
Chapter 6

Quantitative Analysis of the

Realizations of the Combinatorial

Types of 3-Polytopes

6.1 Introduction

Characterizing the structure of the set of all d-dimensional polytopes leads to two main lines

of study:

(1) to list all possible combinatorial types of polytopes, i.e. to determine which finite lattices

correspond to face lattices of polytopes and which do not;

(2) to describe the set of all realizations of a given combinatorial type.

For 3-dimensional polytopes (or 3-polytopes for short), as early as 1922, Steinitz [52, 53]

answered the questions about the realization space, that is, the space of all polytopes Q that

are combinatorially equivalent to a polytope P . The edge graph G(P ) of a polytope P is the

connected graph whose vertex set is the vertex set of the polytope P , and two vertices are

adjacent in the graph if they are endpoints of a 1-face of P . Steinitz proved the following

theorem.

Theorem 6.1 (Steinitz’s Theorem, 1922 [52]). A graph G is the edge graph of a 3-polytope if

and only if G is simple, planar and 3-connected.

Several proofs for the theorem are given in [48]. Inspecting carefully the proofs, Richter-

Gebert concluded that for every 3-polytope P the realization space contains rational points,

that is, every 3-polytope can be realized with integral vertex coordinates.

In Part IV of [48] Richter-Gebert presents a proof of Steinitz’s Theorem that is based on

self-stresses. This approach also proves that the realization space of a 3-polytope contains

rational points. Richter-Gebert obtains the following results:

(1) Any 3-polytope P with n vertices can be realized with integral coordinates smaller than

218n2

;
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(2) If P contains a triangle facet, then it can be realized with integral coordinates smaller

than 43n.

Previously, in 1994, Onn and Sturmfels [44] proved that a 3-polytope with n vertices can

be realized with integral coefficients (vertex coordinates) smaller than n169n3

.

In this chapter we further consider these problems and we prove that

(1′) If P contains a triangle (not necessarily a face), then it can be realized with integral

coordinates smaller than 29n.

(2′) If P contains no triangular facet, but at least a quadrilateral facet, then it can be realized

with integral coordinates smaller than 156n.

(3′) Any 3-polytope P with n vertices can be realized with integral coordinates of absolute

value less than n10n 210n2

< 212n2

.

For dimension d ≥ 4, the realization of a d-dimensional polytope is very complicated. d-

dimensional polytopes behave very differently from 3-polytopes with respect to realizability.

In [48], Richter-Gebert summarizes the counterexamples that are found to contrast with the

3-dimensional case. In the monograph it is also explained that the realizability problem for

4-polytopes is NP-hard, and in order to realize all combinatorial types of integral 4-polytopes

with n vertices in the integer grid {1, 2, . . . , f(n)}4, the coordinate size function f(n) has to

be at least doubly exponential in n.

This chapter is organized as follows. In Section 6.2 we use the Matrix-Tree Theorem to

relate the stress matrix of a graph with its number of spanning forests. In Section 6.3 we work

on the size of the smallest integral grid on which all combinatorial types of 3-polytopes can be

realized. We study the case when the polytope contains a triangular face, the case when the

polytope contains no triangular face but a quadrilateral face, and the case when the polytope

contains neither a triangular nor a quadrilateral face, but a pentagonal face.

6.2 A Generalization of the Matrix-Tree Theorem

Let G be a simple, planar and 3-connected graph, and let L be the Laplacian matrix of G.

Consider any edge orientation of the graph G. The incidence matrix of G (with respect to

this orientation) is the V × E indexed matrix C = (cie) with entries

cie =





1 if i is at the head of e

−1 if i is at the tail of e

0 otherwise

Then we have

Lemma 6.1. The Laplacian matrix of G can be written in terms of the incidence matrix as

L = C ·Ct.

The Matrix-Tree Theorem [1] states that the determinant of the matrix obtained from the

Laplacian matrix L of a graph G by deleting one row and one column equals the number of

spanning trees of G.
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In this chapter we consider the stress matrix L̄, obtained by deleting the rows and columns

corresponding to the boundary points of G. Suppose G is n-vertex graph with k boundary

points p1,p2, . . . ,pk. Let F k(G) be the set of spanning forests of G with k components, each

rooted at one pinned boundary vertex pi, i = 1 . . . k. We use the following generalization of

the Matrix-Tree Theorem:

Theorem 6.2. Let L̄k be the stress matrix obtained from L by deleting the rows and columns

corresponding to p1,p2, . . . ,pk. Then

det L̄k = |F k(G)| .

Proof. The Binet-Cauchy theorem from linear algebra states that, given an (r × s)-matrix P

and an (s × r)-matrix Q, r ≤ s, det(P · Q) equals the sum of the products of determinants of

corresponding (r×r)-submatrices, where “corresponding” means that we take the same indices

for the r columns of P and the r rows of Q.

For L̄k this means

det L̄k =
∑

N

detN · detN t =
∑

N

(detN)2,

where N runs through all (n − k) × (n − k) submatrices of C \{rows 1, . . . , k}. The n − k

columns of N correspond to a subgraph of G with n− k edges on n vertices, and it remains to

show that:

detN =

{
±1 if these edges span a forest of F k(G)

0 otherwise

Case 1: Suppose the subgraph contains a cycle. Then since the rows of N corresponding to

the vertices of the component containing this cycle sum up to 0, we infer that they are linearly

dependent, and hence detN = 0.

Case 2: Suppose the subgraph contains no cycle but one of its components contains at

least two vertices of the boundary of G. Let X be this component. Since X contains more

than one boundary vertex, then it has no more than |E(X)| − 1 interior vertices of G. The

submatrix formed by the columns corresponding to edges in X has |E(X)| columns and at

most |E(X)|−1 non-zero rows, hence its rank is at most |E(X)|−1. Consequently, detN = 0.

Case 3: Suppose the subgraph is a forest of Fk(G), with components X1, . . . , Xk. Consider

the component X1 of the forest. X1 is a tree rooted at the boundary vertex p1. Then, in

this component, there is a vertex j1 6= p1 of degree 1; let e1 be the incident edge. Deleting

j1, e1 we obtain a tree with E(X1)− 1 edges. Again there is a vertex j2 6= p1 of degree 1 with

incident edge e2. Continue in this way until j1, . . . , jE(X1) and e1, . . . , eE(X1) with jl ∈ el are

determined.

We can do this for every component X1, . . . , Xk of the subgraph, obtaining a sequence

j1, . . . , jE(X1), jE(X1)+1, . . . , jE(X1)+E(X2), . . . , jE(X1)+···+E(Xk−1)+1, . . . , jn−k

of vertices, and a sequence

e1, . . . , eE(X1), eE(X1)+1, . . . , eE(X1)+E(X2), . . . , eE(X1)+···+E(Xk−1)+1, . . . , en−k

of edges.
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Now permute the rows and columns of N , to bring jl into the l-th row and el into the l-th

column. Since by construction jl /∈ em for l < m, we see that the new submatrix N ′ is lower

triangular with all elements on the main diagonal equal to ±1. Thus detN = ± detN ′ = ±1,

and we are done.

6.3 Quantitative Analysis of the Size of a Minimal Grid

In this section we consider the size f(n) of a minimal grid {1, 2, . . . , f(n)}3 on which all

combinatorial types of 3-polytopes with n vertices can be realized. For upper-bounding the

minimal grid size, we are based on Richter-Gebert’s construction, which steps from a graph to

a concrete polytope using the Maxwell-Cremona Theorem.

The bound we obtain is an exponential function in n if the polytope contains a triangle or

a quadrilateral face, and exponential in n2 for the general case, as in previous results [48], but

we get an improvement on the constants.

For the cases when the polytope contains a triangle or a quadrilateral face, we first derive

an upper bound for the grid size needed for an equilibrium representation of the edge graph of

the polytope.

Assume that a 3-connected planar graph G is given with a choice of a peripheral polygon

and an arbitrary assignment of positive stresses ωij on the interior edges.

Using Tutte’s embedding we can easily find an equilibrium stress for the interior vertices,

as described in Section 0.2: For a fixed location of the boundary vertices p1, . . . ,pk in convex

position, we solve the following system, yielding equilibrium locations pi = (xi,yi) for the

interior vertices:

L̄k · x = bx , L̄k · y = by ,

where x and y are the obtained coordinates for the interior points, L̄k is the stress matrix of

size n − k, and bx and by contain the fixed boundary conditions.

Lemma 6.2. If we choose the boundary points such that the independent vectors bx and by

are det L̄k times an integer vector ux and uy respectively, we get integer vector solutions in

the range [ 0 , u0 det L̄k ], being u0 the absolute value of the largest component of ux and uy.

Proof. The boundary vertices are vectors with two integer components. We choose bx =

det L̄k ux and by = det L̄k uy. Since all interior vertices are interior to the peripheral convex

polygon, their largest coordinate must be in the range [ 0 , u0 det L̄k ].

The x-coordinates of the interior vertices equal, by Cramer’s rule, to

xi = det L̄(i)/ det L̄k,

where L̄(i) is obtained from L̄ by replacing the i-th column by bx. The number det L̄k is then

a common factor of all the components of the i-th column of the matrix L̄(i), hence it is a

factor of det L̄(i) and it cancels with the denominator of xi.

This and the fact that all matrix entries are integers, imply that all the entries of x are

integer numbers.

Analogously, we can see that the entries of y are integer numbers as well.

Let G[p] = (p1,p2, . . . ,pn) denote the unique equilibrium configuration given by Tutte’s

Theorem.
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6.3.1 Extending the Interior Equilibrium Stress to the Boundary

The resulting equilibrium stress given by Tutte’s embedding cannot, in general, be extended

to an equilibrium stress on the boundary vertices, except when the outer face is a triangle.

We denote by I and B the interior and boundary vertices of G[p] respectively.

We want to get equilibrium at the boundary vertices j by offsetting the resulting forces fj

with appropriate negative values on the stresses of the boundary edges:

fj :=
∑

i∈I:{i,j}∈E

ωij(pi − pj) , for j ∈ B (6.1)

The following lemma shows how the resulting forces can be expressed in terms of the

location of the boundary vertices pj , j ∈ B:

Lemma 6.3. 1. There are non-negative weights ω̃jk = ω̃kj ≥ 0, for j, k ∈ B, independent

of p, such that the resulting forces on the boundary vertices are given by

fj =
∑

k∈B:k 6=j

ω̃jk(pk − pj) , for j ∈ B . (6.2)

2. The weights ω̃ are rational numbers with denominator the determinant of the reduced

Laplacian matrix after removing the rows and columns corresponding to the boundary

vertices.

3. If we fix vertex pj at position 1 and all other boundary vertices at position 0, then ω̃jk is

the resulting force at vertex k measured with respect to the positive direction.

In other words, the resulting forces are the same as in a complete graph on the vertex set

B with stresses ω̃.

Proof. Let A be the weighted adjacency matrix with the given weights ω and let D be the

diagonal matrix of row sums of A. We subdivide A and D into block matrices indexed by

vertex sets I and B. The system can be written as

(
AII AIB

ABI 0

)(
pI

pB

)
−
(

DIpI

DBpB

)
=

(
0

fB

)

This is actually an abbreviated representation of two independent systems of equations, for

the x-coordinates and for the y-coordinates. The two equations have the same structure of

coefficients but different variables and “right-hand sides”. Thus pi and fi must be read as

representing either the x-coordinate or the y-coordinate of the corresponding vector.

Solving the first equation for pI yields

pI = (DI − AII)
−1AIBpB,

and substituting this into the second equation gives

fB = ABI(DI − AII)
−1AIBpB − DBpB =: ÃpB .

Since ABI = AT
IB , the coefficient matrix Ã is symmetric. We can define ω̃ as the off-diagonal

entries of Ã. With this definition, Part 2 is satisfied, since the denominator of Ã is the
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determinant of (DI −AII), the reduced Laplacian matrix after removing the rows and columns

corresponding to the boundary vertices.

To show that the expression fB = ÃpB has the form (6.2), we have to check that the row

sums of Ã are 0 and ω̃ ≥ 0. Let 1 denote the vector of all ones. We have AII1 + AIB1 = DI1

by definition, and therefore (DI − AII)
−1AIB1 = 1. If we plug this into the expression

of Ã1 := ABI(DI − AII)
−1AIB1 − DB1, we obtain ABI1 − DB1, which is again zero, by

definition.

To see that ω̃jk ≥ 0, we argue geometrically. If we position the vertices as in Part 3,

by (6.2) ω̃jk is the resulting force at vertex k measured with respect to the positive direction.

However, it is clear that all vertices pi lie in the convex hull between 0 and 1, therefore, by (6.1),

ω̃jk ≥ 0.

Lemma 6.4. If we set the interior stresses to 1, the weights ω̃ satisfy
∑

k∈B:k 6=j

ω̃jk < n − |B|, for j ∈ B .

Proof. We argue similarly as in Part 3 of Lemma 6.3. Fix the vertex pj at the origin 0 and all

other boundary vertices at position 1, very close to each other such that they are at distance 1

from pj . By (6.2),
∑

k∈B:k 6=j

ω̃jk is the resulting force at vertex j. Since all interior vertices pi,

i ∈ I, lie inside the boundary, all interior edges {pj ,pi} have length strictly less than 1. If all

stresses wij are set to 1, then all forces at vertex j coming from the interior edges are strictly

less than 1. There are n − |B| of these forces, since there are |I| = n − |B| interior vertices,

and the lemma follows.

This inequality holds for any subset Bs ⊂ B of boundary vertices, since by positioning

vertex j and the vertices of B \ Bs at position 0, and all vertices k ∈ Bs different from j at

position 1, we have
∑

k∈Bs:k 6=j

ω̃jk <
∑

k∈B:k 6=j

ω̃jk < n − |B|, for j ∈ Bs .

Corollary 6.1. For any j, k, l ∈ B, we have ω̃jk + ω̃jl < n − |B|.
Corollary 6.2. For any j, k ∈ B, we have ω̃jk < n − |B|.
Lemma 6.5. If the outer face is a triangle, then every equilibrium stress on the interior edges

and vertices can be extended to an equilibrium stress on the whole framework.

Proof. Let the boundary vertices be p1,p2,p3. We can get the desired equilibrium on the full

framework by simply setting ω12 := −ω̃12, ω23 := −ω̃23, and ω13 := −ω̃13.

Geometrically, this corresponds to the fact that three lifted vertices p1,p2,p3 lie always

in a common plane, and thus there is no difference between the liftings of Part 1 and 2 in

Theorem 0.3.

Lemma 6.6. If the outer face is a quadrilateral p1p2p3p4 with p1 =
(
0
0

)
, p2 =

(
1
0

)
, p3 =

(
x3

y3

)
,

and p4 =
(
0
1

)
, then an equilibrium stress on the interior edges and vertices can be extended to

an equilibrium stress on the whole framework if and only if

x3 + y3 = 1 +
ω̃13

ω̃24
· x3y3 .
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Proof. The equilibrium equation for p1 is

f1 + ω12(p2 − p1) + ω14(p4 − p1) = 0,

with f1 =
∑

k=2,3,4 ω̃1k(pk − p1), and the equations for p2,p3,p4 are similar.

If we solve the system of equilibrium equations for the four boundary vertices p1,p2,p3,p4

for given values of ω̃, we obtain the following result:

ω12 = −ω̃13x3 − ω̃12

ω23 = − ω̃24

y3
− ω̃23

ω34 = − ω̃24

x3
− ω̃34

ω14 = −ω̃13y3 − ω̃14

x3 + y3 = 1 +
ω̃13

ω̃24
· x3y3

It is clear that the values ω̃12, ω̃23, ω̃34, ω̃41 do not matter, because their effect can be

cancelled individually by modifying ω12, ω23, ω34, ω41 appropriately, as in the triangular case.

Note that the assumption about the locations of p1, p2, and p4 is no loss of generality,

since it can always be obtained by an appropriate affine transformation.

Lemma 6.7. If the planar framework G[p] is 3-connected, then ω̃24 > 0 and ω̃13 > 0.

Proof. Since G[p] is 3-connected, there exists a path between the boundary vertices p2 and p4,

otherwise we could disconnect them just by removing p1 and p3. Hence, ω̃24 > 0. Analogously,

there exists a path between p1 and p3, and hence ω̃13 > 0.

When the outer face is a k-gon, k ≥ 5, we do not know which conditions must satisfy an

interior equilibrium stress for being extended to the boundary. In particular, this question is

still open for graphs with a pentagonal outer face: in this case we could not find a solution like

in Lemma 6.6. The situation is more complicated because it depends on five values of ω̃ij , and

not just two values ω̃13 and ω̃24 as in Lemma 6.6.

6.3.2 Realizations of Polytopes

We realize a polytope P with edge graph G by first computing an internal equilibrium stress on

G using Tutte’s Theorem, extending this stress to the boundary, and lifting the configuration

using the approach of Richter Gebert [48] described in Section 0.3.

We bound the z-coordinates of the obtained liftings and, in order to embed the vertices on

the integer grid, we blow up the obtained coordinates. We need the following lemma.

Lemma 6.8. If we scale the x- and y-coordinates of the vertices of a 3-polytope P by a factor

µ, then the z-coordinates are scaled by a factor µ2.

Proof. Let p = (px,py, 1) be any point of the planar configuration that lifts to the polytope

P . As described in Section 0.3, the z-coordinate of p is obtained from the height function h:

h(p) = 〈p,qi〉 if p ∈ ci .
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The vectors qi are computed recursively, choosing a sequence of cells from q0 to qi and walking

along this sequence, such that qi = qL is computed from qi−1 = qR, when we leave the cell R

to enter the cell L crossing the edge (b, t), as

qL = ωbt(pb × pt) + qR .

By construction, if we scale the x- and y-coordinates of the points p1, . . . ,pn of the planar

configuration embedded at the plane z = 1 by a factor µ, the components (qx,qy ,qz) of the

vector qi are scaled by

(µqx, µqy, µ2qz).

Then we have

h((µpx, µpy, 1)) =
〈
(µpx, µpy, 1), (µqx, µqy, µ2qz)

〉
= µ2h(p) .

Therefore the z-coordinate of p is scaled by µ2.

Realizations of Polytopes with a Triangular Facet

Lemma 6.9. A 3-polytope with n vertices and with a triangular facet can be realized with

integral vertex coordinates (xi, yi, zi) in the range

0 ≤ xi, yi < (n − 1)2 T (G)

0 ≤ zi <
1

6
(n − 3)(n − 1)4 T (G)2.

Proof. Assume the outer face of the edge graph of the polytope is a triangle. Fix the outer tri-

angular face to the coordinate points p1 =
(
0
0

)
, p2 =

(
1
0

)
, p3 =

(
0
1

)
, and set the interior stresses

to 1. Figure 6.1 shows an equilibrium configuration for a framework with outer triangular face,

and a corresponding lifting.

To bound the z-coordinates of the lifting, note that the lifted surface is beneath the tri-

angular pyramid formed by extending the three faces adjacent to the boundary. (They are

shaded in the figure.) Their slopes are determined by the stresses ω12, ω23, and ω13, and it is

easy to see that the tip of the pyramid, which is the intersection of these three planes, has a

height of

H =
1

1
|ω12|

+ 1
|ω23|

+ 1
|ω13|

=
1

1
ω̃12

+ 1
ω̃23

+ 1
ω̃13

,

which is strictly bounded by (n − 3)/6. To see this, use the inequalities ω̃12 + ω̃13 < n − 3,

ω̃12 + ω̃23 < n − 3 and ω̃13 + ω̃23 < n − 3, from Corollary 6.1. This implies 1/ω̃12 + 1/ω̃13 >

4/(n − 3), 1/ω̃12 + 1/ω̃23 > 4/(n − 3) and 1/ω̃13 + 1/ω̃23 > 4/(n − 3). Adding these three

inequalities, we obtain 1/ω̃12 + 1/ω̃13 + 1/ω̃23 > 6/(n − 3), and therefore H < (n − 3)/6.

Since all interior vertices are interior to the peripheral convex polygon, their largest co-

ordinate must be in the range [0, 1]. Now, let us blow up all x- and y-coordinates by the

common denominator, which is the determinant of the reduced Laplacian matrix L̄3 obtained

from L by removing the rows and columns corresponding to the boundary vertices p1,p2,p3.

By Lemma 6.2, this yields integer coordinates. And by Lemma 6.8, this yields integral z-

coordinates as well, which have been multiplied by (det L̄3)
2. Hence,

0 ≤ xi, yi ≤ det L̄3, 0 ≤ zi < (n − 3)(det L̄3)
2/6.
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Figure 6.1: A graph with a triangular outer face, its lifting, and on top, the containing pyramid

formed by the planes of the faces adjacent to the outer face.

We write det L̄3 in terms of the number of spanning trees of G using Theorem 6.2 and

Lemma 5.12, and the lemma follows.

The method can also be applied if there is a triangle which is not a face: We can cut the

polytope at this triangle, realize the two parts separately and glue them together, one on the

top and one on the bottom:

Lemma 6.10. A 3-polytope with n vertices whose graph contains a triangle can be realized

with integral vertex coordinates (xi, yi, zi) in the range

0 ≤ xi, yi < (n − 1)2 T (G)

0 ≤ zi <
1

6
(n − 3)(n − 1)4 T (G)2.

Proof. We use Part 3 of Theorem 0.3. For estimating the combined z-range from the two

halves, let n1 and n2 be the number of vertices of each of them respectively. Then, using

Lemma 6.9,

zi < (n1 − 3)(det L̄3)
2/6 + (n2 − 3)(det L̄3)

2/6 = (n − 3)(det L̄3)
2/6.

and by Theorem 6.2 and Lemma 5.12 we obtain again the bounds.

Theorem 6.3. A 3-polytope with n vertices whose graph G contains a triangle can be realized

with integral vertex coordinates (xi, yi, zi) in the range

0 ≤ xi, yi < n2

(
16

3

)n

= n2 5.3̄n

0 ≤ zi <
1

6
n5

(
16

3

)2n

=
1

6
n5 28.4̄n.
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Proof. Substituting in Lemma 6.10 the bounds on the number of spanning trees given in

Theorem 5.7, we obtain

0 ≤ xi, yi ≤ (n − 1)2
(

16

3

)n

< n2

(
16

3

)n

(6.3)

and

0 ≤ zi <
1

6
(n − 3)(n − 1)4

(
16

3

)2n

<
1

6
n5

(
16

3

)2n

. (6.4)

Realizations of Polytopes with a Quadrilateral Facet

Lemma 6.11. A 3-polytope with n vertices whose graph G contains no triangle but a quadri-

lateral face can be realized with integral vertex coordinates (xi, yi, zi) in the range

|xi| ≤ 2n(n − 1)6 T (G)2,

|yi| ≤ n(n − 1)6 T (G)2,

|zi| < 1
3 n2(n − 4)(n − 1)12 T (G)4.

Proof. Assume the outer face of the edge graph of the polytope is a quadrilateral p1p2p3p4,

with fixed coordinate points p1 =
(
0
0

)
, p2 =

(
1
0

)
, p3 =

(
x3

y3

)
, and p4 =

(
0
1

)
, x3, y3 being such

that p1p2p3p4 is convex.

We apply Lemma 6.6 as follows: By relabeling the points, we may assume that ω̃13 ≥ ω̃24.

Then we set x3 := 2 and

y3 :=
ω̃24

2ω̃13 − ω̃24
. (6.5)

We have 0 < y3 ≤ 1. Note that the first inequality holds since the outer face is convex, and it

is true if and only if ω̃24 > 0, which fits with Lemma 6.7.

By Part 2 of Lemma 6.3, the weights ω̃ are rational numbers with denominator the de-

terminant of the reduced Laplacian matrix L̄4, after removing the four rows and columns

corresponding to the boundary vertices. In particular, ω̃13 and ω̃24 are rational numbers with

a common denominator det L̄4.

Let Dy be the denominator of the rational number y3, after cancelling the common de-

nominator det L̄4. If we multiply all coordinates by Dy and then by det L̄4, we get integral

coordinates for all pi in the range 0 ≤ xi ≤ 2Dy det L̄4 and 0 ≤ yi ≤ Dy det L̄4.

Since ω̃13 and ω̃24 have common denominator det L̄4, Dy is bounded by twice the numerator

of ω̃13, which is at most (n − 4) det L̄4, by Corollary 6.2:

Dy ≤ 2(n − 4) det L̄4 .

We want to bound now the height of the tip of the 4-face polytope formed by extending the

four faces adjacent to the boundary. Suppose we rotate the edge {3, 4} counterclockwise about

p4 until p3p4 is parallel to p1p2, keeping the slope of the incident face fixed, i. e., y3 = 1 and

p3 = (2, 1). Since p1p2 and p3p4 are parallel, the intersection of their incident faces is a line



6.3. QUANTITATIVE ANALYSIS OF THE SIZE OF A MINIMAL GRID 115

p1 = (0, 0) p2 = (1, 0)

p3 = (2, y3)

p4 = (1, 0) p3 = (2, 1)p4 = (1, 0)

p1 = (0, 0) p2 = (1, 0)

Figure 6.2: Left: the original position of the boundary points. Right: Position of the bound-

ary points after the rotation, together with the projection of the 4-face polytope formed by

extending the four faces adjacent to the boundary. The intersection of the faces incident to

p1p2 and p3p4 is drawn thick.

ℓ parallel to the plane defined by p1p2p3p4. See Figure 6.2. Now, the face incident to {3, 4}
lies above the old face before the rotation, and therefore the height of ℓ is an upper bound for

the tip of the original 4-face polytope.

The height of ℓ is given by

H =
1

1
|ω34|

+ 2
|ω12|

≤ 1

3
max{|ω34|, |ω12|} ≤ 1

3
max{|ω̃34|, |ω̃12|},

which, by Corollary 6.2, is strictly bounded by (n − 4)/3.

Therefore, after scaling the z-coordinate using Lemma 6.8, we have

|xi| ≤ 2n (det L̄4)
2

|yi| ≤ n (det L̄4)
2

|zi| <
(
n(det L̄4)

2
)2 n − 4

3

By Theorem 6.2 and Lemma 5.13, we write det L̄4 in terms of the number of spanning trees of

G, obtaining the result.

If there is a 4-gon which is not a face, we can try to apply the same trick as in the case

where the polytope contains a triangle: to cut the polytope at this 4-gon, realize the two parts

separately and glue them together, one on the top and one on the bottom. But the bound on

the z-coordinate is not as easy to compute as before, since the quadrilateral face that we want

to glue is not necessarily horizontal, hence the stresses of the two parts must be computed

jointly.

Theorem 6.4. A 3-polytope with n vertices with no triangular facet but a quadrilateral facet

can be realized with integral vertex coordinates (xi, yi, zi) in the range

|xi| < 2n7

[
exp

(
ln 4 − 1

8

)]2n

< 2n7 12.460815n,

|yi| < n7

[
exp

(
ln 4 − 1

8

)]2n

< n7 12.460815n,

|zi| <
1

3
n15

[
exp

(
ln 4 − 1

8

)]4n

<
1

3
n15 155.271910n.
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Proof. If we substitute in Lemma 6.11 the bounds on the number of spanning trees given in

Theorem 5.10, we obtain

|xi| < 2n(n− 1)6 exp

(
ln 4 − 1

8

)2n

|yi| < n(n − 1)6 exp

(
ln 4 − 1

8

)2n

|zi| <
1

3
n2(n − 4)(n − 1)12 exp

(
ln 4 − 1

8

)4n

and the theorem follows.

Realizations of Polytopes with no Triangular Facet and no Quadrilateral Facet

In this case we could not find a solution like in Theorem 6.4, because we do not know how to

extend an interior equilibrium stress to the boundary vertices. The smallest face cycle of the

edge graph G of the polytope has length 5, because G is a planar graph without 3-faces and 4-

faces with a planar dual graph of average degree less than 6, thus the dual graph has minimum

degree 5, and hence G must contain a pentagonal face. The situation is more complicated

because it depends on five values of ω̃ij , and not just two values ω̃13 and ω̃24 as in Lemma 6.6.

Therefore, in this case we have to resort to realizing the polar polytope first, as suggested

by Richter-Gebert [48] for the case when G has no triangle. However, we obtain an improved

bound even in this case, by applying Theorem 5.11.

Theorem 6.5. Let P be a 3-polytope with n vertices that has no triangular facet and no

quadrilateral facet. Then there is a realization of P with integral vertex coordinates of absolute

values less than n10n 210n2

< 212n2

.

Proof. Let G the edge graph of P and let G∆ be its dual graph. The graph G∆ contains

a triangular face. Hence the coordinate bound for the polar polytope P∆ is achieved by

Lemma 6.9. The height of the vertices of P∆ lies in the range

0 ≤ zi <
1

6
(n(G∆) − 3)(n(G∆) − 1)4 T (G∆)2.

where n(G∆) is the number of vertices of the dual graph G∆. By Lemma 5.3, T (G∆) = T (G).

Since G has smallest face cycle 5, by Theorem 5.11 we have

T (G) < exp

(
2

3
ln 3 +

1

3
ln 4 − 4

27

)n

< 2.847263n.

Hence,

0 ≤ zi <
1

6
n(G∆)5 T (G)2

<
1

6
n

10
3 exp

(
2

3
ln 3 +

1

3
ln 4 − 4

27

)2n

<
1

6
n

10
3 8.106907n.
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We have used that, since G has smallest face cycle 5, n(G∆) ≤ 2/3n− 4/3.

It can be shown that there is a realization P∆ of P∆ with integral vertex coordinates of

absolute values less than 1
6 n10/38.106907n that contains the origin in its interior. The proof

is analogous to the proof of Lemma 13.2.5 in [48]. It consists in showing that the generated

polytope contains a grid point g in its interior, and then apply a translation that moves g to

the origin.

Now we proceed similarly as in [48, Lemma 13.2.6]. The hyperplanes that support the faces

f1, . . . , fn of this polytope are of the form

Hi :=
{
(x, y, z) ∈ R

3 | aix + biy + ciz + 1 = 0
}

.

(ai, bi, ci) for i = 1, . . . , n are the vertices of the desired realization P of P . They can be

calculated by solving the system of equations aixij
+ biyij

+ cihij
+ 1 = 0. Here (xij

, yij
, hij

)

for j = 1, . . . , 3 are the coordinates of points in P∆ that lie on fi. Solving these equations by

Cramer’s rule leads to coefficients ai, bi, ci of the form

det




∗ ∗ ∗
∗ ∗ ∗
1 1 1


 / det




∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗


 ,

where ∗ are entries of absolute value less than 1
6 n10/38.106907n. The divisor is always identical

for a fixed index i. The absolute value of the dividend and the divisor is strictly less than

6 ·
(
1/6 n10/38.106907n

)3
= 1/36 n10 8.1069073n. Multiplying all the points (ai, bi, ci) by the

divisors of the remaining points, we can transform the rational coordinates (the above quotient)

into integral coordinates of absolute value less than

(
1

36
n10 8.1069073n

)n

< n10n

((
1

36

) 1
n

8.1069073

)n2

< n10n 533n2

< (4.5 · 533)n2

< 212n2

.

The third inequality holds since n10 < 4.5n, for each n ≥ 20. Note that n ≥ 20, since the

smallest polytope with neither triangular nor quadrilateral facets is the dodecahedron, with 20

vertices. From the second inequality we could also get a bound of n10n 210n2

, which is also less

than 212n2

.

This theorem improves the result by Richter Gebert [48] which states that any 3-polytope

with a triangular facet can be realized with positive integral vertex coordinates of absolute

value less than 218n2

. Actually, Richter-Gebert mentions that with a more careful analysis he

can also prove a bound of 213n2

.




