Fast Similarity Search in XML Data

Dissertation

am Fachbereich Mathematik und Informatik

der Freien Universitat Berlin
eingereicht von
Torsten Schlieder

am 9. Dezember 2002

Betreuer:
Prof. Dr. Heinz Schweppe
Prof. Dr. Myra Spiliopoulou

Datum der Disputation: 14. April 2003

Abstract

The eXtensible Markup Language (XML) is a widely accepted standard for the representation
of data. The more data is stored in XML documents, the more important become methods
for effective and efficient searching. An important characteristics of XML documents is their
self-describing structure. Queries that specify selection conditions for the structure promise
to greatly improve the precision of the search. However, the use of the structure can also
be problematic, because it is hard for users to learn all of the details of the often complex
and heterogeneous structure required to phrase a query, and because structural selection

conditions often lead to overspecified queries that miss relevant results.

In this thesis, we propose an innovative method for searching in XML data, which uses the
descriptive structure as a guide to locate the requested information. A user needs only partial
knowledge of the structure to formulate queries that specify conditions on both the content
and structure of documents. A query is interpreted in such a way that it retrieves not only
exact matches, but also results considered to be similar to the query. To find the similar
results, sequences of transformations are applied to the query so that its structure is adapted
to the structure of each document in the collection. Each transformation within a sequence
has a cost; the total cost of a sequence measures the similarity between the original query and
a document matched by the transformed query. This total cost is assigned to the document
and determines its position in the list of results, which is sorted by decreasing similarity. By
adjusting the costs, the interpretation of queries can be tailored to the needs of different users,

and also to the varied characteristics of XML documents.

We present all necessary algorithms and data structures to implement a query processor that
answers a query in polynomial —typically sublinear —time with respect to the size of the
database. For a given query, the query processor creates a compact query-execution plan that
represents all possible query transformations. It evaluates the plan by executing operators
that successively calculate the transformation costs for each document in the collection. We
present techniques to effectively optimize the evaluation of query-execution plans by exploiting
equivalences between operators. To reduce the query-evaluation times even more, we propose
a method to retrieve the best n results, without computing similarity scores for all documents
in the collection. This method uses a structural summary of the data to estimate the best k

transformed queries, which are successively evaluated until the best n results are found.

The theoretical concepts are validated by a prototypical implementation. We describe the
architecture of the prototype, and discuss the results of systematic tests carried out to analyze
the evaluation times for a representative set of queries with respect to various collections of

real and synthetic XML documents.

iii

v

Acknowledgements

Many people have accompanied my long journey to this dissertation. To all of them I give

my deepest thanks, especially
My first advisor, Prof. Heinz F. Schweppe, for his continuous guidance, support,
and his belief in my work.

My second advisor, Prof. Myra Spiliopoulou, for her critical yet constructive re-

marks, which substantially improved this dissertation.

The members of the Database Group at the Freie Universitat Berlin for many

controversial discussions, helpful feedback, and for the great time we had together.

Among them, in particular Annika Hinze, for working as my closest colleague,

sharing literally all my joys and sorrows throughout this effort.

The students and professors of the Graduate School in Distributed Information

Systems for their useful suggestions and all the great discussions at our meetings.

Among them, in particular Ulf Leser and Felix Naumann, for all the help and

support they gave, leading the path I was to follow.

Prof. Klaus U. Schulz from the Universitat Miinchen, for enabling a very close

and successful cooperation with his group.

Holger Meuss from the Universitdt Miinchen, for the very enjoyable, interesting,

and fruitful work on our joint research project.
My family, for their patience and understanding.
Last but not least, Ella, for her encouragement and belief in me, for her warmth

and love.

This research was supported by the German Research Society, Berlin-Brandenburg Graduate
School in Distributed Information Systems (DFG grant no. GRK 316).

vi

Contents

1

Introduction
Searching in XML Data: Why Traditional Approaches Fail

1.1
1.2
1.3
1.4

Thesis Objective

Solutions Presented in the Thesis: An Overview

Thesis Outline

State of the Art

2.1
2.2

2.3

2.4

2.5
2.6
2.7
2.8

XML and Semistructured Data
Query Languages for XML . .

2.2.1 The Basic Query Components

2.2.2 Language Aspects Related to Semistructured Data

Flexible Query Mappings for Trees and Graphs

2.3.1 Flexible Query Mappings
2.3.2 Flexible Query Mappings
XML and Information Retrieval

without Valuation

with Valuation

2.4.1 Query Languages and Algebras for Structured Text Databases

2.4.2 Focused Document Retrieval

2.4.3 Combining Structured Queries and Relevance Ranking

Distance Measures for Labeled Trees

Similarity Search in Tree-Structured Data

A Taxonomy of XML Query Languages and Retrieval Models

What is Missing?

The approXQL Query Language

3.1

The Core Syntax
3.1.1 Structural Selectors . .

3.1.2 Data Selectors and Predicates

3.1.3 Containment Expressions

o R e

12
13
14
14
15
16
17
18
19
22
23
24
26

vii

Contents

3.2

3.1.4 Boolean Expressionso o
The Extended Syntax
3.2.1 Query Restrictions o
3.2.2 Query Relaxations L
3.23 The Type System

4 Modeling Documents and Queries

viii

4.1
4.2
4.3
4.4
4.5

Trees and their Properties
Type-Value Trees o e
Tree Representation of XML Documents
Tree Representation of approXQL Queries
Related Work o

Querying by Approximate Tree Embedding

5.1
5.2
5.3

5.4
9.5
5.6
5.7

The Interpretation of approXQL Queries: An Overview
The Tree-Embedding Formalism
Basic Transformations of Query Trees,
5.3.1 Deletions L
5.3.2 Permutationso
5.3.3 Imsertions L
5.3.4 Value Changes
Assigning Costs to Basic Transformations
Approximate Query Answering
Example
Related Work o

Direct Query Evaluation

6.1
6.2

6.3

From the Semantics of a Query to its Evaluation: An Overview
The Expanded Representation of a Query
6.2.1 Constructing the Basic Form of an Expanded Query Representation

6.2.2 Encoding Deletions L o

6.2.3 Encoding Permutations 0.
6.2.4 Encoding Value Changes.
Cost-Calculating Set Operations
6.3.1 Node-Cost Tuples
6.3.2 Selection
6.3.3 Join and Outerjoino
6.3.4 Union and Intersection L.

41
41
43
45
47
50

51
52
53
95
95
o6
o7
o8
29
61
63
64

Contents

6.3.5 Operator Equivalences 81
6.4 Query-Execution Plans oo o 84
6.5 The Equivalence of Theoretical and Practical Query Evaluation 89
6.5.1 Conjunctive Queries 89
6.5.2 Boolean Queries o 94
6.5.3 Deletions, Permutations, and Value Changes 98
6.6 Optimizing Direct Query Evaluation 101
6.6.1 Compacting Query-Execution Plans 101
6.6.2 Dynamic Programming 103
6.7 Space Complexity of Query-Execution Plans 105
6.8 Related Work L 106
Schema-Driven Query Evaluation 109
7.1 The Relationship between a Data Tree and its Path Tree. 110
7.1.1 Path Trees and Node Classes 110
7.1.2 Using the Path Tree to find the Images of Data-Tree Embeddings. . . 112
7.2 Finding Second-Level Queries in a Path Tree 115
7.2.1 Representing Embedding Images 115
7.2.2 k-Segments 116
7.2.3 Operators for Sets with Extended Node-Cost Tuples 116
7.2.4 Finding the Best k Second-Level Queries. 119
7.3 Finding Results of Second-Level Queries in a Data Tree 119
7.4 An Incremental Algorithm for the Best-n-Results Problem 120
7.5 Optimizing Schema-Driven Query Evaluation 122
7.6 Related Work 126
Efficient Algorithms for Plan Operators 127
8.1 Compacting and Encoding a Target Tree 128
8.2 The Indexes of a Target Tree 130
8.3 LiSts e 131
8.4 Operationson Lists. 132
8.4.1 Selection 133
8.4.2 Join and Outerjoin L Lo 133
8.4.3 Union and Intersection 138
8.5 Complexity Bounds for Operators and Query-Execution Plans 139
8.5.1 Time and Space Complexities of the Operators 140
8.5.2 Complexity Bounds for the Direct Evaluation Method 140

X

Contents

8.5.3 Complexity Bounds for the Schema-Driven Evaluation Methods 141

8.6 Related Work 142

9 The approXQL Query Engine 145
9.1 The Server-Side Moduleso L 145
9.1.1 Database Kernel o 146

9.1.2 Loader and Indexer 147

9.1.3 Query Parser 148

9.1.4 Query Processor 148

9.1.5 Abstract Generator 150

9.2 The Graphical Query Editor o0 151

10 Experimental Efficiency Analysis 153
10.1 Hypotheses o e 154
10.2 Experimental Setupo L 155
10.2.1 System Configuration L. 155

10.2.2 Software used for Experimental Setup 156

10.2.3 XML Collections 157

10.2.4 Query Patterns Lo 158

10.3 Performed Experiments 159
10.4 Results of the Experiments 0L 161
10.4.1 Hypothesis 1 (Number of Requested Results) 161

10.4.2 Hypothesis 2 (Number of Value Changes) 165

10.4.3 Hypothesis 3 (Schema Size, Varying Number of Names) 167

10.4.4 Hypothesis 4 (Schema Size, Constant Number of Names) 168

10.4.5 Hypothesis 5 (Term Selectivity) 170

105 Summaryo e 172
11 Conclusion 175
11.1 Summary of Contributions Lo 175
11.2 Future Worko 178
Bibliography 183
A The Grammar of approXQL 199
B Symbols used in the Thesis 201
C Anhang gemal3 Promotionsordnung 205

