
Chapter 6

Direct Query Evaluation

The approximate query-matching model proposed in the previous chapter builds on the con-

cept of a query closure, which contains all query trees that can be derived from a user’s query

via transformation sequences. All query trees are embedded into the data tree, and for each

logical document, the query tree with the lowest embedding cost determines the score. Un-

fortunately, this naive query-evaluation method cannot be used in practice, because we can

create an infinite number of query trees only by inserting nodes.

In this chapter, we go beyond the naive approach and present an integrated, modular, and

performant algorithmic framework to solve the all-results problem and the best-n-results

problem (see Definitions 5.12 and 5.13 on page 62). Integrated means that the evaluation

of a query is based on a single query-execution plan. Modular means that arbitrary query-

execution plans can be assembled from a small set of operators. Performant means that all

results of a query can be found in polynomial — typically sublinear — time with respect to

the number of nodes in the data tree. The framework introduced in this chapter is in fact

more general: It can be used to find the images of the best query-tree embeddings into a

schema, which are then used as second-level queries to be executed against the data tree (see

Chapter 7).

The chapter is structured as follows: In the first section, we provide an overview of our query-

evaluation method. In Section 6.2, we introduce the expanded representation of a query, which

is a compact form of the query closure. The expanded representation is the starting point for

the construction of a query-execution plan. In Section 6.3, we define five cost-calculating set

operators; in Section 6.4, we show how they can be assembled to query-execution plans. We

prove the completeness and soundness of our approach in Section 6.5, and discuss techniques

to optimize the evaluation of a plan in Section 6.6. In Section 6.7, we analyze the upper

67



Chapter 6 Direct Query Evaluation

bounds for the space complexity of query-execution plans. Finally, in Section 6.8, we review

related work.

6.1 From the Semantics of a Query to its Evaluation: An Overview

The objectives of our query-evaluation method are twofold: First, we want to avoid the explicit

creation of query closures. Second, we want to overcome the principle that all transformed

query trees are independently embedded into the data tree.

To meet the first objective, we shift from the closure of a query to its expanded representation,

which is a tree that represents all query trees in the closure. To construct the expanded repre-

sentation, we make use of the fact that transformation sequences are ordered, and particularly

that insertions are the last operations in a sequence (see Definition 5.8 on page 61). Because

of this order, we can postpone the insertion of nodes, and create a tree that explicitly encodes

all permitted deletions, permutations, and value changes; but also implicitly represents all

permitted node insertions by means of “expandable” edges.

To meet the second objective, we propose query-execution plans. The structure of a plan

closely resembles the structure of the expanded query representation for which it is created.

However, all nodes in the expanded representation are replaced by operators: The selection

operator returns all data-tree nodes of a given type and value. The union and intersection

operators essentially perform standard operations on sets of data-tree nodes, but additionally

apply cost functions to the operand pairs. The join operator implements the evaluation of

“expandable” edges. It verifies whether pairs of data-tree nodes are connected by paths, and

calculates the “node distances” between them. The node distance is the total cost of all nodes

that must be inserted between two query-tree nodes in order to map the query-tree path to

a particular data-tree path.

During the evaluation of a query-execution plan, the lowest-cost embeddings for all logical

documents are computed in parallel. The structure of a plan implies a greedy strategy to

determine the lowest-cost embedding per document: Starting at the bottom-most plan oper-

ators and at the leaves of the documents, the optimal solutions (the lowest-cost embeddings)

for all subplans and subdocuments are computed. The optimal solutions for the subprob-

lems are then combined in the next step, in order to find the optimal solutions for a larger

subproblem. The result of the evaluation of a plan is a set of node-cost tuples, where each

tuple represents the root of a logical document and the cost of the lowest-cost query em-

68



6.2 The Expanded Representation of a Query

closure expanded representation

bottom−up greedy
evaluation of the plan

execution plan

theoretical model practical approach

query

evaluation method

transformations
representation of

embed each transformed
query tree into the data tree

Figure 6.1: Relationships between the semantics of approXQL and the evaluation of a query.

bedding. Figure 6.1 summarizes the relationships between the approXQL semantics and the

query-evaluation method proposed in this chapter.

6.2 The Expanded Representation of a Query

An expanded query representation is a tree that represents the closure of a query. It explicitly

encodes all deletions, permutations, and value changes, and implicitly represents all insertions.

We first give the definition of an expanded query representation, and then introduce the rules

that map a query to its expanded representation.

Definition 6.1 (Expanded query representation) An expanded query representation is

a rooted tree TE = (N,E, r, op, type, value, pred,mod, valchg, delcost, transcost), where N is a

set of nodes, E ⊆ (N × N) is a set of edges, r is the root of TE, and

op : N → { s,∧,∨}, value : N → D∗, mod : N → M , delcost : N → R+ ,

type : N → T , pred : N → P ∗, valchg : N → 2D∗×R+
, transcost : E → R+

are functions, where T is a finite set of types, P ∗ =
⋃

(D,P )∈T P is the union of predicates

in T , D∗ =
⋃

(D,P )∈T D is the union of domains in T , M = { insres, insrel, delres, valres } is

a set of modifiers, and R+ is the set of non-negative real numbers. All nodes uE ∈ N with

op(uE) = s have at most one child; all other nodes in N have two children. The functions

type, value, pred, mod, valchg, and delcost are defined only for nodes uE ∈ N with op(uE) = s.

We call a node uE ∈ N with op(uE) = s an s-node (selection node), with op(uE) = ∧ a

∧-node (conjunction node), and with op(uE) = ∨ a ∨-node (disjunction node). The nodes

have the following semantics:

69



Chapter 6 Direct Query Evaluation

s-nodes represent selectors of the original query. An s-node uE has the same type, value, pred-

icate, and modifiers as the corresponding query selector (functions type(uE), value(uE),

pred(uE), and mod(uE)). It is annotated with a set of value-cost pairs (function

valchg(uE)) consisting of all alternative values for value(uE) together with the value-

change costs. The function delcost(uE) returns the deletion cost of the query selector

represented by uE .

∧-nodes represent “and” operators in the original query.

∨-nodes have two functions: First, they represent “or” operators in the query. Second, they

represent deletions and permutations. In the latter case, one operand of a ∨-node uE is

the root of the original subquery, and the other is the root vE of the modified subquery.

The edge leading to the second operand is annotated with the deletion or permutation

cost, respectively (function transcost(uE , vE)).

The children of a node are ordered. We write child(uE) to refer to the child of an s-node uE ,

and child1(uE), child2(uE) to refer to the two operand nodes of a ∧-node or a ∨-node uE . A

node vE is called an s-child of uE if vE is an s-node and there is a path from uE to vE such

that all other nodes on that path are ∧-nodes or ∨-nodes. Then, uE is the s-parent of vE .

Figure 6.2 on the next page shows an example of an expanded query representation. For sim-

plicity, we do not show the encoding of permutations. We also omit all types and predicates,

all zero costs, and all empty modifier sets. The top-level node represents the cd selector of

the original query and its alternative values dvd and mc, which have the costs 6 and 4, respec-

tively. In this example, each ∨-node represents an alternative between keeping and deleting

an inner node. For instance, the edge to the right operand of the left ∨-node leads to a subtree

without a title node. It is annotated with the deletion cost 5 defined for title nodes. All

leaves may be deleted, and are therefore annotated with deletion costs (8 for piano, 6 for

concerto, and 11 for rachmaninov).

An edge leading to an s-node can be “relaxed”: It represents an arbitrary number of nodes

that can be inserted between the s-node and its s-parent. The actual number of inserted nodes

is implicit; we show in Chapter 8 how the necessary number of insertions can be determined

from the data tree. The function mod controls the relaxation: If the returned set contains the

symbol insres, then insertions are forbidden. This symbol is returned for all nodes representing

query selectors for which insert restrictions are defined (see Section 3.2.1). If insrel is in the

returned set, then an insert relaxation is specified, which means that insertions impose no

costs.

70



6.2 The Expanded Representation of a Query

s
piano

s
concerto

(sonata,3)

s

s
piano

s

s

s s

scd
(dvd,6),(mc,4)

concerto
(sonata,3)

title
(category,4)

68 8 6

5

composer
(performer,4)

rachmaninov

9

11
rachmaninov

{ insrel }

Figure 6.2: Expanded representation for the query
cd[title["piano" and "concerto"] and *composer/"rachmaninov"],
where the following transformations are allowed: deletions of title (cost 5),
composer (cost 9), piano (cost 8), concerto (cost 6), and rachmaninov
(cost 11); value changes of cd to dvd (cost 6) or mc (cost 4), title to
category (cost 4), composer to performer (cost 4), and concerto to sonata
(cost 3); arbitrary insertions.

Each query tree in the closure of a query can be derived from the expanded representation by

traversing the representation top-down and by accumulating the costs. Figure 6.3 depicts four

query trees included in the expanded query representation shown in Figure 6.2. A number

assigned to a node represents the embedding cost of the subtree rooted at this node. The left

query tree can be derived from the expanded query representation as follows: Initialize a cost

accumulator c. Start at the top-level node in the expanded query representation. Choose

the value dvd with cost 6. Choose the left child of the top-level ∧-node and follow the left

child of the subsequent ∨-node to the title node. Add the value-change cost 4 of category

to c. Proceed to the left child of the lower-left ∧-node and add the deletion cost 8 to c.

Proceed to the right child of the ∧-node and add the value-change cost 3 belonging to sonata

to c. Continue with the right child of the top-level ∧-node and follow the right child of the

∨-node. Add the deletion cost 9 to c. Insert a node with type struct and value review to the

query tree, and add the insertion cost 1 to c. The embedding cost of the query tree is 31

(= 6 + 4 + 8 + 3 + 9 + 1).

dvd

review15

sonata
3

1

rachmaninov
0

31

title

0
piano concerto

4performer

8mc

0 0
rachmaninov

{ insrel }
0

rachmaninov

cd 25

3 0
sonata

34dvd

0
rachmaninov

category

Figure 6.3: Examples of transformed query trees included in the expanded query representa-
tion shown in Figure 6.2.

In the following subsections, we describe the construction of an expanded query representation

in detail. We first describe the mapping of a query to the “basic form” of its expanded

71



Chapter 6 Direct Query Evaluation

representation. Next, we show the encoding of transformations following the order

deletions → permutations → value changes.

Because the encoding of transformations follows the order in which transformations may be

applied according to Definition 5.8 on page 61, it is guaranteed that all trees in the closure can

be derived from the expanded representation. Note that all encoding steps can be integrated

in a single algorithm. We separate the steps to make the construction process explicit.

6.2.1 Constructing the Basic Form of an Expanded Query Representation

The basic form of an expanded query representation models both the hierarchical relationships

in the query and the logical relationships between subqueries at the same hierarchy level.

Because the inter-subquery relationships may be specified by arbitrary complex expressions,

we adapt the well-known concept of a parse tree [ASU86] to define the operator tree of an

expression:

Definition 6.2 (Operator tree) Let F = expr(Q1, Q2, . . . , Qm) be a Boolean formula of

queries. Let T be the parse tree of F , constructed by treating the queries Q1, Q2, . . . , Qm as

literals. The operator tree of F is derived from T by substituting each “and” by a ∧-node,

each “or” by a ∨-node, and each Qi literal by a placeholder s-node.

Using this definition, Algorithm 6.1 on the next page creates the basic form of an expanded

query representation. The algorithm visits the subqueries of a query top-down. It creates an

s-node for each selector, and uses it as the root of the operator tree created for the expression of

immediate subqueries. We use a simplified notation for the algorithm: TE is empty (Line 1) if

its node and edge sets are empty, and if its functions are undefined. Defining mod(uE) (Line 5)

means adding a mapping of uE to the subset of M that reflects all restrictions/relaxations

defined for the selector s. Adding a subtree T to uE (Line 7) means merging the node and

edge sets of TE and T , and adding an edge from uE to the root of T . Similarly, substituting a

placeholder node vE by TEi (Line 10) means substituting vE by the root of TE, and merging

the sets and functions of TE and TEi .

6.2.2 Encoding Deletions

A deletion of a node vE is encoded into an expanded query representation by duplicating

the subtree rooted at the child of vE , and connecting the alternative subtrees by a ∨-node.

72



6.2 The Expanded Representation of a Query

Algorithm 6.1 creates the basic form of an expanded query representation.

function create basic representation(Q)

params: Q – a query,
returns: the basic form of the expanded representation TE of Q.

1: Let s be the root selector of Q
2: Create an empty expanded query representation TE

3: Create an s-node uE and add it as root to TE

4: Define type(uE), value(uE), and pred(uE) according to the characteristics of s
5: Define mod(uE) according to the restrictions/relaxations defined for s
6: if Q = s[expr(Q1, Q2, . . . , Qm)] then /* Q has subqueries */
7: Create the operator tree of expr(Q1, Q2, . . . , Qm) and add it as subtree to uE

8: for i := 1 to m do
9: TEi := create basic representation(Qi)
10: Substitute the placeholder s-node for Qi by TEi

11: return TE

Algorithm 6.2 on the following page performs the encoding of all permitted deletions. Its input

is the basic form of an expanded query representation TE constructed by Algorithm 6.1 and a

function costs that defines the deletion costs for the s-nodes in TE . This function implements

one of the cost-assignment methods discussed in Section 5.4. The algorithm iterates through

all s-nodes for which the deletion is permitted (Line 1). For each inner node, it creates

a ∨-node that connects the node to delete with a copy of the subtree rooted at its child

(Lines 3–6). “Create a ∨-node xE” means adding a new node to the set N of TE . “Create a

copy T ′
E [w′

E ] of TE[wE ]” means adding nodes to N and edges to E such that together they

have the same structure as TE [uE ]. It also means that the functions of TE are extended

such that they return the same values for the corresponding nodes and edges in T ′
E[w′

E ] and

TE [wE ]. The deletion cost is assigned to the edge between the ∨-node and the child of the

node being deleted (Line 7). If the current node is a leaf, then the algorithm simply assigns

the deletion cost to that node (Line 9).

6.2.3 Encoding Permutations

A deletion is a simple modification of a query tree that concerns a single node. A permutation,

in contrast, does not only involve two nodes, but also changes the structures of the subtrees

rooted at the permuted nodes. The encoding of a permutation into an expanded query

representation is therefore slightly more complicated. We first discuss which parts of the

expanded representation are affected by a permutation, afterwards, we present the algorithm

that encodes permutations.

73



Chapter 6 Direct Query Evaluation

Algorithm 6.2 encodes deletions into an expanded query representation.

input: TE = (N,E, r, op, type, value, pred,mod, valchg, delcost, transcost),
costs : N → R+ – a cost-assignment function,

output: TE with encoded deletions.

1: for each s-node vE ∈ N such that vE 6= r and delres /∈ mod(vE) do
2: if vE has a child then
3: Let uE be the parent and wE be the child of vE

4: Create a copy T ′
E[w′

E ] of TE[wE ]
5: Create a ∨-node xE

6: E := (E \ { (uE , vE }) ∪ { (uE , xE), (xE , vE), (xE , w′
E) }

7: transcost(xE , w′
E) := costs(vE)

8: else /* vE is a leaf */
9: delcost(vE) := costs(vE)

A permutation is defined for pairs of query-tree nodes that have a parent-child relationship

and have certain types and values. Even if two parent-child query selectors have the desired

values, the permutation is applicable only for some of the query trees in the closure of the

query: It is possible that one or both nodes to permute do not appear in the tree, because

they are part of another “or” branch in the query, or because one or both nodes have been

deleted. Consider the query

cd[title/"piano" and (composer/"rachmaninov" or performer/"ashkenazy")],

and assume that cd and composer nodes may be permuted with cost 9, but no other trans-

formations are defined. Figure 6.4 shows the basic form of the expanded representation of

the query. The two query trees depicted in Figure 6.5 can be derived from the expanded

representation. Clearly, the permutation can only be applied to the upper tree, yielding the

transformed tree shown in Figure 6.6.

s

s

s s

s

s

title

piano ashkenazy

performercomposer

rachmaninov

s

cd

Figure 6.4: The basic form of an
expanded query rep-
resentation.

title

title

piano

cd

piano

cd

composer

rachmaninov

performer

ashkenazy

Figure 6.5: Two included
query trees.

title

rachmaninovcd

piano

composer

Figure 6.6: A permuted
query tree.

How can a permuted tree be directly derived from an expanded representation? The path

composer-rachmaninov shown in Figure 6.6 can be instantiated from the corresponding path

74



6.2 The Expanded Representation of a Query

in the expanded representation shown in Figure 6.4. The subtree rooted at the cd node in

Figure 6.6 can be derived from the cd subtree of the expanded representation by ignoring

(i) the composer subtree (which gets a new position in the permuted tree) and (ii) the

performer subtree (which is an alternative to the composer subtree and is not involved in

the permutation).

The rule used in the example can be generalized in a straightforward way: Let uE and vE be

two s-nodes in an expanded representation such that vE is an s-child of uE . Assume that uE

and vE are allowed to be permuted. If we want to construct all query subtrees rooted at a

node derived from uE, but without a subtree derived from vE, then we have to ignore (i) the

subtree rooted at vE , and (ii) all subtrees rooted at ∨-nodes on the path between uE and vE .

Algorithm 6.3 on the following page makes use of this rule to encode all allowed permutations

into an expanded query representation. Its input is an expanded query representation TE

constructed by Algorithm 6.2, and the function costs that defines the permutation costs for

pairs of s-nodes in TE . The block within the outer loop at Line 1 consists of two parts:

In the first part (Lines 2–13), the algorithm creates the standard structure for representing

a permutation. In the second part (Lines 14–21), it inspects the operators on the path

between the permuted nodes, and creates edges connecting all subtrees that represent parts

of permuted subtrees. In the following, we use an example to explain the algorithm in more

detail.

Consider the basic form of an expanded query representation shown in Figure 6.4 on the

preceding page, and assume that the permutation of cd and composer with cost 9 is permitted.

This permutation is selected at Line 1 of Algorithm 6.3 and encoded at Lines 2–21. The result

of the encoding is the expanded representation depicted in Figure 6.7 on page 77. The nodes

in the figure are annotated with the symbols used in the algorithm. We say that uE is the

upper node of the permutation, and vE is the lower node. First, the algorithm makes copies

of the nodes to be permuted (Line 2). Next, it creates a ∨-node xE , which models the

alternative between the original subtree and the subtree representing the permuted parts of

the query trees (Line 3). Having created the three nodes, the algorithm adds edges between

them and the original tree (Line 4). The edge from the ∨-node xE to the alternative subtree

is annotated with the permutation cost 9 (Line 5). If the upper node uE has a parent pE (not

the case in our example), then the algorithm replaces the edge from pE to uE by an edge to

the created ∨-node (Lines 6 and 7). At Lines 8–13, the algorithm connects the copies of the

permuted nodes in reversed order. If the lower node vE has a subtree, then it is duplicated,

and an additional ∧-node is necessary to add the copy of the subtree to v′E . At Lines 14–21,

the algorithm follows the path from the upper node uE to the lower node vE . Each ∧-node

75



Chapter 6 Direct Query Evaluation

Algorithm 6.3 encodes permutations into an expanded query representation.

input: TE = (N,E, r, op, type, value, pred,mod, valchg, delcost, transcost),
costs : N × N → R+ – a cost-assignment function,

output: TE with encoded permutations.

1: for each pair of s-nodes uE, vE ∈ N for which a permutation is defined do
2: Create a copy u′

E of uE and a copy v′E of vE

3: Create a ∨-node
4: E := E ∪ { (xE , uE), (xE , v′E) }
5: transcost(xE , v′E) := costs(uE , vE)
6: if uE has a parent pE then
7: E := (E \ { (pE , uE) }) ∪ { (pE , xE) }
8: if vE has a child wE then
9: Create a copy T ′

E[w′
E ] of TE[wE ]

10: Create a ∧-node yE

11: E := E ∪ { (v′E , yE), (yE , w′
E), (yE , u′

E) }
12: else /* vE is a leaf */
13: E := E ∪ { (v′E , u′

E) }
14: for each ∧-node qE on the path from uE to vE do
15: Let rE be the child of qE not on the traversed path
16: Create a copy T ′

E[r′E ] of TE [rE ]
17: if u′

E has a child s′E then
18: Create a ∧-node zE

19: E := (E \ { (u′
E , s′E) }) ∪ { (u′

E , zE), (zE , r′E), (zE , s′E) }
20: else
21: E := E ∪ { (u′

E , r′E) }

76



6.3 Cost-Calculating Set Operations

Er

xE

9
Eu

qE

wE

vE

u’E

Ev’

r’E

yE

w’E

s

s

s

s s

s

s

ss

title

piano

s

cd

composer

rachmaninov ashkenazy

sperformer

rachmaninov

title

piano

s

cd

composer

Figure 6.7: The expanded query representation depicted in Figure 6.4 on page 74 with the
encoded permutation of cd and composer. The symbols assigned to the nodes
refer to Algorithm 6.3 on the facing page.

on this path connects subtrees that represent parts of permuted query trees. Copies of these

subtrees must be added to the copy u′
E of the upper node. In our example, the algorithm

visits the ∧-node qE . The title path starting at rE is part of all permuted trees and must

be added to u′
E. If more than one ∧-node exists (this is not the case in the example), the

algorithm creates ∧-nodes to connect the edges to the subtrees (Lines 19–21).

6.2.4 Encoding Value Changes

The encoding of value changes is the last step in the building process of an expanded query

representation. For each s-node uE of the tree constructed by Algorithm 6.3, the function

valchg(uE) is initialized with a set of value-cost pairs that represent all possible value changes

of the node. We omit the algorithm for this trivial operation.

6.3 Cost-Calculating Set Operations

We introduce five operators that are the basic building blocks of query-execution plans. With

these operators, we establish the connection between the expanded representation of a query

(as proposed in the previous section) and an execution plan for that query, which is the topic

of the next section.

6.3.1 Node-Cost Tuples

All operators process sets of data-tree nodes and calculate (partial) embedding costs. To

relate data-tree nodes to embedding costs, we define node-cost tuples:

77



Chapter 6 Direct Query Evaluation

Definition 6.3 (Node-cost tuple) A node-cost tuple is a structure (uD, c, c̃), where uD is

a data-tree node and c, c̃ are costs (non-negative real numbers).

We say that c is the primary cost of uD and c̃ is the backup cost of c. The node uD is the

match of a certain query selector; c is an intermediate cost computed during the evaluation

of a query-execution plan. After the evaluation of the plan is completed, each node-cost tuple

(uD, c, c̃) in the result set represents the root uD of a result of the query and the approximate

query-matching distance c between the query and this result (see Definition 5.11 on page 62).

The backup cost is necessary for the correct cost calculation in intersection operators (see

below). To access the nodes in a set of node-cost tuples, we define the node set of a set of

node-cost tuples:

Definition 6.4 (Node set) Let S be a set of node-cost tuples. Its node set is defined as

nodes(S) = {uD | (uD, c, c̃) ∈ S }.

6.3.2 Selection

The selection operator σct [τ, φ, α] TD creates a new set of node-cost tuples consisting of all

nodes in TD that have type τ or a subtype of τ , and that fulfill the selection predicate φ

with respect to value α. The transformation cost ct is an additional argument not only for

the selection, but also for all other operators. It is used to pass the cost of a deletion, a

permutation, or a value change to the operator. If ct is zero, then we omit it in both the

textual and graphical representations of an operator. In the case of the selection operator, ct

initializes both the primary and backup costs of the created tuple.

Definition 6.5 (Selection) Let τ = (D,P ) be a type, φ ∈ P be a predicate, α ∈ D be a

value, ct be a transformation cost, and TD = (ND, ED, rD, typeD, valueD) be a data tree. The

selection of node-cost tuples from TD is defined as

σct [τ, φ, α] TD = { (uD, ct, ct) | uD ∈ ND ∧ τ � typeD(uD) ∧ φ(α, valueD(uD)) }.

Consider a selection with the parameters τ = integer = (I, {=, <,≤, >,≥}), φ =≤, and

α = 2000. A data-tree node uD is inserted into the result set if (integer � typeD(uD)) ∧
(2000 ≤ valueD(uD)) holds.

78



6.3 Cost-Calculating Set Operations

We use a simplified representation for selections in graphical query-execution plans if the type

is clear from the context, and if the predicate tests for equality. For example, the operator

σ title symbolizes the selection of a set representing all nodes that have type struct and whose

value is equal to title.

6.3.3 Join and Outerjoin

The join operator S1 "b ctS2 selects all nodes in S1 that have descendants in S2. More precisely,

it inserts a node-cost tuple (uD, c, c̃) into the result set if there is a tuple (uD, c1, c̃1) ∈ S1, and

if there is a tuple (vD, c2, c̃2) ∈ S2 such that vD is a descendant of uD. If only one descendant

of uD exists in S2, then the cost c is the sum of the cost c1 assigned to the ancestor node, the

cost c2 assigned to the descendant node, the transformation cost ct, and the node distance

between uD and vD.

Definition 6.6 (Node distance) The distance between two nodes uD and vD, denoted by

nodedist(uD, vD), is the sum of the insertion costs of all nodes on the path between uD and vD

(excluding uD and vD). If no path between uD and vD exists, then the distance is infinite.

The node distance corresponds to the total cost of inserting nodes between two query-tree

nodes in our theoretical model. However, the join operator does not insert the nodes explicitly,

but rather checks how many insertions would be necessary in order to transform a part of a

query tree so that it can be mapped to the path between the data-tree nodes uD and vD.

Often, uD has more than one descendant in S2. In this case, c is the lowest cost among the

costs calculated for all descendants of uD. In view of our theoretical model, this corresponds

to the selection of the lowest-cost query subtree that can be embedded into the data subtree

rooted at uD, presumed that all costs in S2 are minimal. We discuss the propagation of

minimal costs through nested operators in Section 6.4.

Definition 6.7 (Join) Let S1 and S2 be sets of node-cost tuples and ct be a transformation

cost. The join between the ancestor set S1 and the descendant set S2 is defined as

S1 "b ctS2 = { (uD, ct + c1 + cmin, c̃1) | (uD, c1, c̃1) ∈ S1 ∧ (vD, c2, c̃2) ∈ S2 ∧ uD ; vD },

where cmin = min{ c2 + nodedist(uD, vD) | (vD, c2, c̃2) ∈ S2 ∧ uD ; vD }.

The result set of a join contains only the tuples from S1 that have descendants in S2. In

contrast, the outerjoin operator S1 "b ct
cd

S2 inserts all tuples from S1 into the result set,

79



Chapter 6 Direct Query Evaluation

independently of whether they have descendants in S2 or not. The cost cd passed to the

outerjoin operator is the deletion cost defined for the nodes in S2. If no descendant for a

particular node uD exists, or if cd is lower than the embedding cost c2 of vD plus the node

distance between uD and vD, then the operator adds cd to the cost of the created tuple.

Definition 6.8 (Outerjoin) Let S1 and S2 be sets of node-cost tuples, ct be a transformation

cost, and ct be a deletion cost. The outerjoin between S1 and S2 is defined as

S1 "b ct
cd

S2 = { (uD, ct + c1 + cmin, c̃1) | (uD, c1, c̃1) ∈ S1 },

where cmin = min(cd,min{ c2 + nodedist(uD, vD) | (vD, c2, c̃2) ∈ S2 ∧ uD ; vD }).

If S2 stores the matches of a query selector for which an insertion restriction or relaxation

is defined, then the cost calculation of the two join operators is modified. We describe the

modifications informally: An insertion restriction, represented by the annotation insres of the

s-node created for the selector, forbids the insertion of nodes between the nodes in S1 and

in S2. The modified join and outerjoin operators discard all ancestor-descendant pairs uD, vD

for which nodedist(uD, vD) > 0 holds. An insertion relaxation modifies the function nodedist.

For each pair of ancestor-descendant nodes, the function returns a zero cost.

6.3.4 Union and Intersection

The union operator S1 tct S2 creates the union of the node-cost tuples in the sets S1 and S2.

If a node uD appears in only one operand set, say (uD, c1, c̃1) ∈ S1, then the cost calculated

for the resulting node-cost tuple is the sum of c1 and the transformation cost ct. If a node is

in both S1 and S2, then the minimum of the operand cost is chosen and increased by ct.

Definition 6.9 (Union) Let S1 and S2 be sets of node-cost tuples, and ct be a transformation

cost. The union between S1 and S2 is defined as

S1 tct S2 = { (uD , ct + c1, c̃1) | (uD, c1, c̃1) ∈ S1 ∪ S2 ∧ @(uD, c2, c̃2) ∈ S1 ∪ S2 : c2 < c1 }.

Note that the backup costs of corresponding operands are equal if the union operator is used

in query-execution plans (the backup costs represent the same primary cost propagated along

different paths). Therefore, if both operands exist, then the backup cost of the first one is

used.

80



6.3 Cost-Calculating Set Operations

The intersection operator S1 uct S2 creates a set of all tuples (uD, c, c̃) such that uD appears

in both operand sets. The cost c is the sum of the costs assigned to the corresponding nodes

plus ct.

Definition 6.10 (Intersection) Let S1 and S2 be sets of node-cost tuples and ct be a trans-

formation cost. The intersection between S1 and S2 is defined as

S1 uct S2 = { (uD, ct + c1 + c2 − c̃1, c̃1) | (uD, c1, c̃1) ∈ S1 ∧ (uD, c2, c̃2) ∈ S2 }.

Again, the backup costs c̃1, c̃2 of the corresponding operands are required to be equal. They

are initialized by selections, and store the summand common to the primary costs c1, c2. The

subtraction of c̃1 filters out this common summand.

6.3.5 Operator Equivalences

In this subsection, we investigate equivalences between operators. These equivalences are

useful for query optimization; they are also important to show that a query can be evaluated

without the creation of its disjunctive normal form. The operator equivalences are listed in

the following lemma.

Lemma 6.1 (Operator equivalences) The following equivalences for operators hold:

S1 uc S2 = S2 uc S1 (6.1)

S1 tc S2 = S2 tc S1 (6.2)

S1 uca (S2 ucb S3) = (S1 uca S2) ucb S3 (6.3)

S1 tca (S2 tcb S3) = (S1 tca S2) tcb S3 (6.4)

S1 uca (S2 tcb S3) = (S1 u0 S2) tcc (S1 u0 S3), where ca + cb = cc (6.5)

S1 "b ca(S2 tcb S3) = (S1 "b 0S2) tcc (S1 "b 0S3), where ca + cb = cc (6.6)

(S1 "b caS2) "b cbS3 = (S1 "b ccS3) "b cdS2, where ca + cb = cc + cd (6.7)

If ∀(uD, c1, c̃1) ∈ S1 : c1 = c̃1, then the following equivalences hold in addition:

S1 tca (S2 u0 S3) = (S1 tcb S2) ucc (S1 tcd S3), where ca = cb + cc + cd (6.8)

(S1 "b caS2) "b cbS3 = (S1 "b ccS2) ucd (S1 "b ceS3), where ca + cb = cc + cd + ce (6.9)

If further nodes(S1) ⊇ nodes(S3), then the following equivalence holds in addition:

(S1 "b caS2) ucb S3 = S3 "b ccS2, where ca + cb = cc (6.10)

81



Chapter 6 Direct Query Evaluation

Proof: Equivalences 6.1–6.4 hold because “+” and “min” are commutative and associative.

Equivalence 6.5: Both sides select the same set of nodes because

nodes(S1) ∩ (nodes(S2) ∪ nodes(S3)) = (nodes(S1) ∩ nodes(S2)) ∪ (nodes(S1) ∩ nodes(S3))

holds. The intersection operator adds the costs of corresponding operands; the union selects

the minimum. For cost calculation, three cases are possible: First, a node appears in S1 with

cost c1 and in S2 with cost c2, but not in S3. On the left side of the equation, the union passes

(uD, c2+cb, c̃2) to the intersection operator, which calculates c1+ca+c2+cb− c̃1. On the right

equation side, the right intersection fails, and the left intersection calculates c1 + c2 − c̃1. The

union adds cc to this sum. Because ca +cb = cc, it holds c1+ca +c2 +cb− c̃1 = c1 +c2− c̃1 +cc.

Second, the roles of S2 and S3 are reversed, and the same argumentation holds. Third,

(uD, c3, c̃3) ∈ S3 additionally holds. The left side calculates c1 + ca +min(c2, c3)+ cb− c̃1, and

the right side calculates min(c1 + c2 − c̃1, c1 + c3 − c̃1) + cc. The equivalence holds because

x + min(y, z) = min(x + y, x + z) holds for all values of x, y, z.

Equivalence 6.6: Consider the left side of the equation. A node uD in S1 is inserted into the

result set if and only if it has descendants in either S2 or S3. The same holds at the right side:

uD is in the result set of S1 "b S2 if and only if it has a descendant in S2. It is in the result set

of S1 "b S3 if and only if it has a descendant in S3. It is in the final result set if and only if it is

in the result sets of S1 "b S2 or S1 "b S3. For cost calculation, four cases are possible: First, uD

has descendants in S2, but not in S3. Let c2 be the cost of the lowest-cost descendant vD of uD

in S2. The left side calculates ca + c1 + (cb + c2) + nodedist(uD, vD); the right side calculates

cc + (0 + c1 + c2 + nodedist(uD, vD)). Because ca + cb = cc holds, both sides are equivalent.

Second, the roles of S2 and S3 are reversed, and the same argumentation holds. Third, uD has

descendants in both S2 and S3, and the same node is the lowest-cost descendant of uD in both

sets. Let vD be this node and let c2 and c3 be its costs in S2 and S3, respectively. The left side

calculates ca + c1 +(cb +min(c2, c3))+nodedist(uD, vD); the right side calculates cc +min(0+

c1 + c2 + nodedist(uD, vD), 0 + c1 + c3 + nodedist(uD, vD)). Both sides are equivalent. Fourth,

uD has descendants in both S2 and S3, but the lowest-cost descendants of uD are different

nodes. Let vD, wD be the lowest-cost descendants of uD in S2, S3 with costs c2, c3. The left

side calculates ca +c1 +min((cb +c2)+nodedist(uD, vD), (cb +c3)+nodedist(uD, wD)); and the

right side calculates cc + min(0 + c1 + c2 + nodedist(uD, vD), 0 + c1 + c3 + nodedist(uD, wD)).

Both sides are equivalent.

Equivalence 6.7: The innermost join on the left equation side inserts a node-cost tuple

(uD, c1, c̃1) ∈ S1 into the result set if and only if uD has a descendant in S2. The outer-

most join inserts uD into the final result set if and only if it also has descendants in S3. A

82



6.3 Cost-Calculating Set Operations

sequence of such descendant tests can be ordered arbitrarily. Let vD be the lowest-cost de-

scendant of uD in S2 with cost c2, and let wD be the lowest-cost descendant of uD in S3 with

cost c3. The left side calculates (ca + c1 + c2 +nodedist(uD, vD))+ cb + c3 +nodedist(uD, wD),

and the right side calculates (cc + c1 + c3 + nodedist(uD, wD)) + cd + c2 + nodedist(uD, vD).

Because ca + cb = cc + cd holds by definition, both sides are equivalent.

Equivalence 6.8: Both sides select the same set of nodes because

nodes(S1) ∪ (nodes(S2) ∩ nodes(S3)) = (nodes(S1) ∪ nodes(S2)) ∩ (nodes(S1) ∪ nodes(S3))

holds. For cost calculation, four cases are possible: First, a node appears in S1 with cost c1,

but not in S2 and S3. The left side calculates c1+ca and the right side calculates c1+cb+cc+cd.

Both sides are equivalent by definition. Second, a node is in S1 with cost c1 and in S2 with

cost c2, but not in S3. On the left side the intersection fails and the resulting cost is c1 + ca.

On the right side, the unions calculate c1 + cb and c1 + cd as primary cost and c̃1 as backup

cost, respectively. The following intersection calculates c1 + cb + c1 + cd − c̃1 + cc. Because by

assumption c1 = c̃1 and ca = cb + cc + cd, both sides are equal. Third, the roles of S2 and S3

are reversed, and the same argumentation as for case two holds. Fourth, (uD, c3, c̃3) ∈ S3

additionally holds. The left side calculates min(c1, c2 + c3− c̃2)+ ca. The backup cost c̃2 is by

assumption equal to c̃1, and is therefore, according to the precondition, equal to c1. Because

both unions on the right side have the backup cost c̃1, the result of the following intersection

is min(c1, c2) + cb + min(c1, c3) + cd − c̃1 + cc. It holds

min(c1, c2 + c3 − c̃2) + ca = min(c1, c2) + cb + min(c1, c3) + cd − c̃1 + cc

min(c1, c2 + c3 − c1) + ca = min(c1, c2) + min(c1, c3) − c1 + ca

min(2 · c1, c2 + c3) + ca = min(c1, c2) + min(c1, c3) + ca

for all values of c1, c2, c3.

Equivalence 6.9: Consider the left side of the equation. A node uD in S1 is inserted into the

result set if and only if it has descendants in both S2 and S3. The same holds at the right

side: uD is in the result set of S1 "b S2 if and only if it has a descendant in S2. It is in the

result set of S1 "b S3 if and only if it has a descendant in S3. It is in the final result set if

and only if it is in both the result sets of S1 "b S2 and S1 "b S3. Let c2 (c3) be the cost of

the lowest-cost descendant of uD in S2 (S3). The left side calculates (c1 + c2 + ca) + c3 + cb,

and the right side calculates (c1 + c2 + cc) + (c1 + c3 + cd) − c̃1 + c. Because c1 = c̃1, and

ca + cb = cc + cd + c, both sides are equivalent.

Equivalence 6.10: It holds nodes(S1 "b S2) ⊇ nodes(S3 "b S2) because we assume nodes(S1) ⊇
nodes(S3). All nodes that are in nodes(S1 "b S2) but not in nodes(S3 "b S2) are discarded dur-

ing the following intersection with S3. It follows that nodes((S1 "b S2)uS3) = nodes(S3 "b S2).

83



Chapter 6 Direct Query Evaluation

Let uD be a node represented by tuples (uD, c1, c̃1) ∈ S1 and (uD, c3, c̃3) ∈ S3 (therefore, uD

is also in the result set). Let vD be the lowest-cost descendant of uD in S2 with cost c2. The

left equation side calculates (c1 + c2 + nodedist(uD, vD) + ca) + c3 − c̃3 + cb. The right side

calculates c3 + c2 + nodedist(uD, vD) + cc. By assumption, c1 = c̃1 and ca + cb = cc. Because

we also demand that the backup costs of corresponding nodes are equal, it holds c̃1 = c̃3. It

follows that both sides calculate the same cost. 2

All equivalences also hold if some or all join operators are replaced by outerjoin operators.

We omit the proofs for these cases. The precondition of Equivalences 6.9 and 6.8 seems to be

a restriction of their usability. However, this precondition always holds in the query-execution

plans that we introduce in the following section. Based on Equivalences 6.5 and 6.9, we show

in Section 6.5.2 that Boolean queries can be evaluated “in place” without the creation of the

disjunctive normal form. Moreover, even the preconditions of Equivalence 6.10 are fulfilled

in most cases. Therefore, this rule is a powerful means for reducing the number of operators

in query-execution plans.

6.4 Query-Execution Plans

In Section 6.2, we proposed the expanded representation of a query as a construction directive

for the closure of a query. In this section, we show how expanded representations can be used

to construct query-execution plans. The task of a query-execution plan is to assemble an

algorithm that computes, for each logical document (subtree) of the data tree, the embedding

cost of the lowest-cost query tree in the closure—without actually creating the closure.

Definition 6.11 (Query-execution plan) A query-execution plan is a binary rooted DAG

P = (N,E, r, op, param, delcost, transcost), where N is a set of nodes, E = (N × N) is a set

of edges, r is the root of P, and

op : N → {σ, "b , "b ,t,u}, delcost : N → R+ ,

param : N → T × P ∗ × D∗, transcost : N → R+

are functions, where σ, "b , "b ,t,u are the operators defined in Section 6.3, T is a finite

set of types, D∗ =
⋃

(D,P )∈T D is the union of domains in T , P ∗ =
⋃

(D,P )∈T P is the union

of predicates in T , and R+ is the set of non-negative real numbers. For all uP ∈ N holds:

op(uP) = σ if and only if uP is a leaf. The function param is defined only for leaves.

A query execution plan is a binary DAG because all inner nodes have two children (the

operands of the operator assigned to a node). We write child1(uP) and child2(uP) to refer

84



6.4 Query-Execution Plans

scd
(dvd,6),(mc,4)

s

s 6
concerto

(sonata, 3)

s 8
piano

s s8
piano

6
concerto

(sonata, 3)

5
title

Figure 6.8: The expanded query representation for cd/title["piano" and "concerto"],
where the following transformations are allowed: deletions of title (cost 5), pi-
ano (cost 8), and concerto (cost 6); value changes of cd to dvd (cost 6) or mc
(cost 4), and concerto to sonata (cost 3); arbitrary insertions.

piano title

8

cd dvd mc

6

concerto piano concerto sonata
36 4

6

5

sonata
3

8

Figure 6.9: The query-execution plan for the expanded representation shown in Figure 6.8.

to the children of a plan node uP . A subgraph of a plan consisting of all nodes and edges

reachable from a certain node is called a subplan. The functions delcost and transcost are

counterparts to the functions of an expanded representation (see Definition 6.1 on page 69):

The function delcost returns the deletion costs of query selectors. For example, if for a

node uP holds delcost(uP ) = 11 and op(uP ) = "b , then the cost 11 is passed as parameter cd

to the outerjoin operator. Otherwise, if op(uP) 6= "b , then the cost is ignored. The function

transcost assigns transformation costs to the operators. A transformation cost may be the

deletion cost of an inner s-node, a permutation cost, or value-change cost. The function param

defines the parameters for the selection operators. For example, if transcost(uP , vP) = 4,

op(vP) = σ, and param(vP) = (integer,≤, 2000), then uP represents the selection operator

σ4[integer,≤, 2000].

Figure 6.9 shows an example of a query-execution plan. This plan is constructed for the ex-

panded query representation depicted in 6.8. The simple example covers all main components

of query-execution plans: Each s-node in the expanded representation is modeled as a selec-

tion operator, which finds all data-tree nodes matching the query selector represented by the

85



Chapter 6 Direct Query Evaluation

s-node. Depending on the number of paths leading to an s-node, several identical selection

operators may exist (two for piano and concerto). If an s-node has alternative values (like cd

or concerto), then a separate selection operator exists for each of these values. All selection

operators for the same s-node are connected by union operators. The edges leading to the dvd

and mc selectors are annotated with the value-change costs. For each parent-child relation-

ship of two s-nodes in the expanded representation (ignoring interspersed ∧ and ∨-nodes), a

join ensures that the corresponding data-tree nodes have an ancestor-descendant relationship.

This implicit relaxation corresponds to a virtual insertion of nodes. Because a join operator is

able to measure the node distance between an ancestor and a descendant, we know how large

the total insertion cost of all nodes on the path between the ancestor and the descendant is.

Leaf deletions are implemented by outerjoin operators. For example, the lower-left outerjoin

passes a title node to the result set even if it does not have descendants with the value piano.

In this case, the cost 8 is added to the primary cost of the tuple. Intersections between the

joins ensure that only those data-tree nodes remain in the result set of an s-node that have a

descendant with respect to each s-child of this s-node. The top-level union operator models

the choice between keeping the inner node title or deleting it. If no title node for a particular

document exists (or its deletion is cheaper than its preservation), then the tuple computed

by the right subplan is passed to the result set, and its primary cost is incremented by 5.

Because permutations are modeled like deletions in an expanded representation, they are also

modeled like deletions in an execution plan.

Algorithm 6.4 on the facing page implements the mapping of an expanded query represen-

tation to a query-execution plan. We use a simplified notation to highlight the way a plan

is constructed. For example, the expression P := σ[type(vE), pred(vE), value(vE)] is a ab-

breviation for adding a new node vP to P and defining op(vE) := σ and param(vP ) :=

(type(vE), pred(vE), value(vE)). The algorithm traverses the nodes in the expanded query

representation top-down. It creates the selection parts of the plan during its descent, and

then combines them with join, intersection, and union operators during its ascent. If the

currently processed node vE is an s-node, then a selection operator is created, and type,

predicate, and value of the selector represented by vE are passed to the operator (Line 2).

If vE is annotated with value-cost pairs, then an additional selection operator is created for

each pair and initialized with the alternative value (Line 4). The value-change cost is passed

as the transformation cost to the operator, i.e., the function transcost of the node the operator

belongs to is extended. Union operators connect each new selection operator with the plan

constructed in the previous step. If vE has a child (which may be an s-node, a ∧-node, or

a ∨-node), then the function is recursively called passing the child node and the plan con-

structed so far (Line 6). If vE is the child of another s-node, then a plan PA representing

86



6.4 Query-Execution Plans

Algorithm 6.4 creates an execution plan based on the expanded representation of a query.

function create plan(vE,PA)

input: vE – a node in an expanded query representation,
PA – a plan for the selection of the ancestor set.

returns: the plan created for the subtree rooted at vE .

1: if op(vE) = s then
2: Create a plan P := σ[type(vE), pred(vE), value(vE)]
3: foreach (α, c) ∈ values(vE) do
4: Create a plan P := P t σc[type(vE), pred(vE), α]
5: if vE has a child then
6: P := create plan(child(vE),P)
7: if vE is not a top-level s-node then
8: if vE is a leaf and delcost(vE) < ∞ then
9: Create a plan P := PA "b cd

P, where cd = delcost(vE)
10: else
11: Create a plan P := PA "bP
12: Adjust the cost calculation of the join according to mod(vE)
13: else /* vE is a ∧-node or a ∨-node */
14: PL := create plan(child1(vE),PA)
15: PR := create plan(child2(vE),PA)
16: case op(vE) of
17: ∧: Create a plan P := PL u PR

18: ∨: Create a plan P := PL t Pct
R , where ct = transcost(vE , child2(vE))

19: return P

the selection of the ancestor nodes already exists. This plan is connected with the plan for

the descendant nodes using a join operator (Lines 8–11). The cost function of the new join

operator is adjusted with the help of the attribute mod(vE), which may indicate an insertion

restriction or relaxation (Line 12). The choice of the appropriate join operator depends on

whether vE is a leaf that is allowed to be deleted (outerjoin) or an inner node (normal join).

If vE is either a ∧-node or a ∨-node, then the subplans for the children of vE are created first

(Lines 14 and 15). Again, the plan PA is passed so that it can be used as an ancestor plan if

the next s-node is reached. The subplans returned by the recursive calls are connected by an

intersection or union operator (Lines 17 and 18). In the latter case, an edge cost is assigned to

the node, which defines the transformation cost to be passed to the top-level operator of the

right subplan. We use the notation Pct
R to indicate that the top-level node in PR is annotated

with the transformation cost ct.

Let Q be a query, TE be its expanded representation, r be the root of TE, and ε be an empty

plan. Then the call

P := create plan(r, ε)

87



Chapter 6 Direct Query Evaluation

returns an execution plan P for Q. For convenience, we define the abbreviation

P := create(Q)

for the creation of an expanded query representation and its mapping to an execution plan.

Algorithm 6.5 shows an evaluation algorithm for query execution plans. It traverses a plan

top-down until a selection operator (assigned to a leaf) is reached, passes the parameters

to the operator, and returns the result (Line 3). For each other operator (assigned to an

inner node), the algorithm executes its operands (assigned to the children of the node) before

the operator itself is executed (Lines 4–9). The outerjoin operator needs special treatment

because it takes the additional parameter cd (Lines 6–8). In Section 6.6.2, we present an

optimized version of this algorithm.

Algorithm 6.5 evaluates a query-execution plan.
function evaluate(P, vP , TD)

params: P = (N,E, r, op, param, delcost, transcost) – a query-execution plan,
vP – a node in N ,
TD – a data tree,

returns: the results of the subplan of P with root vP .

1: ct := transcost(vP)
2: if op(vP) = σ then
3: return σct [param(vP )] TD

4: S1 := evaluate(P, child1(vP ), TD)
5: S2 := evaluate(P, child2(vP ), TD)
6: if op(vP) = "b then
7: cd := delcost(vP)
8: return S1 "b ct

cd
S2

9: return S1 op(vP )ct S2

Let Q be a query, P be an execution plan for Q, r be the root of P, and TD be a data tree.

Then the algorithm

S := evaluate(P, r, TD)

finds the set S of node-cost tuples representing the results of the query for which P is con-

structed. We additionally assume a function sort(S, n) that sorts the node-cost tuples in S

by increasing primary costs, and selects the n tuples with the lowest costs. Then

S := sort(evaluate(P, r, TD), n)

returns the set S of the best n node-cost tuples. In the following, we omit the parameter r

needed for recursive calls and define

evaluate(P, TD) def= evaluate(P, r, TD).

88



6.5 The Equivalence of Theoretical and Practical Query Evaluation

6.5 The Equivalence of Theoretical and Practical Query Evaluation

The all-results problem (see Definition 5.12 on page 62) defines the set of results to be returned

for a given query Q and a given data tree TD. In this section, we prove that the algorithm

evaluate(P, TD) solves the all-results problem, where P is the query-execution plan con-

structed for Q. A simple consequence is that the algorithm sort(evaluate(P, TD), n) solves

the best-n-results problem (Definition 5.13 on page 62). To keep the proofs simple, we do not

consider query restrictions and relaxations. The proofs for these modifications of the default

semantics are analogous.

6.5.1 Conjunctive Queries

We first consider execution plans for conjunctive queries, and assume that insertions are

allowed, but not deletions, permutations, or value changes. To prove that the evaluation of

a plan created for a conjunctive query solves the all-results problem, we emphasize the main

principles underlying the evaluation of a plan, and relate these principles to the theoretical

model defined in Chapter 5.

Let Q be an arbitrary conjunctive query, and TD be an arbitrary data tree. In the theoretical

model, we create the separated representation Q of Q. Because Q is conjunctive, Q consists

of a single query tree. From Q , we derive the closure Q∗ of transformed query trees, and

explicitly embed each query tree TQ ∈ Q∗ into TD. In practice, we create the expanded

representation TE of Q, which resembles the single query tree in Q , but uses ∧-nodes to model

conjunctions. We find the embeddings of transformed query trees by selecting all matches1 of

the s-nodes in TE such that parent-child relationships in TE are mapped ancestor-descendant

relationships in TD. Figure 6.10 on the following page illustrates the relationships between

the theoretical model (left) and the practical approach.

The following definition formalizes the matching model used for the construction and eval-

uation of query-execution plans. Based on this definition, we prove in Lemma 6.2 on the

next page that the theoretical query-evaluation method and its practical counterpart yield

the same set of embedding images.

Definition 6.12 (Selection of embedding images) Let Q be a query, TE be the expanded

representation of Q, and TD be a data tree. Let SE be the set of trees included in TD where
1Recall that a match of a query-tree node uQ (or the s-node in TE representing uQ) is a data-tree node that

has the same type as uQ and fulfills the selection predicate of uQ.

89



Chapter 6 Direct Query Evaluation

approximate
embeddings

(sum of minimal
node distances)

separated
representation

expanded
representationdata treepart of the closure

exact
embeddings

s s

s

s

piano concerto

title

cd
cd

title

piano concerto
concerto

track

length

tracks

cd

year

2001 piano

piano

title

concerto13:25

title
cd

tracks

track

title

cd

title

piano concerto

piano concerto

Figure 6.10: The relationships between the theory and practice of evaluating conjunctive
queries for which only insertions are allowed. Example query: cd/title["piano
and "concerto"]. In the theoretical model, the separated representation is cre-
ated, and the closure of transformed query trees is derived (partially shown in
the figure). For each query tree, the exact embeddings are selected. In the prac-
tical approach, the expanded representation is constructed, and the approximate
embeddings are selected by expanding the edges leading to s-nodes.

for each T ′
D ∈ SE holds: (i) T ′

D contains a match of each s-node in TE, (ii) if two s-nodes in

TE have a parent-child relationship, then their matches in T ′
D are connected by a path, and

(iii) no other nodes are in T ′
D.

We call each tree included in TD selected by Q according to Definition 6.12 the image of an

approximate embedding of Q (or TE , equivalently) into TD.

Lemma 6.2 (Selection equivalence) Let Q be a query, Q∗ be the closure of Q, TE be the

expanded representation of Q, and TD be a data tree. Let SE be the set constructed for TE

and TD according to Definition 6.12. Let SQ∗ be the set of trees included in TD that are

embedding images of query trees in Q∗ . Then SE = SQ∗ holds.

Proof: Let Q = {TQ } be the separated representation of Q. Recall that TQ and TE have

analogous structures, except that in TQ conjunctions are implicit, whereas in TE additional

∧-nodes exist.

Case SE ⊆ SQ∗ : Let T ′
D ∈ SE be an arbitrary tree. We show that there is a transformed query

tree T ′
Q ∈ Q∗ with the embedding image T ′

D. If T ′
Q exists, then T ′

D is by definition in SQ∗ .

According to Definition 6.12, T ′
D is selected because it consists of matches of all s-nodes

in TE (or nodes in TQ, respectively). If two s-nodes in TE (nodes in TQ) have a parent-child

90



6.5 The Equivalence of Theoretical and Practical Query Evaluation

relationship, then their matches in T ′
D have an ancestor-descendant relationship. We can

derive T ′
Q from TQ by inserting nodes between each pair of parent-child nodes uQ, vQ in a

way that the created path matches the path between uD and vD in T ′
D. Because embeddings

need not to be injective (see Definition 5.1 on page 53), images of query paths may overlap

arbitrarily, and therefore T ′
D is an embedding image of T ′

Q. Because we can construct T ′
Q by

inserting nodes into TQ, T ′
Q is in Q∗ . Therefore, T ′

D ∈ SQ∗ holds.

Case SE ⊇ SQ∗ : Let T ′
D ∈ SQ∗ be an arbitrary tree. We show that T ′

D is in SE. It exists

a query tree T ′
Q ∈ Q∗ of which T ′

D is the embedding image. T ′
Q has the following structure:

For each node in TQ, there is a node with the same properties in T ′
Q (called core node in

the following). If two nodes uQ and vQ in TQ have a parent-child relationship, then their

corresponding nodes u′
Q and v′Q in T ′

Q have an ancestor-descendant relationship. There exist

either a single edge between u′
Q and v′Q or a path of inserted nodes. Paths belonging to

different descendants of u′
Q do not share common nodes because insertions are restricted

(see Definition 5.5 on page 57). Each core node in T ′
Q must match exactly one node in T ′

D.

A path between two core nodes in T ′
Q must map to a path between the matches of the core

nodes. No further restrictions exist. In particular, paths of the embedding image may overlap

because Definition 5.1 does not require the embedding function to be injective. According

to Definition 6.12, only trees that have exactly the properties described above are inserted

into SE . Therefore, T ′
D ∈ SE holds. 2

We now investigate the selection of the lowest-cost embedding with respect to a logical doc-

ument TD[uD] of a data tree TD. Let Q be a conjunctive query, Q∗ be its closure, and TE

be its expanded representation. In the theoretical model, we select all query trees in Q∗ that

can be embedded into TD such that they return TD[uD] as the result. Among these query

trees, we select the one with the lowest embedding cost. In practice, we select the embedding

image (according to Definition 6.12) that has the lowest cost among all embedding images

with root uD. The cost of an embedding image is the sum of the node distances between the

matches of the s-nodes in TE . We formally define the cost of an embedding image:

Definition 6.13 (Cost of an embedding image) Let Q be a query, TE be the expanded

representation of Q, TD be a data tree, and SE be the set of embedding images according to

Definition 6.2. Let T ′
D ∈ SE be an embedding image, and NE be the set of nodes in T ′

D that

are matches of s-nodes in SE. The cost of T ′
D is defined as

imgcost(T ′
D) =

∑
(uD ,vD)∈(NE×NE)

nodedist(uD, vD).

91



Chapter 6 Direct Query Evaluation

Recall from Definition 6.6 on page 79 that the distance between two nodes not connected

by a path is infinite. The following lemma shows that the cost calculation according to

Definition 6.13 is correct:

Lemma 6.3 (Cost equivalence) Let Q be a query, Q∗ be the closure of Q, TE be the ex-

panded representation of Q, TD be a data tree, and SE be the set of embedding images according

to Definition 6.2. Let T ′
Q ∈ Q∗ be a transformed query tree, and T ′

D ∈ SE be its embedding

image. Then embcost(T ′
Q) = imgcost(T ′

D) holds.

Proof: Let Q = {TQ } be the separated representation of Q. If T ′
Q = TQ, then the parent-

child relationships in T ′
Q are mapped to parent-child relationships in T ′

D. Then, both costs are

zero. Otherwise, T ′
Q is derived from TQ by replacing edges with nodes. The paths created by

node insertions into T ′
Q are mapped to paths in T ′

D. Let uQ and vQ be nodes in T ′
Q between

which a sequence of nodes has been inserted. Let uD and vD be their matches. Because the

corresponding nodes on the paths uQ ; vQ and uD ; vD have the same insertion costs,

nodedist(uD, vD) returns the total cost of the nodes inserted between uQ and vQ. Because the

insertion costs of the nodes on all paths are equal, the sums are also equal. 2

The following lemma uses the equivalences between the theoretical and the practical model

to prove the completeness and soundness of the creation and evaluation of a plan.

Lemma 6.4 (Completeness/soundness of Algorithm 6.5 for conjunctive queries)

Let Q be a conjunctive query for which only insertions are allowed, TE be the expanded

representation of Q, P be the execution plan created for TE, and TD be a data tree. Then

algorithm evaluate(P, TD) solves the all-results problem for Q and TD.

Proof: We prove the lemma by induction over the subtrees of TE whose roots are s-nodes

(called s-subtrees in the following) in the order they are visited by Algorithm 6.4 on page 87.

This order determines the structure of the plan and the order of its evaluation. For each

s-node uE in TE , we show that the set S computed by the evaluation algorithm contains

the roots of all subtrees of TD that directly include2 images of approximative embeddings

of TE [uE ] into TD (completeness). For each (uD, c, c̃) ∈ S, we show that TD[uD] directly

includes images of approximate embeddings of TE[uE ] into TD, and that c is the lowest cost

of all these images (soundness). Note that for conjunctive queries, all operator superscripts

are zero. Thus, we omit them in the proof.
2Recall from Section 4.1 that a tree includes another tree directly if both trees have the same root.

92



6.5 The Equivalence of Theoretical and Practical Query Evaluation

Base step: Node uE is an s-leaf. The subplan created for TE [uE] has the form P̄ = σ[τ, φ, α],

where τ , φ, α are the type, value, and selection predicate of uE . Completeness: Algorithm

evaluate(P̄ , TD) returns a set S that consists of all nodes in TD that are matches of uE .

Thus, the algorithm fulfills the requirements of Definition 6.12, and is complete according to

Lemma 6.2. Soundness: Only matches of uE (roots of embedding images) are in S. All costs

in S are minimal (zero) because for each subtree of TD at most one directly included image

of an approximate embedding of TE [uE ] exists.

Hypothesis: TE [uE ] has the s-subtrees TE [vE1 ], TE [vE2 ], . . . , TE [vEm ] for which the subplans

P̄1, P̄2, . . . , P̄m exist. We assume that the algorithm Si := evaluate(P̄i, TD) is complete and

sound (1 ≤ i ≤ m).

Induction step: The subplan created for TE [uE ] has the form

P̄ = (P̄0 "b P̄1) u (P̄0 "b P̄2) u . . . u (P̄0 "b P̄m),

where P̄0 = σ[τ, φ, α] and τ , φ, α are the type, value, and selection predicate of uE . We assert

that the algorithm S := evaluate(P̄ , TD) is complete and sound.

Induction proof: The evaluation of P̄0 yields a set S0 containing all nodes in TD that are

matches of uE . The evaluation of S0 "b Si yields a set S0,i, which contains a subset of S0 with

all nodes that have descendants in Si. The evaluation of S := S0,1 u S0,2 u . . . u S0,m ensures

that each node in S has a descendant in each Si (1 ≤ i ≤ m). Completeness: The algorithm

fulfills the requirements of Definition 6.12 because (i) all matches of uE are selected, (ii) for

each s-child vEi of uE (1 ≤ i ≤ m), the roots of all images of approximate embeddings of

TE [vEi ] are in Si, and (iii) all paths between matches of uE and nodes in Si are found during

the joins. Soundness: Let (uD, c, c̃) be an arbitrary tuple in S. TD[uD] directly includes

images of approximate embeddings of TE[uE ] because (i) uD is a match of uE and (ii) for

each s-child vEi of uE (1 ≤ i ≤ m), a subtree of TD[uD] directly includes an image of an

approximate embedding of TE [vEi ]. If (uD, c, c̃) ∈ S, then (uD, c0, c̃0) ∈ S0 exists. The

algorithm calculates

c = 0 + c0 + min{ c1 + nodedist(uD, vD1) | (vD1 , c1, c̃1) ∈ S1 ∧ uD ; vD1} +
0 + c0 + min{ c2 + nodedist(uD, vD2) | (vD2 , c2, c̃2) ∈ S2 ∧ uD ; vD2 } − c̃0 +
· · ·
0 + c0 + min{ cm + nodedist(uD, vDm) | (vDm , cm, c̃m) ∈ Sm ∧ uD ; vDm } − c̃0.

Because c0 and c̃0 are initialized with the same cost, only one summand c0 remains. For

conjunctive queries c0 = 0 holds. The cost c is the cost of the image with the lowest cost

93



Chapter 6 Direct Query Evaluation

among all images of approximate embeddings of TE[uE ] directly included in TD[uD]. Assume

there were an image with cost c′ < c. This may happen for three reasons: (i) Not all images

for TE[vEi ] (1 ≤ i ≤ m) have been found. (ii) There is a tuple (vDi , ci, c̃i) ∈ Si (1 ≤ i ≤ m)

such that ci is not the cost of the lowest-cost image of an approximate embedding of TE [vEi ]

directly included in TD[vDi ]. (iii) There is an image of TE [uE ] directly included in TD[uD] with

a smaller sum of distances between uD and the roots of the images of TE[vEi ] (1 ≤ i ≤ m).

Case (i) and (ii) can be excluded because by assumption Si (1 ≤ i ≤ m) contains the roots

of all images of TE [vEi ] and all costs in Si are minimal. Case (iii) is impossible because the

cost calculation follows Definition 6.13 (and is correct according to Lemma 6.3), includes all

combinations of images paths, and selects c as the lowest cost of all combinations.

Because the evaluation of the subplan created for each s-subtree of TE is complete and sound,

we conclude that evaluate(P, TD) is complete and sound, i.e., solves the all-results problem

for Q and TD. 2

6.5.2 Boolean Queries

Using the findings from the evaluation of conjunctive queries, we investigate the evaluation of

Boolean queries, i.e., queries containing both “and” and “or” operators. We still do not allow

permutations, deletions, or value changes. Our theoretical model defines that a Boolean query

is transformed to its hierarchical disjunctive normal form (HDNF) (see Section 4.4), and that

the conjuncts of the HDNF are mapped to query trees. Each query tree is transformed and

evaluated independently. For each logical document that matches any of the transformed

query trees, the one with the lowest embedding cost is chosen. A naive method to implement

this theoretical model would be the following: We create the HDNF of the query, create the

expanded representation of each conjunct, and construct an execution plan for each conjunct.

Next, we apply union operators to the result sets. For each set of node-cost pairs that refer

to the same data-tree node, the operator keeps only the one with the lowest embedding cost.

Therefore, the evaluation of the plan solves the all-results problem. As an example, consider

the query

cd/title["piano" and ("concerto" or "sonata")]

and its HDNF

cd/title["piano" and "concerto"] or cd/title["piano" and "sonata"].

94



6.5 The Equivalence of Theoretical and Practical Query Evaluation

Figure 6.11(a) shows the two query trees in the separated representation of the query; Fig-

ure 6.11(b) shows the expanded representations constructed for the conjuncts of the query.

Figure 6.12 depicts the query execution plan with a top-level union operator.

title

cd

piano

title

cd

piano concerto sonata

(a) Separated representation

title s

ss
concertopiano

scd

title s

ss
sonatapiano

scd

(b) Expanded representations

Figure 6.11: The separated representation and the expanded representations for the query
cd/title["piano" and "concerto"] or cd/title["piano" and "sonata"].

cd piano titlecd piano concertotitle sonata

Figure 6.12: The execution plan constructed according to the two expanded representations
shown in Figure 6.11(b). For each logical document, the top-level union operator
selects the lowest-cost embedding.

Using the operator equivalences of Lemma 6.1 on page 81, the top-level union operator can be

“pushed down”: The two topmost join operators have the same ancestor set (the cd nodes).

Let S1 be this set and S2, S3 be the descendant sets of the left and right joins, respectively.

Then, according to equivalence 6.6, the expression (S1 "b S2) t (S1 "b S3) can be substituted

by S1 "b (S2tS3). Because the left operands of the two intersections produce the same result

sets, we can apply equivalence 6.5 to factor out the union operator. The plan resulting from

the two substitutions is depicted in Figure 6.13(b). This plan is identical to a plan created

by Algorithm 6.4.

The following lemma shows that the “in-place” evaluation of Boolean operators is feasible be-

cause the execution plans for a query and its counterpart in HDNF are equivalent. Two query-

execution plans P and P ′ are equivalent if and only if evaluate(P, TD) = evaluate(P ′, TD)

for any data tree TD. A corollary of the lemma is that the evaluation of a query-execution

plan constructed by Algorithm 6.4 for a Boolean query not in HDNF is complete and sound.

Lemma 6.5 (Plan equivalence) Let Q be a query, and Q′ = Q′
1∨Q′

2∨. . .∨Q′
n be its HDNF.

Let P be the execution plan for Q created by Algorithm 6.4, and P ′ = P ′
1 t P ′

2 t . . . t P ′
n be

95



Chapter 6 Direct Query Evaluation

piano
s

concerto
s

sonata
s

s

scd

title

(a) Expanded representation

piano title sonatacd concerto

(b) Execution plan

Figure 6.13: The expanded representation and the execution plan for the query
cd/title["piano" and ("concerto" or "sonata")].

the execution plan for Q′, where P ′
j is the execution plan for the conjunct Q′

j (1 ≤ j ≤ n)

created by Algorithm 6.4. Then, P and P ′ are equivalent.

Proof: We prove the lemma by induction over the subqueries of Q, in the order they are

visited by Algorithm 4.1 on page 49. For each subquery Q̄ and its HDNF Q̄′, we prove that

the subplans P̄ and P̄ ′ created for Q̄ and Q̄′ are equivalent. To simplify the query syntax, we

write “∧”, “∨” instead of “and”, “or”. Also, we omit all operator superscripts that are zero.

Base step: Let Q̄ = Q̄′ = s0, where s0 is a selector. Then P̄ and P̄ ′ are equivalent. Now let

Q̄ = s0[expr(s1, s2, . . . , sm)], where s0, s1, s2, . . . , sm are selectors and expr(s1, s2, . . . , sm) is

a Boolean expression. The HDNF of Q̄ has the form Q̄′ = s0[F1]∨ s0[F2]∨ . . .∨ s0[Fn], where

each Fj (1 ≤ j ≤ n) is a conjunctive formula consisting of some of the selectors s1, s2, . . . , sm.

Let P̄i be the selection operator created for si (0 ≤ i ≤ m). The subplan created for Q̄ has

the form P̄ = expr(P̄0 "b P̄1, P̄0 "b P̄2, . . . , P̄0 "b P̄m), where the join operators are connected

by u and t-operators according to the structure of ∧ and ∨-operators in Q̄. The subplan

for Q̄′ has the form P̄ ′ = P̄ ′
1 t P̄ ′

2 t . . . t P̄ ′
n, where P̄ ′

j = P̄ ′
j,1 u P̄ ′

j,2 u . . . u P̄ ′
j,q (1 ≤ j ≤ n).

Each P̄ ′
j,k (1 ≤ k ≤ q) corresponds to a join P̄0 "b P̄i (1 ≤ i ≤ m) in the subplan P̄ created

for Q̄. Any negation-free Boolean formula can be transformed into its disjunctive normal

form (DNF) by successively substituting each formula F1 ∧ (F2 ∨F3) by (F1 ∧F2)∨ (F1 ∧F3)

[Sch95]. The expression expr(s1, s2, . . . , sm) is negation-free, and therefore the transformation

is possible. However, the equivalence F1∧ (F2∨F3) = (F1∧F2)∨ (F1∧F3) corresponds to the

operator equivalence S1 u (S2 t S3) = (S1 u S2)t (S1 u S3) of Lemma 6.1. Because Q̄ can be

transformed to Q̄, the subplan P̄ can be transformed to P̄ ′ using this operator equivalence.

Because each transformation step results in an equivalent subplan, P̄ and P̄ ′ are equivalent.

Hypothesis: Let Q̄ = s0[expr(Q̄1, Q̄2, . . . , Q̄m)], where expr(Q̄1, Q̄2, . . . , Q̄m) is a Boolean

expression. For each Q̄i (1 ≤ i ≤ m) the HDNF Q̄′
i = Q̄′

i,1 ∨ Q̄′
i,2 ∨ . . .∨ Q̄′

i,p has been created

96



6.5 The Equivalence of Theoretical and Practical Query Evaluation

in an earlier step. Let P̄i be the subplan for Q̄i, and P̄ ′
i = P̄ ′

i,1tP̄ ′
i,2t . . .tP̄ ′

i,p be the subplan

for Q̄′
i. We assume that P̄i and P̄ ′

i are equivalent (1 ≤ i ≤ m).

Induction step: Let Q̄′ be the HDNF of Q̄, P̄ be the subplan created for Q̄, and P̄ ′ be the

subplan created for Q̄′. We assert that P̄ and P̄ ′ are equivalent.

Induction proof: Let Q̄i be an arbitrary subquery of Q̄ (1 ≤ i ≤ m). The subplan cre-

ated for Q̄i has the form P̄0 "b P̄i. The subplan created for Q̄′
i has the form (P̄0 "b P̄ ′

i,1) t
(P̄0 "b P̄ ′

i,2) t . . . t (P̄0 "b P̄ ′
i,p). By successively applying the operator equivalence 6.6 of

Lemma 6.1, the join operator can be factored out. It holds

(P̄0 "b P̄ ′
i,1) t (P̄0 "b P̄ ′

i,2) t . . . t (P̄0 "b P̄ ′
i,p) = P̄0 "b (P̄ ′

i,1 t P̄ ′
i,2 t . . . t P̄ ′

i,p) = P̄0 "b P̄ ′
i.

Because P̄ ′
i is equivalent to P̄i, the subplans created for Q̄i and Q̄′

i are equivalent. Therefore,

P̄i is a proper subplan for Q̄i, and we can use the symbols Q̄i and Q̄′
i synonymously. The

HDNF of Q̄ has the form Q̄′ = s0[F1] ∨ s0[F2] ∨ . . . ∨ s0[Fn], where each Fj (1 ≤ j ≤ n) is

a conjunctive formula consisting of some of the subqueries Q̄1, Q̄2, . . . , Q̄m of Q̄. Let P̄0 be

the selection operator created for s0, and P̄i be the subplan created for Q̄i (1 ≤ i ≤ m).

The subplan for Q̄ has the form P̄ = expr(P0 "b P̄1,P0 "b P̄2, . . . ,P0 "b P̄m), where the join

operators are connected by u and t-operators according to the structure of ∧ and ∨-operators

in Q̄. The subplan for Q̄′ has the form P̄ ′ = P̄ ′
1tP̄ ′

2t. . .tP̄ ′
n, where P̄ ′

j = P̄ ′
j,1uP̄ ′

j,2u. . .uP̄ ′
j,q

(1 ≤ j ≤ n). Each P̄ ′
j,k (1 ≤ k ≤ q) corresponds to a join P̄0 "b P̄i (1 ≤ i ≤ m) in the

subplan P̄ created for Q̄. P̄ and P̄ ′ are equivalent because P̄ can be transformed to P̄ ′ using

the operator equivalence S1 u (S2 tS3) = (S1 uS2)t (S1 uS3) of Lemma 6.1 as described for

the base step of this proof.

Because the constructed subplans are equivalent for each subquery Q̄ of Q and its HDNF Q̄′,

it follows that P and P ′ are equivalent. 2

Corollary 6.1 (Completeness/soundness of Algorithm 6.5 for Boolean queries)

Let Q be a Boolean query for which only insertions are allowed, TE be the expanded represen-

tation of Q, P be the execution plan created for TE, and TD be a data tree. Then algorithm

evaluate(P, TD) solves the all-results problem for Q and TD.

Proof: Let Q′ = Q′
1 ∨Q′

2 ∨ . . .∨Q′
n be the HDNF of Q. According to Lemma 6.5, P can be

transformed to an equivalent plan P ′ = P ′
1tP ′

2t . . .P ′
p, where P ′

j is the execution plan for the

conjunct Q′
j (1 ≤ j ≤ n). According to Lemma 6.4, the evaluation of plans for conjunctive

queries is complete and sound. The subplans are connected by t operators, which select the

97



Chapter 6 Direct Query Evaluation

lowest-cost embedding for each logical document according to Definition 5.11 on page 62.

Therefore, P is a proper execution plan for Q. It follows that evaluate(P, TD) is complete

and sound, i.e., solves the all-results problem for Q and TD. 2

6.5.3 Deletions, Permutations, and Value Changes

We distinguish between leaf deletions, which are represented by outerjoins, and deletions of

inner nodes, permutations, and value changes, which are represented by unions of alternative

subplans. We prove the completeness and soundness of the evaluation algorithm for plans

with encoded leaf deletions in a separate lemma, and treat all other transformation the final

theorem.

Let vE be an s-leaf with delres /∈ mod(vE), and uE be its s-parent. Algorithm 6.4 on page 87

creates selectors for uE and vE, and connects them by an outerjoin operator. For each data-

tree node uD matching uE, this operator tests whether a descendant of uD matching vE

exists, and whether the cost of the embedding image of TE[uE ] is lower if vE is kept or

deleted. The following lemma proves that the evaluation of a plan with encoded deletions of

leaves is complete and sound.

Lemma 6.6 (Completeness/soundness of Algorithm 6.5 for leaf deletions) Let Q

be a query for which insertions and deletions of leaves are allowed, TE be the expanded repre-

sentation of Q, P be the execution plan created for TE, and TD be a data tree. Then algorithm

evaluate(P, TD) solves the all-results problem for Q and TD.

Proof: Let vE be an arbitrary s-leaf in TE such that delres /∈ mod(vE). Let uE be the

s-parent of vE . Algorithm 6.4 creates a subplan P̄1 for uE and a subplan P̄2 for vE . The

subplan for uE (vE) consists of selection operators for the original value of uE (uE) and for

each of its alternative values. Let S1 be the set computed by P̄1, (uD, c1, c̃1) ∈ S1) be an

arbitrary tuple, and S2 be the set computed by P̄2. The outerjoin passes the tuple (uD, c, c̃)

to the result set independently of whether uD has descendants in S2 or not. The cost c is

calculated as follows:

c = ct + c1 + min(cd,min{ c2 + nodedist(uD, vD) | (vD, c2, c̃2) ∈ S2 ∧ uD ; vD}).

The inner “min” operator selects the lowest-cost descendant (see Lemma 6.4 on page 92 for

the correctness of this calculation); the outer “min” operator selects the minimum of this cost

and the deletion cost cd of the leaf. Clearly, this is a correct method to select the minimum

98



6.5 The Equivalence of Theoretical and Practical Query Evaluation

cost of keeping or deleting the leaf vE in the context of the subtree TD[uD]. The costs ct

and c1 are added in both cases. Because the same method is used for all tuples in S1 and

for all s-leaves in TE , the evaluation of a plan with subplans representing leaf deletions is

complete and sound. 2

In an expanded query representation, deletions of inner nodes and permutations are repre-

sented in an analogous manner: A subtree represents the original subquery and another one

the transformed subquery. Both subtrees are connected by a ∨-node. Consequently, the

subplans for deletions and permutations created by Algorithm 6.4 have analogous structures:

One subplan represents the original subtree, another one represents the transformed subtree.

Both subplans are connected by a union operator. Algorithm 6.4 also uses union operators

to connect the selectors created for the alternative values of an s-node. The use of a single

primitive for the uniform representation of disjunctions, deletions, permutations, and value

changes allows us to interpret a plan created for an expanded representation as a plan created

for a Boolean query that represents all transformations as disjunctive subqueries. We make

use of this analogy in the final theorem, where we show that a query-execution plan with

encoded deletions of inner nodes, permutations, and value changes is complete and sound

because all variants are represented by separate subplans connected by union operators. The

evaluation of the union operators ensures that the lowest-cost embedding images for each sub-

tree of the data tree are found. In the proof of the theorem, we assume that the encoding of

deletions, permutations, and value-changes into an expanded query representation is correct,

i.e., all transformed query trees can be derived.

Theorem 6.1 (Completeness/soundness of Algorithm 6.5) Let Q be a query, TE be

the expanded representation of Q, P be the execution plan created for TE, and TD be a data

tree. Then algorithm evaluate(P, TD) solves the all-results problem for Q and TD.

Proof: We prove the theorem by induction over the subplans of P in the order they are

created by Algorithm 6.4. This order determines the order of evaluation. Because deletions,

permutations, and value-changes are represented by unions of alternative subplans, we only

consider subplans of the form P̄1 t P̄ct
2 .

Base step: If P̄1 and P̄2 do not contain union operators for the representation of deletions, per-

mutations, and value-changes, then the algorithms evaluate(P̄1, TD) and evaluate(P̄2, TD)

are complete and sound according to Corollary 6.1.

Value change: P̄1 is a selector created for the original value α of an s-node uE in TE ; P̄ct
2 is a

selector created for an alternative value α′ of α. The superscript ct is the cost of changing α

99



Chapter 6 Direct Query Evaluation

to α′. The algorithm evaluate(P̄1 t P̄ct
2 , TD) is complete because it selects all nodes in TD

matching uE with value α or value α′. It is sound because it only selects nodes in TD

matching uE with values α or α′, and because it initializes the cost of each result tuple

with either 0 or ct. These are the correct costs of either using the original value α or its

alternative α′.

Deletion: P̄1 represents a subtree TE[uE ] containing a node vE ; P̄ct
2 represents the same

subtree without vE; ct is the deletion cost of vE . Let S1 = evaluate(P̄1, TD) and S2 =

evaluate(P̄ct
2 , TD). Let uD be a node that is either only in S2, or in both S1 and S2 (only

in S1 is impossible). In the first case, the subtree TE [uE ] has embedding images directly

included in TD[uD] only if vE has been deleted. In this case, ct is added to the primary cost

of uD. Otherwise, the subtree TE [uE ] including vE has embedding images. Then, the union

operator selects the minimum cost of keeping or deleting vE. Because the union operator

correctly selects the cost of the lowest-cost operand for each pair of tuples in S1 and S2, the

algorithm evaluate(P̄1 t P̄ct
2 , TD) is complete and sound.

Permutation: P̄1 represents a subtree TE[uE ] created for the original query; P̄ct
2 represents a

subtree TE [vE ] where the nodes uE and vE have been permuted; ct is the permutation cost

of uE and vE . Let S1 (S2) be the result of the evaluation of P̄1 (P̄ct
2 ). Let uD be a node that

is either in S1 or S2 (both S1 and S2 is impossible). If uD is in S1, then the union operator

passes it to the result set without changing its cost. Otherwise, the cost of uD is increased

by ct. Because the union operator correctly selects the cost of the lowest-cost operand for

each pair of tuples in S1 and S2, the algorithm evaluate(P̄1tP̄ct
2 , TD) is complete and sound.

Hypothesis: P̄1 and P̄ct
2 are arbitrary subplans of P such that the algorithms evaluate(P̄1, TD)

and evaluate(P̄2, TD) are complete and sound.

Induction step: We assert that the algorithm evaluate(P̄1 t P̄ct
2 , TD) is complete and sound.

Induction proof: P̄1 is an arbitrary subplan; P̄ct
2 is either a selector created for an alterna-

tive value an s-node, a subplan representing the deletion of an inner s-node, or a subplan

representing the permutation of two nodes.

Value change: P̄1 consists of union operators that connect selectors created for the original

value of an s-node uE in TE and the first k alternative values. P̄ct
2 is a selectors created for

the (k +1)th alternative value α′ of uE . The algorithm evaluate(P̄ , TD) is complete because

it passes all tuples computed by P̄1 to the result set and adds all matches for uE with the

value α′. It is sound because it adds only matches for uE with the value α′ to the result set.

If a result tuple comes from P̄1, then its cost is correct by assumption. Otherwise, the cost is

initialized with ct, which is the correct cost of changing the value of uE from α to α′.

100



6.6 Optimizing Direct Query Evaluation

Deletion, permutation: Same argumentation as in the base step of this proof.

Because the evaluation of each subplan of P is complete and sound, we conclude that the

algorithm evaluate(P, TD) is complete and sound, i.e., it solves the all-results problem for Q

and TD. 2

6.6 Optimizing Direct Query Evaluation

In this section, we present two techniques for optimizing the evaluation of query-execution

plans. First, we make use of operator equivalences to compact plans. Compacted plans can

be evaluated more efficiently because less operators have to be executed. Second, we use

dynamic programming to avoid the repeated evaluation of shared subplans.

6.6.1 Compacting Query-Execution Plans

The query-execution plans created by Algorithm 6.4 on page 87 all have the same general

structure: At the bottom level are selection operators; at the next level are join operators;

and at the remaining levels are union and intersection operators. Many intersections combine

the results of two join operators that check the same set of ancestors against different sets

of descendants. The same effect yields a sequence of two join operators, where the output of

the first operator is used as the ancestor set of the second one. This relationship is captured

by the operator equivalence

(S1 "b S2) "b S3 = (S1 "b S2) u (S1 "b S3)

of Lemma 6.1 on page 81, provided that for each node in set S1 the cost and the backup cost are

equal. This precondition holds because the tuples in S1 are created by a selection operator,

which initializes the cost and the backup cost with the same value (see Definition 6.5 on

page 78). Using this equivalence, we can transform the plan depicted in Figure 6.14(a) on

the next page to the compacted plan shown in Figure 6.14(b), in which all intersections are

eliminated.

In fact, intersections are only needed if the query contains Boolean formulae that are not in

disjunctive normal form. In many cases, we can discard the intersections even then. If we

can guarantee that the cost and the backup cost are equal for each node in a set S1, and the

nodes in S1 are a superset of the nodes in another set S3, then the equivalence

(S1 "b S2) u S3 = S3 "b S2

101



Chapter 6 Direct Query Evaluation

cdtitlepiano concerto review

(a) Original plan

piano title concerto cd review

(b) Compacted plan

Figure 6.14: Original and compacted execution plan for the query
cd[title["piano" and "concerto"] and review].

piano title sonatacd concerto

(a) Original plan

concerto titlepianocd sonata

(b) Compacted plan

Figure 6.15: Original and compacted execution plan for the query
cd/title["piano" and ("concerto" or "sonata")].

of Lemma 6.1 holds. In this formula, S2 is an arbitrary set of node-cost tuples. We can use

this equivalence to simplify, e.g., the plan depicted in Figure 6.15(a). Figure 6.15(b) shows

the result of the transformation.

The simplest way of compacting query-execution plans is the merging of duplicate subplans.

In plans constructed by Algorithm 6.4, only the selection operators (or unions of them) created

for inner s-nodes are shared. In many cases, however, additional subplans can be merged.

Consider the plan depicted in Figure 6.9 on page 85 where the subplans σ concerto t σ3 sonata

and σ title appear twice. By merging these subplans and removing the intersections, we get

the compacted plan depicted in Figure 6.16 on the facing page.

Besides of the discussed cases, several other restructurings based on operator equivalences are

possible. Particularly the disjunctive laws of Lemma 6.1 help to further reduce the number of

operators. Because the application of these equivalences is obvious, we omit further details.

102



6.6 Optimizing Direct Query Evaluation

8

6

6

piano titlemc concertocd dvd

5

4
sonata

36

8

Figure 6.16: Compacted and merged version of the plan shown in Figure 6.9 on page 85.

6.6.2 Dynamic Programming

Dynamic programming is an algorithmic technique in which an optimization problem is solved

by caching subproblem solutions rather than recomputing them. We apply the dynamic-

programming principle to the evaluation of a query-execution plan by caching the result sets

computed for common subplans. Consider Figure 6.16, where three subplans are shared

(they each have more than one incoming edge). The plan-evaluation algorithm presented

in Section 6.4 evaluates each of these subplans twice. By caching the results computed

during the first pass, the evaluation of the plan can be significantly accelerated. Because

almost every plan contains shared subplans (as discussed in the previous subsection), dynamic

programming is a powerful means to optimize the evaluation of query-execution plans.

To prepare a query-execution plan for use in a dynamic-programming algorithm, we assign

a unique number to each node with more than one parent. We use the notation id(vP )

to refer to the number of node vP . Algorithm 6.6 on the next page shows an improved

version of Algorithm 6.5 on page 88 that uses dynamic programming. It accepts an additional

parameter H, which denotes a hash table used for storing intermediate results. The function

evaluate traverses the plan top-down, and executes the operators during its ascent. If a

number id(vP ) for the current node vP is defined, and a hash-table entry for that number

exists, then the evaluation of the subplan ends and the results are returned (Lines 1 and 2).

Otherwise, the plan is traversed and the operators are executed (Lines 3–13). This part of

the algorithm is identical to the simple plan-evaluation implemented by Algorithm 6.5. If

the current subplan is shared, then the results of the evaluation are stored in the hash table

(Lines 14 and 15).

103



Chapter 6 Direct Query Evaluation

Algorithm 6.6 evaluates a query-execution plan based on dynamic programming.

function evaluate(P, vP , TD,H)

params: P = (N,E, r, op, param, delcost, transcost) – a query-execution plan,
vP – a node in N ,
TD – a data tree,
H – a hash map of intermediate results,

returns: S – the results of the subplan of P with root vP .

1: if id(vP ) is defined and H[id(vP )] exists then
2: return H[id(vP )]
3: ct := transcost(vP)
4: if op(vP) = σ then
5: S := σct[param(vP)] TD

6: else
7: S1 := evaluate(P, child1(vP), TD,H)
8: S2 := evaluate(P, child2(vP), TD,H)
9: if op(vP ) = "b then
10: cd := delcost(vP)
11: S := S1 "b ct

cd
S2

12: else
13: S := S1 op(vP)ct S2

14: if id(vP ) is defined then
15: H[id(vP )] := S
16: return S

104



6.7 Space Complexity of Query-Execution Plans

6.7 Space Complexity of Query-Execution Plans

The space complexity of a query-execution plan describes the maximum number of operators

that it can consist of, given the number of query selectors, the number of permitted value

changes per selector, and the number of permitted node permutations. We do not investigate

the time and space complexity of the evaluation of a plan here. We postpone this analysis to

Section 8.5, once we will have introduced the algorithms that implement the plan operators.

The following list summarizes the symbols that we will use in the complexity formulae:

d – maximum number of children of a query selector (query degree),
n – number of query selectors (query size),
p – number of permitted permutations for the query,
v – maximum number of permitted value changes per query selector.

For the complexity analysis, we assume that identical subplans have been merged as described

in the previous section. This particularly lowers the space complexity of plans with encoded

deletions and permutations, where alternative subplans have common parts.

Boolean queries. Each selector in a Boolean query (allowing insertions only) is represented

by a selection operator. Each selector (except the root) is connected to its parent selector by

a join operator, and a union or intersection operator. Therefore, a query-execution plan for

a Boolean query consists of O(n) operators.

Deletions. Each permitted deletion of a leaf changes a join operator to an outerjoin operator.

The size of the plan does not increase. The deletion of an inner selector is represented by two

alternative subplans P1 and P2 connected by a union operator. P1 and P2 share O(d) identical

sublans constructed for the children of the selector. However, the remaining operators in P1

and P2 represent different Boolean expressions in the context of different parent selectors.

Therefore, a plan with one encoded deletion has O(d) additional join operators, and O(d)

additional union and intersection operators. A plan that encodes all deletions consists of

O(n · d) operators.

Permutations. A permutation of two selectors is represented by the two alternative subplans

P1 and P2 connected by a union operator. P1 and P2 share O(d) identical sublans constructed

for the children of the first selector, and O(d) identical sublans for the children of the second

105



Chapter 6 Direct Query Evaluation

selector. O(d) additional union and intersection operators are necessary to represent the

Boolean expressions in the permuted parts of the query. A plan that encodes p permutations

consists of O(n + p · d) operators.

Value changes. The original value of a query selector is represented by a selection operator.

Each of its O(v) alternative values is represented by a selection operator and a union operator.

Because indentical subplans are merged, each selector appears only once, even if deletions and

permutations are encoded. Therefore, a plan that encodes all permitted value-changes per

selector consists of O(n · v) operators.

If permutations, deletions, and value changes are encoded together in a plan, then its total

number of operators is

O((n · v + p) · d).

In typical cases, the parameters n (number of query selectors) and d (query degree) are small

numbers. The parameters v and p are determined during the configuration of the plan-

generation algorithm, and do not depend on query and data properties. Therefore, the size

of a plan can be effectively controlled by choosing appropriated values for v and p, balancing

matching flexibility and evaluation efficiency.

6.8 Related Work

The assembling of query-execution plans from a fixed set of operators is a standard technique

for the implementation of query processors for relational and object-oriented database man-

agement systems. This technique is also used in some query processors for semistructured

data and XML, e.g., in the query processors of Lore [MW99] and Xyleme [ACVW00].

Most XML query languages support some kind of regular path expressions (see Section 2.1).

In particular, they often have operators to “skip” nodes on a path (e.g, the “//” operator in

XPath [CD99]). To implement this language primitive in a query processor, several researchers

proposed ancestor-descendant joins [Sch01a, ZND+01, ACS02, AKJK+02, CVZ+02], adopting

older ideas developed for text databases [MZ92, Nav95, CCB95a].

Ancestor-descendant joins that measure the distances between nodes have been independently

proposed by Amer-Yahia et. al. [ACS02] and by ourselves [Sch01a, Sch02a]. Amer-Yahia et. al.

introduce join and outerjoin operators, and show how query-execution plans for approximate

tree-pattern queries can be built with these operators. Their join operators differ from ours in

106



6.8 Related Work

two aspects: First, they construct “full” relations consisting of all ancestor-descendant pairs

found in the data tree. Second, they use a node-distance measure that is defined as a function

of the number of nodes on the path between an ancestor and a descendant. In contrast, our

joins only pass ancestor nodes to the result set and calculate the lowest cost of all descendants

for each ancestor. The node distance as one constituent of the lowest cost is defined as the

sum of insertion costs of all nodes on the path between an ancestor and a descendant. In

addition to joins and outerjoins, we use cost-calculating selections, unions, and intersections

as parts of an operator algebra. The union operator allows the implementation of disjunctions,

deletions, permutations, and value changes in a uniform manner. In contrast, the approach

proposed by Amer-Yahia et. al. is limited to conjunctive queries. Node generalizations (as

restricted variants of value changes) and deletions are represented by means of join predicates;

permutations are not supported.

107


