Chapter 4

Modeling Documents and Queries

The syntax of approXQL simplifies the formulation of queries; the syntax of XML simplifies the
serialization of structured data. To define the semantics of approXQL, we need a model for the
representation of queries and documents that abstracts from their syntactic characteristics.
In this chapter, we present such a model. We propose type-value trees as a simple and elegant
means to represent XML documents and approXQL queries in a uniform way. The underlying
type system captures the syntactic types of XML like elements, attributes, and character data.
It is extensible so that user-defined types can be added. We show how a collection of XML
documents can be interpreted as a single type-value tree. Based on this interpretation, we are
able to shift from the static notion of XML documents to the more flexible concept of logical
documents. Logical documents are the units for the similarity valuations and are retrieved
as answers to a query. We also demonstrate how approXQL queries can be decomposed into
a set of conjunctive queries, and how each conjunctive query can be mapped to an extended

type-value tree.

We begin the chapter with a review of important properties of trees. In Section 4.2, we intro-
duce type-value trees, which are subsequently used to model XML documents (Section 4.3)

and approXQL queries (Section 4.4). We conclude the chapter with a review of related work.

4.1 Trees and their Properties

We use standard definitions to formalize the notion of trees and their properties. These defi-

nitions can be found in several sources that deal with tree algorithms, e.g., [Knu69, AHUT74].

41

Chapter 4 Modeling Documents and Queries

A rooted tree is a structure T'= (N, E,r), where N is a finite set of nodes, E C (N x N) is
a finite set of edges, and r € N is a node that forms the root of T. If (u,v) € E is an edge,

then u is the parent of v, and v is a child of w. T" must fulfill the following properties:
e The root has no parent.
e All nodes except the root have exactly one parent.
We use the notation parent(v) to refer to the parent of a node v. The nodes in a tree that
have a common parent u are called children of u, denoted by
children(u) = {v € N | (u,v) € E}.

A node without children is a leaf; all other nodes are called inner nodes. Two nodes with the

same parent are siblings.

A path in a tree T = (N, E,r) is a sequence of nodes uj.usg ... uy such that (u;, u;+1) € E for
all 1 <17 < k. The path starts at node w1, ends at node ug, and has the length k. We write
u ~» v if there is a path between u and v. Each path in a tree is unique. In particular, there
is a unique path from the root to each other node in the tree. The depth of a tree is defined
as the length of the longest path starting at the root node. If u ~» v holds, then we say that u

is an ancestor of v, and v is a descendant of u. The set of ancestors of v is defined as
ancestors(v) ={u e N |u~>v};
the set of descendants of u is defined as
descendants(u) ={v e N |u~v}.

Let u be a node in a rooted tree T'= (N, E,r). The subtree T' = (N', E', u) rooted at u is a
tree, where

N = {u} Udescendants(u),

E = En(N' xN).

We use the notation T'[u] to refer to the subtree 77 = (N', E',u) of T. A subtree T'[u] is an
immediate subtree of a tree T if w is a child of the root of T'. Consider the tree depicted in

Figure 4.1 on the facing page: The tree within the grey triangle is an (immediate) subtree.
An included tree T" = (N, E',u) in T is a tree, where

N C N,
E' = En(N' xN).

42

4.2 Type-Value Trees

We say that a tree includes another tree directly if both trees have the same root. Figure 4.2
shows an example: The nodes and edges bordered by the grey line constitute an included

tree. It is directly included in an immediate subtree of the entire tree.

b
element

element

b

text

Figure 4.1: A subtree. Figure 4.2: An included tree. Figure 4.3: A recursive tree.

4.2 Type-Value Trees

In this section, we formalize the type system introduced in Section 3.2.3. We propose type-
value trees as a means to enrich the nodes in a rooted tree by a type and a value. The value
of a node is a generalization of a node label. It can be, e.g., a string, a number, or a date.
The type of a node defines the domain of the node value and the set of predicates that can

be applied to nodes of that type.

Definition 4.1 (Node type) A node type is a pair 7 = (D, P) consisting of a domain D
and a set of binary predicates P. Each predicate ¢ € P maps a pair of objects from D to a
Boolean value: ¢ : D x D — { false,true }.

Because all predicates used in this thesis have intuitive semantics, we omit the definition of
the functions represented by the predicate symbols. We simply represent a predicate by its
symbol. For example, if 7 = (N, {=,<,<,>,>1}), where N are the natural numbers, then
=, <, <, >, > are predicate symbols that represent the well-known binary operators for the

comparison of natural numbers.
Like data types in programming languages, a node type may refine another node type. The
refinement relationship between node types spans a type hierarchy.
Definition 4.2 (Supertype, subtype) Let 7 = (D, P) and 7" = (D', P') be node types. T
is a supertype of 7', denoted by T < 7', if and only if

DDOD' APCP AND#D VP #P).

If 7 < 7' holds, then 7' is a subtype of T.

43

Chapter 4 Modeling Documents and Queries

Intuitively, a node type is a subtype of another type if it is more specific (its domain com-
prises less objects) and more expressive (there are more predicates defined). The supertype
symbol 7 <" hints at the graphical symbol for class inheritance used in the Uniform Modeling
Language (UML) [RJB98]. We define the abbreviation 7 < 7/ for 7 =7 v 7 < 7.

Throughout this thesis, we use the two type hierarchies informally introduced in Section 3.2.3
(Figures 3.2 and 3.3 on page 40). The structural type hierarchy consists of three types:
element, attribute, and their common supertype struct. Let X p be the set of all valid

element names, and X 4 be the set of all valid attribute names. We define

struct = (XpUXa,{=}),
element = (Xp,{=1}),
attribute = (¥4,{=1}).

We define the data types in a similar way. Let ¥p be the set of all tokens, 7 the set of all

text words, I be the integers, and R be the real numbers. Then

data =

integer =

()
text = (S7,{=}),
(

(

real =
We use the symbol 7 to denote the set of all basic structural types, all basic data types, and
all user-defined types. The extension of a rooted tree to a type-value tree is straightforward:
Definition 4.3 (Type-Value tree) Let T be a finite set of types. A type-value tree T =
(N, E,r type,value) is a rooted tree with a function
type: N — T,
which assigns a type to each node in N, and a function

value : N — U D,
(D,P)eT

which assigns a value to each node in N. The value assignment is constrained:

Vu € N : value(u) € D, where D is the domain of type(u).

A recursive tree is a type-value tree where a value appears twice or more on a path, and the

nodes carrying the values have the same type or supertype:

44

4.3 Tree Representation of XML Documents

Definition 4.4 (Recursive tree) Let T' = (N, E,r,type,value) be a type-value tree. T is

recursive if and only if

Ju,v € N :u~> v A (type(u) < type(v) V type(v) < type(u)) A value(u) = value(v).

Figure 4.3 on page 43 shows a type-value tree. For simplicity, only four nodes are annotated
with types and values. This tree is recursive because the filled nodes are connected by a path

and have the same types and values.

4.3 Tree Representation of XML Documents

Our model of XML documents aims at combining two objectives: First, we want to map an
entire collection of documents to a single tree. This mapping allows us to define arbitrary
subtrees (logical documents) to be results of a query. The differentiation between physi-
cal XML files and their internal representation is very helpful, because the granularity of a
physical XML document often does not meet the desired result granularity: A single XML
file may contain an entire media catalog; another file may contain a single CD; a third one
may contain only a single track of a CD. Second, we want to enable the mapping of query
selectors to tokens within the character data of documents. This is usual for search engines
and retrieval systems, but not for most XML query languages, which bind query variables to
values. A value typically comprises the entire text content of an element or the entire value

of an attribute.

In the following, we describe the mapping of an XML document to a type-value tree, which is
called document tree. Each element is modeled as a subtree of the document tree, where the
root of the subtree is annotated with the type element. The name of the element is assigned
as value to the subtree root. Direct-containment relationships between elements are modeled

as parent-child relationships between the roots of the subtrees representing the elements.

Sequences of character data are split up into tokens using whitespaces as delimiters. The type
of a token is determined by its syntactic characteristics. All tokens are by default of type
data. If a token consists of digits only, then its type is refined to integer. Similar rules are
used to figure out whether a token has type text or real. If a token has type text, then the
stem of the word is derived. For each pair consisting of a token and a type, a node is created

and annotated with the token and the type. All nodes derived from a sequence of character

45

Chapter 4 Modeling Documents and Queries

data are added as children to the root of the subtree that represents the element containing

the data.l

Each attribute is modeled as subtree of depth two: The attribute name is mapped to a node
of type attribute. This node is then added as a child to the node that represents the element
the attribute belongs to. The attribute value is split up into tokens as described for sequences
of character data, and the tokens are mapped to nodes. These nodes form the children of the
node representing the attribute name. Figure 4.4 shows an XML document and its mapping

to a type-value tree.

<catalog>
<cd year="2001"> | catalog
<performer> Ashkenazy </performer> cd element me
<composer> Rachmaninov </composer> element element
<title>Piano concerto</title>
<tracks> title tracks '
<track length=" 13:25"> year performer composer element

attribute element

<title>Vivace </title>

element [/ \f[;”em
text text text

</track> integer text \traCk
.. 2001 ashkenazy rachmaninov piano concerto lement
</tracks> length title
</cd> attribute element
<mc> ... </mc>
R data text
</catalog> 13:25 vivace

Figure 4.4: Mapping of an XML document to a type-value tree.

We add a new node of type struct with a unique value to the collection of type-value trees
constructed for an XML document collection, and establish an edge between this node and

the root of each document tree. The resulting tree is called data tree:

Definition 4.5 (Data tree) Let C be a collection of (physical) XML documents and C" =
{T1,Ts,..., T, } be the set of type-value trees constructed for the documents in C. The data
tree Tp = (Np, Ep,rp, typep, valuep) of C is a type-value tree, where typep(rp) = struct,
and the value of rp is unique in the codomain of valuep. FEach T; (1 <1 < n) is an immediate

subtree of Tp; no other immediate subtree of Tp exists.

Finally, we replace the physical notion of documents by a more flexible logical notion:

Definition 4.6 (Logical document) Let Tp = (Np, Ep,rp, typep, valuep) be a data tree.

!The one-to-one mapping of tokens to nodes assumed here is a simplification of our model, but not a restric-
tion. The value of a node may also consist of sequences of words, and a single word may be part of several

text sequences assigned to nodes. In this way, we can implement the matching of query phrases.

46

4.4 Tree Representation of approXQL Queries

Each subtree Tplup|, up € Np, struct < up, is a logical document with up as the document

root.

4.4 Tree Representation of approXQL Queries

The modeling of an approXQL query is slightly more complicated than the modeling of an XML

document, because a query may contain the Boolean operators “and” and “or”.

However,
there is a simple correspondence between a query and a tree if the query is conjunctive,
i.e., does not contain “or” operators. Then, the subqueries connected by “and” operators
can be mapped to adjacent subtrees. A query with “or” operators can be transformed into
an equivalent disjunctive normal form, and each conjunct of this normalized query can be
mapped to a tree. We first introduce the modeling of conjunctive queries, and then show how

arbitrary queries are interpreted as sets of trees.

A conjunctive query is mapped to a tree as follows: For each query selector, a node is created
and annotated with the value and the type of the selector. If no explicit type is specified, then
the appropriate default type (text for text selectors, integer for numerical selectors, struct
for structural selectors) is used. For the operator of the selector a predicate is created and
assigned to the node. If restrictions or relaxations for the selector exist, then the node is

annotated with a set of modifiers taken from the set
M = {insres, insrel, delres, valres }.

For example, the set {insrel,valres} assigned to a node indicates that an insertion relax-
ation and a value-change restriction for this node are defined. A value-change relaxation

“1” signs. Queries

in a query is indicated by a sequence of alternative values separated by
with value-change relaxations are treated like queries with “or” operators (see below). A
containment relationship between query selectors is interpreted as a parent-child relationship
between query-tree nodes. If the expression enclosed by a containment operator includes
“and” operators, then each subquery in the conjunctive expression is mapped to a subtree of

the parent node.

Figure 4.5 on the next page shows the interpretation of a conjunctive approXQL query as a
query tree. Because the query does not explicitly define a type for the selectors cd, title,
and composer, they get the most general type struct. For simplicity, selection predicates that
test for equality are not shown in the graphical representation of the query tree. For the rest
of the thesis, we will omit the type names in the graphical representations of query trees and

document trees if they are clear from context.

47

Chapter 4 Modeling Documents and Queries

struct

year title

struct
struct / struct {insrel, valres }
{ delres } O integer text E text text

>2000 piano concerto rachmaninov

cd[attribute:year[> 2000:!] and
title["piano" and "concerto"] and
xcomposer ! ["rachmaninov"]

composer

Figure 4.5: Mapping of a conjunctive approXQL query to a tree.

To represent a query tree formally, we extend the notation introduced in Section 4.1:

Definition 4.7 (Query tree) Let T be a finite set of types, and M be a set of modifiers. A
query tree Tg = (Ng, Eq,7q, typeg, valueg, predg, modq) is a type-value tree with a function

predg : Ng — U P,
(D,P)eET

which assigns a predicate to each node in Ng, and a function
modg : Ng — oM.
which assigns a set of modifiers to each node in Ng. The predicate assignment is constrained:

Vug € Nq : predg(uq) € P, where P is the set of predicates of type(ugq).

Consider the query tree depicted in Figure 4.5. If ug is the leftmost leaf, then typey (uq)
returns the type integer = (I,{ =, <, <, >, > }), valueg(ug) returns the value 2000, predg (uq)

returns the predicate represented by the symbol ”>", and modg(uq) returns the set { delres }.

A query that contains “or” operators is partitioned into a set of query trees, which is called
separated query representation. Each query tree in a separated query representation represents
a conjunctive query in the hierarchical disjunctive normal form (HDNF) of the original query.
The HDNF is similar to the disjunctive normal form (DNF) of a Boolean expression, but

additionally includes the containment operators.

Algorithm 4.1 on the facing page shows a simple recursive function that constructs the HDNF
of a query). The algorithm traverses the query top-down. If the current subquery @ has
no further subqueries, then the selector s is returned (Line 1). Otherwise, there are further
subqueries connected by an arbitrary Boolean expression expr(Q1, @2, ..., Qn) (Line 2). The
function performs a recursive call, passing all subqueries as parameters (Line 4). Having
transformed all subqueries, the algorithm creates the DNF (in the Boolean sense) of the

expression, treating the subqueries connected by the formulae Fy, as literals (Line 6). Each

48

4.4 Tree Representation of approXQL Queries

Algorithm 4.1 creates the hierarchical disjunctive normal form of a query Q.
function create HDNF(Q)

param: () — a query,
returns: the hierarchical disjunctive normal form of Q.

if @) is a selector s then return s
@ has the form slezpr(Q1,Q2,...,Qm)]
for ::=1tom do
Fg, := create HDNF(Q;)
Substitute (); by Fp,.
Create the DNF F of expr(Fg,, Fg,,- .., Fg,,)
foreach conjunct F¢ of F' do
Substitute F by s[F¢]
return F

conjunct Fgp, is syntactically enclosed by the root selector s of the current subquery (Lines 7
and 8). Finally, F' is returned (Line 9) and is used as substitute of the original subquery
(Line 4).

Value-change relaxations are transformed to disjunctions. For each alternative value of a
selector, the subquery rooted at the selector is replicated. The alternative subqueries are

then connected by “or” operators. Consider the query

cd[(title | category) ["piano" and ("concerto" or "sonata")] and
(composer ["rachmaninov"] or performer["ashkenazy"])].

The replacement of the value-change relaxation by a disjunction results in the query

cd[(title["piano" and ("concerto" or "sonata")] or
category["piano" and ("concerto" or "sonata")]) and
(composer["rachmaninov"] or performer["ashkenazy"])].

This query is then passed to Algorithm 4.1, which creates the HDNF

cd[title["piano" and "concerto"] and composer["rachmaninov"]] or
cd[title["piano" and "concerto"] and performer["ashkenazy"]] or
cd[title["piano" and "sonata"] and composer["rachmaninov"]] or
cd[title["piano" and "sonata"] and performer["ashkenazy"]] or
cd[category["piano" and "concerto"] and composer["rachmaninov"]] or
cd[category["piano" and "concerto"] and performer["ashkenazy"]] or
cd[category["piano" and "sonata"] and composer["rachmaninov"]] or
cd[category["piano" and "sonata"] and performer["ashkenazy"]].

“l’?

If n is the number of “or” and operators in a query (), then the HDNF of @) has up to

2™ conjuncts. From the HDNF, we construct the separated query representation of Q:

49

Chapter 4 Modeling Documents and Queries

Definition 4.8 The separated representation Q = {Tq,,Tq,,...,1q, } of a query Q is a set
of query trees, where each Tg,, 1 <1 < n, represents a conjunct of the HDNF of Q.

To construct the separated representation of our example query (), we assign a number to
each conjunctive query in the HDNF of @), map it to a query tree Tg,, and construct the
separated query representation Q = {79,,70Q,,70s, 104, 105, 10s, 10+ T0s }-

4.5 Related Work

Labeled trees and graphs are commonly used structures for the modeling of XML data
(see [ABS99] for a survey). In the XML version [GMW99] of the OEM data model [PGW95],
each element is mapped to a subgraph. The root of the subgraph is annotated with the
set of attributes of the element; the edge leading to the root is annotated with the name
of the element. If character data occurs within the element, a leaf node annotated with
the character data is created. Similar data models are used in many projects (see, e.g.,
[FFKT97, CDSS98, ACVWO00]). Our concept of type-value trees differs from those models in
two aspects: First, sequences of character data are split up into tokens to allow fine-grained
access to words and numbers. Second, elements, attributes, words, and numbers are uni-
formly modeled as subtrees, in which the nodes are annotated with types and values. The
type system allows the users to expose or to hide the distinction between, e.g., elements and
attributes, or integers and reals. We are not aware of another data model with equivalent

properties.

Many researchers use labeled trees to model queries (see, e.g., [Kil92, Meu00, NS00]). How-
ever, to the best of our knowledge, there is no other model that supports (i) the interpretation
of disjunctive queries as sets of query trees and (ii) the assignment of types, selection predi-

cates, and transformation modifiers to query-tree nodes.

50

