Chapter 4

A Generalization of the
Maxwell-Cremona Theorem for
Self-Touching Configurations

4.1 Introduction

The classic Maxwell-Cremona Theorem [20, 21, 22, 48, 56] is a powerful tool that establishes a
bijection between the set of classical equilibrium stresses of a configuration in R? and the set
of three-dimensional polyhedral terrains in R? that project onto it.

In this chapter we study how this theorem translates to the case of self-touching con-
figurations. We present a generalization of the Maxwell-Cremona Theorem and establish a
correspondence between the set of stresses of a planar self-touching configuration and the
set of generalized three-dimensional polyhedral terrains, that is, three-dimensional polyhedral
terrains with jump discontinuities, that project onto it.

The lifting, that is, the direction from the self-touching stress to the generalized three-
dimensional polyhedral terrain, is unique up to the addition of a linear function, but the
projection, which is the direction from the generalized polyhedral terrain to the self-touching
stress, is in general not unique.

In [16], the authors use the Maxwell-Cremona Theorem for solving the Carpenter’s Rule
Problem. Inspired in their idea, we developed this generalization of the Maxwell-Cremona
Theorem as a tool for proving Theorem 3.1, but we did not succeed. Maybe in the future will
be found some nice application of our generalization.

4.2 Basics

4.2.1 The Cell Decomposition

Suppose we are given a self-touching configuration, which we can assume to be connected. We
distinguish between vertices and points, the converging positions of the vertices. We denote by
Po the coordinates of a vertex v. We assume that the configuration is embedded in R? in the
plane z = 1, so that each point p, has coordinates (x,, Yy, 1).
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The points of the self-touching configuration induce a cell decomposition: if it is connected,
the peripheral cell is realized as a polygon and the interior cells form a proper cell decomposition
of it by polygons. See Figure 4.1 for an example. Let ¢;, ¢ = 1,...,m, be the interior cells,
and let ¢g be the exterior cell.

Figure 4.1: Left: Vertices and bars of a self-touching configuration. Right: points and edges
of the corresponding cell decomposition. Numbers denote edge multiplicities.

Several bars of the linkage may converge to the same overlapping position. We distinguish
between edges of the cell decomposition, bars of the self-touching configuration, and pieces of
bars. The cell decomposition induces a subdivision of the bars of the self-touching configuration
into pieces. See an example in Figure 4.2. The edges are the segments in the cell decomposition.
In general, an edge of the cell decomposition represents several overlapping pieces of bars.
Given an edge e € E, let S, be the set of overlapping pieces lying along e, and let A\, = |S,|
be the multiplicity of e. Note that given an oriented edge e = (3, 7), for each oriented piece
(b,t) € Sgr we have pg = pp and p, = p;. Let E, B, S be the sets of edges, bars and pieces
respectively. Along the chapter, edges, bars and pieces are assumed to be oriented in some
arbitrary way, to be able to distinguish their different sides, left and right.

We introduce auziliary vertices on the interior of the bars, delimiting the pieces. Let A be
the set of auxiliary vertices. Obviously, two auxiliary vertices on the same bar have different
coordinates. Note that a point of the cell decomposition can represent several vertices of V'
and several auxiliary vertices of A.

Let (b,t) be an oriented piece. We denote by (b, t) its supporting bar, i. e., the oriented bar
containing the piece. See Figure 4.2.
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Figure 4.2: A piece (b, t) and its supporting bar (b, f). Vertices are drawn in white and auxiliary
vertices in black (we use this convention in the whole chapter).



4.2. BASICS 39

4.2.2 The Self-Touching Forces

Given a self-touching configuration, we say that the triplet {k;,;j} belongs to L if py is a
vertex pushing against the directed bar (p;, p;) and py must remain on the left side of the
line through p; and p; in order to maintain the combinatorial planar embedding. Note that
{k;j,i} € £ means that pj pushes against the bar (p;, p;) and py remains on the right side of
the line through p; and p;.

Connelly, Demaine and Rote [17] generalized the stresses defined in Section 0.2 for classic
configurations to self-touching configurations. Given a self-touching configuration, in addition
to the classic stress on the bars, we assign to each triplet {k;i,j} a weight F' = wgj;, rep-
resenting the force that pj transmits to the bar (p;,p;). The scalars F' = wy;; are called
self-touching stresses, and they distribute proportionally as represented in Figure 4.3. We use
the representation of p; as a convex combination of p; and pj,

where o = a5 is such that 0 < ao < 1. The vertex py, feels a force of value F' in the direction

(Pj — Pi)*
is restricted to move. The vertices p; and p; feel a proportional force of values ay;; F and

, perpendicular to the bar (p;,p;) and pointing to the left side of it, where py

(1 — auij ) F respectively, in the opposite direction.

>
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Figure 4.3: A touching incidence (small double arrow) and proportional distribution of self-
touching stress I’ (single arrows). Bold edges denote bars.

We denote by

Z -y
= T
z z

a counterclockwise rotation by 90°, parallel to the plane xy.

In general, a vertex v of the configuration can be involved in several self-touching stresses.
Let Fgr(v) be the resulting self-touching stress at v, that is, the resulting force of, first, the
force that v feels from pushing against other bars, and second, the proportional distribution at
v of all the self-touching stresses pushing against both left and right sides of the bars incident
to v. This is expressed formally as
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Fsr(v) = Z Wyij (Pj — Pz‘)L

i,j:{vii,j}EL

+ Z Z —QjWhj (Pj — pv)L + Z (1 = akjo )wijo (Pj — Pv)l

ji(v,7)eB \k:{kw,jrel k:{k;jvtel

We say that the configuration is in equilibrium if all forces, i. e., classical stresses on the
bars and self-touching stresses, add up to zero at every vertex v, that is

Fsr(v) + Z wyj(Pj —Pv) =0, Yo e V.
Ji(v,j)EB

4.3 From Stressed Self-Touching Configurations to Poly-
hedra

We generalize to the self-touching case the approach of Richter-Gebert [48], summarized in
Section 0.3, for obtaining the Maxwell-Cremona correspondence for classical configurations.

4.3.1 The vectors q;

We are given a self-touching configuration in equilibrium stress. Remember that we assume that
the configuration is embedded in R® in the plane z = 1, so that each point p; has coordinates
(Ii, Yis 1)

Given an oriented edge (3, 7), of multiplicity A, there is a unique adjacent cell L to the left
of it, and a unique adjacent cell R to the right of it. We call the (ordered) tuple (8,7 | L, R) an
oriented patch. (The letters are chosen as mnemonics as in [48] for 8 = bottom, T = top, L = left,
R = right.) We have an extra information: we have all the overlapping pieces (bs, t5) lying along
the edge (3, 7), and their corresponding supporting bars (BS, is), foreach s =1,...,\. Assume
the pieces are embedded in order from the right cell R to the left cell L, such that (by,¢1) is
directly adjacent to R and (by,ty) is directly adjacent to L.

Now, to each cell ¢; we associate a vector q; € R? by:

(i) ar =ar+ Y. (wu(ps x pr)+ A(b,t)) if (8,7 | L, R) is an oriented patch.

(b,t)ESa-
where
A(b,t) = ( Yo oot Y, (- Oék%)wka;)l)g X (p; — Pp)™
k:{k;bt}eLl k:{kst,b}eL
ke(t,t] ket,t]
- ( S -t Y Oékzz;wkzz;)pz x (P; — )"
k:{k;bt}eL k:{k;t,b}eL
ke[b,b) ke(b,b)]

In other words, A(b,t) is nothing else than the crossproduct of p; by the resultant force
which b feels from the self-touching stress incident to both sides left and right of the segment
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[t, 1], minus the crossproduct of p; by the resultant force which ¢ feels from the self-touching
stress incident to both sides of the segment [b, b].

To save space, we introduce the following notation: Fi“’b] denotes the total amount of force
that the vertex v feels from the self-touching stress incident to both sides left and right of the
segment [a,b] (v, a and b are three vertices on the same bar). Then, A(b,t) can be rewritten
as: ) )

A(b,t) = FI"py x (p — pp)* — E"p; x (p; — pp) - (4.1)
One can see in (4.1) that only vertices pushing against the interior of the bar contribute to
A(b,t), i. e., there is no contribution to A(b,t) of the self-touching stress coming from vertices
touching to b or t.

We classify the pieces into the following types. We say that a piece (b, t) is of type (a) when
(b,t) = (b, t), that is, when (b, ) is itself a bar with no vertex touching its interior, and hence
both b and ¢ are (not auxiliary) vertices of the configuration. We say that a piece (b,t) is of
type (b) when b = b and t # ¢, that is, when b is a end vertex of the supporting bar and ¢ is an
auxiliary vertex (remember that the piece is oriented). We say that a piece (b,t) is of type (c)
when b # b, that is, b is an auxiliary vertex. The vertex ¢ can be auxiliary (if ¢ # ¢) or not (if
t =1). See Figure 4.4 for an example.

Us Ve (%A
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Figure 4.4: Cases for an oriented piece of bar. (v1,x), (x,y), and (y,ve) are pieces of the
bar (vy,v2). The first one is of type (b), the other two are of type (¢). The rest of bars are
themselves pieces of type (a). With our notation, (v1,%) = (Z,7) = (¥,72) = (v1,v2), and, for
example, (77,75) = (v1,v5).

The next lemma shows how A(b,t) simplifies in the particular cases where (b,t) is a piece
of type (a) or (b).

Lemma 4.1. For a piece of bar (b,t), we have

1. If (b,t) = (b,t) is a piece of type (a), then
A(b,t) =0;

2. If (b, t) = (b,t) is a piece of type (b), then

A(b,t) = F"pg x (p7 — pp)*
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Proof. Part 1 is true by definition, since pieces of type (a) are bars without any self-touching
stress incident to its interior. Part 2 follows since b = b, thus trivially there is no self-touching
stress at [b, b], so F[b = O

Lemma 4.2. The vectors q; are well-defined.
For proving Lemma 4.2, we need the following result.

Lemma 4.3. Any trip around an interior point of the cell decomposition generates a difference
vector (0,0,0).

This is a straight forward calculation but very technical, and it is shown in Appendix A in
order to avoid technical details here.

Proof of Lemma 4.2. The two oriented patches (8,7 | L, R) and (7, §|R, L) define a consistent
relation between pg, p-,qr, and qg:

ar=dar+ Y (wu(ps x pr)+ A1)
(b,t)eSar

)

qr = 9L + Z (win(Pr x Pg) + A(t, D))
(t b)ES.,-g

This is true since wy; = wy, since Sgr and Srg contain the same pieces but with inverse
orientations, and since

A(b,t) = —A(t,b)

which follows from the definition (4.1), using that —x* = (—x)*.

As in Richter-Gebert’s book [48], we compute the vectors q; recursively, choosing a sequence
(path) of cells, from qg to q;. Walking along this sequence, q; = qr is computed from
di—1 = qr when we leave the cell R to enter the cell L, crossing the edge (3,7) (we consider
the oriented patch (3,7 | L, R)).

To show that we obtain the same value for q; independently from the path we choose, it

suffices to prove that any trip around an interior point of the cell decomposition generates a
difference vector (0,0, 0) [48], which holds by Lemma 4.3. O

4.3.2 The Lifting Function

First we introduce some notation. Given an oriented patch (8,7 | L, R), it can happen that
some vertices of V' converging to ps or p, are neither directly incident to cg nor to cr, but
hidden between pieces of Sz, (see Figure 4.5). Let x be such a vertex. We write x € cp,
z € cr,. We denote by SZ,T (x) be the set of pieces along (8, 7) crossed when we walk from the
cell ¢; to x, oriented like (8,7) when leaving ¢; (i = L, R), and by S} ()~ the same set of
pieces but with inverse orientation. Note that S% (v) = ) corresponds to the case when v is
directly incident to ¢;. Note that

SBT = SgT(x)USé/T(x)_l USﬁT($)7 (42)

where Sg, (x) denotes the set of pieces along (3, 7) incident to x, and U denotes here the disjoint
union.
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Figure 4.5: In this example, Séi_(:z:) ={(2,4)}, S[%T(x) ={(7,3)} and Sg-(z) = {(x,5), (z,6)}.

The vectors q; are now used to define the lifting function h, also called the height function.
Let C be the self-touching configuration, composed of bars and vertices. Let [C] denote the set
of points which is the union of all edges of the cell decomposition in R? induced by C. Then
the height function is defined in the domain D := R?\ [C] UC, contrary to the usual lifting
for classic configurations, in which the height is defined in R2. Hence h: D — R assigns a
z—coordinate to each vertex of V, to each point on a bar of C and to each point of R?\ [C]. This
means that different vertices or different bars can have different heights at the same geometric
location.

The height of a vertex x € V' is defined as

h(z) = <px, qi + Z (wet(Ps % Pr) + A(b, t))> , if vec. (4.3)

(bt)eS], ()

We obtain the height of the interior points of bars by linear interpolation from their end
vertices. The height of the interior points can also be computed directly, by the linearity of the
scalar product: if x is interior to a piece (b,t) that lies along an edge (3, 7), we can compute
h(z) directly from (4.3) (S}, (z) is analogously defined for interior points). In particular, cells
lift to facets in the usual way, and if « belongs the closure of a cell (interior or directly incident
to it), then (4.3) translates into

h(z) = (P> qi) if zea, (4.4)
which, as expected, agrees with the height (2) given by the classic Maxwell-Cremona Theorem.

Lemma 4.4. The function h is well-defined, that is, it defines a unique height for each vertez.

Proof. Let by be a vertex of V' with py, = pg, where (8,7 | L, R) is an oriented patch of the
configuration. We can reach by walking from ¢y, or from cg. We show that h attains the same
value at by when walking from both sides. We have
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qr + Z (wtb(pr X pﬁ) + A(tv b))
(t.b)€SE_(bo)

= ar+ D (we(Psxp)+AG))+ Y (wn(Pr X pp) + At,D))

(b,t)ESs, (t,b)eSk (bo)

= arn+ Y (wn(psxpr)+AD1) - Yo (@l x pr) + A1)
(b,t)ESsr (bt)eSE, (bo)~*

= art+ Y, (s xpP)+AGE)+ D (wie(ps x pr) + Albo, 1))
(b,)ESE (bo) (bo,t)€Sp-(bo)

(4.5)

The first equality is (i) on page 40. The second equality holds since (t,b) € S&_(bo) if and
only if (b,t) € S5 (bo)™", wip = wir, Pr X Pg = —Pp X Pr and A(t,b) = —A(b,t). The third
equality holds by (4.2).
Since py, = pg, we have
(Pbos Wit (Pp X Pr)) =0,

and since by € V, then each piece (bg,t) € Sg-(bo) is of type (a) or (b). Hence, by Lemma 4.1
we have

(Pvo, Albo, 1)) =0 V(bo,t) € Sgr(bo).
Now, applying the scalar product by ps, on both sides of (4.5), we obtain

<pb0,qL + Y (walpr xpp)+ A(t=?>))>

(t.b)eS (bo)

= <pbo,qR + Y. (welps x pr)+ A(b,t))> ;

(b,)eSE (bo)

and on the right and left of the equality we have the height of by walking from ¢y, or from cp
respectively. O

4.3.3 Generalized Polyhedral Terrains

Consider our height function h defined by (4.3), depending on two variables, the two plane
coordinates. If the directional limit of h at a point p takes different finite values depending
on the direction, the cell or the bar we come from, we say that the function has a jump
discontinuity at p. The jump at p is the difference between two directional limits at p. Note
that we can have one, two, three or even more directional limits at p.

The lifting is performed by applying to each vertex of the configuration the height function
h. We obtain what we call a three-dimensional generalized polyhedral terrain. The difference
with the classic polyhedral terrain obtained in the usual lifting is that in the generalized poly-
hedral terrain we can have concurrent bars and vertices with different heights. The obtained
generalized polyhedral terrain has then jump discontinuities at those vertices and bars con-
verging to the same geometric position in the self-touching configuration, as is it shown in this
section.
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The next lemma shows that each cell lifts to a planar polygon in R3 and that the self-
touching configuration lifts to a generalized polyhedral terrain, with jump discontinuities at
those edges affected by self-touching forces.

Lemma 4.5. The height function h is piecewise linear with jump discontinuities at the bars
with incident self-touching stress.

Proof. By definition, h is piecewise linear, linear on each cell. Given an oriented patch (3,7 |
L, R) affected by self-touching forces, let us compute the vertical jump discontinuity along
(6, 7). First we compute the jump at each of the points pg and p.

Let 6,(8) denote the jump &y, at pg, that is, the difference of heights between two adjacent
cells incident to pg on the lifted polyhedron. For pg we have

(ppar) = (Pgar)+ Y wu(PsPexp)+ Y. (Ps A1)
(b,t)eSa- (b,t)eSa-
= (pgar)+ Y (PsAD1).
(b,t)eSa-

For the first equation we use the definition of q7, and the linearity of the scalar product. For the
second equation we use that for each piece (b,t) in Sz, we have p, = pg, and (x,x X y) = 0.
This shows that for adjacent cells without self-touching stress, the height agrees along the
common bar. Now, for each piece (b,t), consider its supporting bar (b,t) and write p, as
p» = ap; + (1 — a)p; with 0 < o < 1. Then the jump at pg, 65(5), is given by

5h(ﬂ) - <pﬁa qL> - <pﬁ7 qR>
= Y (P ADY)
(b,t)eSa-
= - > ((1 —a)F 4 aFZ[b’b]) Py Pi X (Pr —Pp) )
(b,t)eSa-
= = Y (a-aF o) Ip -yl (46)
(b,t)ES@.,-

We used (x,x X y) = 0 and the fact that, for vectors in R? embedded in z = 0, we have
xyxy-x")=—(v,xx(y-x") =y x|

Similarly, we can compute d5(7), the jump at p,.
Any point p on (8, 7) can be written as the convex combination p = Apg + (1 — \)p, with
0 < A < 1. Since the scalar product is linear, the jump at p is

n(P) = Adn(B) + (1 = A)dn (7).
O

In the proof of Lemma 4.5 we have computed the jump between two facets separated by
possibly several overlapping pieces of bars. In addition, these separating overlapping pieces are
pushing against each other, thus there are jump discontinuities between any two of them if the
self-touching stress in between is not zero. The difference of height from a piece (b,t) to the
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contiguous one is given by its corresponding summand in (4.6). Adding up the jumps between
all pieces separating two cells, we obtain the total jump between the two corresponding lifted
facets.

Given a bar (a,b) and an auxiliary vertex i on (a,b), let L, (i) denote the set of touching
vertices pushing against ¢ from the left side of (a,b). Analogously, let R.;(¢) denote the set
of touching vertices pushing against 7 from the right side of (a,b). Note that, by definition
of height (4.3), all vertices in Lgap(i) (resp. Rap(i)) have the same height h(Lay(i)) (resp.
h(Rap(i))), since we cross the same pieces to reach them from an adjacent cell. That is,
touching vertices converging to the same coordinate position lift to the same height. The
height of the bar (a,b) at the coordinate position p; equals the height h(Lgy(i)) when the set
of vertices Lq(i) transmits to (a,b) no self-touching stress. If the set of vertices Lqp(¢) pushes
against (a, b) with a non-zero self-touching stress, then h(Lqp (7)) lifts higher than the bar (a, b)
at p;. Analogously, h(Rgp(4)) lifts higher than the bar (a,b) at p; when Ry (7) pushes against
(a,b) with a non-zero self-touching stress, otherwise it lifts to the same height as the bar. See
Figure 4.6.

CR

bar 1

bar 2

bar 3

cL

Figure 4.6: Heights of vertices converging to the same point p. All converging vertices lying
in the region between cr and bar 1 have the same height hq, those lying in the region between
bar 1 and bar 2 have height ha, those lying in the region between bar 2 and bar 3 have height
hs and those lying in the region between bar 3 and ¢y, have height hy. The heights hq, ho, hs
and hy can be different. The height of the bar ¢ at p is at most the minimum between h; and
hit1,1=1,2,3.

4.3.4 Some Examples of Lifted Self-Touching Configurations

We illustrate in Figure 4.7 and Figure 4.8 a couple of examples to give to the reader a more
intuitive idea of how these liftings and jump discontinuities look.

4.3.5 Geometric Interpretation of q; — qgr

When we apply the height function h, a cell with associated vector q = (gz, ¢y, ¢-) lifts to a
facet F (a planar polygon in R3) of the polyhedral terrain, contained in the plane

QT+ qyy —2+q. =0,
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Figure 4.7: A self-touching configuration (left) and its lifting (right). The vertices b and ¢ push
against the bar (a,d) with self-touching forces of values Fi = wpeq and Fo = weqq respectively.
The proportional forces that the vertices a and d feel are indicated. The thick arrows on the
bar (a,d) represent the classic stress wqq on this bar. In the lifting, all vertices incident to the
exterior cell ¢y have height zero. The height of b can be computed from the vector q associated
to any of the cells ¢1, ¢2 or ¢3 to which is incident, as h(b) = (py,q1) = (Ps, d2) = (Ps, q3). The
height of ¢ can for example be computed as h(c) = (p¢,q1). Since Fy is larger than Fy, c lifts
higher than b, as one can see in the lifted polyhedron. The discontinuity at ad is represented
in the lifting by a vertical facet abcd.

as it can be seen from (4.4). Then (g:) is the gradient vector of F' and np = (—¢y, —qy, 1) is
its normal vector.

We want to understand geometrically how the vector q changes when walking from a cell
cr to an adjacent cell ¢;,. Recall that the difference q;, — qg is given by

ar—an= Y (wwlsxpr)+ Fppx (07 = o) = F"pr x (0 — ) ). (47)
(b,t)eSa-

Hence, for each crossed piece (b, t) we have three terms with leading vectors py X p; = P X Pr,
p; X (P; —pp)" and p; x (p; — pp) " respectively.

The first term of (4.7) is due to the classic stresses on the bars. The vector p, X p; causes
a rotation about the axis (b,t), i. e., about the bar (b,¢). This is represented in Figure 4.9.
The difference angle 6 between the normals ny and ny depends on the stress wp, and it is
positive, negative or zero depending on the sign of wy,.

The second and third terms of (4.7) are due to the self-touching stresses along the whole
supporting bars of the crossed pieces. The vector p; x (p; — p;) ™
horizontal axis through b perpendicular to (b, t). The vector p; x (p; — p;)~ induces a rotation
in the opposite direction about the horizontal axis through ¢ perpendicular to (b,f). In both
cases it is like “opening a book” with cover Ff, back-cover the plane containing Fr, and spine
the mentioned axis. See Figure 4.10. If the self-touching stress is zero, there is no rotation.
(The “book remains closed”.)

induces a rotation about an
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Figure 4.8: Another self-touching configuration (left) and its lifting (right). Fy, F», F3 and Fy
denote the self-touching stresses with which the vertices b, e and f push against the bars (a, ¢),
(a,d), (b,c) and (b,d). The proportional forces at the vertices a, ¢ and d are not represented.
Note that F; and F5 must have the same value F so that b is in equilibrium. The amount of
force F' determines the height of b. Since Fj is larger than Fy, e lifts to a higher point than f.

4.4 The Correspondence between Self-Touching Configu-
rations and Generalized Polyhedral Terrains

In this section we generalize the Maxwell-Cremona Theorem and establish a correspondence be-
tween the set of stresses of a planar self-touching configuration and the set of three-dimensional
generalized polyhedral terrains that project onto it.

The direction from the self-touching stresses to the three-dimensional generalized polyhedral
terrain is called lifting and, as we show below, it is unique up to the addition of a linear function,
which is given by qg. The other direction, from the generalized polyhedral terrain to the self-
touching stresses, is called projection and it is in general not unique: the lifting has a non-trivial
kernel, as we prove later.

Theorem 4.1 (The Maxwell-Cremona correspondence for self-touching configurations). Let
C be a planar self-touching configuration. There is a correspondence between

(a) set of stresses on C which are in equilibrium at all vertices.
(b) set of three-dimensional generalized polyhedral terrains that project onto C.

Given a stress w on C, the lifting is performed by applying the height function h defined by (4.3)
to each wvertex of C, obtaining a three-dimensional generalized polyhedral terrain T',,. The
correspondence has the following properties:

1. Ghiven an equilibrium stress w on C, there is a unique corresponding three-dimensional
generalized polyhedral terrain T, with the exterior facet lying on z = 0 that projects onto
it.

2. Given a three-dimensional polyhedral terrain T' with jump discontinuities, its correspond-
ing vertical projection onto the plane has a self-touching equilibrium stress wr which is
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Figure 4.10: Left: rotation induced by p; % (p; — py)*. Right: rotation induced by pz x (ps —
p;) 1. In both pictures, the rotation axis is drawn in thick lines.

not always unique: the lifting construction is a mapping w — Ty, which is not injective
in general, i. e, the kernel IC of the lifting can be non-trivial.

Proof of Part 1 of Theorem 4.1. This is true by definition. Since qq is fixed to (0,0,0), the
well-defined vectors q; are unique by construction. By Lemma 4.4, h defines, given the stress
w, a unique height for each vertex of the self-touching configuration, obtaining in this way
. O

Now we look at the other direction, the projection. For proving Part 2, we need the following
lemma.

Lemma 4.6. Given a three-dimensional polyhedral terrain, we can recover, for each bar inde-
pendently and at each auziliary vertex, the total amount of incident self-touching stress pushing
against the left and the right side separately.

Proof. Let (a,b) € B be a bar and let 1,...,n be the (ordered) auxiliary vertices on it. We
write the coordinates of the auxiliary vertices as the convex combination p; = a;p,+(1—a;)ps,
1<i<n.

We describe how to recover the total amount of self-touching stress incident to an auxiliary
vertex from the left side. Analogously we recover the self-touching stresses incident to the right
side (or also they can be seen as stresses on the left side of (b, a)).
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Consider the auxiliary vertex i on (a,b). Since the height of each vertex in ' is known, we
know the difference &y (7) between the height of i as a point on the bar (a,b) and the height of
the set Lgp(i) of touching vertices pushing against ¢ from the left side of (a,b). The jump dp(4)
is the summand of (4.6) corresponding to the piece (i,7 4 1), that is

o) = (1= a)FIF 0 4 o B [Ipy — pal?

1—1 n
= <Oéi (1 - as)Ws + (1 - ai)aiWi + (1 - ai) Z asWs> ”pb - pa”27
s=1 s=i+1

where

Ws = Z Wkab »

keLab(s)

i. e., Wy is the total amount of self-touching stress incident to the auxiliary point s from the
left side of the bar (a,b). Note that if we write the equation of the jump (i) for the piece
(i —1,1) instead of the piece (i,i + 1), FH s substituted by FUY, Fb[a"i] is substituted by
Fb[a"i*l], and the result is exactly the same. In Figure 4.11 we have a representation of a bar
and its incident self-touching stresses grouped by coordinates.

Figure 4.11: This bar (a, b) has three auxiliary vertices 1,2, 3. Each of them receives stress from
each side. Look at the left side of the bar. We group the self-touching stresses pushing against
the left side according to their coordinates, into the sets Lqgp(1), Lap(2), Lap(3). We have three
linearly independent equations, one for each jump 65 (i) = h(i) — h(Lap(i)), ¢ = 1,2,3, on the
variables W7, Wy, W3. Hence we can recover uniquely Wy, Wy, W3. The same reasoning is valid
for the stresses pushing against the right side of the bar.

If we consider the equation of the jump 65 (7) for each i, 1 < i < n, we obtain the following
system of n linear equations and n variables W;:

S (i 1—1 "
ﬁ_OAiZ(l—as)Ws+(1—Oéi)06iWi+(1—ai) Z a W, 1<i<n.
b — Pa

s=1 s=i+1
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We want to show that these equations are linearly independent, i. e., that the system has
a unique solution, and hence we can recover W1,...,W,. For this, we prove that the n x n
matrix A = (a;;), with
a; (1 — o) ifi>j
aij =4 ai(l—a;) ifi=j
a;(1—ay) ifi<j
is non-singular. Apply the following linear transformations to A: for each i and j, divide the
elements of the row i of A by «; and the elements of the column j by (1 — a;). We obtain a

new matrix A’ = (a;) = (ﬁ_ﬂ%)), with

, 1 if i >
5 = (1—0i) o

(677 (17041')

ifi<j

Now subtract row k — 1 from row k, 2 < k < n. We obtain an upper triangular matrix A”; its
determinant is the product of the elements of the diagonal, that is

n

=T (-5 2s)

i=2
(note that af; = 1). By construction, a;—1 # ;. Then (1%:1) ey # 1 for each i,
1 < i < n, hence
|A"| # 0
and this implies that the determinant of the original matrix A is also non-zero. O

Proof of Part 2 of Theorem 4.1. Given a polyhedral terrain I', we know the height of each
vertex. Hence we can compute the vectors q associated to each proper facet of the configuration,
since three independent points determine uniquely a plane in R3.

By Lemma 4.6 we can recover, for each bar (a,b) and for each auxiliary vertex ¢ on this

bar, the amounts
Z Whab (4.8)
kE€Lqy (1)

Z Wkab - (49)

kER.p (1)

and

But unfortunately, in general we cannot recover each wgqp individually, for a vertex k pushing
against 4. For each oriented patch (5,7 | L,R), we are able to recover A(b,t) from the
amounts (4.8) and (4.9), for all (b,t) € Ss,. Hence, from

ar—ar=Y_ (w(psxpr)+AD1),
(b,t)eSa-

> w (4.10)

(bwt)esﬂr

we can recover

But from this amount we cannot, in general, recover the classical stress wy; on each piece
separately.
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It is possible to extract some more information about the stresses from the fact that each
vertex is in equilibrium, but in general this does not suffice to recover all the classic stresses
and self-touching stresses of the configuration. Thus we can recover the stress wr up to the
kernel K of the lifting, which is unfortunately non-trivial: in general, there can be many
stresses in equilibrium that keep the amounts (4.8), (4.9) and (4.10) fixed, and that therefore
lift to the same polyhedral terrain I'. This is what happens in Example 1 and Example 2 of
Section 4.4.1. O

4.4.1 Characterization of the Kernel K

Let w be an equilibrium stress of a self-touching configuration, which lifts to a polyhedral
terrain I',,. We define the kernel IC of the configuration as the set of all assignments of scalars
to the bars and touching incidences, such that, being in equilibrium, lift to the flat polyhedron.
that is, the configuration with w = 0 and any assignment s € I lifts to the flat polyhedron.
Equivalently, all equilibrium stresses of the form

{w+r:keK}

lift to the same polyhedron I',.

An element of the kernel must not necessarily be a stress, in the sense that it has no
restrictions on the signs (we give an example later).

Since the addition of an element « of the kernel to a stress w does not affect the coordinates
of the lifted polyhedron I'y,, it must not change these two values:

e > wy, for any edge (3, 7), to keep the angle between the two incident facets.
(b,t)eSa-

e The total amount of self-touching stress pushing against any bar (a,b) at any interior
point ¢, from left and right separately (all W;’s, with the notation of Lemma 4.6), to keep
the jump discontinuities.

Also each vertex must remain in equilibrium, hence k itself must be in equilibrium.

Hence, the kernel C is the set of assignments x of scalars to the bars and touching incidences
satisfying the conditions:

1. > k=0, for any edge (3, 7).
(b,t)eSa-

2. ZveLab(i) Boah = ZveRab(i) Kvap = 0 , for any bar (a,b) and any point ¢ interior to
(a,b).

3. FKgr(v) + > Kyj(pj — Pv) =0 , for any vertex v.
j:(v,j)eB

where FK g7 (v) is the resulting force at v of the kernel assignments to the touching incidences.
FKgsr(v) is defined analogously to Fgr(v):

FKsr(v) = Z Koij(Pj — Pi) "
i,j:{v;i,j}EL

+ Z Z —Qkyj Kk (Pj — pv)L + Z (1 — akjo)kinjo(Py — pv)l

:(w)eB \k:{kw.jreL ki{ksjobel

Next we give some easy cases with a non-trivial kernel.
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Example 1.

In this example we have cycles of stresses in equilibrium on overlapping bars. Look at
Figure 4.12. Any equilibrium stress w on this configuration, satisfies wye = —weq = w1,
whe = —wpa = —w2 and wi(Pa — Pc) — wa2(Py — Pe) = 0.

Figure 4.12: Example of non-trivial kernel. First case.

Let k be a kernel element. Since w + k must be in equilibrium, x must also satisfy kg, =
—Kad = K1, Kbe = —kbd = —keo and K1(Pa — Pe) — K2(Py — Pe) = 0. Hence, the following
conditions for the pieces between cg to ¢y, are also satisfied:

Z Kpt = —wi +wp =0
(b,t)GSm

if we cross the edge (p1,p2), and

Z Kpt = —wi1 +wo —wo+w; =0
(b,t)eS23

if we cross the edge (pz2,p3). Since the amount of self-touching stress pushing against the
interior of the bars (a,d) and (¢,a) must be maintained, we have Kpaq = Kpea = 0. Hence
the kernel K is the one-dimensional subspace defined by the parameters k1,k2 € R and the
equations

{Kac = —Kad = K1,  Kbe = —FKpd = —K2, K1(Pa — Pe) — k2(Pb — Pe) = 0}, (4.11)

and k is zero everywhere else.
Note that this example involves only classical stress and no self-touching stresses. Fig-
ure 4.13 shows how a self-touching configuration of this kind looks like.

Example 2

In this example we have cycles of stresses in equilibrium on touching bars converging to several
different edges and with self-touching forces between touching vertices implied. This situation
is illustrated with an example in Figure 4.14.

Given a polyhedral terrain I' which projects onto this configuration, from the vectors q we
can extract waq, Weqd and Weye, Waf + Wde, Wee + Wegs Waz + War and wpy + wyg. The heights



54 CHAPTER 4. LIFTINGS OF SELF-TOUCHING CONFIGURATIONS

Figure 4.13: The self-touching configuration of Figure 4.8 has a non-trivial kernel. The kernel
is zero everywhere except on the bars drawn thick, where it satisfies the conditions (4.11). The
height of b depends only on F' = wpeq = Wpad, and it is independent of k1.

h(a), h(b), h(c) and h(d) are equal to 0, since they belong to the exterior facet lying on z =0
(qo = 0).

From the jump between h(x) = 0 and the height h(L.,(x)) of any of the vertices of L,p(x) =
{e, f, g}, we can recover by Lemma 4.6 the sum wyqp + wWyap:

h(Lap(2)) = h(@) = (1 - o) oe Wa [Py — pall®
3
= W,
3

= waab +Wgab

Thus the heights h(Las(x)) = h(e) = h(f) = h(g) depend only on the sum W, = wsap + Wgab,
and every pair of stresses wrqp, wgap < 0 adding up to W, lifts to the same polyhedral terrain.
Also, since the vertices e, f, g have the same height we cannot obtain any information about
the self-touching stresses between them, wyeq and wgce.

The equilibrium equations at each vertex of the configuration are:

a: Wea(Pd = Pa) — Qx(Wrab + Wgab)(Po — Pa)™ =0

b: whe(Pe — Po) — (1 — ) (Wrab + Wgab) (P — Pa)™ =0

d: wad(Pa — Pa) + wed(Pe — Pa) + (Wi + Wae)(Pz — Pa) = 0

¢ Woe(Pb — Pe) + Wed(Pd — Pe) + (Wee + Weg) (Pz — Pe) =0

e: wea(Pd — Pe) + Wee(Pe — Pe) + Wear (Py — Pa)* + Wege(Pe — Pg)* =0
war(Pa — Ps) + Waf(Pa — Pr) — wear (Py — Pa) " + wran(Po — Pa)™ =0

91 Wge(Pe = Pg) + Why(Pb — Pg) — Wege(Pe — Pg) ™™ + Wgab(Pb — Pa)™ =0

But, unfortunately, there are several sets of stresses which satisfy these equilibrium equa-
tions: all stresses of the form {wr +k : kK € K}, where wr is one possible equilibrium stress that
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dQ O
(0,2) (2,2)
aC = O b
(05 0) 1 — Oy v 1‘/'[: y Ay = % (2) 0)

(5705

Figure 4.14: Example of non-trivial kernel. Second case.

lifts to I and X is the kernel. The kernel of this configuration is the 2-dimensional subspace
defined by the equations below, where rg4cc and kfqp are the independent parameters:

{Hgab = —Kfab, Rad = Ked = Kbe = Oa
32 1017 25V17

Rfed = gﬁfab + Wﬁgce y Rbg = —Kfab — 1—0259067

3 25v17 25v17

Rab = Zﬁfab + 136 Rgce s Raf = _3"€fab - Tﬁgcea
3V 17 13 2517
Keg = —Kce = Kfab + Tﬂgcey Rdf = —Rde = _ﬁﬂfab + Wﬂgce}

Note that k € K is not itself a stress because it does not have the correct signs: for example,
Ktab and Kgqp cannot be both negative, since kgq, = —Kfqp. Note also that the addition of

any k € K to the stress wr does not modify W, = wyaep + wgab -
Figure 4.15 shows a self-touching configuration with a kernel of this kind.



Figure 4.15: A self-touching configuration with a non-trivial kernel and its lifting. The kernel
is zero everywhere except on the bars drawn thick. The vertices e, f, and g lift to the same
height, and this height depends only on W,, the total force of e, f, g against the bar (a,b).



