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Zusammenfassung

Zentraler Untersuchungsgegenstand von computational neuroscience sind die Verrech-
nungsprinzipien, welche der neuronalen Informationsverarbeitung zugrunde liegen.
In dieser Doktorarbeit werden experimentelle Daten mit Methoden des maschinellen
Lernens analysiert um zu einem besseren Verständnis der Verarbeitung von Balz-
gesängen in Grillen und Grashüpfern beizutragen.

Welche Charakteristika der Balzgesänge von Grillen sind ausschlaggebend für die
Erkennung und Beurteilung potentieller Paarungspartner? Kapitel 2 untersucht diese
Fragestellung durch Analyse von Verhaltensdaten mit künstlichen neuronalen Net-
zen. Es werden Modelle präsentiert die das phonotaktische Verhalten der Weibchen
auf Basis beschreibender Größen eines Gesanges quantitativ vorhersagen. Diese Vor-
hersagen ermöglichen Teilmengen von mehreren Charakteristika zu identifizieren
welche die Verhaltensdaten am besten beschreiben.

Wie sind Informationen eines Balzgesanges, z.B. die Identität oder die Attraktivität,
in den neuronalen Antworten auditorischer Neurone in Grashüpfern kodiert? Um
diese Frage zu beantworten werden in Kapitel 3 Verhaltensdaten und elektrophys-
iologische Daten mit Bayes Klassifikatoren untersucht. Es wird gezeigt, dass Infor-
mationen über den Gesang in der Anzahl der Aktionspotentiale von Populationen
auditorischer Neurone kodiert ist.
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Summary

The central aim of computational neuroscience is to understand the computational
principles underlying the neuronal processing of information. In this thesis experi-
mental data is analyzed with methods from machine learning to contribute to a better
understanding of the processing of calling songs in crickets and grasshoppers.

Which features of cricket calling songs are critical for the recognition and evalua-
tion of a potential mating partner? Chapter 2 investigates this question by analyzing
a large body of behavioral data recorded from female crickets during phonotactic ex-
periments with artificial neural networks. Models are presented that quantitatively
predict the experimental measure of phonotactic behavior for a given set of feature
values from calling songs. The model predictions allow to identify minimal feature
sets that best describe the behavioral data.

How is information about a calling song, i.e. the song identity and its attractiveness,
encoded in the neuronal pattern of auditory neurons in grasshoppers? To answer
this question behavioral as well as electrophysiological data of auditory neurons are
analyzed with naı̈ve Bayes classifiers in chapter 3. It is shown that information about
a stimulus is encoded in the spike count of populations of neurons.

Keywords:
insect acoustic communication, neural information processing, pattern recognition,
artificial neural network, naı̈ve Bayes classifier
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Chapter 1

General introduction

As in many insects, acoustic communication plays a key role for mating in Orthoptera
[Bradbury and Vehrencamp, 1998]. In the cricket species Gryllus bimaculatus males
produce calling songs by rubbing their wings and females use these songs to localize
potential mating partners. If a female rates a song, and thereby the singer, as attrac-
tive she approaches the male, which eventually leads to the act of copulation [Hed-
wig, 2006]. In the grasshopper species Chorthippus biguttulus acoustic communication
is bidirectional. Males produce calling songs by rubbing their hind legs across a vein
on the forewings and a calling song is answered by a female who is then approached
by the male [von Helversen and von Helversen, 1997]. Orthoptera offer several ad-
vantages as model systems to study how information about acoustic signals is pro-
cessed in the brain. Research of the last decades provides convincing evidence that
the decisive cues for the recognition of calling songs reside in the temporal pattern
of amplitude modulations, i.e. the song’s envelope, and not the spectral content (see
von Helversen [1972]; von Helversen and von Helversen [1998] for grasshoppers and
Grobe et al. [2012]; Hennig [2009] for crickets). The aim of this thesis is to highlight
temporal aspects of the processing of calling songs in crickets and grasshoppers by
analyzing different types of experimental data with methods of machine learning.
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Chapter 1 General introduction

1.1 Methods of machine learning for analyzing

neuroscientific data

In order to analyze so-called big data, machine learning algorithms [Bishop, 2006]
make use of the increase in computational power that has taken place over the last
years. In neuroscience, modern experimental methods generate large bodies of data
that require novel computational approaches to fully grasp their complexity. This the-
sis shows that machine learning algorithms provide effective means to complement
and guide such experiments.

Methodically, this thesis focuses on supervised learning. Supervised learning al-
gorithms infer a function based on a known set of input data and known labels that
allows to predict labels of new data. In chapter 2 a large set of calling songs labeled
with the phonotactic score that reflects the behavioral responses of female crickets
is analyzed with artificial neural networks (ANNs) [Rosenblatt, 1958]. ANNs are re-
lated to their biological counterparts in the way that they are represented as networks
of interconnected units. The units can be thought of as neurons and the connections
as synaptic weights. In feed-forward ANNs, where the units are ordered in layers
with connections between the layers, the connections are typically learned with the
supervised backpropagation algorithm [Riedmiller and Braun, 1993; Rumelhart et al.,
1986]. After learning, new data is then forward propagated through the network to
predict unknown labels. Although ANNs were originally inspired by the brain [Mc-
Culloch and Pitts, 1943], the degree to which they mirror functions of real neural
circuits is not clear [Hinton, 2011].

The aim of chapter 2 is to predict the phonotactic score of untested calling songs,
whereas chapter 3 tackles the reverse problem of decoding which stimulus evoked
a particular neuronal response in grasshoppers. To this end, a set of neuronal spike
patterns labeled with stimulus identity is analyzed with the naı̈ve Bayes classifier (for
reviews see Pouget et al. [2000]; Quiroga and Panzeri [2009]). In contrast to ANNs,
naı̈ve Bayes classifiers require a small amount of data to learn the necessary parame-
ters and are extremely fast.

Unsupervised learning techniques are used to find structures in unlabeled data
or as ways to preprocess data before classification or regression. In chapter 2, before
learning the ANN, a principal component analysis (PCA) [Ringnér, 2008] was applied

4



1.2 Crickets and grasshoppers as model systems

to remove linear correlations across the temporal features of the calling songs.

1.2 Crickets and grasshoppers as model systems

Orthoptera are ideal model systems to study the neuronal processing of acoustic sig-
nals, because the stimulus space is clearly defined and their auditory system is rela-
tively small and, to a certain level, easily accessible.

The auditory system of crickets and grasshoppers evolved mainly for the detection
of echolocation sounds of predatory bats and for the recognition and localization of
conspecific signals from potential mating partners [Stumpner and Helversen, 2001].
The information content of an acoustic signal can be represented by its spectral con-
tent and the temporal pattern of amplitude modulations, i.e. the envelope. The ani-
mals make use of the clear difference between the carrier frequencies of conspecific
signals and ultrasonic sounds of predators to discriminate between good and evil.
Some species also use the spectral content to distinguish between male and female
[von Helversen and von Helversen, 1997] or to estimate the distance to the singer
[Römer, 1987]. The focus of this thesis is on the recognition of conspecific songs, for
which the decisive features reside in the temporal pattern of amplitude modulations
(see von Helversen [1972]; von Helversen and von Helversen [1998] for grasshoppers
and Grobe et al. [2012]; Hennig [2009] for crickets). Using artificial song models that
mimic natural patterns of calling songs allows to test behavioral (cf. data in chapters
2 and 3) and neuronal (cf. data in chapter 3) responses under laboratory conditions.

Another reason that supports Orthoptera as model systems is that their auditory
systems are small in comparison to vertebrates, such as mammals that have billions
of neurons [Williams and Herrup, 1988] for the processing of sensory information.
The auditory network of crickets, which are subject of chapter 2, is organized in a
feed-forward structure: The tympanal organs of crickets, which are located on the
two front legs, are set into vibration by sound. Approximately 70 receptor neurons
[Young and Ball, 1974] transduce these vibrations into spike trains that travel into the
prothoracic ganglion. Here, the omega-neuron [Marsat and Pollack, 2005; Selverston
et al., 1985] and two ascending neurons (ANs) [Schildberger, 1984] were identified
as auditory interneurons which constitute the first processing level for auditory sig-
nals. These three neurons exist in each hemisphere and receive excitatory input from
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Chapter 1 General introduction

the receptor neurons. Ascending neurons transmit information to the brain, whereas
the omega-neuron inhibits the contralateral ANs. The ascending neuron AN1 is
most sensitive to low carrier frequencies [Schildberger, 1984] associated with con-
specific songs whereas the AN2 is most sensitive to ultrasonic frequencies of preda-
tors [Marsat and Pollack, 2007]. In the brain, Schildberger [1984] and Kostarakos and
Hedwig [2012] identified auditory neurons in the protocerebrum that are involved in
the processing of conspecific songs.

The auditory pathway of grasshoppers also exhibits the feed-forward motif [Vogel
and Ronacher, 2007]: At each side of the first abdominal segment resides an ear from
where information about acoustic signals is transduced by more than 60 auditory re-
ceptor neurons into spike trains traveling into the metathoracic ganglion [Jacobs et al.,
1999]. There, approximately 15 local interneurons constitute the first processing level
and provide input to approximately 20 ascending neurons that project information to
the brain [Römer and Marquart, 1984; Stumpner and Ronacher, 1991]. In vivo intra-
cellular recordings of ascending neurons in grasshoppers are analyzed in chapter 3.
The next processing level is the brain, where Hedwig and Heinrich [1997] identified
auditory brain neurons in the mediolateral protocerebrum.

In cricket and grasshoppers, the decision centers located in the female brain must
evaluate whether a perceived song follows the conspecific pattern and whether it
is attractive enough to trigger a behavioral response. However, in comparison to
ascending neurons, less is known about the processing of auditory information by
brain neurons [Stumpner and Helversen, 2001].

1.3 Outline of the thesis

This thesis is divided into two self-contained manuscripts that both address different
temporal aspects of the processing of calling songs in Orthoptera.

In chapter 2 I investigated which temporal features of calling songs critically deter-
mine the phonotactic performance of female crickets. The natural pattern of cricket
calling songs consists of repetitive pulses that are grouped into pulse trains called
chirps. Thus, they carry essential information on a short and a long time scale, de-
fined by the pulses and chirps, somewhat in analogy to the words and phrases of hu-
man speech. The song pattern can be described with four independent parameters,

6



1.3 Outline of the thesis

for example the pulse duration, pulse pause, chirp duration, and chirp pause. How-
ever, it is not clear whether these four cues are analyzed independently in the cricket
brain. The period, that is the sum of duration and pause, as well as the duty cycle,
that is the ratio of duration and period, for both pulses and chirps have also been
implicated as relevant descriptors [Doherty, 1985; Grobe et al., 2012; Hennig, 2009].
I applied ANNs to analyze a large set of behavioral data that consists of 218 differ-
ent artificial calling songs and a phonotactic score that reflects the walking behavior
of female crickets Gryllus bimaculatus. In a first step, I used four temporal features
of calling songs to predict the phonotactic score of untested songs. The model pre-
dictions showed a high correlation with the experimentally measured results. I used
this model to investigate the interaction of the two time scales defined by pulses and
chirps. In a further step, I investigated all feature sets, each one consisting of differ-
ent combinations of calling song features, and identified the most important temporal
cues for the phonotactic performance of females.

In chapter 3 I studied how information about an acoustic song is encoded in the
neuronal pattern of auditory neurons in grasshoppers. Typically, a calling song con-
sists of a repetition of syllables with species-specific amplitude modulations of a
broad carrier frequency band. In nature, female grasshoppers are often confronted
with songs whose temporal structure is degraded, e.g. as a result of the overlap with
other songs [Lang, 2000; Römer et al., 1989]. Behavioral experiments with Chorthip-
pus biguttulus revealed that females accept songs with a perturbation in the beginning
of a syllable, whereas syllables that were degraded in the middle or at the end lead
to a rejection. This finding allowed to divide the stimulus set into attractive and
unattractive songs. Applying naı̈ve Bayes classifiers to in vivo intracellular record-
ings from ascending neurons from Locusta migratoria, I investigated how information
about acoustic signals, i.e. the stimulus identity and its attractiveness, is encoded in
the spike pattern of auditory neurons that project to the brain. Focusing on the sim-
plest coding scheme, I put emphasis on spike count coding. First, I investigated the
effect of the integration time of the neuronal activity in single neurons on the perfor-
mance of the classifier. As the grasshopper brain receives input not only from one
ascending neuron but from up to 20, I also decoded the stimulus identity and its
attractiveness from the counts of populations of different sizes. Finally, I used a time-
resolved firing rate profile for decoding the stimulus identity and its attractiveness in
single neurons.
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Chapter 2

Critical song features for auditory

pattern recognition in crickets1

Many different invertebrate and vertebrate species use acoustic communication for
pair formation. In the cricket Gryllus bimaculatus, females recognize their species-
specific calling song and localize singing males by positive phonotaxis. The song
pattern of males has a clear structure consisting of brief and regular pulses that are
grouped into repetitive chirps. Information is thus present on a short and a long
time scale. Here, we ask which structural features of the song critically determine the
phonotactic performance. To this end we employed artificial neural networks to ana-
lyze a large body of behavioral data that measured females’ phonotactic behavior un-
der systematic variation of artificially generated song patterns. In a first step we used
four non-redundant descriptive temporal features to predict the female response. The
model prediction showed a high correlation with the experimental results. We used
this behavioral model to explore the integration of the two different time scales. Our
result suggested that only an attractive pulse structure in combination with an at-
tractive chirp structure reliably induced phonotactic behavior to signals. In a further

1This chapter is the reprint version of Meckenhäuser et al. [2013]. Please refer to page v in this
dissertation for the detials of authors contributions.
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Chapter 2 Analyzing phonotaxis with multilayer perceptrons

step we investigated all feature sets, each one consisting of a different combination of
eight proposed temporal features. We identified feature sets of size two, three, and
four that achieve highest prediction power by using the pulse period from the short
time scale plus additional information from the long time scale.

2.1 Introduction

Acoustic communication plays a key role for mating behavior in many different spe-
cies, most prominently in birds [Weiss et al., 2012], fish [Kastenhuber and Neuhauss,
2011], amphibians [Woolley et al., 2004], and insects [Hedwig, 2006; von Helversen
and von Helversen, 1998; von Philipsborn et al., 2011]. In the cricket species Gryl-
lus bimaculatus males produce calling songs by rubbing their wings and females use
these songs to localize the potential partner. If females recognize the conspecific song
and rate it as attractive they approach the singing male, a behavior called phonotaxis
(for an overview see Hedwig [2006] and Pollack [2000]). The natural pattern of a call-
ing song consists of repetitive pulses that are grouped into pulse trains called chirps
[Huber et al., 1989]. The attractiveness of different patterns can be easily tested under
laboratory conditions by monitoring the phonotactic behavior of females toward ar-
tificial signals [Hennig, 2009; Weber et al., 1981]. Extensive phonotaxis experiments
suggested that the brain processes the patterns in the temporal domain [Grobe et al.,
2012; Hennig, 2009] rather than in the spectral domain as has been proposed earlier
[Thorson et al., 1982]. Schneider and Hennig [2011] provided evidence that females
evaluate only the coarse temporal structure of a pattern. Consequently, the abstract
song pattern of Gryllus bimaculatus can be described with four independent param-
eters [Doherty, 1985], for example the pulse duration, pulse pause, chirp duration,
and chirp pause (see Figure 2.1). However, it is not clear whether these four cues
are analyzed independently in the cricket brain. The period, that is the sum of dura-
tion and pause, as well as the duty cycle, that is the ratio of duration and period, for
both pulses and chirps have also been implicated as relevant descriptors [Doherty,
1985; Grobe et al., 2012; Hennig, 2009]. Behavioral experiments [Hennig, 2009] show
that a pulse period of 40 ms at a pulse duty cycle of 0.5 elicits highest phonotactic
scores. For the organization of the chirps Grobe et al. [2012] observed optimal ranges
between 200 and 500 ms for the chirp period, provided that the chirp duty cycle lies
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2.1 Introduction

between 0.3 and 0.7. However, the relative importance of each of these song features
is as yet unclear.

pulse duration

pulse pause chirp pause

chirp duration

Figure 2.1: Artificial song pattern of the cricket Gryllus bimaculatus and its tempo-
ral features. Typically, a calling song consists of repetitive pulses that are grouped
into chirps. The temporal structure of an artificial song pattern is fully determined
by four descriptors, e.g. the duration and pause for both pulses and chirps. Four
additional descriptors are frequently used to characterize cricket songs, namely the
period (the sum of duration and pause), and the duty cycle (the ratio of duration and
period) for both, the short and the long time scale.

Here, we employ artificial neural networks, which are also known as multilayer per-
ceptrons, to analyze a large body of behavioral data obtained in phonotaxis experi-
ments. We provide a detailed investigation of the relevance of individual song param-
eters on a quantitative measure that rates phonotactic behavior. Our models provide
quantitative predictions for the attractiveness of hitherto untested song parameters,
which helps guiding future phonotaxis experiments. Finally, we carefully interpret
our results with respect to the underlying neural processing employed for acoustic
pattern evaluation in the cricket brain.
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Chapter 2 Analyzing phonotaxis with multilayer perceptrons

2.2 Materials and Methods

2.2.1 Behavioral experiments and data

We used behavioral tests to measure the phonotactic score of the cricket Gryllus bimac-
ulatus as explained in detail in Hennig [2009]. In brief, female crickets were placed on
top of a trackball system that records their 2D walking trace. The females were pre-
sented with song patterns that mimic natural calling songs. These were constructed
by amplitude modulated sinusoidal signals with a carrier frequency of 4.5 kHz. The
amplitude was modulated to construct a periodical series of rectangular sound pulses
that are grouped into chirps (see Figure 2.1). As a measure for the attractiveness of a
particular song pattern, we computed the phonotactic score according to the formula
in Schul [1998]. The phonotactic score is an integral measure that involves the walk-
ing length, the accuracy of the course maintenance, and the orientation of the female.
It assumes values between −1 and 1, whereat a value close to one indicates a high
level of attractiveness of the tested song pattern. For this study, we grouped data
from experiments of 218 song patterns differing in their temporal parameters each of
which was presented to several female crickets (mean: 31, range: 8− 225). For each
song the phonotactic score was averaged across individual animals.

The data set was preprocessed as follows. First, we examined the distribution of the
response values of the song patterns: 35% of the patterns were unattractive with a
phonotactic score smaller than 0.2, 48% were intermediate between 0.2 and 0.6, and
17% were attractive with a value greater than 0.6 [Grobe et al., 2012; Hennig, 2009].
Then we split the data set into a training data set and a test data set of 200 and 18
data points, stratified according to the above allocation of unattractive, intermediate
and attractive songs. This method is known as stratified sampling and was applied
whenever data sets were divided into subsets. Then, we whitened the temporal call-
ing song features of the training data set and applied the obtained transformation to
the features of the test data set as well. In the whitening process, the features are first
projected onto their principal components which removes linear correlations across
features and then each feature is normalized to zero mean and unit variance. This lin-
ear coordinate transformation is widely used to preprocess the data before applying
regression methods such as artificial neural networks [Bishop, 2006].
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2.2 Materials and Methods

2.2.2 Model

Artificial neural networks

Artificial neural networks are commonly employed for regression tasks [Bishop, 2006],
that is in our case to predict the phonotactic score from untested patterns. Figure 2.2A
shows an example of a network diagram with four input variables that represent the
features of a calling song, ten neurons in the hidden layer and one output neuron that
represents the corresponding phonotactic score. In detail, the information about the
features is forward propagated as follows: input variables xi that represent calling
song features are linearly combined to activations αj = ∑ wjixi of hidden neuron j,
where wji denotes the synaptic weight between input neuron i and hidden neuron
j. Then, the activations of each hidden neuron are transformed with a nonlinear sig-
moidal function f (αj) =

1
1+exp(−αj)

. Finally, the output variable y = 1
2 ∑ wout,j f (αj) is

computed, where wout,j indicates the synaptic weight between hidden neuron j and
the output neuron. Thus, in artificial neural networks the temporal calling song fea-
tures are nonlinearly processed to predict the phonotactic score. We implemented
artificial neural networks in the Python programming language, using the Fast Arti-
ficial Neural Network Library [Nissen, 2003].

Training and validation

For training the synaptic weights, we chose the RProp algorithm which is a well-
established supervised learning technique for multilayer feed-forward networks [Ried-
miller and Braun, 1993]. The algorithm uses a training data set to update the ran-
domly initialized weights in each training cycle such that the mean squared error
between the model’s prediction and the experimentally observed phonotactic score
is minimized. We used the whitened training data set to perform a stratified 5-fold
cross validation for training and validating networks. The training was stopped af-
ter 10, 000 cycles. This stopping criterion enabled us to compare the performance
of networks with different architectures. To produce a single error estimation, the
mean squared errors for validation (MSEval) and training (MSEtrain) were averaged
over folds. In order to account for random initialization of the weights, the 5-fold
cross validation was repeated for 100 times and we calculated the mean and standard
deviation of the MSEval and MSEtrain.
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Figure 2.2: Network diagram and predictive performance of the best 4-feature
model. (A) The network diagram consists of four input neurons representing tem-
poral calling song features, which project to input-evaluating neurons in the hidden
layer. These in turn project to the output neuron mimicking the relative phonotac-
tic score; abbreviations: Pdur - pulse duration, Ppau - pulse pause, Cdur - chirp
duration, Cper - chirp period. (B) Correlation between the phonotactic score of 18
test samples predicted by the best 4-feature model and the experimentally measured
scores. Each dot shows the mean phonotactic score for a given song pattern that was
presented to on average 31 females and tested for 100 times with the model. The er-
rorbars indicate standard deviation across individual females (horizontal) and across
100 repeated model simulations (vertical). The solid regression line has a slope of
0.73. The performance: MSEtest = 0.017 and r = 0.93.
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2.2 Materials and Methods

Model selection

In a first step we determined the appropriate number of neurons in the hidden layer
by comparing the validation errors of networks with n = 1 to n = 20 hidden neurons.
In detail, for each n > 1, we calculated the percent change of the validation error
with respect to the network consisting of n = 1 neuron. Then, we chose the smallest
n such that networks with n + 1 hidden neurons lead to an improved performance
of no more than 1% as compared to networks with n neurons. This criterion ensured
to select a network with high predictive power on the one hand and a simple model
architecture on the other hand.

Performance

To obtain an unbiased estimate of a network’s ability to generalize we used the test
data set of 18 song patterns to test the network’s performance. Therefore, we trained
a network with the whitened training data for 10, 000 cycles and ran it with the test
data set. Again, we repeated this for 100 times and averaged the network’s predic-
tion. Then we calculated the mean squared test error (MSEtest) as well as the linear
Pearson correlation coefficient between the averaged network’s predictions and the
mean phonotactic scores averaged over females.

Prediction

To predict the phonotactic score of an untested song pattern, we first trained a chosen
network over 10, 000 cycles with whitened features and the corresponding phonotac-
tic score of the initial feature set of 218 data points. Then, we transformed the features
of the untested song pattern with the transformation obtained in the whitening pro-
cess of the features belonging to the initial data set. Next, we run the trained model
with the transformed features of the untested song pattern. Finally, we repeated this
training and prediction procedure for 100 times and averaged the phonotactic scores
across the repetitions.

Feature selection

We considered in total eight different temporal features of a song pattern that have
been previously used as descriptors. This is a redundant set of descriptors as four
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features, two on the short and two on the long time scale, are sufficient to fully define
the song pattern. However, it is not a priori known, which set of features will best
describe the behavioral data. Thus, we investigated all 255 feature sets, each one con-
sisting of a different combination of the eight temporal features. For each feature set,
we trained and validated models for a different number of hidden neurons followed
by the selection of the appropriate model, as described above.

2.3 Results

Our analyses comprised a large body of behavioral data from experiments in which
artificial calling songs were presented to female crickets under systematic variation of
the song parameters. The phonotactic behavior was monitored with a single quantity,
the phonotactic score. The acoustic pattern of an artificial song is shown in Figure 2.1.
We trained artificial neural networks that receive as input the values of a particular
set of song features to predict the phonotactic score. First, we considered feature sets
made up by two features on the short pulse time scale and two on the long chirp
time scale and analyzed how well an artificial neural network trained on parts of the
experimental data can predict the phonotactic score on the remaining test data. In
order to investigate the interplay of pulse and chirp information with respect to the
phonotactic score we systematically varied pulse period and chirp period. Finally,
we compared feature sets, each one consisting of a different combination of tempo-
ral features, in order to determine those features that are most efficient in correctly
predicting average phonotactic behavior.

2.3.1 Predictive performance of models using full temporal pattern

information

How well can we predict the behavioral outcome in an experimental trial based on
the particular song pattern that was presented? To answer this question we trained
and validated different artificial neural networks on non-redundant input features
using a cross-validation procedure. From a total of eight potential features we in-
vestigated all combinations made up by two features on the short pulse time scale
and two on the long chirp time scale that together fully determine the temporal song
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structure (see Figure 2.1). The best performing 4-feature model was selected based on
the validation error. It used pulse duration, pulse pause, chirp duration, and chirp
period as input features and comprised n = 10 hidden neurons. The network dia-
gram is shown in Figure 2.2.A.

The average performance of this 4-feature model was quantified on the test data set
as shown in Figure 2.2.B, where each point corresponds to one song pattern and the
model prediction is plotted against the average phonotactic score computed from the
animals’ behavior. The predicted response values for the test data set were highly
correlated with the experimentally measured responses, that is with a linear corre-
lation coefficient of r = 0.93. The mean squared error between the predictions and
the experimental measurements was MSEtest = 0.017. The vertical errorbars indicate
standard deviation, indicating the prediction variability of the best 4-feature model
that was simulated for 100 times toward the same calling song. The main source for
this variability is that before training the weights were initialized randomly, which re-
sulted in slightly different predictions for one song pattern. The horizontal errorbars
indicate inter-individual response variability of different females toward the same
song.

2.3.2 Fusion of the short and long time scale

Female crickets use information from both, the pulse pattern and the chirp pattern
to recognize and evaluate the conspecific song. How is this information on the short
pulse and the long chirp time scales combined by female crickets during auditory
processing? We hypothesize two basic models as sketched in Figure 2.3.A: in case of
a logical AND-operation only an attractive pulse structure in combination with an
attractive chirp structure generates highest phonotactic scores. This would indicate a
synergistic processing. In contrast, a logical OR-operation requires either a suitable
pulse or an attractive chirp structure to drive high phonotactic scores, thus optimal
parameters for both time scales do not transmit extra information. The latter behavior
is known as hypo-additive effect [Duchamp-Viret et al., 2003]. We evaluated the best
4-feature model (pulse duration, pulse pause, chirp duration, and chirp period) for
different patterns by systematic variation of chirp and pulse periods. While varying
the periods we fixed the duty cycles at 0.5, which ensured that one parameter of
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Figure 2.3: Interaction of the short and long time scale. (A) Sketch of a logical AND-
operation (central square) and an OR-operation (gray shading). (B) Chirp period -
pulse period response field predicted by the best 4-feature model (pulse duration,
pulse pause, chirp duration, chirp period). The dominant circular area of highest re-
sponse values suggests an AND-operation. Circles indicate experimentally measured
phonotactic scores.

each time scale was in an attractive range [Grobe et al., 2012; Hennig, 2009]. The
plane spanned by the chirp period and the pulse period in Figure 2.3.B shows highest
response values for patterns with a chirp period between 250 and 500 ms and pulse
periods from 35 to 45 ms. The maximal response value was obtained for a pattern
with a pulse period of 40 ms and a chirp period of 340 ms. The dominant circular
shape of highest responses suggested that the model approximates a logical AND-
operation for high phonotactic scores.

2.3.3 Selection of the most informative song features

Which are the critical temporal song features that carry the most information for
phonotaxis? A number of different song parameters have previously been tested
experimentally and several have been suggested to be of particular importance. We
considered a total of eight temporal features, namely duration, pause, period, and
duty cycle for both pulses and chirps, as introduced in Figure 2.1. Above we already
presented a model that uses two features from the short time scale (pulse duration
and pulse pause) and two features from the long time scale (chirp duration and chirp
period). However, it is not clear, which set of features will best describe the behavioral
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data. Thus, we investigated all possible feature sets, each one consisting of a differ-
ent combination of the eight temporal features and compared the prediction accuracy
of the corresponding models. Figure 2.4 shows the ten best models. The overall best
performance with respect to the validation error was obtained for the 3-feature model
that uses pulse period, chirp duration, and chirp duty cycle as input and n = 10 neu-
rons in the hidden layer. All models using the pulse period plus two features from the
long time scale were among the ten best performing networks that use three features
as input. Surprisingly, the best 2-feature model that only uses pulse period and chirp
pause and n = 7 hidden neurons did not perform significantly different from the best
3-feature model (p-value = 0.028 for a two-sided Wilcoxon rank-sums test; signifi-
cance level of 0.01). The feature combinations of pulse period plus one chirp feature
are the four best in the class of models that only use two features as input. In contrast,
the best 4-feature model that uses pulse duration, pulse pause, chirp duration, and
chirp period as input and n = 10 hidden neurons performed significantly worse than
the best 3-feature model (p-value = 0.005 for a two-sided Wilcoxon rank-sums test;
significance level of 0.01). Models with only one or more than four features as input
were not ranked top ten.

2.3.4 Model predictions for pulse and chirp response fields

We investigated pulse and chirp response fields predicted by the best 4-feature, 3-
feature, and 2-feature models. Pulse response fields describe two-dimensional sub-
spaces spanned by the pulse duration and pulse pause of the eight dimensional fea-
ture space in which the attractiveness is color coded. To this end, we trained the
models using all data of 218 songs and their phonotactic scores. For the best 4-feature
model, we predicted the phonotactic scores for patterns with different pulse dura-
tions and pulse pauses but with a fixed chirp duration of 200 ms and a fixed chirp
period of 333 ms that construct an attractive chirp structure [Hennig, 2009]. The pulse
response field of this model, as shown in Figure 2.5.A, reveals an oval structure: song
patterns with high phonotactic scores are displayed in an area bounded by pulse pe-
riods of 30 and 45 ms and pulse duty cycles of 0.4 and 0.7. For the best 3-feature and
best 2-feature model we predicted responses toward patterns with different pulse pe-
riods but with a fixed chirp duration of 200 ms and a chirp duty cycle of 0.6 (best
3-feature model), and a fixed chirp pause of 133 ms (best 2-feature model). The pulse
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Figure 2.4: Ten best performing models. Model of size four (light gray), three
(dark gray), and two (black edging) are ranked top ten. The overall best perform-
ing model uses the pulse period, chirp duration, and chirp duty cycle. The best 2-
feature model (pulse period and chirp pause) did not perform significantly different
(p-value = 0.028 for a two-sided Wilcoxon rank-sums test; significance level of 0.01).
The best 4-feature model (pulse duration, pulse pause, chirp duration, and chirp pe-
riod) performed significantly worse than the best 3-feature model (p-value < 0.01 for
a two-sided Wilcoxon rank-sums test). Abbreviations: Pdur - pulse duration, Ppau -
pulse pause, Pper - pulse period, Pdc - pulse duty cycle, Cdur - chirp duration, Cpau
- chirp pause, Cper - chirp period, Cdc - chirp duty cycle. The models were validated
100 times and errorbars indicate standard deviation.
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response fields of the best 3-feature model (Figure 2.5.B) and the best 2-feature model
(Figure 2.5.C) were highly similar: due to the fact that only a single parameter on the
short time scale was used we obtained a 1-dimensional structure where the phono-
tactic score varied along the diagonal defined by the pulse period. Particularly, the
phonotactic scores were invariant under different pulse duty cycles. Higher phono-
tactic scores were in the range of 40± 10 ms pulse period, which was consistent with
predictions of the best 4-feature model.

Next, we analyzed the chirp response fields. We predicted the response values for
song patterns with different chirp durations and chirp periods but a fixed pulse du-
ration of 20 ms and a fixed pulse pause of 20 ms for the best 4-feature model. In case
of the 3-feature model we predicted responses toward patterns with different chirp
durations and chirp duty cycles but a fixed pulse period of 40 ms. The response fields
of the best 4-feature (Figure 2.5.D) and 3-feature model (Figure 2.5.E) revealed highest
phonotactic scores for chirp durations and pauses between 100 and 300 ms. The chirp
response field of the 2-feature model, obtained by varying the chirp pause at a fixed
pulse period of 40 ms, revealed a 1-dimensional structure in which the scores only
vary for different chirp pauses, irrespective of the chirp duration, see Figure 2.5.F.
Here, highest phonotactic scores were predicted for chirp pauses between 100 and
250 ms.

2.4 Discussion

In this study we trained artificial neural networks to predict the attractiveness of call-
ing songs of the cricket Gryllus bimaculatus. We studied the dependence of the model
performance on the parameters of the calling song and aimed to identify minimal
subsets of temporal features that carried sufficient information to describe the exper-
imentally measured behavioral performance.

2.4.1 The most relevant song features for behavior

A number of different song parameters, namely the duration, pause, period, and duty
cycle for both pulses and chirps are commonly used in cricket studies [Doherty, 1985;
Grobe et al., 2012; Hedwig and Poulet, 2005; Hennig, 2009; Thorson et al., 1982]. But,
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Figure 2.5: Pulse and chirp response fields predicted by the best 4-feature, 3-feature
and 2-feature model. (A) The pulse response field of the best 4-feature model shows
highest phonotactic scores for patterns that are accumulated in an oval bounded by
pulse periods of 30 and 45 ms and pulse duty cycles of 0.4 and 0.7. The pulse response
fields of the best 3-feature model (B) and the best 2-feature model (C) are clearly
independent of the pulse duty cycle and show an extension on the diagonal defined
by a pulse period of 40 ms. The chirp response field of the best 4-feature model (D)
and the best 3-feature model (E) are qualitatively similar and reveal best scores for
patterns with chirp durations and pauses between 200 and 300 ms. The best 2-feature
model predicts highest scores for patterns with a chirp pause between 100 and 250
ms, irrespective of the chirp duration (F). Circles indicate experimentally measured
phonotactic scores.
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this set is overcomplete in the following sense: four features, two from each time
scale, are sufficient to describe the artificial calling song. Thus, we investigated the
performance of in total 255 models each one using a different set of song features. We
identified three feature sets of different sizes that are best describing the behavioral
data. The best 4-feature model, which used pulse duration, pulse pause, chirp du-
ration and chirp period was ranked top ten (see Figure 2.4). The overall best model
uses three features, the pulse period, chirp duration, and chirp duty cycle. Remark-
ably, the six combinations consisting of the pulse period plus two features from the
long time scale are among the ten best performing sets of three features. Also the best
2-feature model uses the pulse period from the short time scale plus the chirp pause
as input and regarding only models with two input features, the pulse period plus
one feature from the long chirp time scale are the best four models. These findings
suggest that the pulse period is the most crucial feature from the short time scale. For
optimal prediction information on the short time scale (pulses [Schildberger, 1984;
Zorovic and Hedwig, 2011]) and information on the long time scale (chirps [Doherty,
1985; Grobe et al., 2012]) are equally important. Also, in a taxonomic study [Desutter-
Grandcolas and Robillard, 2003] temporal features on both time scales (number of
pulses per second, number of pulses per chirp, number of chirps per minute) were
relevant for relating phylogeny to the species-specific song patterns.

2.4.2 Logical AND-operation of the time scales

Calling songs of crickets carry information on short and long time scales, somewhat
in analogy to words and phrases of human speech. How does the female cricket fuse
auditory information that is present on the two distinct time scales? The response
profile (Figure 2.3.B) for different combinations of pulse and chirp periods showed
a synergistic effect, that is only attractive pulse structures combined with attractive
chirp structures drove highest phonotactic scores. This provided evidence for a log-
ical AND-operation of the time scales and was in line with results from Grobe et al.
[2012] who interpolated behavioral measurements in the plane spanned by chirps per
second and pulses per second, that is in the frequency domain. Notably, the combina-
tion of attractive pulse periods between 35 and 45 ms and unattractive chirp periods
(greater than 500 ms) already caused intermediate responses. This again underlined
the importance of the pulse period which we determined as the behaviorally most
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Chapter 2 Analyzing phonotaxis with multilayer perceptrons

important feature of the short time scale.

The finding that the time scales are fused in an AND-operation can be interpreted
with respect to the neuronal processing in the cricket brain. If our results had in-
dicated a logical OR-operation of short and long time scales, then an independent,
that is parallel processing of both time scales in the brain would have been likely.
The result of the interdependence indicates that processing could be either parallel
or serial. In the former case we expect from physiological experiments to find neu-
ronal responses in the central brain that are independently tuned to either the short
[Kostarakos and Hedwig, 2012; Schildberger et al., 1986] or the long time scale. The
fusion of both information streams would happen only at a late stage of the brain
network. Alternatively, in the latter case of serial processing we expect neural repre-
sentations to be dependent on both time scales at an earlier stage of the brain network.

2.4.3 Song pattern complexity in crickets versus grasshoppers

Acoustic communication is also widely studied in grasshoppers. In mating behav-
ior, male Chorthippus biguttulus grasshoppers produce courtship songs consisting of
syllables that are grouped into phrases which in comparison with the songs of crick-
ets exhibit a more complex song structure [Balakrishnan et al., 2001; Klappert and
Reinhold, 2003; von Helversen and von Helversen, 1994]. If females rate the song as
attractive, they produce response signals that direct the male toward her [van Hel-
versen and van Helversen, 1983]. Wittmann et al. [2010] employed an approach sim-
ilar to ours and analyzed courtship songs of the grasshopper Chorthippus biguttulus
with artificial neural networks. Seven structural features of courtship songs were
introduced and served as input to artificial neural networks. The linear correlation
of r = 0.93 between the model’s predictions and the experimentally measured re-
sponse probabilities was in a similar range as for our best 4-feature model. Wittmann
et al. [2010] also investigated the features that affect a female’s assessment of a male’s
quality by excluding each song parameter once. In their case, none of the excluded
features led to an increased performance of the corresponding reduced model. This
indicates that the employed features are non-reducible and results in a feature space
of at least seven dimensions. Thus, the processing of auditory information in female
grasshoppers is more complex than in crickets.
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2.4.4 Non-linear extension improves performance

A closer inspection of the best 4-feature model’s performance as shown in Figure
2.2.B revealed a systematic mismatch between the behavioral measurements and the
model prediction. For small experimental phonotactic scores (≤ 0.1) the model over-
estimated the attractiveness of the corresponding song patterns. Likewise, the model
underestimated the attractiveness of models that were experimentally found to be
highly attractive (≥ 0.7). The same systematic bias was observed in the behavioral
predictions by Wittmann et al. [2010]. What could be the reason for this result and
how could we improve model predictions? The classical artificial neural networks
devised non-linear elements in the hidden layer while the output neuron computes a
linear sum. We additionally applied a non-linear transformation of sigmoidal shape
to the predictions of the model. In detail, we first used the training data set to choose
n = 10 hidden neurons. Then, we chose the parameters y = 0.5 and b = 5.23
of the sigmoidal sb,y(x) = 1

1+exp(−b(x−y)) as they minimized the mean squared er-
ror between the experimentally measured phonotactic scores of the training data set
and the sigmoidal transformed predictions. This improved the predictive power:
on the test data set the error measure reduced to MSEtest = 0.008 (as compared to
MSEtest = 0.017) and the linear correlation coefficient was r = 0.94. A possible inter-
pretation of this result in a biological context involves two-step processing. In a first
processing stage, the attractiveness of the stimulus pattern is evaluated. In a second
stage, the outcome of this evaluation is non-linearly translated into behavior analog
to a behavioral decision. To investigate this possibility it would be of interest to study
in detail behavioral thresholds in individual animals [Beckers and Wagner, 2011].

2.4.5 Towards future models of neural network processing

We presented artificial neural networks that are suitable for predicting phonotactic
scores of untested song patterns and thus for complementing behavioral as well as
guiding electrophysiological studies. However, artificial neural networks do not at-
tempt to model the natural neural processing of auditory information in the cricket
brain. To improve our understanding of the underlying neuronal mechanisms dur-
ing pattern recognition computational models of neural function are required that
incorporate our anatomical, morphological, and physiological knowledge. Any such
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model should attempt to reproduce female phonotactic behavior and to provide testable
hypotheses at the biophysical level.

Insects in general are well suited because they achieve the required tasks of pattern
recognition and evaluation of the fitness parameters with relatively small brains. The
cricket Gryllus bimaculatus is a well suited insect model for studying the neural basis
of the processing of auditory information and the generation of choice behavior due
to its highly limited neuronal resources. In the auditory pathway receptor neurons
converge to two ascending neurons that project to a small number of neurons in the
brain. Much is already known about the physiological properties [Schildberger, 1984;
Wohlers and Huber, 1982] of the ascending interneurons and ongoing work investi-
gates the connectivity and physiological properties of the brain neurons. It has been
shown that for varying pulse patterns some neurons match the average behavioral
tuning [Kostarakos and Hedwig, 2012; Schildberger, 1984]. Several modeling ap-
proaches that use the cricket as a model system exist. Webb [1995] investigates sound-
seeking in crickets with robots. Mhatre and Balakrishnan [2007] used a stochastic
model to simulate the walking path of crickets. But, only few attempts have been
made to model the neural mechanisms for pattern recognition in crickets. Benda and
Hennig [2008] showed that spike-frequency adaptation can generate intensity invari-
ance in ascending neurons. In a preliminary study short term depression and short
term facilitation in central brain synapses were suggested as plausible mechanisms
for the parametric tuning on the short and long time scale [Rost, 2011]. Recently,
based on their physiological investigation of central brain neurons, Kostarakos and
Hedwig [2012] suggested a network scheme that includes mutual excitation and inhi-
bition of central brain neurons as a plausible alternative that awaits testing in a future
neural network study.

26







Chapter 3

Decoding of calling songs and their

behavioral relevance from grasshopper

auditory neurons1

Acoustic communication plays a key role for mate attraction in grasshoppers. Males
use songs to advertise themselves to females. Females evaluate the song pattern to
recognize a conspecific male and as proxy to its fitness. The song pattern, a repeti-
tive structure of sound syllables separated by short pauses, provides a primary cue to
identify conspecifics. In their natural habitat females often receive songs of degraded
temporal structure. Perturbations may, for example result from the overlap with other
songs. We studied the response behavior of females to songs that show different sig-
nal degradations. A perturbation of an otherwise attractive song at later positions in
the syllable diminished the behavioral response, whereas the same perturbation at
the onset of a syllable did not affect song attractiveness. Using intracellular record-
ings from auditory neurons we explored how information about the acoustic stimulus
and its attractiveness is encoded in the neural responses. We find that populations of

1This chapter has been submitted to Frontiers in Systems Neuroscience. Please refer to page v in
this dissertation for the detials of authors contributions.
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three or more neurons were sufficient to reliably decode the acoustic stimuli and to
predict its behavioral relevance from the single-trial integrated firing rate. Decoding
accuracy increased with neural population size but not with integration time. We dis-
cuss our results in light of the time persistence and trial-to-trial variability of auditory
neuronal responses with respect to potential mechanisms of pattern recognition and
decision making in the brain.

3.1 Introduction

Acoustic communication of grasshoppers has become a prominent model system to
investigate principles of neuronal processing of acoustic stimuli and they provide the
opportunity to study perceptual decision making in a comparatively simple nervous
system. Grasshoppers produce acoustic signals, termed “songs”, to attract a mat-
ing partner. Natural songs consist of a repetition of stereotyped subunits (syllables)
with species-specific amplitude modulations of a broad carrier frequency band that
are produced by moving the hind legs against the forewings [von Helversen and von
Helversen, 1997]. Due to characteristic differences between grasshopper species the
songs constitute an important barrier against hybridization. Both the song produc-
tion and the song recognition are innate behaviors, and therefore we can be confident
that the corresponding neuronal circuits are “hard-wired”. In behavioral tests one can
use artificial song models that mimic and vary certain song features, and thereby ex-
plore which cues are crucial for song recognition [von Helversen, 1972; von Helversen
and von Helversen, 1997, 1998]. These experiments demonstrated that the decisive
cues for song recognition reside in the temporal pattern of amplitude modulations,
i.e. in a song’s envelope. In the grasshopper Chorthippus biguttulus, the subject of this
investigation, a very simple but highly attractive song model consists of a series of
sound “syllables” separated by pauses (see Figure 3.1.A). Using song models we can
reduce the signal’s complexity and compare the behavioral responses directly with
the processing capacities of neurons at different stages of the auditory pathway.

The nervous system of grasshoppers offers an important advantage: many neurons
can be identified as individuals on the basis of their characteristic morphology [Stump-
ner and Ronacher, 1991]. Thus specific processing properties can be assigned to
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groups of individual neurons in the auditory pathway. The first stage of auditory
processing comprises three neuron classes: auditory receptor neurons, local neurons
(LN) and ascending neurons (AN). The ears of grasshoppers are located on the sides
of the first abdominal ganglion. A total of approximately 60 receptor neurons trans-
duce the vibrations of the tympanum into series of action potentials that travel via
the axons into the metathoracic ganglion complex, which houses the first auditory
processing stage. There, axons make contact to various types of local neurons (LNs)
– about 15 individual LNs have been identified so far. The LNs then contact a set
of about 20 ANs, the axons of which ascend to the animal’s head and constitute the
sole auditory input to upstream processing circuits and decision centers located in the
brain [Bauer and von Helversen, 1987; Ronacher et al., 1986]. Since the population of
ANs constitutes a bottleneck for the information that is available to the brain, they
will be in the focus of the present study. Remarkably, the auditory pathway includ-
ing the ANs is highly conserved between different grasshopper species [Neuhofer
et al., 2008; Ronacher and Stumpner, 1988]. Not only are the neurons’ morphologies
extremely similar in two not related species (C. biguttulus and the locust Locusta mi-
gratoria), but homologous neurons also exhibit the same physiological properties and
processing capacities. For this reason we can compare neuronal properties of e.g. LN
and AN of the locust with behavioral data obtained with C. biguttulus.

The decision centers located in the female brain must evaluate whether a heard song
follows the con-specific pattern and whether it is attractive enough to trigger a re-
sponse song as the appropriate behavior. This task appears simple under ideal con-
ditions, since the song patterns of different species differ considerably [Gottsberger
and Mayer, 2007; Stumpner and von Helversen, 1994]. However, in nature there are
many factors that may degrade the acoustic signal on its way from sender to receiver.
This aggravates the classification problem. Here we introduced perturbations of the
signal envelope that strongly influenced behavioral decisions. Applying perturba-
tions to the pattern of an attractive song model affected the signal’s attractiveness as
measured by the female response rates differently, depending on the specific position
of a perturbation within a song syllable (Figure 3.1.A). Presenting the same stimuli
while performing intracellular recordings from identified neurons allowed to investi-
gate the neural representation of the stimulus identity and of its behavioral relevance.
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Using naı̈ve Bayes classifiers (for review see Quiroga and Panzeri [2009]; Pouget et al.
[2000]) we specifically asked to what degree the acoustic stimulus can be decoded
and whether the behavioral stimulus category can be predicted from the single-trial
responses of single neurons and neuron populations.

3.2 Materials and Methods

3.2.1 Animals

The behavioral tests were performed with females of Chorthippus biguttulus. The an-
imals were reared as the filial generation (F1) from eggs of individuals collected as
adults near Göttingen, Germany. After adult moult females and males were held
separately in plastic cages to ensure virginity. In this species the females respond to
a male’s song with a song of their own, thereby indicating their readiness to mate.
This response song is an ideal criterion showing that a female has identified a song
as belonging to a potential conspecific mating partner.

Electrophysiological experiments were performed on locusts, Locusta migratoria, that
were bought from a commercial supplier (for details of the breeding and keeping
procedures see Schmidt et al. [2008]; Stange and Ronacher [2012]). We can homol-
ogize identified neurons between the two species on the basis of their characteristic
morphology [Stumpner and Ronacher, 1991]. The homologous auditory neurons of
the thoracic ganglia show quantitatively similar response patterns in both species
[Neuhofer et al., 2008; Ronacher and Stumpner, 1988; Sokoliuk et al., 1989]. On the
basis of this strong homology we can use recordings from L. migratoria neurons and
compare their spike patterns with behavioral responses of C. biguttulus.

3.2.2 Acoustic stimuli

A digitally generated song envelope consisting of rectangular syllables (subunits) of
72 ms duration separated by 12 ms pauses served as an attractive standard stimulus
(Figure 3.1.A). In order to systematically screen the detrimental effect of degradation
at different syllable positions, we inserted perturbations of 24 ms either in the first,
or in the middle, or in the last part of each syllable (Figure 3.1.A). A perturbation
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Figure 3.1: Perturbation of the standard song affects attractiveness when placed
at later syllable positions. (A) Envelopes of song models used for behavioral and
neurophysiological tests. An attractive standard song consisted of 72 ms syllables
and 12 ms pauses. The other stimuli had the same syllable and pause durations but
exhibited perturbations at different positions within a syllable (onset, middle, end).
(B) The median response rate of 33 C. biguttulus female responses for the stimulus
with onset perturbation was 83%, thus very similar to the response to the standard
stimulus. In contrast, stimuli with perturbation in the middle and end were mostly
rejected (median response rate 6%). The median is displayed as the central mark in
the box plot. The edges of the box are the 25th and 75th percentiles. (C) Note the high
variance in female responses, especially when perturbation is at syllable onset.

consisted of 2 alternating accents and gaps, each of 6 ms duration and 12 dB higher
or lower relative to the syllable plateau. Earlier experiments had revealed that gaps
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within a syllable do markedly reduce the stimulus attractiveness; accentuations that
occur at the end of a syllable have similar detrimental effects [Ronacher and Stump-
ner, 1988; von Helversen, 1972; von Helversen and von Helversen, 1997; von Hel-
versen, 1979]; for reviews see Ronacher et al. [2004]; Ronacher and Stange [2013].

The envelopes of all song models were convolved with the same carrier frequency
(a broad band noise spectrum of 5− 40 kHz). Sound intensity was calibrated with a
half inch microphone (type 4133; Brüel & Kjær, Nærum, Denmark) and a measuring
amplifier (type 2209, Brüel & Kjær) at the position of the animal. All four test patterns
were presented with the same effective intensity (RMS) of 70 dB SPL; therefore the
peak and plateau intensities differed between stimuli (syllable plateau 70 dB for the
standard stimulus and 65 dB for perturbed stimuli, Figure 3.1.A). Yet, these intensities
fall into the intensity range well accepted by C. biguttulus females [von Helversen and
von Helversen, 1997, 1994]. The songs presented in the behavioral and electrophysi-
ology tests comprised the same envelope structure but differed in length: 2772 ms (33
subunits; behavior) and 756 ms (9 subunits for electrophysiology), respectively.

3.2.3 Behavioral experiments

Virgin C. biguttulus females were tested in a sound proof chamber at a constant tem-
perature of 30 ± 2◦C. The experiments were automatically conducted by a custom
made program (written by M. Hennig in Labview 7.1, National Instruments) pre-
senting songs in a pseudo-randomized order while recording the females’ responses
(for details of the apparatus and testing procedures see Schmidt et al. [2008]). Each
song was iterated 18 times. As a measure of stimulus attractiveness we used the
percentage of responses normalized to the 18 presentations for each female. Out of
these individual responses median response rates were calculated. Additionally, a
negative control was presented, comprising the same carrier frequency and length as
the standard signal, but lacking any syllable pause structure. In applying this nega-
tive control stimulus those females indicating a not discriminative behavior for song
patterns could be detected. From further analysis we therefore excluded 11 from 44
tested females as they responded more than twice to the negative control.
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3.2.4 Electrophysiological experiments

Intracellular recordings were obtained with conventional methods from adult Locusta
migratoria. For a detailed description of the experimental settings see Vogel et al.
[2005]; Wohlgemuth and Ronacher [2007]. Temperature during the experiments was
kept constant at 30± 2◦C. At the end of an experiment the cells were stained with
Lucifer Yellow and identified according to their characteristic morphology and phys-
iology. For this study ascending neurons (ANs) were analyzed which represent the
third processing stage in the metathoracic ganglion and transmit the auditory infor-
mation to the grasshopper’s brain. Recordings were obtained from AN1 (n = 9), AN3
(n = 10), AN4 (n = 4) and AN12 (n = 2) neurons (for the terminology see Römer and
Marquart [1984]; Stumpner and Ronacher [1991]). Each song was presented within
a looped order: standard stimulus, onset-perturbation, perturbation in the middle,
then perturbation in the end, and starting again with the standard stimulus. Stimu-
lus iteration was 8 times.

3.2.5 Data analysis

Estimation of firing rates

Neuronal firing rates were estimated from spike trains by convolution with a Gaus-
sian kernel with width σ ranging from 1, . . . , 30 ms and support [−4σ, 4σ] [Nawrot
et al., 1999]. The kernel was normalized to unit area such that the time integral of the
estimated rates equals the number of spikes.

Näıve Bayes classification

Naı̈ve Bayes classifiers are statistical classifiers that are based on Bayes’ theorem
together with naı̈ve independency assumptions. We applied Bayesian classifier to
decode which stimulus class evoked a particular neural response (see Pouget et al.
[2000]; Quiroga and Panzeri [2009] for reviews). Let P(s) denote the probability of
presentation of stimulus class s and P(x1, . . . , xn|s) the conditional probability of ob-
serving spike train features x1, . . . , xn given s. The posterior probability that stimulus
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class s was presented given x1, . . . , xn is according to Bayes’ theorem

P(s|x1, . . . , xn) =
P(x1, . . . , xn|s)
P(x1, . . . , xn)

· P(s)

with
P(x1, . . . xn) = ∑

s∈S
P(x1, . . . , xn|s) · P(s).

The naı̈ve independency assumption that each feature xi is conditionally independent
of feature xj given s simplifies to

P(s|x1, . . . , xn) =
∏n

i=1 P(xi|s)
P(x1, . . . , xn)

· P(s).

From this posterior probability distribution the stimulus class ŝ that maximizes the
probability that x1, . . . , xn was observed is chosen:

ŝ = argmaxs∈S {P(s|x1, . . . , xn)} .

Since P(x1, . . . , xn) is constant given stimulus class s, the classification rule can be
written as

ŝ = argmaxs∈S

{
n

∏
i=1

P(xi|s) · P(s)
}

.

Different decoding approaches

First, we decoded stimulus classes based on the spike count of single neurons which
can be considered as a very simple descriptor of a neural spike response pattern. For
each stimulus of 756 ms duration we counted the number of spikes for each of the
eight trials. For every count c we decoded the stimulus class as

ŝ = argmaxs∈S{P(c|s) · P(s)}.

Based on the remaining counts we performed a kernel density estimation to com-
pute the probability density functions P(c|s). The estimation was implemented with
scipy.stats.gaussian kde [Oliphant, 2007]. As the procedure includes automatic
bandwidth determination, the probability density functions were estimated with dif-
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ferent bandwidths. To account for the nonnegativity of the counts, we restricted the
support to positive values and normalized the probability density function to unit
area. For the very rare case that not more than two counts had different values we
assumed a Poisson distribution with mean of the counts.

Second, we investigated a “voting algorithm”: for a fixed trial the stimulus class was
decoded as explained above but starting with the spike count measured over the first
period of 84 ms (syllable plus following pause). We then successively decoded the
stimulus class based on the count restricted to each period separately which yielded
nine estimations of the stimulus class. After all nine periods the stimulus was chosen
that was most often predicted in the nine periods.

Third, for decoding from a pseudo-population of neurons, we used the counts c1, . . . , cn

of n neurons of different type recorded in different females and calculated

ŝ = argmaxs∈S

{
n

∏
i=1

P(ci|s) · P(s)
}

to decode which stimulus class triggered the counts c1, . . . , cn.

We further chose time-resolved firing rates, which capture the temporal dynamics
of a neural pattern, for decoding stimulus classes in single neurons. To this end, we
estimated the firing rates for each millisecond which yielded rates r0, . . . , r756 from
t = 0, . . . , 756 ms (see 3.2.5 Estimation of firing rates). Based on the estimated firing
rates we decoded the stimuli according to

ŝ = argmaxs∈S

{
756

∏
i=0

P(ri|s) · P(s)
}

.

Here, P(rt|s) was estimated as explained for above.

Grouping of stimuli into classes

We followed the decoding approaches to first decode the four stimuli. In this case the
set S of stimulus class consists of the standard stimulus, onset perturbation, middle-
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perturbed song and end-perturbed song, i.e. each song forming a single class. As
all four songs were equally often presented we applied the classification rules with
P(s) = 1/4 for all s ∈ S. However, we may also define stimulus classes that consist
of grouped stimuli. For example, decoding whether or not a song shows degradation
yields two classes, one consisting of the standard stimulus and the other one of the
three perturbed songs. The prior of these two classes is

P(s) =

1/4 for s = standard stimulus

3/4 for s = perturbed stimulus.

Performance of the classifier

To validate the performance of the classifier we performed a leave-one-out cross val-
idation in which each single trial response was used once for decoding based on the
distribution of the remaining trials. The results were stored in a confusion matrix [Ju-
rman et al., 2012] whose entry (i, j) represents the number of times that a presentation
of stimulus class i was predicted to be stimulus class j. Based on the confusion matrix
we quantified the decoding performance with the Matthews correlation coefficient
(MCC) as it is defined in Jurman et al. [2012]. The MCC assumes values between −1
and 1, where 0 indicates chance level classification and 1 perfect prediction. In case of
binary classification (e.g. decoding the standard stimulus against the three perturbed
stimuli) the formula reads

MCC =
TP · TN− FP · FN√

(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)

where TP, TN, FP and FN denote true positives, true negatives, false positives and
false negatives, respectively. This measurement has the advantage that it can be ap-
plied in multiclass problems even if the classes are of different sizes [Gorodkin, 2004;
Jurman et al., 2012].

To test whether a classifier decodes significantly better than chance we performed
a leave-one-out cross validation based spike train features that were randomly reas-
signed to the stimuli, followed by a calculation of the MCC. We repeated this proce-
dure 1, 000 times and calculated the p-value as the percentage of MCCs that are larger
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than or equal to the actual MCC. A significance level of 0.05 was chosen.

3.3 Results

3.3.1 Behavioral decisions reveal two stimulus classes

In behavioral tests we investigated how degradation at specific positions within the
signal does affect signal recognition. We compared the responses of C. biguttulus
females to four stimulus types (Figure 3.1.A): (i) standard stimulus without pertur-
bation, (ii) with perturbation during the first third of the syllable (“onset”), (iii) dur-
ing the second third (“middle”), and (iv) during the last third (“end”). Figure 3.1.B
shows the distribution of response rates across individual females to these stimuli
(see 3.2.3 Behavioral experiments). The standard stimulus was highly attractive (me-
dian: 83%), although individual females differed considerably in their response rate
(compare quartile ranges and see variance in Figure 3.1.C). Females showed similar
high response rates towards the stimulus with onset perturbation, whereas the same
perturbation in the middle or the end of a syllable led to a behavioral rejection (me-
dian response levels of < 10%). Only 3 out of 33 females responded to the latter
stimuli in more than 50% of the stimulus presentations.

In order to further analyze differences in attractiveness we pairwise compared stim-
ulus responses in individual females. For each female, the response rates for any two
stimuli (see left column in Figure 3.2) were subtracted. Thus it could be shown that
the responses to the onset stimulus did not differ significantly from the responses to
the standard (top row, Figure 3.2); the same is true for the comparison of the stimuli
perturbed in the second and third part of the syllable (lowest row, Figure 3.2). In
contrast, the responses to the unperturbed song and the song with middle and end
perturbations differed significantly (p-value < 0.001; Friedman and Dunn’s Multiple
Comparison Test), and in both cases the median difference was about 60%. Similar
results were found for the comparison between the onset perturbed stimulus and the
other two perturbed stimuli (median differences > 50%, p-value < 0.001).
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Figure 3.2: Pairwise comparison of individual female responses allows distinc-
tion in attractive and unattractive stimulus classes. Box plots show medians of
response differences in individual females for stimulus comparisons shown in the
left. Whereas there is no difference in response between stimuli with onset perturba-
tion and the standard song, they are both significantly more attractive than stimuli
with perturbation at middle and end (p-value < 0.001, Dunn’s post hoc test after
Friedman).

3.3.2 Decoding stimulus identitiy and behavioral class from the

neuronal spike counts

Grasshoppers have to make their decisions based on the information about the envi-
ronment provided by the sensory and downstream neurons of the auditory pathway.
The clear separation into two behavioral stimulus classes raises the question of how
the different stimuli and these different behavioral classes are represented and dis-
criminated within the grasshopper’s nervous system. We address this question in
intracellular in vivo recordings of identified ANs during repeated presentations of all
four songs. To quantify the encoded information we apply a single-trial decoding ap-
proach to the neural spiking activity using a Bayesian classifier. We start out with de-
coding the identity of the auditory stimulus before we predict the behavioral class (at-
tractive versus non-attractive). Finally, we compare the decoding performance based
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on the simple measure of the spike count – equivalent to the time-integral of the firing
rate – to the decoding performance when taking into account the full time-resolved
firing rate profile.

Stimulus classification based on single neurons

How is information about a stimulus, such as the stimulus type or its attractiveness,
represented in the spike responses of the ANs? Figure 3.3 shows example voltage
traces of in vivo intracellular recordings from two individual ANs, and the corre-
sponding spike raster plots. The example AN3-neuron responded with a burst of
spikes to the stimulus onset and with smaller bursts at syllable onsets. In the two
unattractive stimuli, however, additional spike bursts occurred in the middle or at
the end of the syllables. The AN1-neuron marked the syllable onsets of the standard
stimulus, whereas the perturbations evoked additional spikes within the syllables.
The trial-averaged firing rates (Figure 3.3, color coded) of all recorded neurons indi-
cate that neuronal response patterns vary for the four different song patterns. Also,
neurons that are of the same morphological type (AN1, AN3, AN4, AN12) show vari-
ations in their response patterns across individual animals.

We use a Bayesian approach to classify the acoustic stimulus based on the neural
activity (see 3.2.5 Naı̈ve Bayes classification). To this end we counted the number of
spikes in each single trial and for each of the four stimuli during the complete stim-
ulus duration of 756 ms, comprising 9 syllables and the respective pauses. Based on
the counts we decoded the stimulus identity according to the classification rules in
3.2.5 Different decoding approaches. We measured the classification performance by
the Matthews correlation coefficient (MCC).

Figure 3.4 shows the results for decoding the four stimuli from single neuron activity.
The MCC was higher than chance level for all but two neurons (see Figure 3.4) and 11
out of 25 decoded the stimuli significantly better than on basis of randomized counts
(black dots in Figure 3.4, p-value < 0.05). Averaging across all 25 neurons yielded a
mean MCC of 0.32. The decoding results were best for the standard song (not shown).
As shown in Figure 3.1.A the standard song had a higher syllable plateau than the
perturbed songs which is a consequence of our constraint that all stimuli have the
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Figure 3.3: Neuronal responses to all four songs categorized by their behavioral rel-
evance. Voltage traces and spike raster plots (8 trials) in the second and third columns
show responses to the first four syllable–pause subunits for two example neurons
AN3 and AN1. The fourth column shows trial-averaged firing rates estimated with a
Gaussian kernel of width σ = 4ms during the whole stimulus presentation. Each row
within a block of a neuron type represents the response of a single neuron (from top
to bottom AN12 (n = 2), AN4 (n = 4), AN3 (n = 10), AN1 (n = 9)). Color denotes
the amplitude of the estimated firing rates normalized to the maximum rate within
each neuron class. Arrows point out the firing rates of the shown examples.
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Figure 3.4: Count based decoding of stimuli in single neurons. A classification of
the four stimuli is in 11 (filled circles) out of 25 neurons significantly better than a
classification based on randomized counts. The distribution of MCC values of all
25 neurons differs significantly from the MCC distribution of the classifiers that are
based on randomized counts (p-value < 0.05, one-sided Wilcoxon rank-sum test).
Dashed line represents chance level based on randomized counts.

same effective intensity. A closer look showed that the trial-averaged spike count
elicited by the standard syllables differed from the spike counts evoked by the per-
turbed syllables. However, this is not consistent across neurons. For some neurons
the spike count evoked by the standard stimulus is considerably larger than the spike
count evoked by any of the perturbed stimuli, for other neurons this relation is re-
versed. This difference between the spike count triggered by the standard and the
perturbed stimuli is reflected in a higher performance in decoding the standard stim-
ulus against the class of perturbed stimuli (SI Figure 3.8: averaged MCC is 0.78; 22
neurons decode significantly better than by chance). To avoid a bias of the decoding
performance due to the higher syllable plateau of the unperturbed standard stimu-
lus, we reduced the stimulus set to the three perturbed songs throughout the rest of
the manuscript. This reduced stimulus set yielded only 5 neurons that allowed for
a successful decoding of the three stimuli, and the average MCC dropped sharply to
0.08 (Figure 3.5.A).

So far, the spike count was measured during complete stimulus presentation which
consists of nine periods (syllable plus pause). Next, we asked how good we can de-
code the stimuli based on the spike count extracted over shorter time windows. To
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numbers of periods

Figure 3.5: Count based decoding of the three perturbed stimuli in single neurons
and populations. (A) Only in 5 neurons the three perturbed stimuli are decoded sig-
nificantly better than a classification based on randomized counts. The distribution of
MCC values of all 25 classifiers does not differ significantly from the MCC distribu-
tion of the classifiers that are based on randomized counts (p-value = 0.23, one-sided
Wilcoxon rank-sum test). Dashed line represents chance level. (B) Averaged time
course of the MCC is not increasing with stimulus time (thick black line). Stars depict
the number of periods where the MCC peaks. Markers are filled if the classifier de-
codes significantly better than classifiers based on randomized counts. (C) Decoding
performance increases with population size. Circles denote MCC values of classifiers
that are based on spike count measured over all nine periods (cf. circles in (A)). Stars
depict MCCs of decoder based on counts over population-individual optimal num-
ber of periods (cf. stars in (B)). Diamonds show the MCC of classifier that use the
voting algorithm. MCCs are averaged across neurons and vertical errorbars depict
standard deviation. The mean performance increases significantly from single neu-
rons to populations of size three, four, and eight (p-value < 0.05, one-sided Wilcoxon
rank-sum test).
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this end, we investigated the MCC as a function of the number of periods starting at
stimulus onset (Figure 3.5.B). Surprisingly, the MCC, averaged across neurons within
one class, did not increase but stayed constant over stimulus time (see thick lines in
Figure 3.5.B). For single neurons the MCC fluctuated without apparent increase or
decrease (thin lines in Figure 3.5.B). Restricting the counts from onset to the period
where the MCC was maximal (stars in Figure 3.5.B) remarkably improved the decod-
ing results: now 18 neurons performed significantly better than by chance (black stars
in Figure 3.5.B) and the MCC averaged across all neurons increased from 0.08 to 0.39.
At least three periods were needed for successful stimulus reconstruction in 15 out of
the 18 neurons.

In addition, we decoded the stimuli using a “voting” algorithm (see 3.2.5 Different
decoding approaches). We first decoded the stimuli on the basis of each single period
separately. In a second step we chose the stimulus which was most often predicted
in the nine periods. In comparison to the decoding results that were based on counts
over the whole stimulus length the averaged MCC increased moderately from 0.08 to
0.16 (diamond in Figure 3.5.C).

3.3.3 Population decoding

As the grasshopper brain receives input from several ascending neurons (up to twenty
at each side [Stumpner and Ronacher, 1991]) we next decoded the three perturbed
songs from neuronal populations (see 3.2.5 Different decoding approaches). We con-
structed neuronal populations up to size four with each neuron from a different type,
representing a subpopulation of ANs in one hemisphere. Additionally, we decoded
on a basis of populations of size eight, consisting of two different neurons of each
available type, which reflects the input from both ears. As to be expected the averaged
decoding performance is increasing with population size up to 0.41 for 8 neurons if
counts were extracted over the complete stimulus duration (circles in Figure 3.5.C). In
case counts were extracted over increasing stimulus duration for each population in-
dividually, the MCC is again increasing with population size up to 0.56 for population
size 8 (stars in Figure 3.5.C). This improvement was significant between populations
of size 3 or larger and single neurons (p-value < 0.05, one-sided Wilcoxon rank-sum
test).
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3.3.4 Discrimination of behaviorally relevant classes by single

neurons and populations

In our behavioral experiments stimuli fell into two behaviorally relevant classes:
the standard song and the onset-perturbed song were attractive whereas songs with
middle- and end-perturbed syllables were rejected (Figure 3.1.B). Here we asked: is
it possible to predict whether a song belongs to the accepted or rejected class based
on the single trial neuronal responses? We again used a Bayesian decoder and eval-
uated the success of correct predictions in single trials with the MCC (3.2.5 Naı̈ve
Bayes classification). We first considered the total spike count over all nine periods
in single neurons. Only half of all MCC values were larger than zero and the number
of neurons that decoded significantly better than by chance was reduced to 3 (Fig-
ure 3.6.A). The MCC averaged across all 25 neurons was 0.19 and the distribution of
the MCC did not differ significantly from the distribution of the performance values
based on randomized counts (p-value = 0.45, one-sided Wilcoxon rank-sum test). As
above, this result can be improved by individually choosing the number of periods
over which the counts are calculated for each neuron: then single-trial classification
was significantly better than chance in 12 neurons (see black stars in Figures 3.6.B). In
this case the average MCC was 0.49 and the distribution differed significantly from
decoders based on randomized counts (p-value < 0.05, one-sided Wilcoxon rank-
sum test). Again, the averaged time course of the MCC was not accumulating and
the optimal numbers of periods were widely spread among neurons (Figure 3.6.B).

If information was used from populations, the performance improved remarkably
up to an average MCC of 0.69 (counts over all nine periods; circles in Figure 3.6.C)
and 0.79 (counts over population-individual stimulus length; stars in Figure 3.6.C) for
populations of size eight. The increase differed significantly between single neurons
and populations of size three or larger for counts measured over the complete stim-
ulus duration (circles in Figure 3.6.C) and between single neurons and population of
size two and larger if counts were measured over population-individual numbers of
periods (stars in Figure 3.6.C)

In contrast, the performance of a decoder that used the voting algorithm was small
(0.07) for single neurons (diamond in Figure 3.6.C).
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number of periods

Figure 3.6: Count based decoding of behaviorally relevant classes in single neurons
and populations. (A) Decoding the class of accepted versus the class of rejected stim-
uli is in only 3 neurons successful. The distribution of the 25 MCC values does not
differ significantly from the MCC distribution of the classifiers that are based on ran-
domized counts (p-value = 0.45, one-sided Wilcoxon rank-sum test). (B) Averaged
time course of the MCC is not increasing with stimulus time (thick black line). (C) De-
coding performance increases with population size. The increase differs significantly
between single neurons and populations of size three and larger for counts measured
over complete stimulus duration (circles) and between single neurons and population
of size two and larger if counts were measured over population-individual numbers
of periods (stars) (p-value < 0.05, one-sided Wilcoxon rank-sum test).
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Chapter 3 Decoding from grasshopper auditory neurons

3.3.5 Precise timing information improves coding in single neurons

How much information does the temporal structure of the neural spike pattern carry
about the evoked stimulus type or its attractiveness? To this end, we investigated
naı̈ve Bayes classifiers based on time-resolved firing rate estimates using a Gaussian
kernel and for different kernel widths σ (see 3.2.5 Different decoding approaches).
The precise timing of spikes is reflected if we estimate firing rates with very small ker-
nel widths (see Figure 3.3 for a detailed structure of the rates that were estimated with
kernel width of σ = 4 ms), whereas, at the other extreme, rates estimated with very
large kernel widths correspond to the spike count. Figure 3.7 shows the performance
of single-trial classification averaged across neurons as a function of the Gaussian ker-
nel width. Classifying the three perturbed stimuli yields good performances for rate
estimates with kernels widths σ in the range of 1, . . . , 12 ms (continuous line in Figure
3.7.A). The average MCC reaches a maximum of 0.89 at σ = 4 ms (see filled circle in
Figure 3.7.A). This result underlines the differences in the temporal structure of the
spike patterns evoked by the three stimuli (see Figure 3.3). Decoding behaviorally
relevant classes (accepted versus rejected songs) performed best (MCC = 0.68) with
σ = 1 ms, and σ = 1, . . . , 5 ms yielded classifiers with similar performance (not sig-
nificantly different; Figure 3.7.B). However, the range of MCC covered by individual
neurons (grey area in Figure 3.7.B) was much larger than in Figure 3.7.A, indicating
that some neurons performed well in this task whereas others performed badly. We
conclude that the detailed structure of the estimated rates evoked by the middle- and
end-perturbed songs bear similarities and thus can be discriminated from the attrac-
tive pattern evoked by the onset perturbation, at least by some neurons. Note that
the temporal resolution of the rates had to be finer for classifying behavior-relevant
classes than for decoding stimuli.

3.4 Discussion

We applied the framework of naı̈ve Bayes classifiers to investigate how information
about the stimuli and their respective attractiveness is encoded in the responses of au-
ditory neurons of grasshoppers. Naı̈ve Bayes classifiers have frequently been used to
quantify encoded information in neural spike trains. Hoare et al. [2011] applied naı̈ve
Bayes classifiers to predict odors from a population of 15 olfactory sensory neurons in
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Figure 3.7: Time-resolved firing rate based decoding in single neurons. Averaged
performance is shown as a function of the width of the Gaussian kernel that was used
for estimation of the firing rates. Grey area shows standard deviations. Classifiers are
best performing with firing rates determined with high temporal resolutions (Gaus-
sian kernel of widths σ = 1, . . . , 12 ms (A) and σ = 1, . . . , 5 ms (B) and within these
ranges they do not differ significantly from the best ones (black circle; p-value < 0.05,
two-sided Wilcoxon rank-sum test).

Drosophila larvae based on their spike count. Using modeled neuronal responses of
10 visual interneurons in the blowfly Calliphora vicina Karmeier et al. [2005] decoded
optic flow fields and found that the decoding performance increases with integra-
tion time. In behaving monkeys Rickert et al. [2009] applied naı̈ve Bayes classifiers
to classify the cueing stimulus and to predict the direction of voluntary movements
from multiple single-unit recordings in the motor cortex. Here, we followed three
different approaches: First, we decoded stimulus classes based on the spike count of
single neurons and studied how the decoding performance changes with the integra-
tion time of neurons. We also investigated a voting algorithm, which bears similarity
to the multiple looks model proposed for psychophysical experiments by Viemeister
and Wakefield [1991]. Second, we studied count based decoding in populations of up
to 8 neurons. Third, we used information of time-resolved firing rates for decoding
in single neurons.

3.4.1 Rate coding in the grasshopper auditory system

Remarkably, the voting algorithm did not significantly improve the performance when
compared to the spike count decoding in single neurons (see diamond in Figures
3.5.C, 3.6.C). Therefore we restrict our discussion to the other two approaches. Decod-
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ing the stimulus class from the single neuron spike count resulted in an average per-
formance as quantified with the Matthews correlation coefficient (MCC) of 0.39 (see
star in Figure 3.5.C), provided that the counts were measured from stimulus onset to a
neuron-specific optimal number of periods. When predicting the behavioral category
of the stimulus we obtained a MCC of 0.49 (Figure 3.6.C). As to be expected, the per-
formance improved considerably when decoding from the time-resolved firing rates
of single neurons yielding average performances of MCC = 0.89 (Figure 3.7.A) and
MCC = 0.68 (Figure 3.7.B) for stimulus classification and classification of accepted
versus rejected songs, respectively. However, in the realistic scenario of decoding the
spike counts from a population of neurons the performance increased significantly
as compared to the single neuron case. For the maximum population size of 8 ANs
we obtained MCC = 0.56 for stimulus decoding (Figure 3.5.C) and MCC = 0.79 for
predicting the behavioral class (Figure 3.6.C). We grouped maximally 8 neurons, two
of each of the morphological types that had been recorded in our experiments. This
represents a realistic subpopulation of ANs from an individual animal. We can expect
that the intact population of at least 20 morphologically distinct ANs per hemisphere
in the grasshopper will reach considerably higher performances that might approach
hundred percent correct classification. Moreover, our decoding results are hampered
by the fact that we have only 8 experimental trials at hand for training and testing
the decoding algorithm. Thus our performance estimates are suboptimal due to this
methodological restriction. Interestingly, the behavioral experiments showed that in-
dividual females do not show a consistent 100% “performance” across repeated pre-
sentations of the same song (Figure 3.1.B) which might be due to variability in the
sensory computation and decision making process or to motivational state. We con-
clude that the simple measure of the population spike count, reflecting the average
stimulus-induced neuronal firing rates, reliably encodes identity and behavioral rele-
vance of a particular song, without need for a time-resolved evaluation of firing rates.

These results are particularly interesting in view of recent papers investigating dif-
ferent aspects of the grasshopper’s auditory pathway. Clemens et al. [2011] provided
evidence that between the local and ascending neurons, i.e. between the second and
third processing stage, the coding principle changes from a summed population code
to a labeled-line population code where the population’s information is maximal if a
decoder takes into account neuronal identity. At the level of the AN population, the
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temporal sparseness as well as the population sparseness increases [Clemens et al.,
2012]. At the same time, integrated spike rate information gains in significance com-
pared to spike timing information [Clemens et al., 2011, 2012; Creutzig et al., 2009;
Ronacher, 2014; Wohlgemuth and Ronacher, 2007]. The connection to behavioral
classifications into attractive and not attractive songs is provided by a recent study
that used abstract LN (linear-nonlinear) models of feature extraction, and was able
to predict behavioral responses with high reliability (r2 = 0.87), with a set of only
two feature detectors [Clemens and Ronacher, 2013]. This cascade model involves
the extraction of local stimulus features followed by a long term temporal integra-
tion over the whole stimulus duration. Thus the model explicitly neglects the exact
temporal position of specific features and assumes a comparison of the detectors’
output in form of long-term averaged spike counts. The high performance of the
spike count classifiers in the behavior-related classification task found in the present
study (Figure 3.7.B) thus fits nicely to the structure of the model proposed by Clemens
and Ronacher [2013]. In addition, the use of a spike count code would also explain
why the remarkable sloppiness of spike timing found in ascending neurons [Vogel
et al., 2005] does not impair the precise evaluation of song features in the ms range
which was observed in behavioral tests [Ronacher, 2014; Ronacher and Stange, 2013;
Ronacher and Stumpner, 1988; von Helversen, 1979].

3.4.2 Constancy of the encoded information and trial-by-trial

variability

Another interesting result is revealed by Figures 3.5.B and 3.6.B: against the naı̈ve
expectation that longer stimuli might provide more information, the average MCC
did not rise with longer stimulus durations, and for several neurons the classification
was best after only a few periods. Most classifiers needed more than 3 or 4 periods
to reach a significance level of 0.05. On average significant decoding was reached at
approximately 5 periods (4.8± 2.4 in Figure 3.5.B, 5.2± 2.9 in Figure 3.6.B). A number
of 3 to 5 periods corresponds to a duration in the range of 250 to 420 ms. These
values fit well to the minimal number of periods and song durations of 250 to 450
ms needed by C. biguttulus males to respond to a female song [Ronacher and Krahe,
1998; Ronacher et al., 2000].
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The decoding results depend on the encoding signal as well as on the spike train vari-
ability, which increases the uncertainty of the decoder model. We estimated the sin-
gle neuron trial-by-trial spike count variability using the Fano factor [Nawrot, 2010;
Nawrot et al., 2008]. As shown in the supplementary Figure 3.9 the variability ei-
ther remained constant or increased with increasing the stimulus time. This fits the
result of the constant decoding performance independent of stimulus duration. The
absolute values of Fano factor fit previous results showing that variability of spike
trains increases from receptor neurons to the ascending neurons [Neuhofer et al.,
2011; Ronacher et al., 2004; Vogel et al., 2005; Vogel and Ronacher, 2007]. The trial-
to-trial variability is particularly high in ascending neurons, and on average these
showed a reduced performance in stimulus classification compared to local neurons
[Wohlgemuth and Ronacher, 2007]. Using song models that were progressively de-
graded, Neuhofer et al. [2011] could estimate the respective contributions of external
signal degradation and the trial-to-trial variability of spike trains caused by intrinsic
neuronal noise. Intrinsic neuronal noise had a very strong impact on the spike train
variability, in particular in ANs, thus likely affecting the representation of acoustic
signals along the auditory pathway, and thus also the discrimination and recognition
of grasshopper songs [Ronacher, 2014].

3.4.3 Integrating evidence for behavioral decisions – a hypothetical

brain algorithm in the grasshopper

At the level of ascending neurons we found a steady representation of information
about the stimulus and its behavioral relevance in the spike count. Based on this ob-
servation we hypothesize a two-stage process for the recognition of conspecifics and
behavioral decision making in the grasshopper’s brain. A first stage process is pos-
tulated which evaluates population activity in a manner similar to our Bayesian de-
coder. For the central brain we suggest an algorithm that, based on the population in-
put, continuously monitors the behavioral relevance throughout the song. If the song
is built of attractive elements this provides steady evidence throughout the song that
a conspecific and attractive male is present. A second stage process integrates this
evidence over time and accumulating evidence is transformed into an appropriate
behavioral response through thresholding. This second stage of our model hypoth-
esis is reminiscent to a class of decision-making models that assume evidence over
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time to be integrated in order to reach a threshold. These models have previously
been formulated for alternative choices in sensory decision tasks [Beck et al., 2008;
Drugowitsch and Pouget, 2012; Gold and Shadlen, 2007]. In the grasshopper, recog-
nition and evaluation of a conspecific calling song simplifies to the female’s decision
between showing or not showing her response behavior depending on whether and
when the evidence reaches a threshold. In a neuroethological context as well as in
controlled behavioral experiments animals can modulate their behavioral response
level [von Helversen and von Helversen, 1997, 1994; Wirmer et al., 2010]. In our
model hypothesis this could be realized by a modulation of response threshold, e.g.
through neuromodulators in the relevant brain circuit [Heinrich et al., 2001; Wirmer
et al., 2010].

If we assume a time-integrating algorithm in the grasshopper brain, what could be
the underlying mechanism? The time span is indicated by the duration of the re-
ported response times in the range of several hundreds of milliseconds (see above).
One cellular mechanism that could subserve this task is short-term synaptic plastic-
ity. Fascilitation and depression at such synapses are governed by processes with
typical time constants in the right order of magnitude and they have repeatedly been
suggested to be involved in decision making processes [Martı́nez-Garcı́a et al., 2011;
Mongillo et al., 2008] including a suggested algorithm for auditory pattern recogni-
tion in the cricket’s central brain [Rost et al., 2013].

In summary, our results support the hypothesis of a population rate code in ANs that
project the acoustic information to the central brain (see Clemens et al. [2011, 2012].
The information about the behavioral relevance of a stimulus is well represented in
the population rate and this information is constant throughout the stimulus presen-
tation. We suggest a computational process located within the grasshopper brain that
infers the behaviorally relevant information and integrates this evidence over time to
reach a behavioral decision based on accumulated evidence.
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3.5 Supplementary Information
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Figure 3.8: Count based decoding of standard versus perturbed stimuli. A classifi-
cation of the standard against the perturbed stimuli is in 22 (filled circles) out of 25
neurons significantly better than a classification based on randomized counts. The
distribution of MCC values of all 25 neurons differs significantly from the MCC dis-
tribution of the classifiers that are based on randomized counts (p-value < 0.05,
one-sided Wilcoxon rank-sum test). Dashed line represents chance level based on
randomized counts.
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3.5 Supplementary Information

Figure 3.9: Spike count variability in single neurons. Each point depicts the Fano
factor as calculated from stimulus onset to the number of periods, averaged across the
four stimuli. The Fano factors either remained constant or increased with increasing
the stimulus time.
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Chapter 4

General discussion

This thesis comprises temporal aspects of the neuronal processing of calling songs in
crickets and grasshoppers. In chapter 2 I identified minimal subsets of temporal fea-
tures of calling songs that carry sufficient information to describe the experimentally
measured behavioral performance of female crickets. Chapter 3 provides evidence
that information about a stimulus is encoded in the spike count of populations of
ascending neurons in grasshoppers and describes the effect of the integration time
on the decoding performance. The integration of the results into the current under-
standing of the processing of acoustic signals in crickets and grasshoppers has been
discussed in each of the chapters. Here, I will first discuss a common theme, namely
the inter-individual response variability, that reoccurred in chapters 2 and 3. Then, I
will point out alternative methods that provide means to analyze the data presented
in this thesis.

4.1 Inter-individual response variability

The behavioral data set analyzed in chapter 2 consists of 218 different artificial call-
ing songs and the corresponding phonotactic scores that reflect the walking behavior
of female crickets Gryllus bimaculatus (see Hennig [2009] for a detailed description of
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the experiment). The phonotactic score [Schul, 1998] takes values between −1 and 1
whereas a value close to 1 indicates a high level of attractiveness of the tested song.
In Figure 2.2.B the model prediction is plotted against the average phonotactic score
computed from the walking behavior of females. The horizontal errorbars depict the
standard deviation across females and show a considerable inter-individual behav-
ioral response variability.

The beauty - and also challenge - of the data set I analyzed in chapter 3 is that it
involves behavioral as well as electrophysiological experiments in grasshoppers. The
behavioral response to four different artificial calling songs was measured in female
Chorthippus biguttulus. Figure 3.1 shows a considerable variability in the response
rates across females. A similar response variability is also present in the in vivo intra-
cellular recordings of ascending neurons in Locusta migratoria. These neurons share
the same physiological properties and processing capacities as ascending neurons of
Chorthippus biguttulus. The trial-averaged, kernel estimated firing rates of the ascend-
ing neurons in Figure 3.3 show distinct codes toward the same stimulus. In chapter
3 the behavioral data from Chorthippus biguttulus and electrophysiological data from
Locusta migratoria was pooled. Being aware of the associated difficulties, I suggest to
perform experiments not only in the same species, but in the same animal.

The observed variabilities occurred across females under laboratory conditions, i.e.
the very same song was presented to numerous females. In nature, there are also pro-
cesses that cause signal variability [Ronacher et al., 2004]. Slight differences between
calling songs from individual senders might carry important information about the
sender, e.g. its health. Many factors may degrade an acoustic signal on its way from
sender to receiver (cf. stimuli in chapter 3): scattering and reverberations when a
signal travels through dense vegetation, atmospheric turbulences, chorus noise pro-
duced by other singers.

4.2 Alternatives to artificial neural networks

The data set from chapter 2 is predestined for building a model that predicts the
phonotactic score of untested calling songs, because it consists of more than 200
experimentally tested calling songs labeled with the real-valued phonotactic score.
I deliberately chose artificial neural networks to compare the results with those of
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Wittmann et al. [2010] (see 2.4.3 Song pattern complexity in crickets versus grasshop-
pers). My model prediction showed high correlation with the experimental results
(see Figure 2.2.B in chapter 2) and allowed investigating the interaction of the two
time scales given by the pulses and chirps. The predictions provide evidence that the
two time scales are integrated in an AND-like operation, i.e. only an attractive pulse
structure in combination with an attractive chirp structure generates high phonotac-
tic scores (see Figure 2.3 in chapter 2). There are two major points of criticism related
to the chosen approach. First, ANNs are (still) computationally costly. For a speed-
up, I recommend to analyze the data set with support vector regression machines
[Drucker et al., 1996]. Support vector machines were, for example, successfully ap-
plied by Yovel et al. [2008] for a classification of plants according to their echoes to
ultrasonic signals emitted by bats. Second, an assumption underlying the application
of ANNs is that they assume that all features are available at the same time. To over-
come this issue, I suggest to apply the framework of temporal restricted Boltzmann
machines [Sutskever et al., 2008].

4.2.1 A structural method for identifying the most informative

calling song features with ANNs

In chapter 2 I asked which temporal features of a calling song critically determine
the phonotactic performance of female crickets. I built all 255 possible subsets of
the overcomplete feature set consisting of the eight features, i.e. duration, pause, pe-
riod and duty cycle for both pulses and chirps. By comparing the performance of
ANNs using all different combinations of feature sets, I identified the set of pulse pe-
riod, chirp duration, and chirp duty cycle as best performing. However, learning and
testing 255 ANNs is computationally very costly. The method of greedy backward
elimination [Guyon, 2003] offers an alternative way to minimize the dimension of the
feature space. I will now present the results of the greedy backward elimination in
comparison with the result of the brute-force method of comparing all 255 models as
provided in chapter 2.

Starting with all eight temporal calling song features, in each step I eliminated the
one feature whose removal yielded the smallest validation error until all validation
errors increased if yet another feature is removed. The results (cf. Table 4.1) showed
that the overcomplete feature set can be reduced to a feature set of size (pulse dura-
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tion, pulse pause, chirp pause) three without any loss of prediction power. However,
greedy backward elimination is risky in the sense that a removed feature might later
be important in another combination of features. To account for this, I trained and
tested all 56 networks, each one using a different combination of three features as in-
put. Among these networks, the one that uses the pulse period, chirp duration and
chirp duty cycle as input was best performing. This is the very same feature set I
identified with the brute-force method of investigating all 255 feature sets.

Table 4.1: Error reduction due to backward elimination of features. The first column
shows the difference between the validation errors of networks using all but one fea-
ture and the validation error of the full model. The following columns state the differ-
ences between the validation errors of networks obtained in the corresponding elim-
ination step and the validation error of the networks investigated in the step before.
All values were multiplied by 103.

removed feature step 1 step 2 step 3 step 4 step 5 step 6
pulse period −1.08 – – – – –
chirp duration −0.25 −0.11 – – – –
pulse duty cycle 1.46 0.71 −3.02 – – –
chirp duty cycle −0.65 2.3 0.003 −5.34 – –
chirp period −0.24 −0.003 −2.00 −3.86 −0.72 –
pulse duration 1.54 4.63 5.22 8.37 6.28 4.77
pulse pause −0.39 3.85 2.93 11.18 10.24 9.10
chirp pause −0.42 0.19 −0.71 −0.54 1.01 19.04

4.3 Alternatives to näıve Bayes classifiers

In chapter 2 I asked how information about acoustic signals, i.e. the stimulus identity
and its attractiveness, is encoded in the spike pattern of auditory neurons that project
to the brain. Naı̈ve Bayes classifiers provide a well-established statistical framework
to answer this question. The underlying rule for classifying stimuli or behavior al-
lows to investigate decoding based on different spike train features, such as the spike
count or time-resolved firing rate vectors. One point of criticism relates to the estima-
tion of the distributions of the spike train features. The data set comprises only eight
trials per neuron and an estimation of the parameters based on more trials would
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have improved the decoding results. Karmeier et al. [2005] solved this issue by first
modeling neuronal responses of ten visual interneurons in the blowfly Calliphora vic-
ina, which allowed for a large trial number, followed by a Bayesian decoding of optic
flow fields.

The data set of chapter 2 is also suitable for a classification based on similarities
of spike trains, as explained in [Machens et al., 2003]: first, for each acoustic signal
one spike train is arbitrarily chosen as a template and the remaining spike trains are
classified to a signal by assigning each one to the closest of the eight templates. To
this end, the spike train metric [van Rossum, 2001] is used to calculate the distance
between two spike trains. Then, averages are computed by permuting all possible
template choices, yielding a confusion matrix. The width τ of the kernel which is
used to convolve the spike trains when applying the spike train metric allows to in-
vestigate the effect of spike timing and of spike count differences on the discrimi-
nation performance. Good classification performances for small values of τ indicate
the importance of spike timing, whereas large values of τ point to the importance of
the spike count. Wohlgemuth and Ronacher [2007] used this classification algorithm
based on the spike train metric to investigate how well amplitude modulations of
acoustic signals can be distinguished in auditory neurons of Locusta migratoria. In re-
ceptor neurons and local interneurons the discriminability of amplitude modulations
of acoustic signals depends on the timing of spikes. In contrast, differences in the
spike count of ascending neurons become important for the discrimination, but the
discrimination performance at higher processing levels is less successful than at early
stages. One advantage of this geometrical algorithm is that it is not limited by small
trial numbers. Although the parameter τ accounts for effects of spike timing or spike
count, statistical naı̈ve Bayes classifiers are more flexible, because the classification
rules allow for testing numerous spike train features. For example, next to the spike
count and time-resolved firing rate vectors (cf. chapter 3), they also allow for a classi-
fication of the stimulus based on the latency, i.e. the time the very first spike occurred
after stimulus onset.

Another way of analyzing the data of chapter 3 is to apply generalized linear mod-
els (GLMs) [Pillow et al., 2008], a generalization of linear–nonlinear–Poisson cascade
models [Chichilnisky, 2001]. They serve to model the input-output function of sen-
sory neurons [Clemens and Hennig, 2013; Tripathy et al., 2013]. In such a framework,
the stimulus is described by a stimulus filter, a post-spike filter, and a coupling filter.
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The sum of these filter responses is evaluated with an exponential nonlinearity that
defines an instantaneous spike rate and is used to draw spikes. To further investigate
the response variability across ascending neurons presented in chapter 3, I suggest to
fit their spiking responses to GLMs and compare the GLM parameters across neurons
and neuron types.

4.3.1 PCA-based classification of grasshopper ascending neurons

I also analyzed the data set of chapter 3 with a PCA-based cluster analysis, similar
to the one applied in Meyer et al. [2013], who classified antennal lobe neurons in the
honeybee based on physiological response features. For each ascending neuron, I
calculated the coefficient of variation, the Fano factor [Nawrot et al., 2008], the trial-
averaged latency, the trial-averaged spike count, the lifetime sparseness [Willmore
and Tolhurst, 2001], the adaptation from the first syllable of a song to the last one
[Hildebrandt et al., 2009], and the pairwise spike train distances [van Rossum, 2001]
averaged across all trial pairings. Thus, the response of each neuron to an acoustic
song was described by feature vector with seven elements. Is it possible to discrim-
inate between stimuli or their attractiveness based on these features? To investigate
this question, I performed a principal component analysis. Figure 4.1 shows all 100
(25 neurons times 4 stimuli) feature vectors projected to the first two principal com-
ponents, which capture 57% of the variance in the data. A classification into stimulus
classes (Figure 4.1.A) or behaviorally relevant classes (Figure 4.1.B) failed. Only clus-
ters of neuron types (Figure 4.1.C) appeared, though with areas of overlap. But, as
the type of ascending neurons can be easily identified according to their characteristic
morphology, this classification is not helpful.
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Figure 4.1: PCA-based cluster analysis of stimuli, behavior related classes and neu-
ron types from spike trains of grasshopper ascending neurons. Each dot corre-
sponds to a feature vector that describes the response of a single neuron, projected
to the first two principal components. Neither stimulus classes (A) nor behaviorally
relevant classes (B) appear; only classes of neuron types (C).
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Römer, H., Bailey, W., and Dadour, I. (1989). Insect hearing in the field III. Masking
by noise. J. Comp. Physiol. A, 164(5):609–620.
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