
Appendix C

Certification of the Results given

in Section 7.6

Since the bounds were calculated by a computer program requiring an unusually large memory

model, and programmers and compilers cannot always be trusted, we tried to confirm the

results independently, using Maple as a programming language. We did not rerun the whole

computation, but we used the output of the C program described in Section 7.6 after the final

iteration. The program writes the last iteration vector y(−i) that it has computed into a file.

The Maple program reads this vector and uses it as an estimate yold for the Perron-Frobenius

eigenvector with ynew = Tfory
old ≈ λW yold. Instead of the standard backward iteration

ynew
s = ynew

succ0(s) + yold
succ1(s)

(see (7.7)), we write

λW yold
s ≈ λW yold

succ0(s)
+ yold

succ1(s).

Hereafter, as usual, an expression such as ynew
succ0(s) or yold

succ0(s) is understood as being 0 if

succ0(s) does not exist. We now find a value λlow with

λlowyold
s ≤ λlowyold

succ0(s)
+ yold

succ1(s), (C.1)

for all states s. In matrix notation, this is written as λlowyold ≤ λlowAyold +Byold or λlow(I −
A)yold ≤ Byold. We can multiply with the nonnegative matrix (I − A)−1 and obtain

λlowyold ≤ (I − A)−1Byold = Tbacky
old.

By Lemma 7.9 we can now conclude that λlow ≤ λW .

The maximum possible value of λlow is simply determined by looking at every state s and

solving (C.1) for λlow. We have to take the minimum of

yold
succ1(s)

yold
s − yold

succ0(s)

(C.2)

over all states s. Similarly, by reversing the inequality in (C.1) and taking the maximum of the

expressions (C.2), one can find an upper bound λhigh on λW . In general, these bounds turn out

to be a little weaker than the bounds that are calculated from yold and ynew by Lemma 7.9.

157



158 APPENDIX C. CERTIFICATION OF THE RESULTS IN SECTION 7.6

In implementing this, we tried to avoid the use of excessive memory. The C program writes

the vector y in such a form that the Maple program simply has to scan the file sequentially.

The input file for W = 4 is partially shown in Figure C.1(a).

read “procfile.maple”:

init(4):

setx({{1}}, 17554423808, 1):

setx({{4}}, 5735051264, 0):

setx({{4}}, 5735051264, 1):

setx({{1}, {4}}, 7791677952, 1):

setx({{3}}, 8280601600, 0):

setx({{4}}, 5735051264, 1):

setx({{1, 4}}, 17554423808, 1):

setx({{3, 4}}, 11470102528, 0):

. . .

finish():

terminate():

setx := checkx :

finish():

init(4):

read “procfile.maple”:

setx := checkx :

setx({{1, 2, 3, 4}}, 28618452992, 0):

setx({{1, 2, 3, 4}}, 28618452992, 1):

setx({{1, 2, 3, 4}}, 28618452992, 1):

setx({{1, 2, 3}}, 28618452992, 0):

setx({{1, 2, 3}}, 28618452992, 1):

setx({{1, 2, 3}}, 28618452992, 1):

setx({{1, 2, 3}}, 28618452992, 1):

setx({{1, 2, 4}}, 23849553920, 0):

. . .

terminate():

(a) (b)

Figure C.1: (a) The check file for W = 4. (b) The sorted version of this file.

At the start the program reads function definitions from the file procfile.maple, which is

listed in Appendix D, and performs some initializations in the procedure init. The main work

is done in the procedure calls setx(s, y,flag), which indicates that the component for state s in

the vector yold equals y. A state is represented by its signature, as a set of sets. A flag value

of 1 indicates that the program should just remember this value. A flag of 0 in a procedure

call with state s indicates that the program should use this value and the previously-stored

values of yold to evaluate (C.2) for this state, and update λlow and λhigh if appropriate. At the

end, the procedure finish prints out the final values of λlow and λhigh.

The C program writes the values for succ0(s) (if it exists) and succ1(s), with a flag of 1,

immediately before writing a line for s with a flag of 0. After processing a line with a flag of 0,

Maple can, therefore, forget all values that it has stored. Accordingly, as can be seen in the

example of Figure C.1(a), some states occur several times.

The Maple program calculates succ0(s) and succ1(s) on its own, and it generates an error

message if the required values were not stored in the preceding calls to setx.

We also performed a slightly more paranoid check to ensure that no state was omitted, and

the program did not inadvertently use two different values for the same state. More precisely,

we checked that all states that are present in the file with a flag of 1 are also present in the file

with a flag of 0, with identical values y. The format of the input file is designed in such a way

that one just has to sort the lines alphabetically and read the sorted file into Maple to carry

out this check. Figure C.1(b) shows the sorted version of the file of Figure C.1(a)1. All calls

to setx that refer to the same state are now grouped together. There must first be a call with

flag 0, where the value is memorized, followed by an arbitrary number of calls with the same

state and with flag 1, where the program just checks if the given values coincide. The meaning

1We leave the question of why the first two states in alphabetic order, {1, 2, 3, 4} and {1, 2, 3}, have the same

value, to the reader to ponder.



159

of the procedure setx is changed at the beginning by the assignment setx := checkx. Note that

finish and init appear before procfile.maple is read; thus, the first two lines have no effect.

In the first phase we have already checked that all successors of all states, which are present

in the file with a flag of 0, are also present in the file, with a flag of 1. As a consequence, it is

ensured that at least all reachable states have been processed in the first phase (provided that

at least one state was processed). This is enough to establish correctness of the result.2

For W = 20 the size of the check file was about 30 gigabytes. Each pass over the file with

Maple took about 20 hours, and sorting took almost five hours. (We mention these running

times only to give a rough indication. We ran our program on different computers of different

speeds.) It would also be feasible to check larger values of W but we did not think it was

worthwhile. The procedures finish and terminate printed the following output, after reading

the unsorted check file.

348080 10836799

------, --------, [3.967040106, 3.967082162], 3967040105*10^-9,

87743 2731680

3967082162*10^-9

142547558 configurations were checked.

2We did not check if a state appears more than once with a flag of 0, possibly even with different values. It

is not difficult to work out why this does not harm the reliability of the result.




