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Abstract

The eXtensible Markup Language (XML) is a widely accepted standard for the representation
of data. The more data is stored in XML documents, the more important become methods
for effective and efficient searching. An important characteristics of XML documents is their
self-describing structure. Queries that specify selection conditions for the structure promise
to greatly improve the precision of the search. However, the use of the structure can also
be problematic, because it is hard for users to learn all of the details of the often complex
and heterogeneous structure required to phrase a query, and because structural selection

conditions often lead to overspecified queries that miss relevant results.

In this thesis, we propose an innovative method for searching in XML data, which uses the
descriptive structure as a guide to locate the requested information. A user needs only partial
knowledge of the structure to formulate queries that specify conditions on both the content
and structure of documents. A query is interpreted in such a way that it retrieves not only
exact matches, but also results considered to be similar to the query. To find the similar
results, sequences of transformations are applied to the query so that its structure is adapted
to the structure of each document in the collection. Each transformation within a sequence
has a cost; the total cost of a sequence measures the similarity between the original query and
a document matched by the transformed query. This total cost is assigned to the document
and determines its position in the list of results, which is sorted by decreasing similarity. By
adjusting the costs, the interpretation of queries can be tailored to the needs of different users,

and also to the varied characteristics of XML documents.

We present all necessary algorithms and data structures to implement a query processor that
answers a query in polynomial —typically sublinear —time with respect to the size of the
database. For a given query, the query processor creates a compact query-execution plan that
represents all possible query transformations. It evaluates the plan by executing operators
that successively calculate the transformation costs for each document in the collection. We
present techniques to effectively optimize the evaluation of query-execution plans by exploiting
equivalences between operators. To reduce the query-evaluation times even more, we propose
a method to retrieve the best n results, without computing similarity scores for all documents
in the collection. This method uses a structural summary of the data to estimate the best k

transformed queries, which are successively evaluated until the best n results are found.

The theoretical concepts are validated by a prototypical implementation. We describe the
architecture of the prototype, and discuss the results of systematic tests carried out to analyze
the evaluation times for a representative set of queries with respect to various collections of

real and synthetic XML documents.
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