
Generalities

In this preliminary chapter we collect some well known concepts, theorems and techniques

which are used several times throughout this thesis.

0.1 The Laplacian Matrix and the Stress Matrix

Let G = (V, E) be a connected simple graph with vertex set V = {1, 2, . . . , n}.
The adjacency matrix of G is the square matrix A = (aij) indexed by V × V , with entries

aij = 1 if the vertices i and j are adjacent, and aij = 0 otherwise. Let di be the degree of the

i-th vertex. Let D = diag(d1, . . . , dn) be the diagonal V ×V matrix with i-th diagonal element

equal to di, i = 1, . . . , n. Then, the Laplacian matrix of G is defined to be L := D − A . This

matrix has wide applications. See [40] for a survey. A reduced Laplacian matrix L̄, is obtained

from L by deleting a certain number of rows and corresponding columns. In the particular

case when we delete from L the rows and columns corresponding to the vertices on the outer

face of a plane graph G, L̄ is known as stress matrix.

0.2 Equilibrium Stresses and the Classical Tutte Embed-

ding

We introduce now the notion of stresses, which models rubber bands in mathematical terms.

Given a graph G = (V, E), to each edge {i, j} ∈ E we assign a weight ωij ∈ R, also known as

stress, that represents the elasticity constant of the corresponding rubber band. In addition

we require the symmetry condition ωij = ωji.

A negative weight means that the edge is pushing on its two endpoints by an equal amount,

a positive weight means that the edge is pulling on its endpoints by an equal amount, and zero

means that the edge induces no force. The whole stress is denoted by ω = (. . . , ωij , . . . ).

Definition 0.1. Let G = (V, E) be a graph and ω : E → R be an assignment of weights to the

edges of E. Furthermore, let p : V → R
2 be an assignment of positions in R

2 for the vertices

of G. We say that a vertex i ∈ V is in equilibrium if

∑

{i,j}∈E

ωij(pi − pj) = 0.

Given a planar framework with a convex outer face F , the interior vertices and interior

edges are those which are not incident to F . The vertices and edges of F are called boundary

vertices and boundary edges.
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Theorem 0.1 (Tutte’s Theorem [48], 1962). Let G = ({1, . . . , n}, E) be a 3-connected planar

graph that has a face (1, . . . , k) for some k < n. Let p1, . . . ,pk be the vertices (in this order)

of a convex k-gon. Let E′ be the set of interior edges, and let ω : E′ → R
+ be an assignment

of positive weights to the interior edges. Then,

1. There are unique equilibrium positions pk+1, . . . ,pn ∈ R
2 for the interior vertices.

2. All faces of G are realized as non-overlapping convex polygons.

We also use the following variant of Tutte’s Theorem for non-strictly convex boundaries:

Theorem 0.2. Let G = ({1, . . . , n}, E) be a 3-connected planar graph that has a face (1, . . . , k)

for some k < n. Let p1, . . . ,pk be the vertices (in this order) of a non-strictly convex k-gon.

Three or more boundary points can be on a straight line, but then there can be no edge between

them unless they are directly adjacent, i. e., joined by a boundary edge. Let E′ be the set of

interior edges, and let ω : E′ → R
≥0 be an assignment of non-negative weights to the interior

edges. Then,

1. There are unique equilibrium positions pk+1, . . . ,pn ∈ R
2 for the interior vertices.

2. All faces of G are realized as non-overlapping convex polygons.

As in [48], we assume that a 3-connected planar graph G = (V, E) is given with a choice of

a peripheral polygon and an assignment of positive stresses to the interior edges.

For any given interior stress, it is easy to find an embedding in which all interior vertices

are in equilibrium, by fixing the boundary vertices at some arbitrary location and solving the

following system. Choose the coordinates p1, . . . ,pk of the vertices of the peripheral polygon,

in convex position. The graph has n − k interior points, pk+1, . . . ,pn. We set all interior

stresses to 1 (but it works for an arbitrary assignment of positive interior stresses).

Now we impose equilibrium stress: at each interior point forces must add up to zero.

According to Definition 0.1, for every interior point pi = (xi, yi) we have

∑

{i,j}∈E

(xi − xj) = 0,
∑

{i,j}∈E

(yi − yj) = 0.

Hence we have two separate systems of equations for the x-coordinates and for the y-

coordinates, which can be written in matrix form as

L̄ · x = bx , L̄ · y = by , (1)

where x = (xk+1, x2, . . . , xn)t and y = (yk+1, y2, . . . , yn)t are the coordinates of the interior

points, and L̄ is the stress matrix of size n − k, obtained from the Laplacian matrix L by

deleting the rows and columns corresponding to the boundary vertices.

Let di denote the degree of the vertex i. Then the i-th row of L̄ contains an entry di on

the diagonal and an entry −1 at positions j whenever {i, j} is an edge of G. All other entries

are zero. The independent vectors bx and by in the system (1) contain the fixed boundary

conditions.

The system (1) can be solved uniquely by Theorem 0.1. Hence L̄ has rank n − k and the

values of xi and yi can be uniquely determined by Cramer’s rule. For xi, we have

xi = det L̄(i)/ det L̄,
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where L̄(i) is obtained from L̄ by replacing the i-th column by bx. The same holds for yi.

Hence we have computed the coordinates of the interior points. The obtained embedding

is also known as spring embedding, what can be seen as a system of forces in equilibrium that

places every node into the weighted center of gravity of its neighbours, and edges are drawn as

straight lines. By Theorem 0.1, this embedding is planar and the interior faces form a proper

cell decomposition by convex polygons. An example is illustrated in Figure 4. See [48] for

more background information.
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Figure 4: A graph (on the left) and its stressed embedding (with non-uniform stresses, on the

right). The boundary vertices are 1, 2, 3. The interior vertices are 4, 5, 6, 7, 8, 9, 10.

0.3 From Stressed Configurations to Polyhedra

We summarize here the approach of Richter-Gebert [48] for obtaining the Maxwell-Cremona

correspondence for planar configurations.

Let G[p] = (p1,p2, . . . ,pn) be the unique equilibrium configuration given by Tutte’s The-

orem. We may assume the plane in which the points of G[p] are located is embedded in R
3 at

the plane z = 1. Therefore, each pi has coordinates (xi, yi, 1). Let c0 be the cell corresponding

to the peripheral polygon and let the interior cells ci be indexed by i = 1, . . . , m. Given an

oriented interior edge (b, t) of G[p], there is, by Tutte’s Theorem, a unique adjacent cell L to

the left of it, and a unique adjacent cell R to the right of it. An oriented patch of G[p] is an

(ordered) tuple (b, t | L, R). (The letters are chosen as mnemonics as in [48] for b = bottom,

t = top, L = left, R = right.)

To each cell ci we associate a vector qi ∈ R
3 by setting

1. q0 = (0, 0, 0);

2. qL = ωbt(pb × pt) + qR if (b, t | L, R) is an oriented patch of G[p].

The vectors qi are computed recursively, choosing a sequence (path) of cells, from q0 to

qi. Walking along this sequence, qi = qL is computed from qi−1 = qR when we leave the cell
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R to enter the cell L, crossing the edge (b, t) (we consider the oriented patch (b, t | L, R)). It

is proved that the vectors qi are well defined, that is, that we obtain the same value for qi

independently from the chosen path.

The lifting function or height function, is a piecewise linear function h from our configuration

G[p] to R, defined by

h(px) = 〈px,qi〉 if px ∈ ci . (2)

It is known that the height function h is well defined, that is, that for adjacent cells cL and

cR, the functions 〈px,qL〉 and 〈px,qR〉 agree along the common edge, and therefore h defines

a unique height for each of the vertices p1, . . . ,pn.

0.4 The Maxwell-Cremona Theorem

The Maxwell-Cremona Theorem [20, 21, 22, 48, 56] is a powerful tool that establishes a bi-

jection between the set of stresses in equilibrium of a configuration in R
2 and the set of

three-dimensional polyhedral terrains in R
3 that project onto it.

We state here the one-to-one correspondence given by the Maxwell-Cremona Theorem

between positive stresses in equilibrium and convex polytopes projecting onto G[p]. The

direction from the set of stresses of the two-dimensional framework to the three-dimensional

convex polytope is called lifting, and the other direction, from the convex polytope to the set

of stresses, is called projection.

If a face of a polytope lies on the plane z = ax + by + c, we call the vector
(
a
b

)
the gradient

of the face, and (a, b,−1)t is its normal vector.

Theorem 0.3 (The Maxwell-Cremona correspondence). 1. Let G[p] be a planar framework

with a convex outer face F . There is a correspondence between

(a) positive stresses on the interior edges which are in equilibrium at all interior vertices

(b) concave piecewise linear liftings of G.

2. Let G[p] be a planar framework with a convex outer face F . There is a correspondence

between

(a) stresses which are positive on all interior edges and negative on all boundary edges

and which are in equilibrium at all vertices,

(b) concave piecewise linear liftings of G such that the boundary edges are horizontal,

(c) convex polytopes P projecting on G.

3. Let G[p] be a union of two planar frameworks which share a common convex outer face

F . (Then G is itself a planar graph.) There is a correspondence between

(a) stresses which are positive on all interior edges and negative on all boundary edges

and which are in equilibrium at all vertices.

(b) convex polytopes P projecting on G.

The boundary of F corresponds to the edges and vertices with vertical supporting planes,

and the two planar frameworks correspond to the upper half and the lower half of P .
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In all cases, the correspondence satisfies the following relation: If an edge {i, j} with stress

ωij separates two faces f and g with gradients p∗
f and p∗

g, then

p∗
g − p∗

f = ±ωij(pj − pi)
⊥ . (3)

The correspondence is “almost” one-to-one in the following sense. For every lifting or

convex polytope, the projection is unique: there is a unique stress which satisfies (3). For every

stress, the corresponding lifting or convex polytope is unique up to the addition of an affine-

linear function, i. e., up to an affine transformation which keeps vertical lines fixed and leaves

vertical distances unchanged.

0.5 The Perron-Frobenius Theorem

Square matrices whose entries are all non-negative have special properties. In this section, we

state the well known Perron-Frobenius Theorem [30]. We need a couple of definitions.

A non-negative square matrix A is an irreducible matrix if for each entry i, j, there exists

k ≥ 1 such that the (i, j) entry of Ak is strictly positive, or equivalently, if its underlying graph

is strongly connected.

A non-negative square matrix A is said to be a primitive matrix if there exists k ≥ 1 such

that all entries of Ak are strictly positive. A sufficient condition for a non-negative matrix to

be primitive is to be an irreducible matrix with at least one positive main diagonal entry.

Theorem 0.4 (Perron-Frobenius Theorem). Let A be a primitive non-negative matrix. Then

there is a unique eigenvalue ρ(A) of A with largest absolute value, and its associated right

eigenvector u is positive. This vector is the only right non-negative eigenvector. Similarly,

there is a unique positive left eigenvector v.

Moreover,

lim
k→∞

[ρ(A)−1A]k = L > 0 ,

where L can be computed as uvt, and u and v are normalized by the condition utv = 1.

If we start the iteration x(i+1) = x(i)A with any non-negative nonzero vector x(0), the

iterated vectors, after normalizing their length to x(i)/‖x(i)‖, converge to v/‖v‖.




