the surface S0;

while L0 6= 0 do

if (xi, yi) ∈ L0, S0(xi, yi) > meanR + SDR or

(xi, yi) ∈ L0, S0(xi, yi) < meanR + SDR then

remove (xi, yi) from L0;

replace S0(xi, yi) with (S0(xi+1, yi) + S0(xi−1, yi))/2;

end

end

compute surface S1 = TPS with λ = 0.7;

Algorithm 2: Modified TPS

Figure 5.4A shows the initial TPS fit from a data with strong motion artifacts (B-scans of

this data can be seen in Figure 5.3). The corresponding zero level sets of the derivatives (green

contour - derivative in the y direction, red contour - derivative in the x direction) and gradient

vectors (in blue) are illustrated in Figure 5.4B. Red and green lines crossings represent a point

where the derivatives are both zero and hence it is either a local extremum or a saddle point.

Notice how the two stage TPS, see Figure 5.5, was able to remove the points that caused strong

oscillations in the initial TPS.

Alignment

The retina in OCT scans is curved due to the natural scleral curvature and while this is not an

artifact, removing temporarily this curvature is advantageous in our further analysis, as we want

to bring our data into a consistent format. Alignment or flattening is a common preprocessing

step performed by many retinal segmentation algorithms [Abràmoff et al., 2009, Bhavna et al.,

2014, Garvin et al., 2008] and refers to translating all of the A-scans in each B-scan such that a

chosen boundary in the image is flat. We choose to align the retina to the smoothed RPE lower
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boundary obtained after the TPS fitting. A result of the ILM surface before the alignment to the

smooth RPE surface and after is shown in Figure 5.6A, Figure 5.6B, respectively.

5.2.3 Volume reduction

Our data set is a volume of 384 × 496 × 145 voxels. At this stage of our approach we have all

the prerequisites to reduce the volume to a smaller one containing our 3D region of the BMO.

For this step we make use of the RPE pixel candidates from our RPE lower boundary detection

algorithm, see Section 4. A 2D binary image is created containing the projected RPE pixel

coordinates onto the xy plane. The pixels are coded with 0 in the binary image. Note RPE

pixel candidates are not present at the ONH, as this information is missing due to the anatomy

of the ONH. Also some regions in each B-scan are missing RPE pixels because of the presence

of blood vessels. Thus the 2D projected image contains some spurious regions. To remove

them we make use of several morphological operations. First we detect the largest connected

component (corresponding to the ONH region), remove all the other components, and dilate it

with a disk element of 4 pixels. The result is a smooth enlarged ONH region. By fitting an

ellipse to this region, we define our area for the volume reduction, in the y direction 2× the

minor axis, in the x direction 2× the major axis of the ellipse. The volume is also reduced in

the z direction, by considering only voxels between the ONL approximation boundary, and 50

pixels bellow the RPE coordinates smoothed by the TPS fitting. Thus depending on the ONH

region fitted by the ellipse and the position of RPE and ONL, we reduce for example our volume

from 384× 496× 145 voxels to 210× 90× 52 voxels. Figure 5.8A illustrates a C-mode image

of a ONH volume scan with the ONH region delimited by the red rectangle. This region was

used in this example for the volume reduction process.

C-mode images are 2D projections in the xy plane, obtained by taking, for example see

Figure 5.8C, the maximum grey values from the RPE boundary 50 pixels in the z direction

on each B-scan. This projection image provides a view of the vessel map (shadows, or dark

intensity regions in the RPE layer) and the BMO region. This type of C-mode image was used

in other approaches [Abràmoff et al., 2009, Bhavna et al., 2014, Hu et al., 2010a] to segment the

ONH. These methods rely strongly on the existence of the optic disc and optic cup, especially in

eyes with glaucoma, which is not always the case in our data. Figure 5.7 illustrates two different

ONH types. One with a strong excavation in Figure 5.7A.1. and one with no cup in Figure
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5.7B.1. Both images represent B-scans at the same position in the two 3D volumes at the ONH.

Red arrows represent the BMO points. The C-mode images at different z position in the 3D

volume seen in Figure 5.7A.2-4 present similar characteristics seen in the approaches mention

above. Figure 5.7A.4. is the C-mode image projected from a thin layer at the RPE, and it is used

to detect the BMO (this is represented by the black area). Notice that these images, in the case

of an ONH with no cup, Figure 5.7B.2-4, present different features.

In our approach we use the C-mode image only for visualization purposes.

5.2.4 Vessel suppression

We have demonstrated in Section 3.3 the capability of the 2D Morlet wavelet in detecting linear

structures. Vessels appear in the RPE layer as dark intensity regions, or shadows (see Figure

5.8B.1 and C.1). These affect the detection of the BMO, especially because vessels gather at the

ONH region to leave the optic nerve, or enter through the optic nerve, creating large shadows.

Our approach focuses on emphasizing the RPE layer and on suppressing these shadow artifacts.

To this end we apply a 2D Morlet wavelet filter for each B-scan of the reduced volume to

enhance the RPE line. Using the Morlet transform, see Equation 3.5, the scale parameter a

is held constant and the orientation varies θ = {170◦, 175◦, 180◦, 185◦}, in order to enhance

almost horizontal lines and suppress the vertical ones representing blood vessels. The results

can be seen in Figure 5.8B.2, and C.2.

5.2.5 BMO points detection using textural information in a grow-cut setting

The retinal layers can be interpreted from a texture analysis point of view, in order to combine

them in similar regions, or to extract relevant features for further classification in an intraretinal

layer segmentation process. An intensive work in this direction has been proposed by [Bhavna

et al., 2013], where different classical texture analysis methods were tested for their ability to

improve segmentation in a 3D graph-cut setting. Among these methods are intensity-based

features (mean intensity, variance, entropy, kurtosis and skewness), co-occurrence matrix fea-

tures (energy, entropy, contrast, correlation and inverse difference moment), run-length features

(short run, long run, gray level non-uniformity, run length non-uniformity and run percentage).

In addition, features generated using a variety of filter banks such as Haar, Gabor, and steerable-

Gaussians were applied.
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At this stage of our algorithm, we are interested in enhancing the RPE line by removing

certain periodicities that appear in the resulting B-scans after vessel suppression. To this end

we adapt a different method as the ones mentioned above, the sub-band multiresolution filtering

(SMF) process using an orientation pyramid (OP) tessellation of the image space. [Reyes-

Aldasoro and Bhalerao, 2006] introduced this method in the setting of medical image textural

analysis, emphasizing its capability of detecting relevant features that are not emphasized by

methods developed for natural images as the ones proposed by [Bhavna et al., 2013]. To sub-

divide the frequency domain of an image into smaller regions [Reyes-Aldasoro and Bhalerao,

2006] use two operators, quadrant and center surround see Figure 5.9A. By combining these

operators, it is possible to construct different tessellations of the space, one of which is the OP,

see Figure 5.9B. A band-limited filter based on truncated Gaussians is used. The filters are real

functions which cover the Fourier half-plane. Since the Fourier transform of a real signal is

symmetric, it is only necessary to use a half-plane to measure sub-band energies.

The quadrant and center-surround operator in the frequency domain of each B-scan of the

volume after vessel suppression is divided into smaller region by use of 7 filters, one for the low

pass and six for the high pass. Region 1 according to the notation seen in Figure 5.9B is chosen

as the space containing the relevant RPE feature enhanced in each volume. Results of applying

SMF to the B-scan in Figure 5.8B.2 can be seen in Figure 5.9C. We have discarded regions 2, 3,

6 and 7 as they are dominated by noise-like pattern and region 4 and 5 because they emphasize

also the transition between RPE and choroid, and ONL and upper retinal layers.

We create 4 feature volumes as follows. For each of our 3D reduced volumes, for the original

one and for the one after applying vessel suppression, we create another volume by re-ordering

the voxels in the xz direction. Denote the 4 volumes created by:

• O The original volume

• Or The original volume in the xz direction

• V The volume with suppressed vessel after SMF

• Vr The volume in the xz direction with suppressed vessel after SMF
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A voxel p belonging to RPE would have, according to this notation, high intensity in O and Or,

and low intensity in V and Vr. A voxel q belonging to the ONH region would have comple-

mentary intensity values. Thus each voxel pi has a list of intensity values contained in a feature

vector Vpi = (aiO(pi), aiOr(pi), aiV (pi), aiVr(pi)).

A modified 3D region grow based on the cellular automata algorithm, also known as grow-

cut in image processing [Vezhnevets and Konouchine, 2005], that uses the feature vectors cre-

ated is applied to classify the voxels in RPE and background. This algorithm is presented as an

alternative to graph-cuts. The operation is very simple, and can be interpreted as a biological

metaphor: each image pixel is a “cell” of a certain type. These cells can be foreground, back-

ground or undefined. As the algorithm proceeds, these cells compete to dominate the image

domain. The ability of the cells to spread is related to the image pixel intensity. A cellular

automata is a triplet CA = (S,N, δ), where S is a non-empty state set, N is the neighborhood

connectivity type, and δ is the transition function. This function defines the rule of calculating

the cell’s state at t+1 time step, given the states of the neighborhood cells at previous time step

t and it depends on the similarity function between two cells and the strength of the current cell,

both defined later in this subsection. The cell’s state Sp is actually a triplet (lp,Ψp, Vp), where

lp ∈ {0, 1,−1} is the label of the current cell (foreground = 1, background = 0 or unknown

= −1), Ψp ∈ [0, 1] represents the strength of the current cell, Vp is the feature vector created at

a previous step. We modified this method to classify voxels as belonging to RPE or to the ONH

region as described in Algorithm 3.
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Data: List of voxels with initial state (RPE, ONH region or unknown) and the strength

function for every voxel

Result: List of voxels with final state (RPE or ONH region and background)

for each voxel p with unknown state do

if p is weak, i.e.
∑

q∈N(p) l
ltp 6=l

t
q

≥ 4 then

St+1
p = 0

end

else

copy previous state: St+1
p = Stp, Ψ

t+1
p = Ψt

p ;

for each voxel q ∈ N(p) do

if g ·Ψt
q > Ψt

p then

St+1
p = Stq;

Ψt+1
p = g(p) ·Ψt

q

end

end

end

end

Algorithm 3: Grow-cut algorithm for classifying voxels belonging to either RPE or ONH

region

Ψt
p denote the strength of a voxel p at time t, Stp denotes the voxel’s state at time t, N(p)

denotes neighboring voxels of p (in our implementation we used 6-connectivity), g is a similarity

function. A novelty of our method consists in redefining the decreasing function g, such that

this incorporates the information from the feature vector Vp as follows. We defined g as

g(p) = e−‖Vp−Vq‖ , q ∈ N(p). (5.1)

Additionally, compared to the approach presented in [Vezhnevets and Konouchine, 2005]

our method requires no user interaction as the labeling in the initialization stage of the algorithm

is performed automatically. This also reduces the computational complexity. We label the

input data in voxels belonging to RPE, ONH region or unknown in the V volume based on

the assumption that two thirds of the smoothed RPE lower boundary position (from left, and
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right) are correctly identified as belonging to the RPE and voxels with intensity higher then the

mean intensity of the RPE lower boundary surface belong to either ONH region or other retinal

structures. Therefore the remaining voxels are labeled as background. Thus a considerably

amount of voxels is already categorized before the grow-cut algorithm begins. Also we define

the strength function Ψ to incorporate information about the labels in the initialization stage

as follows: Ψp = 0 if lp = 0, Ψp = 1 if lp = 1, if we have a voxel labeled as unknown,

lp = −1, that is close to a foreground voxel, i.e. min(‖p− q‖) ≤ 15, q ∈ Nforeground(p),

where Nforeground(p) contains only the voxels q labeled as foreground, then Ψp = 0.8. For all

the other unknown labeled voxels Ψp = 0.4.

Another important aspect that reduces the computational time is achieved by defining weak

voxels, that will not be considered for further processing. These are represented by voxels sur-

rounded by 4 or more already labeled foreground voxels. The grow-cut algorithm, summarized

in AlgorithmCAAlg, terminates after a fixed number of iterations K or when no pixels change

state. Convergence is guaranteed when K is sufficiently large because the updating process is

monotonic and bounded [Vezhnevets and Konouchine, 2005]. Figure 5.10 shows three B-scans

at the ONH with the classified RPE voxels depicted in white. The red arrows show the end

points of the RPE surface detected, and represent the BMO points. Figure 5.11 shows several

B-scans with correctly identified BMO points. In Figure 5.12 some examples of B-scans are

shown where the shadows on the RPE layer created by the presence of the blood vessels in the

upper layers made the algorithm misclassify the BMO points.

Parameters extraction

A smoothing technique using a mean filter is applied to the BMO points to remove any outliers

that might have been wrongly detected. The centroid of all BMO points is computed as the

ONH center. Several ONH parameters can be derived from the ONH center and BMO points.

• the ONH volume is defined inside a cylinder with a radius of 1.7 mm centered at the

ONH, see Figure 5.13C

• the BMO area is defined as the area inside the BMO points, for one B-scan it is represented

by the line consisting of green part and magenta part in Figure 5.13A
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• the cup area defined between the BMO points intersecting with the ILM (if there is a cup),

for one B-scan it is represented by the magenta line in Figure 5.13A

• the rim area is defined as the BMO area - cup area, for one B-scan it is represented by the

green line parts in Figure 5.13A

• the BMO distance area is defined by the distance between the BMO points, the entire

green line in Figure 5.13A

• BMO-ILM intersection area is defined by the points of perpendicular lines from the BMO

intersecting the ILM (blue lines in Figure 5.13A), for one B-scan it is represented by the

yellow line in Figure 5.13A

• the total excavation volume defined as the sum of the excavation volume and the cup

volume, for one B-scan see Figure 5.13D

• the cup volume is defined as the region of the cup, for one B-scan see Figure 5.13E

• the excavation volume is defined by the volume outside the ILM and having as upper

bound the BMO-ILM intersecting area, for one B-scan see Figure 5.13F

• the ILM volume defined as the volume between ILM and the perpendicular lines from

BMO intersecting the ILM (blue lines in Figure 5.13A), for one B-scan see Figure 5.13G

5.3 Validation

We also tested how reliable the ONH volume detection performs. Intra-session reliability was

determined in ten eyes of HC in three repeated measurements. ICC was 0.964 (95% CI: =

[0.903, 0.990]). Inter-session reliability was determined by longitudinal analysis of 30 eyes of

HC in three measurements including baseline, one-year and two-year follow-up examinations.

ICC was 0.976 (95% CI: = [0.956, 0.987]). Detailed results are presented in [Kadas et al., 2015].

5.4 Results in a clinical study

In order to analyze the algorithm capability in correctly detecting the BMO points and ONH

center in different ONH conditions, we have included 36 HC and 213 patients with neurological
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TABLE 5.1: Demographic overview of patients and HC. SD = standard devia-

tion.

Patients HC

Subjects No. 213 36

Eyes No. 426 72

Gender No. male 63 14

female 150 22

Age Mean (+−SD) 41 (+−11) 39 (+−11)

Disease type No. CIS 23

RRMS 92

SPMS 14

NMOSD 33

IIH 15

ON No. of eyes CIS 22

RRMS 73

SPMS 18

NMOSD 0

IIH 0

disorders (MS (with subtypes), NMOSD and IIH). An overview of the included cohort is illus-

trated in Table 5.1. Our method was able to reliably determine BMO points and ONH centroid

and ONHV estimations were robust in both atrophic and swollen ONH condition. Figures 5.14,

5.15, 5.16 and 5.17 illustrate the ILM surface of different examples of ONH, with the BMO

points and the ONH center as seen in our data.

The algorithm failed in 6% of all 426 eyes due to poor signal to noise ratio or due to unpro-

pitious position of blood vessels near the ONH region. We also investigated how well ONHV

correlates to OCT standard measurements, i.e. RNFL thickness and GCIPL thickness, using the

GEE analysis. We have found that ONHV correlates with RNFL thickness and GCIPL thickness

in MS, NMOSD but not in HC see Table 5.2, [Kadas et al., 2015]. In differentiation between

ON and non ON eyes, ONHV performed similarly to RNFL thickness and GCIPL thickness,

[Kadas et al., 2015]. RNFL thickness was measured using a 3.4 mm circular scan around the

ONH with the device’s standard protocol and segmentation algorithm with activated eye tracker

and the maximum number of averaging frames was tried to be achieved. GCIPL was derived by

semi-automated segmentation from macula centered scan comprising 61 slices (B-scans) focus-

ing the fovea centralis with a scanning angle of 30◦ × 25◦ and a resolution of 768 A-scans per

B-scan were acquired. The statistical analysis was performed with R version 3.1.2. Statistical
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TABLE 5.2: Correlations between ONHV and OCT standard measurements in

patients and in HC

ONHV

HC Patients

B p B p

RNFL thickness 0.00524 0.112 0.012506 p<0.001

GCIPL thickness 0.00942 0.073 0.02280 p<0.001

significance was established at p < 0.05 in all analyses. For all group comparison and correla-

tion of OCT parameters we performed GEE analyses with working correlation matrix structure

“exchangeable” accounting for inter-eye/intra-patient dependencies.

Development environment Algorithm development was done using Matlab R2011A with

Spline library (Mathworks, Germany) on Mac OS X (Apple, Cupertino, CA, USA, Intel Core

i5, 4GB memory). The algorithm requires 2.5 to 3 minutes for the whole computation, depend-

ing on the sub-volume size.
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FIGURE 5.4: A. Initial TPS fitted to the data with motion artifacts seen in Figure

5.3. B. Contours at 0 level of the derivatives of the initial TPS with the gradient

vectors. To illustrate how well TPS performs, the exact values (as black balls)

as well as each arrow leading from a smoothed value to the corresponding noisy

value are depicted in A.
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FIGURE 5.6: A. ILM surface before alignment. B. ILM surface after alignment.



128 Chapter 5. BMO points detection for ONH center and ONH volume computation

1

4

3

2

4

3

2

1

A B

3

1
y

z

x

y

FIGURE 5.7: Examples of different ONHs with their C-mode images. A.1. and

B.1. B-scans from 3D volumes, red arrows represent the BMO points. A.2-4.

B.2-4 C-mode images from different y positions in the volume, from left to right

projections from a thin layer: 2. at the ILM, 3. bellow the RPE, 4. at the RPE.
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FIGURE 5.8: A. C-mode image with the region used for applying the volume

reduction inside the red rectangle. B. and C. Two B-scans from the reduced

volume, B. outside the ONH region, C through the ONH. B.1., C.1. represent

the original gray values, B.2., C.2. represent the values obtained after applying

a wavelet filter, B.3., C.3. represent the values after RPE enhancement.
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FIGURE 5.9: A. Primitive tessellation operators, center and quadrant. B. OP of

level 1. C. 1-7 example of B-scan after applying SMF. Each number corresponds

to the OP numbers in B.
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FIGURE 5.10: B-scan from original sub-volume with BMO points (red arrows),

and final RPE detected surface.

FIGURE 5.11: B-scans with ILM (white line), and two perpendicular lines from

the detected BMO points to the ILM (blue lines).
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FIGURE 5.12: B-scans with ILM (white line), and two perpendicular lines from

the detected BMO points to the ILM (blue lines). Red arrows show the correct

position of the BMO points, that were misclassified by the algorithm.
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FIGURE 5.13: A. B-scan with BMO points and cup points, red crosses; the

lines define regions that will be used in computing D-G. B. C-mode image with

ONH center, red cross, blue circle represents the area of the cylinder. C. The

ONH volume between ILM and RPE lower boundary inside a cylinder with a

radius of 1.7 mm centered on the ONH. D. B-scan with the region used for the

computation of the total excavation volume defined as the sum of the excavation

volume and the cup volume. E. B-scan with the region used for the computation

of the cup volume. F. B-scan with the region used for the computation of the

excavation volume.
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FIGURE 5.14: The surface of the ILM is shown in case of a swollen ONH with

BMO points and ONH center detected by the BMO points detection algorithm

in magenta.
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FIGURE 5.15: The surface of the ILM is shown in case of an ONH with no

cup with BMO points and ONH center detected by the BMO points detection

algorithm in magenta.
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FIGURE 5.16: The surface of the ILM is shown in case of an ONH with small

cup with BMO points and ONH center detected by the BMO points detection

algorithm in magenta.
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FIGURE 5.17: The surface of the ILM is shown in case of an ONH with large

cup with BMO points and ONH center detected by the BMO points detection

algorithm in magenta.





Chapter 6

Discussion

6.1 Semi-automated tool for detection of blood vessel inner and

outer diameter in cSLO images

We have presented a semi-automated method to segment the inner and outer diameter of retinal

blood vessels in cSLO images. The main contribution of this algorithm consists in the integra-

tion of the central reflex light in a DG model. Compared to the MF response based methods

developed for the fundus photographs that use a steerable Gaussian profile model, our approach

was able to emphasize the vessels presenting this characteristic of the central reflex, leading to

a strong filter response of the vessel’s entire diameter. Although developed only for the purpose

of quantifying the vessels in a region in the close vicinity of the standard peripapillary ring of

3,4 mm in diameter, mainly because blood vessels at this region present less branching and

have a large diameter, our method has shown very good results, with an excellent ICC, and an

accurate segmentation of the outer diameter. The falsely detected outer boundaries occurred

especially in the case of low contrast small vessel labeled as unknown. In the case of the inner

boundary the detection failed where the contrast between the outer boundary and the inner one

was too low to create a strong response in the vessel profile. We did not further investigate this

method for the detection of the entire retinal vasculature because of the low response of our

developed filter in small vessels, where the central reflex is no longer present. In those cases

the MF approach would have provided a better result. To distinguish between the two cases,

with and without central reflex, one could apply an error estimation in fitting the DG profile in

a small window along the vessels. This would however increase the computational cost. The

proposed algorithm showed a substantial potential in clinical applications, as described in the
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study presented in Subsection 3.2.3, in which we investigated the CCSVI hypothesis in the reti-

nal vasculature. Our findings object a venous congestion as a possible disease mechanism in

MS since one would expect larger, dammed veins rather than smaller veins, as it was the case in

our study.

6.2 Detection of the entire retinal vasculature in cSLO

images

We have presented three approaches to detect curvilinear structures, and applied these ap-

proaches in the detection of the entire retinal vessel network in cSLO images. The first approach

adapted the proposed 2D Morlet filtering by [Soares et al., 2006] used for vessel segmentation

in fundus photographs. Although providing good results in detecting the vessel boundaries and

small vessels, it also shows responses arising from other linear structures, as cSLO, unlike fun-

dus photographs, present certain texture features, that simulates the course of the ganglion cell

axons. Also in this approach we have to account again for the central reflex that has the effect

that large vessels can be misleadingly treated by the algorithm as two parallel smaller ones. To

detect the large vessel inner and out diameter we made use of the second eigenvector of the

Hessian matrix at each pixel, at large scales which in our case were set between 3 and 7 pixels.

Notice that this computation had the effect of smoothing the vessel boundary giving a much

larger response than the boundary observed in the original image. Thus, although we apply an

extra normalization factor relative to the approximation of the diameter (2*scale) the response

still slightly over-estimates the boundary. Further investigations will be needed to establish the

influence on the vessel centerline and crossing points detection of this over-estimation, espe-

cially in the context of registration of follow-up images. In our second approach we reformulate

the vesselness filter defined by [Frangi et al., 1998]. This method was developed for computer

tomography angiography images, but it is applied in a wide variety of vessel segmentation al-

gorithms and detection of tubular objects in different modalities. Despite being one of the most

frequently used methods for detecting tubular structure in medical imaging as noted by [Olabar-

riaga et al., 2003], it is well known that the major drawback consists in the low response at vessel

junctions. Our vesselness measure is able to overcome this by imposing a measure that incorpo-

rates the vessel direction. This has the advantage that it shifts the focus from a local point to a
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more global one defined by the vessel segment direction. Although it detects less small vessels

compared to our first approach, it has the advantage of presenting less misidentified structures.

Our last approach uses the OOF filter response introduced by [Law and Chung, 2008] to derive

a measure based on the eigenvalues but also on the eigenvectors of the OOF. This extension

of the OOF filter aids the vesselness defined, to provide a strong response inside the vessel as

well as on the boundaries, and a low response at the non-vessel (background) areas, unlike the

OOF filter that focuses only on detecting the centerline of the vessel. Compared to the other two

approaches we notice that small vessels that have a weak contrast compared to the background

are not detected. Nevertheless this approach is capable to model the vessel profile especially

in vessels with a strong curvature and to distinguish between close vessels, because unlike the

Hessian template, the OOF one is localized around the vessel boundary.

6.3 RPE lower boundary segmentation for ONH volume

computation

We have developed an automatic segmentation approach for computing ONH volume and ONH

maximum height from 3D SDOCT scans that is robust and applicable in healthy, but most im-

portantly in swelled ONH. The main achievement of this method is the robust detection of the

RPE lower boundary. In the case of extreme swelling like in IIH data, RPE detection can be-

come extremely challenging. To our knowledge, direct ONH quantification as presented in our

approach [Kadas et al., 2012a] has never been investigated in this special case at the time of

publication. Our algorithm does not rely on the 3D contextual information, but rather performs

the computation using only the 2D information from single B-scans. Our decision in taking the

2D approach was based on the observation that information about the RPE lower boundary can

be missing especially in the cases of severe swelling in several B-scans, but also on the fact that

there is a strong variation in RPE gray values between B-scans due to poor light penetration

through the swelling, which would cause methods and feature definitions based on intensity

values to fail. However we successfully integrated our algorithm in a 3D setting, for the BMO

points detection method, see Chapter 5. From the clinical application point of view, quantifying

ONH edema in IIH is potentially important for diagnosis and especially for monitoring progres-

sion and treatment effectiveness. Our algorithm provided very good results when tested in a
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clinical study in IIH patients as well as HC and was able to detect pronounced and significant

differen-

ces between the groups [Kaufhold et al., 2012]. The discriminatory ability between untreated

patients and HC was very good, with only very few patients and controls overlapping. In con-

trast, control standard measurements using RNFL thickness did not show differences between

the groups.

These findings present several possibilities for using quantified ONH volume in practice.

OCT could aid in diagnosis of IIH, providing an easy tool to quantify ONH swelling in patients

with unclear symptoms. Automated 3D ONH assessment could also be useful for monitoring

therapeutic effects of IIH treatment or for quantifying disease progression.

Furthermore, our algorithm was applied in another important clinical study [Albrecht et al.,

2015] who investigated whether patients with moyamoya angiopathy without obvious retinal

pathologies such as retinal infarction or the congenital morning glory anomaly may have subtle

subclinical retinal changes. The main finding in the investigation was a pronounced reduction of

the ONHV (computed with our algorithm) in moyamoya angiopathy compared with HC. These

results were published in Neurology one of the most important neurology journals.

6.4 BMO points detection for ONH center and ONH volume

computation

We presented a fully automated BMO points detection algorithm that is tailored to detect ONH

features in very heterogeneous data in neurological disorders. As described in Section 5, we first

have to account in our algorithm for different artifacts that are mostly caused by the difficulties

in the acquisition process for certain patients with severe degree of disease. To this end we

developed criteria to discard erroneous data, in order to use as many datasets as possible.

Also we reformulated the TPS fitting method, by using a two-stage approach which removes

grid points that arise from motion artifacts in consecutive B-scans. TPS was introduced as a

preprocessing step for a 3D intraretinal segmentation algorithm by [Garvin et al., 2008]. In their

work, a 3D segmentation-based method that corrects motion artifacts by re-aligning the columns

of the image with respect to a smooth “reference” plane is described. This reference plane is

constructed by fitting a smoothing TPS to a surface segmented in a lower resolution. The small
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number of control points and the large regularization term used in the spline-fit process reduces

the dependence on the segmentation result, but the spline is not able to model the fast variations

seen along the z direction (the orientation axis of an 3D OCT scan are shown in Figure 2.13

B). A smaller regularization term would have provided a closer fit to the control points, but

this would have increased the dependence of the artifact correction on the segmentation result.

[Bhavna et al., 2014] improved the method presented by [Garvin et al., 2008] by addressing

the characteristic artifacts along each axis separately while retaining the overall 3D context.

This is done by incorporating a priori information regarding the different artifacts seen along

these two axial directions and correcting them using dual- stage thin-plate splines fitted to a

segmented surface. However, the application of these methods is restricted by the availability

of the orthogonal scans, which are not typically acquired clinically.

In our approach we used in the second stage a lager regularization term λ than in the previous

mentioned methods. Although a small regularization term and a coarser grid definition would

have reduced the sensitivity of the fitting to the displacement in the B-scans, it would have also

caused the resulting fitted surface to deviate form the natural scleral curvature of the retina,

inducing a surface that is no longer directly related to the analyzed data.

Note that previously developed methods presented in Section 5.1 focus on detecting the

BMO points, or the optic disc, in glaucoma patients. This disease, depending on the degree

of the atrophy of the ONH, is characterized by a strong excavation of the ONH which ex-

tends beyond the RPE surface. This important aspect was incorporated in all the previously

approaches in different ways. [Hu et al., 2010a] used a projection image from a thin layer at the

RPE/BM complex and applied a graph based approach to segment the BMO and cup from the

unwrapped image in polar coordinates. Although in this approach, cases with shallow cup were

addressed, by switching from a two-boundary to the single-boundary graph search method, our

data contained numerous examples of cases where BMO was visible in the B-scan but not on

the projected image. This would cause the single-boundary search to detect an underestimated

disc margin.

In another approach [Lee et al., 2010] incorporated the aspect of strong excavation of the

ONH for the calculation of local features for the cup and rim classification in OCT volume in a

k-NN classifier model. These features were not reproducible with our data.

[Bhavna et al., 2014] combined a graph-theoretic approach in the 3D SDOCT and a 2D
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projection image (C-mode image) from retinal layers by considering the BMO as a “hole” em-

bedded with multiple surrounding surfaces in order to detect the BMO points. This approach is

based on the same assumption of the existence of a clear defined cup.

Therefore caution should be taken when using projection images to detect the BMO as these,

as seen in our investigation, might not always provide the full information contained in the 3D

OCT. This aspect is similar to results described by [Reis et al., 2012] for fundus photographs

and 3D OCT data.

Thus, in contrast to the above mentioned methods, which either use only information from

2D images, or create a 2D projection image (C-mode image) from the 3D volume, our algorithm

is able to detect the BMO points in the 3D volume directly. The method presented in Chapter 5

does not require the segmentation of all the retinal layers, which often fails under the challenge

of retinal pathologies. It only makes use of the ILM, which separates the retina from the vitreous

and by such presents less difficulty in correctly detecting it, and the lower boundary of the RPE,

which was proven to be a stable parameter even in the case of pathological images [Strouthidis

et al., 2009a].

Because we detect the BMO points in the flattened volume, the Border tissue does not

interfere in the extraction of their correct position as mentioned in the method proposed by

[Bhavna et al., 2014].

Also note that we considerably reduce the computational costs, by subtracting a sub-volume

from the original 3D data based on an ellipse fitted to the ONH region detected at a very early

stage of our algorithm.

The last step in our BMO points detection algorithm consists of a modified grow-cut ap-

proach. It is known that the algorithm proposed by [Vezhnevets and Konouchine, 2005] con-

verges slowly, especially when applied to 3D medical images because it traces through the entire

image domain at each iteration [Zhu et al., 2014]. Compared to this approach, we were able to

reduce the computational time by using a priori information about the positions of voxels be-

longing to the RPE, as well as by redefining the strength function to depend on the distance

of unknown labeled voxels to the RPE voxels. Also we discarded voxels that were unlikely

to belong to the RPE from the iteration. An improvement to our method would be achieved by

considering an approximated formulation of the updating process presented in [Zhu et al., 2014]

that can be solved very efficiently with the Dijkstra algorithm.
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A major drawback of our method is the presence of blood vessels in the ONH region. Al-

though we are able to correctly detect BMO in several cases where the shadows created by the

blood vessel occur, by incorporating contextual textural feature in a 3D grow-cut approach, there

are still some cases in which the detection fails.





Chapter 7

Conclusion and Outlook

The overarching theme of the work presented here has been the development of automated

methods to segment and quantify structures in the retina from data of patients with neurological

disorders as well as HC. The methods could provide clinicians additional parameters for further

analysis and a better understanding of the disease course. The automated detection of structures

in these images is, however, far from trivial as the images are prone to speckle noise and often

show large artifacts caused by motion and acquisition errors. The presence of disease can also

cause low contrast in these images, making it difficult to identify structures of interest. We have

presented four algorithms to achieve this goal, and described their capabilities of overcoming

the challenges described in our data.

The semi-automated vessel boundary detection algorithm describes a method to extract ves-

sel inner and outer boundary in cSLO images. Although it detects these parameters only locally

at the close vicinity of the peripapillary ring, it is able to address the central reflex present in

cSLO images, by defining an appropriate profile model of the vessel. The proposed algorithm

showed a substantial potential in clinical applications, as presented in the clinical study with MS

and CIS data. To further investigate vessel characteristics in neurological disorders, by compri-

sing several other parameters like vessel distribution, fractal dimension, tortuosity, features often

used for detection of eye diseases, the segmentation of the whole blood vessel network would

be required. This aspect was not further addressed in our work, because the initial study con-

ducted showed no significant differences between MS patients and HC. However, in our second

algorithm we propose three different approaches to extract the entire vasculature. The main

motivation for this analysis arises from the need of detecting landmarks for the registration of

different ONH scans. Although still in a developing phase, we have shown the capabilities of the
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proposed methods in detecting the main retinal vessel branches. The vesselness response devel-

oped in the second, new Hessian based vesselness, and third approach, the extended OOF based

vesselness, could be further used in a fast marching setting, or minimal path method, for a better

vasculature segmentation result. The RPE lower boundary detection algorithm presents a robust

and accurate method to detect this boundary in 3D SDOCT scans centered on the ONH. The

RPE boundary is used as a reference surface for further ONH volume computation. Although

it uses 2D information only, this method has been shown to provide reliable results in HC, but

most importantly in difficult scans that present different degrees of ONH swelling. In these spe-

cial cases, methods developed for HC or patients with glaucoma occasionally fail to properly

detect this boundary. The development of our algorithm focuses now on studying follow-up data

from IIH patients and further improving the algorithm’s reliability in repeated measurements,

also in the analysis of the special case of ONH in the acute phase of ON, a highly interesting

topic for its potential clinical application, also presenting swelling as its hallmark. The BMO

points detection algorithm extends our RPE lower boundary extraction approach, in order to

segment BMO points, for ONH center and volume computation directly from the 3D volume.

We have presented several new approaches to achieve this goal. Our two stage TPS fitting is

able to account for strong motion artifacts. In addition the incorporation of texture analysis in

a 3D grow-cut setting provide our algorithm with the capability of detecting the BMO in most

of the cases where vessels in the ONH region obstruct the information of the RPE. The most

important aspect of our method is that it does not rely on the C-mode images, but on the 3D

information itself. We have shown that our algorithm is able to detect the BMO points in a large

variety of data, for atrophic, healthy and swelled ONH. The main disadvantage is represented

by the presence of blood vessels. To address this issue we intend to use the information from

the retinal vasculature in combination with the 3D volume to separately address the RPE re-

gion affected by the presence of vessels. One important future extension of this work will be

the identification of appropriate volumetric features that can potentially help in differentiating

between disorders, which the present work does not address. The best features may very well

be “regional” in nature (quadrant volumes, and regional shape parameters). Importantly, the

true 3D segmentation approach proposed in this work provides the flexibility to easily compute

such regional volumetric features for use in future studies, as seen from the parameters already

derived.
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We plan to further develop tools that enable us to determine morphometrics and their changes

in the ONH for HC, and patients with different neurological diseases. To achieve this goal we

want to establishes one-to-one correspondence between the ONH surfaces for different time

points within the data of the same subject. This is an important step in understanding first,

the variation of the ONH shape associated with age and gender, in the group of HC, unknown

to the present moment. Also, in a later stage, it would provide a modality of understanding

and monitoring disease progression in patients. To this end we plan to extend the BMO points

detection algorithm for ONH center and ONH volume computation presented in Chapter 5 to

create a 3D shape model of the ONH from 3D SDOCT data. Also we want to further develop

the entire vasculature algorithm presented in Section 3.3 to establish to best approach to extract

vessel crossings as landmarks for registration purposes. On basis of this 3D template we plan to

determine first, changes in the whole 3D measured volume, then identify specific topographic

features and local shape landmarks on the surface that represents the upper plane of the volume.

This will enable us to reveal clinically valuable information on the shape variation of the ONH.

In conclusion, our methods have proven their clinical applicability. The retinal structures

detected in this work have the potential of providing better insights for the clinicians in the

analysis of several neurological disorders.
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Zusammenfassung

In der Retina, die dem zentralen Nervensystem zugeordnet wird, finden sich viele Zell-

arten und Strukturen, die auch im Gehirn vorkommen. Daher spielt die Erkennung struktureller

Veränderungen der Retina eine wichtige Rolle in der Diagnose vieler neurologischer Erkrankun-

gen. In den letzten Jahren haben innovative optische Verfahren die Bildgebung am Auge opti-

miert und ermöglichen die Erkennung solcher retinaler Veränderungen. Besonders die optische

Kohärenztomographie hat sich als nützliches Bildgebungswerkzeug vor allem in der Augen-

heilkunde etabliert. OCT ist ein nicht-invasives Verfahren, welches in-vivo Aufnahmen von

biologischem Gewebe und damit dreidimensionale (3D) Tiefenscans der Retina ermöglicht.

Auf einen solchen 3D OCT Scan können 3D Modellierung und Detektionsmechanismen an-

wendet werden, um eine für den Anwender intuitivere Visualisierung und Quantifizierung der

Strukturen zu erstellen, ähnlich wie 3D Verfahren für die Auswertung von Magnetresonanzto-

mographie oder Computertomographieaufnahmen.

Derzeit wird OCT jedoch vor allem in der Diagnose und Quantifizierung ophthalmologi-

scher Erkrankungen der Netzhaut genutzt, die Geräte bieten nur begrenzte Analyseverfahren,

die sich für die Beurteilung der Veränderungen durch neurologische Erkrankungen eignen. Da-

her liegt der Fokus dieser Arbeit in der Entwicklung von neuen Segmentations und Analyse-

verfahren für die Quantifizierung zweier Bestandteile der Retina: Die retinalen Blutgefäße auf

zweidimensionalen Konfokalen Scanning Laser Ophthalmoskopaufnahmen (cSLO), und den

Sehnervenkopf (Optic nerve head, ONH) aus 3D OCT Volumenaufnahmen. Die Schwierigkeit

in der Entwicklung robuster und akkurater Methoden für die Erkennung dieser Strukturen liegt

in der Heterogenität der Daten, welche durch die natürliche anatomische Vielfalt, Artefakte

während der Aufnahme, besonders bei Patienten im Vergleich zu gesunden Kontrollen, und vor

allem wegen bestimmter struktureller Veränderungen im Krankheitsverlauf entsteht.

Wir präsentieren vier Ansätze für die Extrahierung von Eigenschaften der retinalen Vasku-

larisierung und des ONH in Multipler Sklerose, Neuromyelitis Optica Spektrum-erkrankungen

und idiopatisch erhöhtem Hirndruck. Die ersten beiden Ansätze konzentrieren sich auf die

Erkennung der Blutgefäße im SLO Bild. Wir stellen ein neues 2D Model des Gefäßprofils vor,

welches den auf diesen Aufnahmen sichtbaren Zentralreflex der Gefäße miteinbezieht, um so

den inneren und äußeren Gefäßdurchmesser zu quantifizieren. Darüber hinaus haben wir neue
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Filter für die Hervorhebung der Blutgefäße, basierend auf Morlet-Wavelet, dem Hesse-Tensor

und einem gerichteter Fluss-Ansatz, entwickelt und ihre Eignung für die korrekte Erkennung

von inneren und äußeren Gefäßrändern und Krümmung der Blutgefäße, auch in Verzweigun-

gen, geprüft. Für den ONH präsentieren wir einen robusten Ansatz für die Berechnung einer

Referenz-oberfläche zur Volumenberechnung bei Schwellung und Atrophie. Zudem präsen-

tieren wir einen neuen Algorithmus für die Erkennung des ONH Zentrums direkt im 3D Volu-

men. Die Grundidee der Methode ist die Nutzung von Informationen, die aus der Referenzober-

fläche gewonnen wurden, um die Berechnung auf ein Sub-volumen um den ONH zu reduzieren.

Darüber hinaus konnten wir mehrere Artefakte, die in unseren Daten zu finden waren, kor-

rigieren: Bewegungsartefakte wegen Augen- und/oder Kopfbewegungen durch Nutzung eines

modifizierten Thin Plate Spline Fittings, welches in der Lage ist die natürliche Krümmung der

Retina zu modellieren, und durch Blutgefäße entstandene Schattenartefakte durch Texturanalyse

mit einem Grow-cut Algorithmus.

Um die Effektivität unserer neuen Methoden zu zeigen, wurden sie in Studien mit ver-

schiedenen Patientengruppen sowie gesunden Kontrollen angewendet.
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