
Chapter 1

Introduction

With the advent of the Internet —and particularly of the World Wide Web —the traditional

distinction between regularly structured data (as stored in databases) and unstructured data

(as stored in text files) has become blurred. Data on the Internet often has an irregular,

partial, and implicit structure. The eXtensible Markup Language (XML) has been designed to

provide a common basis not only for the representation of such semistructured data, but also of

regularly structured and even unstructured data. Three key concepts enable this language to

represent such different types of data: First, XML is a generic markup language —sometimes

called a meta markup language —with a concise syntax. It is easy to define a concrete

language based on the generic one to represent and exchange data of a certain kind. Second,

XML allows an integrated representation of data and its schema. This property makes it

possible to model the regular parts of the logical structure of the data, but also allows for the

representation of variations and irregularities. Third, XML documents have a self-describing

structure. This is a consequence of the requirements of the XML specification, which states

that the structure should be “human-legible and reasonably clear” [BPSM00].

1.1 Searching in XML Data: Why Traditional Approaches Fail

How can the self-describing structure contribute to improving the information search in XML

data? We believe that the structure can help to yield more precise queries —but the struc-

ture should only serve as a guide to locate the desired information. Neither retrieval models

developed for text data, nor the currently established XML query languages meet these re-

quirements, as we will now discuss.

1



Chapter 1 Introduction

<catalog>
...
<cd>
<category>Classics</category>
<performer>Rachmaninov</performer>
<title>A window in time </title>
<tracks>
<track>
<title>Piano sonata</title>

</track>
...

</tracks>
</cd>
...

</catalog>

<catalog>
...
<mc>
<performer>Ashkenazy</performer>
<composer>Rachmaninov</composer>
<title>Piano concerto no. 1 </title>
<tracks>
<track>
<title>Vivace</title>

</track>
...

</tracks>
</mc>
...

</catalog>

Figure 1.1: Two XML documents containing information about media products.

Traditional keyword-based retrieval models are not designed to incorporate the structure of

XML documents, and are thus forced to ignore it. However, ignoring the structure means

ignoring important information describing the content to be searched, which leads to less

precise queries than possible. A further limitation of text retrieval models is the use of

whole documents as results. This is not appropriate for XML, because users are typically not

interested in a whole document, but rather in the elements contained within it. Moreover,

the requested elements may appear at any level in the hierarchical structure of the document.

Example: Consider a media store selling books, videos, and sound storage media.

Figure 1.1 shows two XML documents with product information. A user may be

interested in a CD with piano concertos by Rachmaninov, and phrases the keyword

query “piano concerto rachmaninov”. If no result elements have been specified, then

the query retrieves two catalogs with possibly thousands of objects. Otherwise, if

the administrator has defined CDs and MCs as possible results, then it retrieves

all cd and mc elements that contain at least one of the terms “piano”, “concerto”,

and “Rachmaninov”. However, the users cannot specify that they prefer CDs over

MCs, or that they prefer media with the title “piano concerto” over media con-

taining tracks with the title “piano concerto”. Similarly, the users cannot specify

their preferences for the composer Rachmaninov over the performer Rachmaninov,

despite the presence of all of the necessary information in the catalog.

XML query languages developed by the database community incorporate the structure of the

documents (see [FSW99, BC00] for surveys). These languages are well suited for applications

that query and transform XML documents —but they are not appropriate for non-expert

2



1.1 Searching in XML Data: Why Traditional Approaches Fail

users. It is hard for the users to formulate queries, not only because of the complexity of

the query syntax, but also because the users are required to have thorough knowledge of the

structure of the documents being queried. This knowledge is particularly hard to acquire if

the documents have a large, heterogeneous structure. The interpretation of a query is rigid:

A substructure of a document either matches the query or it does not. This semantics is often

not satisfactory: In many cases, the users only partially know the structure of the documents,

and therefore formulate queries with an incomplete data model in mind. However, even if

they know the complete structure, they can never have complete knowledge of the content.

The deviations between the users’ knowledge and the actual structure and content of the

documents may lead to several cases where the query fails, even though answers that may

interest the users exist. Typical cases are:

• The query only partially matches a relevant document.

• The structure of the query differs from the structure of a relevant document.

• The requested content exists, but not in the structural context specified by the query.

• The requested content does not exist, but there is semantically related content.

Note that language constructs like regular path expressions do not solve these problems,

because the users must know that structural heterogeneity exists, and what the regular ex-

pression must look like in order to match the requested results.

Example: Consider the two documents in the media store shown in Figure 1.1,

and assume that the store is able to answer queries formulated in the language

XQL [RLS98]. The query

/catalog/cd[title="Piano concerto" and composer="Rachmaninov"]

will neither retrieve CDs with a track title ”Piano concerto”, nor CDs of the category

”Piano concerto”, nor concertos performed by ”Rachmaninov”, nor sound storage

media other than CDs with the appropriate information. The query will also not

retrieve CDs where only one of the keywords “Piano” or “concerto” appears in the

title. It will fail if the hierarchical relationships between cd elements and composer

elements are not consistent within the documents in the media store. Of course,

the users can phrase a query that exactly matches the cases mentioned — but they

must know beforehand that such similar results exist, and how they are represented.

Moreover, because all of the results of the redefined query are treated equally, the

users cannot express their preferences, and receive the results in an arbitrary order.

3



Chapter 1 Introduction

The examples demonstrate that there is a strong need for a search method that incorporates

the structure of the documents, supports the retrieval not only of exact matches, but also of

results similar to the query, valuates the similarity between the query and the results, and

ranks the results by decreasing similarity.

1.2 Thesis Objective

The objective of this thesis is to develop and describe a novel approach to search in XML data

with complex, heterogeneous structure. This includes the design of a simple yet expressive

query language and the development of efficient algorithms for the evaluation of queries. The

language and algorithms must meet the following requirements:

• Query formulation must be simple even for occasional users, and must require only

partial knowledge about the collection to be queried.

• The language must support expressive queries that specify selection conditions on both

the content and the hierarchical structure of XML documents.

• The interpretation of a query must be vague to find not only exact matches, but also

results with a structure and content similar to the selection conditions of the query.

• The results retrieved by a query must be ranked by decreasing similarity to the query.

• The basic parameters of the similarity measure must be variable, so that they can be

adapted to the characteristics of various document collections.

• A query must be evaluated in polynomial— typically sublinear — time with respect to

the size of the collection. In particular, the best n results must be retrieved efficiently.

1.3 Solutions Presented in the Thesis: An Overview

In this thesis, we propose an innovative method for fast similarity search in XML data, which

uses the self-describing structure of XML documents as a guide to locate the information a

user is interested in. We introduce a new query language, approXQL, with a user-friendly syn-

tax and a similarity-based semantics, develop a complete algorithmic framework to evaluate

approXQL queries, describe our prototypical implementation of a query processor, and discuss

the results of a thorough efficiency analysis.

4



1.3 Solutions Presented in the Thesis: An Overview

The syntax of approXQL is simple but expressive. It allows to formulate queries that make

use of the hierarchical structure of XML documents. The design of the syntax is based on the

assumption that typical users have only partial knowledge of the structure of the documents,

and are not able or willing to cope with a complex syntax. To formulate a query, the users

only need to know the names of the XML elements and attributes they are interested in.

The semantics of approXQL is designed for the retrieval of exact matches, but also of results

similar to the query. We view the similarity between an approXQL query and an XML

document as the degree of deviation between the content and structure requested by the

query and the content and structure actually existing in the document. The fewer deviations

exist, the more similar the query and the document are considered to be, and the higher the

position of the document within the list of results.

In order to formally define our notion of similarity, we use trees to model both queries and

documents in a uniform way. We show how a collection of XML documents can be interpreted

as a single data tree. Based on this interpretation, we are able to shift from the static notion

of XML documents to the flexible concept of logical documents as subtrees of the data tree.

We also demonstrate how approXQL queries can be decomposed into a set of conjunctive

queries, and how each conjunctive query can be mapped to a query tree.

For each logical document in the data tree, we try to find exact embeddings of the query

trees. An exact embedding is a mapping of the nodes in a query tree to the nodes in the

document such that the mapping preserves the types and values of the nodes, as well as the

parent-child relationships between the nodes. Not for all logical documents semantically close

to the query exact embeddings are possible. Therefore, we propose the theoretical concept

of a query closure. The closure consists of all query trees that can be derived from the

original query trees via transformation sequences. We allow the deletion, permutation, and

insertion of query nodes, as well as the change of the values assigned to the nodes. Each

basic transformation has a cost, which is defined by a domain expert. The total cost of a

transformation sequence determines the embedding cost of the resulting query tree. For each

logical document, we select all transformed query trees that can be exactly embedded, and

choose the one with the lowest embedding cost. The cost of this tree defines the distance

between the original query and the document. A pair consisting of a logical document and

its cost forms a result. The results are sorted by increasing cost and displayed to the users.

The theoretical model of approximative embeddings implies a naive query-evaluation method.

However, this method is very inefficient because it assumes that the query trees are trans-

formed and embedded independently of each other. Therefore, we present an integrated,

5



Chapter 1 Introduction

modular, and performant algorithmic framework for evaluating queries. To establish the con-

nection between the theoretical model and its implementation, we introduce the expanded

representation of a query, which is a compact data structure that encodes all query trees

that can be derived from the query via transformation sequences. The expanded represen-

tation is the starting point for the construction of a query-execution plan, which consists of

operators that work on sets of data-tree nodes. With the help of a query-execution plan, we

can view the evaluation of a query as an optimization problem, where for each logical doc-

ument the optimal solution (the lowest-cost embedding) must be found. A query-execution

plan is evaluated bottom-up. For all subtrees of the query trees and for all subtrees of the

logical documents, the optimal solutions are computed. Subsequent operators combine these

solutions to optimal solutions for the next level, until the top-level operator is reached.

Usually, users are interested only in the best n results. To find those results without comput-

ing similarity scores for all logical documents in the collection, we analyze the relationships

between a data tree and its path tree (schema). We show that the schema can be used

to estimate the best k transformed query trees. To select these trees, we make use of our

query-evaluation framework. We modify the plan operators so that they can select the best k

embeddings per logical document, instead of selecting only the best one. The selected query

trees are then used as “second-level” queries. They are sorted by embedding cost, and are

then successively executed against the data tree. Because there is no fixed relationship be-

tween k and n, we propose an incremental algorithm that guesses an initial value for k. If the

first pass retrieves less than n results, the algorithm increases k and starts a new pass. The

evaluation stops if at least n results are found.

1.4 Thesis Outline

We outline the thesis by summarizing each chapter.

Chapter 2: State of the Art. We provide a thorough analysis of related work. In particular,

we review XML query languages, flexible query mappings, information retrieval models

for XML, and distance measures for labeled trees. At the end of the chapter, we give

a taxonomy of the reviewed approaches, and discuss why none of them fulfills our

requirements.

Chapter 3: The approXQL Query Language. This chapter provides a tutorial-style intro-

duction to the approXQL query language. We present a simple yet expressive core

6



1.4 Thesis Outline

syntax, which allows even unexperienced users to formulate queries that include selec-

tion conditions on the structure of XML documents. For seasoned users, we define an

extended syntax that allows the modification of the default semantics of approXQL, and

the specification of typed selection conditions.

Chapter 4: Modeling Documents and Queries. We propose type-value trees as a means to

model XML documents and approXQL queries in a uniform way. A collection of XML

documents is modeled as a single type-value tree, where each subtree is considered to be

a logical document. An approXQL query is modeled as a set of type-value trees, where

the nodes in the trees are enriched by selection predicates.

Chapter 5: Querying by Approximate Tree Embedding. This chapter formally defines the

semantics of approXQL. We map the problem of finding exact results for a query to

the problem of finding embeddings of query trees within the data tree. To find results

similar to the query, we propose a novel similarity measure that is based on query

transformations. The total cost of a sequence of transformations measures the similarity

between the original query and each logical document in the data tree.

Chapter 6: Direct Query Evaluation. We propose query-execution plans for the efficient eval-

uation of approXQL queries. A plan consists of operators that perform operations on

sets of data-tree nodes, and in parallel calculate the transformation costs. We prove that

during the evaluation of a plan all query results (and only those) are found, and that

the calculated costs are correct. We also propose techniques to optimize the evaluation

of a plan and analyze the upper bound for the number of operators in a plan.

Chapter 7: Schema-Driven Query Evaluation. This chapter addresses the efficient retrieval

of the best n query results. We show that the path tree (schema) of a data tree can be

used to estimate the best k transformed query trees, which in turn are executed against

the data tree to find the best n results. To select the transformed trees, we use query-

execution plans with slightly modified operators. We propose an optimization technique

to reduce the number of transformed trees necessary to find the best n results.

Chapter 8: Efficient Algorithms for Plan Operators. In this chapter, we establish the con-

nection between the formal definitions of the operators used in query-execution plans

and their actual implementations. We extend a well-known tree-numbering scheme so

that it allows to determine the sum of insertion costs of nodes on a path, without ac-

tually traversing the path. Using this numbering scheme, we present algorithms for the

operators that have time and space complexities linear in the size of the inputs.

7



Chapter 1 Introduction

Chapter 9: The approXQL Query Engine. This chapter introduces the prototypical imple-

mentation of an approXQL query engine. The engine implements both the direct and

the schema-based query-evaluation methods. Furthermore, it provides a graphical query

editor and consists of all modules necessary to load, index, and display XML documents.

Chapter 10: Experimental Efficiency Analysis. We present the results of extensive tests to

evaluate the efficiency of the query engine using collections of real and synthetic XML

documents. In particular, we show the dependencies of our algorithms on several query

and data parameters.

Chapter 11: Conclusion. In this chapter, we summarize the main contributions of the thesis.

We also point out open problems and interesting directions for future work.

.

8


