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Preface

This thesis is about space groups and their applications in discrete geometry.
It is structured into three different parts. Each part corresponds to one of the
three chapters, which we will describe in the following.

In Chapter 1 an introduction to n-dimensional space groups is given. While
there are many other texts on space groups, most of them cover only dimension
n ≤ 3, focus very much on crystallographic aspects, or are simply not up-
to-date. We therefore tried to remedy the situation by collecting the most
important results from this area, especially those that are related to tilings and
the algebraic structure of space groups. We made a great effort to include the
most important references on space groups. Our hope is that future researchers
might find this survey a good starting point for their explorations.

In the second chapter we present a detailed investigation of which Dirichlet–
Voronoi stereohedra the tetragonal, trigonal, hexagonal, and cubic groups can
generate. A stereohedron is a convex n-dimensional polytope that tiles Rn by
the action of some space group. If this polytope is a Dirichlet–Voronoi domain of
some orbit of some space group, the stereohedron is called a Dirichlet–Voronoi
stereohedron. Such stereohedra are examples of so-called convex monohedral
tiles, whose possible shapes and combinatorial properties are poorly understood
in general. In particular it is a long-standing open question whether the number
of facets of a convex monohedral tile can be bounded by a function that only
depends on the dimension n. With our investigations we want on the one hand
to complement the work of Santos et al. [BS01; BS06; SS08; SS11] and on the
other hand hope to give a realistic picture of what can be expected from 3-
dimensional space groups. To carry out these computations we developed the
extensive software suite plesiohedron, which is an important part of this thesis
and can be found at github.com/moritzschmitt/plesiohedron.

Finally, Chapter 3 is devoted to the number s(n) of isomorphism classes of
space groups of Rn. It follows from a theorem by Bieberbach that there are only
finitely many nonisomorphic space groups in each dimension. Schwarzenberger
showed by counting the orthogonal space groups that

s(n) = 2Ω(n2)

and Buser later proved

s(n) = 22O(n2)

.

We were able to show that

s(n) = 22O(n log n)

.

For this we develop a new bound on s(n), which we also use to bound the
number of conjugacy classes of finite subgroups in GL(n,Z). This bound is
then evaluated by applying the mass formula of Smith–Minkowski–Siegel.

In Appendix A we concisely provide the necessary background on group
cohomology for Chapter 1. This is not new but can also not easily be found in
the overwhelming body of literature of homological algebra. Appendix B gives
details on how exactly the computations for Chapter 2 were carried out.
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Pavle Blagojević, Nikolai Dolbilin, Alexander Engström, Tobias Finis, Moritz
Firsching, Elke Koch, Benjamin Lorenz, Arnau Padrol, Julian Pfeifle, Francisco
Santos, Raman Sanyal, Jan-Christoph Schlage-Puchta, Benjamin Schröter, and
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Chapter 1

A Primer on Euclidean
Space Groups

This chapter serves a double purpose. First and foremost it shall serve as a
concise introduction to Euclidean space groups. This beautiful part of group
theory deserves to be known more widely, and when we started working on it,
we quickly found ourselves in agreement with Yale who wrote

“(. . .) we struggled to correlate the various notations, incomplete
proofs, and partial presentations found in other introductions (. . .)”

[Yal68, p. 119]

Yale somewhat remedies the situation for dimensions n ≤ 3 but does not discuss
space groups in higher dimensions. However, higher dimensional space groups
are of importance, also for this thesis, and that is why we treat the general case.
The other purpose – and this sets our introduction apart from Yale’s even in
dimension three – is to present a survey of the most important results from the
area.

There are many other introductions to space groups. Let us list those known
to us together with short comments on what they cover. We refrain from listing
the many books on crystallography, even though almost all of them also have
space groups as their topic. But on the one hand we found none that covers
groups in dimensions higher than three, and often they are not as rigorous
as needed by mathematicians. On the other hand they naturally concentrate
on topics that are of interest to crystallographers and solid-state scientists but
maybe less so to mathematicians.

Marcel Berger. Geometry I. Universitext. Springer, 2009: This
is the treatment closest in spirit to ours. Space groups are understood as a
mean to generate monohedral tilings. Unfortunately, only the planar case is
treated and the classification is done only for space groups consisting of positive
isometries.

Harold Brown et al. Crystallographic groups of four-dimensional
space. Wiley, 1978: On the first few pages a readable but incomplete in-
troduction to space group theory is given. The bulk of the book are tables that
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present the classification of four-dimensional space groups as a tedious list that
nowadays would not appear in print.

Johann Jakob Burckhardt. Die Bewegungsgruppen der Kristal-
lographie. 2nd ed. Birkhäuser, 1966: Burckhardt gives a very concrete
introduction to space groups with strong emphasis on dimensions n = 2, 3. He
does not discuss any advanced theorems such as the ones by Bieberbach.

John H. Conway, Heidi Burgiel, and Chaim Goodman-Strauss.
The symmetries of things. A K Peters, 2008: In this very interesting
book an introduction to the powerful orbifold signature is given. This signature
is used to classify all three-dimensional space groups. Higher-dimensional space
groups are not mentioned in the book.

Harold S. M. Coxeter. Introduction to geometry. Wiley, 1989:
This classical work on geometry only provides a superficial introduction to pla-
nar space groups in its Chapter 4. Nonetheless it is a nice starting point for
further explorations.

Harold S. M. Coxeter and William O. J. Moser. Generators
and relations for discrete groups. 4th ed. Springer, 1980: Before all
17 two-dimensional space groups are given abstractly as finite presentations in
Chap. 4, the authors quickly discuss finite symmetry and rotation groups. It is
nicely explained how they arrive at each presentation by using Cayley graphs.

Leonard S. Charlap. Bieberbach groups and flat manifolds. Spring-
er, 1986: A torsion-free space group is called a Bieberbach group. The
orbit space of a Bieberbach group Γ is a manifold Mn = Rn/Γ with funda-
mental group Γ and Riemannian structure inherited from Rn. It is a so-called
flat manifold , i.e., a manifold with sectional curvature zero. Moreover, every
compact flat manifold can be obtained as an orbit space of a Bieberbach group.
Charlap’s book starts to discuss Bieberbach’s theorems in detail and then pro-
ceeds by discussing the algebraic and geometric properties of Bieberbach groups.

Peter Engel. Geometric crystallography. Reidel, 1986
Peter Engel. “Geometric crystallography”. In: Handbook of con-

vex geometry, Vol. B. North-Holland, 1993: The first reference is the
only one known to us that applies space group actions to construct monohedral
tilings and interesting sphere packings. Issues of rigour and clarity make it some-
times difficult to read this book. The second reference is a concise handbook
article that contains no proofs. Both works give introductions to general space
group theory and cover many more topics from mathematical crystallography.

Daniel R. Farkas. “Crystallographic groups and their mathemat-
ics”. In: Rocky Mountain J. Math. 11.4 (1981), pp. 511–552: This
survey article introduces the reader to space groups, mainly from an algebraic
point of view.
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Birger Iversen. Lectures on crystallographic groups. Lecture Notes
Series 60. Aarhus Univ., 1990: In Iversen’s book many aspects of space
group theory are treated somewhat unsystematically. It is one of the few books
that discusses Poincaré’s theorem on the relation between fundamental domains
and finite presentations of a discrete group.

John G. Ratcliffe. Foundations of hyperbolic manifolds. 2nd ed.
Vol. 149. Grad. Texts in Math. Springer, 2006: As the title suggests,
this books focuses on hyperbolic geometry. Nonetheless it covers a substantial
part of the theory of Euclidean discrete groups. In particular it contains proofs
of Bieberbach’s theorems and a superb introduction to Poincaré’s theorem.

Rolph L. E. Schwarzenberger. N-dimensional crystallography.
Res. Notes Math. 41. Pitman, 1980: Many topics from general crys-
tallography are covered in this book, but its lack of explanations together with
Schwarzenberger’s fondness for cryptic proofs are no guarantee for a joyful read-
ing.

Andreas Speiser. Die Theorie der Gruppen von endlicher Ord-
nung. Birkhäuser, 1956: Speiser’s book is one of the first systematic ac-
counts of group theory. Despite the title this book also covers a little bit of
infinite group theory. In particular a concise introduction to space groups is
given.

Andrzej Szczepaǹski. Geometry of crystallographic groups. World
Scientific, 2012: The emphasis of this book is again on Bieberbach groups.
It contains much material that is already contained in Charlap’s book in less
readable form, but is valuable as an update on the topic of flat manifolds.

William P. Thurston. Three-dimensional geometry and topology.
Princeton Univ. Press, 1997: In Section 4.3 of his book Thurston covers
Euclidean discrete groups in general. Within this scope he discussed a few the-
orems on space groups. He in particular proves generalizations of Bieberbach’s
theorem that are folklore and were written up here for the first time.

Ernest B. Vinberg and Osip V. Shvartsman. “Discrete groups of
motions of spaces of constant curvature”. In: Geometry II. Spring-
er, 1993: The authors of this book give an introduction to space groups of
spaces of constant curvature. They carefully define all basic terms and list many
important theorems (unfortunately without proofs). The list of references of this
book is particularly helpful.

Joseph A. Wolf. Spaces of constant curvature. 5th ed. Publish
or Perish, 1984: As the title suggests, Wolf’s book is mainly about spaces
of constant curvature per se. It has five parts where parts II and III from a
space group point of view are the most interesting. In part II he discusses
the Euclidean space form problem and in particular proves Bieberbach’s theo-
rems following Auslander [Aus65; Aus60; Aus61]. Part III gives the isometric
classification of complete Riemannian manifolds of constant positive curvature.
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Hans Wondratschek. “Introduction to space-group symmetry”.
In: International tables for crystallography. Ed. by Theo Hahn.
Vol. A. Wiley, 2005. Chap. 8: This article is a contribution to the In-
ternational Tables for Crystallography. Even though it is written by a crystal-
lographer for crystallographers, the article is very close to current mathematical
standard terminology. It includes many references to other parts of the Inter-
national Tables which makes it a valuable resource for navigating through this
literary monstrosity.

Paul B. Yale. Geometry and symmetry. Holden-Day, 1968: Yale’s
book is a general introduction to classical geometry up to dimension 3. In the
second chapter it classifies all isometries and continues in Chapter 3 with clas-
sification of all finite isometry groups. He then rules out all groups that cannot
be crystallographic point groups and constructs from the remaining groups all
possible space groups.

1.1 Introduction and Bieberbach’s theorems

We will begin with a few remarks on isometries of Rn. The Euclidean group
can be written as a semidirect product

Isom(Rn) ∼= O(n) nRn.

The underlying set of this product is O(n) × Rn. Hence every isometry α ∈
Isom(Rn) is of the form α = (A, a) with A being the linear part (or rotational
part) and a being the translational part . Each isometry can be understood
as an invertible matrix in R(n+1)×(n+1) by embedding α = (A, a) as

α 7→
[
A a
0 1

]
∈ GL(n+ 1,R).

While this is called the linear notation , we say that α = (A, a) is in Frobenius
notation . To save space we will mostly use Frobenius notation, for which we
have

αβ = (A, a)(B, b) = (AB,Ab+ a)

and
α−1 = (A, a)−1 = (A−1,−A−1a).

Pure translations are elements of the form (I, t). For further background on
classical geometry we suggest Audin [Aud03] and Berger [Ber09a; Ber09b].

The group Isom(Rn) is a topological group: it inherits the topology from
GL(n + 1,R). We call a subgroup Γ of Isom(Rn) a discrete group if every
element of Γ is open with respect to the subspace topology. By using the fact
that O(n) is compact, one can show that this is the same as requiring every
orbit

Γ(x) =
{
γ(x) : γ ∈ Γ

}
of a point x ∈ Rn to be a discrete set.1 Among the most famous examples of
discrete groups are so-called space groups. These will be defined in terms of
fundamental domains for which we need a precise definition first.

1Such groups are normally called discontinuous or one says that the subgroup action has
discrete orbits, see [Thu97; Sie43; Rat06].
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Definition 1.1.1. Let Γ be a subgroup of Isom(Rn). A subset F ⊂ Rn is a
fundamental domain if

(i) F is open in Rn,

(ii) F is connected,

(iii)
{
γ(F ) : γ ∈ Γ

}
are pairwisely disjoint, (packing property)

(iv) Rn =
⋃{

γ(cl(F )) : γ ∈ Γ
}

. (covering property)

We are now ready to introduce our main object of study.

Definition 1.1.2. A space group of Rn is a discrete subgroup of Isom(Rn)
with a bounded fundamental domain.

Remark 1.1.3. Instead of “space group” one encounters also the names crys-
tallographic group, Fedorov group (especially in literature of Russian origin),
and Raumgruppen. Sometimes the name Bieberbach group is used as well, but
nowadays it seems that this name has gone out of fashion and is only used for
space groups that are also torsion-free.

Let us illustrate the definition by discussing a few examples that will also be
used later on.

Example 1.1.4. (i) Up to isomorphism, there are exactly two space groups in
dimension 1. The first one is isomorphic to Z and the second one is isomorphic
to the infinite dihedral group Z2nZ. The group Z has as a fundamental domain
an open interval of length 1, and the group Z2nZ an open interval of length 1/2.

(ii) Every lattice L ≤ Rn of rank n is a space group. After choosing a basis
for L, the open parallelepiped of this basis can be used as a fundamental domain.

(iii) [Cha86, Example 2.3] Consider the isometries

α =

 1 0 1/2
0 −1 1/2
0 0 1

 β =

 1 0 0
0 1 1/2
0 0 1


and the group Γ = 〈α, β〉 generated by them. This group is a space group of
R2 with {(x1, x2) : 0 < xi < 1/2} as a fundamental domain. This group is
torsion-free as can be easily seen: By using the equalities

αβ = β−1α, α−1β = β−1α−1, αβ−1 = βα, α−1β−1 = βα−1

it is immediate that every element of Γ is of the form βkαl for k, l ∈ Z. Together
with

(βkαl)(βrαs) = βk+(−1)lrαl+s

we get that no non-trivial element of Γ can be of finite order.
(iv) The following matrices in R2×2

A1 =

[
1 0
0 1

]
A2 =

[
1 0
0 −1

]
A3 =

[
−1 0
0 1

]
A4 =

[
−1 0
0 −1

]
form the Klein four-group V = {A1, . . . , A4}. This group can be used to con-
struct the space group

Γ =
{

(Ai, t) : t ∈ Z2, 1 ≤ i ≤ 4
}
,
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which is isomorphic to V n Z2. Since it is a semidirect product, this group has
torsion elements. The open square of side length 1/2 is a fundamental domain.

Space groups played a crucial role in crystallography already in the middle of
the 19th century, but they gained real prominence among mathematicians only
when Hilbert presented his famous list of problems. In 1900 he published a list
of twenty-three problems [Hil00], which were open at that time and which had
a strong influence on mathematical research in the 20th century. His eighteenth
problem involves space groups. He asked the following question

Is there in n-dimensional Euclidean space (. . .) only a finite number
of essentially different kinds of groups of motions with a fundamental
region? [Hil02].

Hilbert’s question was answered in the affirmative by Bieberbach [Bie11] in
1911 by showing that up to isomorphism there are only finitely many space
groups in each dimension. Frobenius was quick in pointing out that “isomor-
phism” is not the right equivalence but “affine conjugation” is, i.e., two groups
should be considered as equivalent if they are the same up to a change of the
coordinate system. He showed [Fro11] that under this (seemingly finer) sort
of equivalence there are still just finitely many. In 1912 finally, Bieberbach
proved that for space groups every isomorphism is actually induced by an affine
conjugation.

Theorem 1.1.5 (Bieberbach [Bie11; Bie12]). Let Γ be a subgroup of Isom(Rn)
and denote by T the set of all translations in Γ.

(i) Γ is a space group if and only if T is a lattice of rank n and Γ/T is finite.

(ii) Two space groups are isomorphic as abstract groups if and only if they are
affinely conjugate.

(iii) In each dimension there are only finitely many nonisomorphic space groups.

Part (iii) will be proven in Chapter 3. A complete proof of this funda-
mental theorem can be found in the very readable article by Buser [Bus85],
see also Buser & Karcher [BK81]. Other proofs include the original one by
Bieberbach [Bie11; Bie12], the much simpler one by Frobenius [Fro11] given
shortly afterwards, Auslander’s [Aus60; Aus61; Aus65], Vinberg’s [Vin75], and
Oliver’s [Oli80]. It is interesting to note what Charlap [Cha86, pp. 41f] writes
about Buser’s proof: “Peter Buser’s new proof resulted from a study of the
techniques that Gromov used in his work on almost flat manifolds (. . .). In
fact, Gromov has said that his work on almost flat manifolds resulted from an
attempt to understand what’s really going on in the proof of Bieberbach’s First
Theorem.”

Low-dimensional classifications

Strictly speaking there are actually infinitely many space groups. But of course
the ones that only differ by a change of the affine coordinate system should be
identified. Thanks to the Bieberbach theorems we know that this is exactly
the same as identifying space groups that are isomorphic as abstract groups.
The partition of the set of all space groups into classes of isomorphic groups

6



is therefore the targeted classification. Each class of this partition is called
a space group type , where one often uses space group and space group type
synonymous.

For dimension n ≤ 4 the types of space groups have been completely clas-
sified. There is only one type in dimension n = 0, and as shown in Exam-
ple 1.1.4 (i), there are two types in dimension n = 1.

Dimension n = 2 is the first interesting dimension. In this dimension space
groups are also called wallpaper groups, periodic groups, plane symmetry groups,
or plane crystallographic groups. They were classified for the first time by Fe-
dorov [Fed91a] and later independently by Pólya [Pol24]. There are 17 isomor-
phism types in total and numerous accounts of their classification can be found.
Particularly nice expositions are [CBG08; Joh01].

In dimension n = 3 there are 219 isomorphism types. The classification
for this dimension is already very involved. It was started by Jordan [Jor67]
and then systematically extended by Sohncke [Soh79] to a classification of all
orientation-preserving space groups. He later extended his work in [Soh88], but
never finished a complete classification. Fedorov [Fed91b] built upon Sohncke’s
work and derived 218 space group types. Arthur Schoenflies [Sch91], a disciple
of Felix Klein, independently obtained 216 different space group types. After
comparing results the correct number of 219 types was agreed on. For the inter-
esting history of the discovery see Burckhardt [Bur68]. A modern classification
can be found in [Hah05].

The last dimension where a complete classification was given is n = 4, a total
of 4783 isomorphism types were found. This was done by Brown et al. [Bro+78],
with a small mistake that Neubüser et al. [NSW02] corrected.

For higher dimensions a complete classification becomes unlikely, given that
for n = 5 there are already 222 018 space group types and for n = 6 there are
28 927 922. Hence, Plesken & Schulz [PS00] suggest a different approach. They
propose to assign to each space group type a unique identifier based on a natural
division of the types into Q- and Z-classes and crystal families. Let us define
these terms now, as we will need them later as well.

To understand the following definitions, recall that the automorphism
group of a lattice L ≤ Rn of rank n is defined as Aut(L) = {α ∈ Isom(Rn) :
α(L) = L}. It is easy to show that this group is always finite and is isomorphic
to a subgroup of GL(n,Z). On the other hand, given a finite subgroup G of
GL(n,Z) one can associate a lattice LG to this subgroup such that its auto-
morphism group has G as a subgroup; see Conway & Sloane [CS99, p. 92] for
details. Two such finite subgroups G,H are said to be Bravais equivalent
if Aut(LG) and Aut(LH) are conjugate in GL(n,Z). To better understand the
following definitions compare with the hierarchy shown in Figure 1.1.

Definition 1.1.6. Two space groups Γ1 and Γ2 of Rn with lattices L1, L2

belong to the same Q-class if their point groups Γ1/L1,Γ2/L2 are conjugate
in GL(n,Q). If they are even conjugate in GL(n,Z), they are in the same Z-
class. If the lattices L1 and L2 have automorphism groups that are in the same
Q-class, we say that Γ1 and Γ2 belong to the same Bravais system . And if the
lattices have automorphism groups in the same Z-class, the space groups are in
the same Bravais class. The Q-classes are combined into crystal systems
by letting two Q-classes be in the same crystal system if they intersect the same
Bravais classes. The set of Z-classes is partitioned into crystal families by
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Space group

Space group type

Z-class

Bravais class Q-class

Bravais system Crystal system

Crystal class

Figure 1.1: Hierarchy of different classifications.

requiring that the finite subgroups G,H ≤ GL(n,Z) are in the same crystal
family, if there exist subgroups F1, . . . , Fr such that F1 = G and Fr = H and
that Fi, Fi+1 are Q-equivalent for some i and Bravais equivalent for all others.

Remark 1.1.7. Instead of Q-class and Z-class very often geometric crystal
class and arithmetic crystal class are used, respectively.

Now we will come back to the work of Plesken & Schulz. They begin by tak-
ing all finite Q-maximal subgroups of GL(n,Z) from Plesken & Pohst [PP77a;
PP77b], then compute their subgroup structure, and finally compute represen-
tatives for each conjugacy class in GL(n,Q). Then they use the algorithms
described in Opgenorth et al. [OPS98] to split the Q-classes into Z-classes. For
each Z-class the number of space groups is computed by applying the Zassenhaus
algorithm [Zas48].

A fundamentally different way to classify space groups came out of the work
by Thurston on orbifolds and was further developed by Conway, Delgado, and
Huson. The general definition of orbifold is quite involved, see Thurston [Thu97;
TM79] and Scott [Sco83]. For us it will be enough to understand an orbifold as
the orbit space of the action of a discrete subgroup Γ of Isom(Rn). This yields a
metric space M = Rn/Γ which for each p ∈M has an open neighborhood that
is isometric to B(p, ε)/ StabΓ(p).

Conway [Con92; CBG08] developed the orbifold notation to describe 2-
dimensional orbifolds. He assigns each symbol of the notation a value such
that the sum of all symbol values for each orbifold name exactly sums up to
the generalized Euler characteristic of the orbifold. Space groups correspond to
2-orbifolds of characteristic 0. By simple arithmetical considerations Conway
derives the 17 possible space group types. Later Conway, Delgado, and Hu-
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son [Con+01] were able to characterize the three-dimensional space groups by
developing the concept of fibered orbifolds, combined with a simple algebraic
observation. Similar characterizations for higher dimensions are not available.

Why study space groups?

The answer to this question depends on the point of view. Space groups offer
interesting applications to both the algebraist and the geometer. For example,
all n-dimensional discrete subgroups of Isom(Rn) can be constructed using the
classification of k-dimensional space groups for k ≤ n.

A powerful algebraic application of space groups was given by Felsch et
al. [FNP81]. In this article counter-examples to the long-standing class-breadth
conjecture were constructed. This conjecture related the breadth and the nilpo-
tency-class of p-groups. The breadth b(G) of a p-group G is the size pb(G) of the
largest conjugacy class of G, while the nilpotency class c(G) is defined as the
length of the shortest central series of G. The conjecture stated that

c(G) ≤ b(G) + 1,

but was disproven for 2-groups in the article cited above. For p-groups with
p ≥ 3 it is still open.

On the other hand, for geometers it is probably more relevant that space
groups currently provide the only way to easily generate interesting examples
of non-planar isohedral tilings of Rn, i.e., tilings with a transitive symmetry
group. All other methods are either very narrow in the possible spectrum of
combinatorial types that can be generated or seem to be completely ad hoc.
This application of space groups will be used extensively in Chapter 2.

Another “geometric” reason to study space groups is their relation to flat
manifolds. A Riemannian manifold is flat if its sectional curvature is everywhere
zero. Equivalently, a flat manifold can be understood as the quotient space
M = Rn/Γ, where Γ is a torsion-free discrete subgroup of Isom(Rn). If M is
also compact, the group Γ is a (torsion-free) space group. In this case Γ is
isomorphic to the fundamental group of M , and, furthermore, if two such mani-
folds have isomorphic fundamental groups, then by Bieberbach’s theorem they
must be affinely equivalent (i.e., there exists a diffeomorphism that preserves the
Riemannian connection). Characterizing torsion-free space groups is therefore
the same as classifying compact flat manifolds according to their fundamental
group or rather up to affine equivalence.

Applications of space groups outside of mathematics can be found every-
where in crystallography [San69; Jan01], solid-state science [Sim13], and chem-
istry [Dha+10]. Thanks to the Dutch graphic artist M. C. Escher two-di-
mensional space groups even made their way into art and graphic design; see
Schattschneider [GS87; SE05].

1.2 Geometric properties

For a space group Γ of Rn, the Dirichlet–Voronoi domain of a point a ∈ Rn
is defined as

DVΓ(a) =
{
x ∈ Rn : d(x, a) < d(x, γ(a)) for all γ ∈ Γ− StabΓ(a)

}
.

9



If no confusion arises, we shorten this notation to DV(a).

Theorem 1.2.1. Let Γ ≤ Isom(Rn) be a space group and a ∈ Rn. Then

(i) DV(a) is the interior of an n-dimensional convex polytope.

(ii) If StabΓ(a) = {1}, then DV(a) is a fundamental domain for Γ.

Proof. (i) For γ ∈ Γ − StabΓ(a) let Hγ be the hyperplane that orthogonally

bisects the (nontrivial) segment aγ(a). Denote the open halfspace induced by
Hγ containing a by H+

γ . We have

DV(a) =
⋂
γ∈Γ

H+
γ .

The following argument shows that finitely many halfspaces in the above inter-
section are enough: Choose a fundamental domain F of Γ. F is bounded and
we denote its diameter by R = diam(F ). Consider the set

I =
{
γ ∈ Γ : d(a, γ(a)) ≤ 2R

}
;

since Γ is discrete this set is finite. Now assume that there exists an isometry
δ ∈ Γ− I such that Hδ is a supporting hyperplane of DV(a). Then there must
be a ball B of radius > 2R that contains only a and δ(a) on the boundary and
no other points of Γ(a) neither on the boundary nor in the interior. However,
at least one tile of the tiling

T =
{
γ(cl(F )) : γ ∈ Γ

}
is fully contained in B, which means that B cannot be empty – a contradiction.
We thus have

DV(a) =
⋂
γ∈I

H+
γ ,

so DV(a) is a polytope. And as the intersection of convex sets, DV(a) is also
convex.

(ii) To show that DV(a) is a fundamental domain, first note that it is open
(as the intersection of finitely many open sets) and connected (due to convexity).
Furthermore, for any isometry γ ∈ Γ we have

x ∈ γ(DV(a))

⇐⇒ γ−1(x) ∈ DV(a)

⇐⇒ ∀δ ∈ Γ− {1} : d(γ−1(x), a) < d(γ−1(x), δ(a))

⇐⇒ ∀δ ∈ Γ− {1} : d(x, γ(a)) < d(x, γ(δ(a)))

⇐⇒ x ∈ DV(γ(a))

Using the resulting equality γ(DV(a)) = DV(γ(a)), the packing and covering
properties of a fundamental domain are imminent for DV(a).

There is a close connection between fundamental domains, Dirichlet–Voronoi
domains, and tilings of Rn.
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Definition 1.2.2. A tiling T = {Ti : i = 1, 2, . . .} is a collection of closed
n-dimensional topological balls which covers Rn, such that

∀ Ti, Tj ∈ T : int(Ti) ∩ int(Tj) 6= ∅ =⇒ Ti = Tj .

The members Ti ∈ T are called tiles. If all tiles are congruent to some fixed
prototile P ⊂ Rn, the tiling is called monohedral . If the tiles are convex, the
tiling is called a convex tiling .

Every fundamental domain (that is topologically an open n-dimensional ball)
yields a monohedral tiling of Rn. From Theorem 1.2.1 we know that every
Dirichlet–Voronoi fundamental domain gives a convex monohedral tiling where
every tile is a polytope. The following implies the partial converse that every
convex fundamental domain is automatically polytopal.

Proposition 1.2.3. If T is a convex monohedral tiling with a bounded prototile
P , then P must be an n-dimensional convex polytope.

Proof. Fix a tile T ∈ T , let B be a closed ball containing T , and consider the
compact set N = T + B. All neighbors of T are contained in N , and since N
is of finite volume, there are at most finitely many neighbors T1, . . . , Tm. By
the separation theorems from convex geometry (see [Gru07, Chap. 4]), T can
be pairwisely separated by hyperplanes from T1, . . . , Tm. Therefore must T be
a convex polytope, and so is P .

Definition 1.2.4. We define the symmetry group of a tiling T as

Sym(T ) =
{
α ∈ Isom(Rn) : α(T ) = T

}
.

The tiling T is isohedral if Sym(T ) is acting transitively on T . Let S be the
prototile of an isohedral tiling.

(i) If S is convex, we call this polytope a stereohedron .

(ii) If S is also a Dirichlet–Voronoi domain of a space group, we call it a
Dirichlet–Voronoi stereohedron .

In place of Dirichlet–Voronoi stereohedron also DV-stereohedron and plesiohe-
dron are used.

Remark 1.2.5. Every isohedral tiling is monohedral. The symmetry group of
an isohedral tiling is a space group.

Not all stereohedra are DV-stereohedra. However, it seems to be an open
problem if every combinatorial type of a stereohedron can be realized as a DV-
stereohedron. Grünbaum & Shephard [GS80, p. 965f.] write about this problem
that “there seems to be no grounds to assume that all stereohedra are combina-
torially equivalent to plesiohedra.” As Santos noted, such a conjecture would be
a vast generalization of Voronoi’s conjecture about Dirichlet–Voronoi domains of
lattices (see [Gru07, Sect. 32.3] for more information about this conjecture). In
Chapter 2 we will investigate three-dimensional Dirichlet–Voronoi stereohedra
for orthogonal space groups in detail.

Even though not much is known about possible combinatorial types of stere-
ohedra, we have the following result by Delone [Del61; Što75] that bounds the
number of facets.
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Theorem 1.2.6. Let Γ be a space group of Rn with lattice L and set h = |Γ/L|.
If S is a stereohedron for Γ, then

fn−1(S) ≤ 2n(h+ 1)− 2. (1.1)

More precisely, if ΓS ≤ Γ is the subgroup of isometries that are symmetries of
S, then there is an injection ΓS � Γ/L and for h′ = h/|ΓS | we have

fn−1(S) ≤ 2n(h′ + 1)− 2. (1.2)

Proof. It is enough to prove (1.2). We will dissect the tiling

T =
{
γ(S) : γ ∈ Γ

}
in the following way: Let γ1, . . . , γh ∈ Γ be a transversal of L in Γ. Then by
definition

Γ =

h⋃
i=1

Lγi,

and we define a class of the dissection as

Ti =
{
τγi(S) : τ ∈ L

}
.

If γi = γjδ for some δ ∈ ΓS , we have Ti = Tj . We thus have h′ different classes
and without loss of generality we can assume S ∈ T1.

Two tiles of T are called neighbors if each one has a facet such that the
relative interiors of these facets intersect. The bound (1.2) is implied by

(i) #(neighbors of S in T1) ≤ 2n+1 − 2, and

(ii) #(neighbors of S in Ti) ≤ 2n for i = 2, . . . , h′.

Since T1 is a lattice packing of S, the first bound follows from a result of
Minkowski [Min61] as it is presented by Gruber [Gru07, p. 470; GL87]. The
second result we will prove now.

Assume that S has more than 2n neighbors in Ti for some i ∈ {2, . . . , h′}.
The barycenters of the tiles in Ti yield a point lattice. Choose one of the points
as the origin and fix a lattice basis for the point lattice. With respect to this basis
all barycenters are integer linear combinations. Reduce the integer coefficients
of the barycenters of all neighbors of S in Ti modulo 2. Since by assumption
there are more than 2n neighbors, there will be two neighbors S1 and S3 whose
barycenters are equal after reduction. This means that the lattice vectors t from
the barycenter of S1 to the barycenter of S3 has even coordinates. Hence, 1

2 t is
also a lattice translation corresponding to a tile S2 in Ti.

The rest of the argument is best followed by keeping the schematic in Fig-
ure 1.2 in mind. Let A1 be the facet of S1 and A the facet of S whose relative
interiors intersect; and, similarly, let B3 be the facet of S3 and B the facet of S
whose relative interiors also intersect. We can then choose points

a1 ∈ relint(A1) ∩ relint(A) and b3 ∈ relint(B3) ∩ relint(B)

and define further points

a2 = a1 +
1

2
t ∈ S2, a3 = a1 + t ∈ S3, b1 = b3 − t ∈ S1, b2 = b3 −

1

2
t ∈ S2.
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Figure 1.2: The blue dots in the two figures are the same, and similarly for the two
red dots.

In the parallelogram conv(a1, a3, b3, b1) the segments a1b3 and a2b2 intersect
in their common midpoint m. Since m lies in the interiors of S2 and S, we must
have S2 = S. This is impossible by the assumption S 6∈ Ti for i = 2, . . . , h′. We
therefore have at most 2n neighbors.

Remark 1.2.7. Tarasov [Tar97] gave a slightly improved bound. He denotes
by H the maximal order of |Γ/L| for an n-dimensional space group with lattice
L and showed that fn−1 ≤ 2n(H − 1/2)− 2.

For a fixed space group Γ, all fundamental domains are of equal volume.

Proposition 1.2.8. If Γ is a space group of Rn and P , Q are fundamental
domains of Γ, then vol(P ) = vol(Q).

Proof. For γ ∈ Γ, set Pγ = γ(cl(Q)) ∩ cl(P ). Since both cl(P ) and cl(Q) are
compact, there are only finitely many elements γ1, . . . , γm ∈ Γ with Pγi 6=
∅. Given that P is a fundamental domain, the family (γ−1

i (Pγi)) must be a
dissection of cl(Q). We therefore get

vol(P ) =

m∑
i=1

vol(Pγi) =

m∑
i=1

vol(γ−1
i (Pγi)) = vol(Q).

This proves the proposition.

Remark 1.2.9. The proof even shows that the closures of any two fundamental
domains are scissors-congruent ; see [Dup12].
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The following result is much more general. We denote the volume of a
fundamental domain of a space group Γ of Rn by vol(Rn/Γ).

Theorem 1.2.10 ([Rat06, Theorem 6.7.3]). If Γ1 ≤ Γ2 ≤ Isom(Rn) are space
groups, then

vol(Rn/Γ1) = [Γ1 : Γ2] vol(Rn/Γ2).

Fundamental domains of space groups are models of the action’s orbit space
in the following sense. For a fundamental domain F , let cl(F )/Γ be the set

cl(F )/Γ =
{

Γ(x) ∩ cl(F ) : x ∈ cl(F )
}
.

This is a partition of the subspace cl(F ) and can thus be itself topologized via
the quotient topology. The resulting space is homeomorphic to the orbit space
Rn/Γ.

Proposition 1.2.11. If F is a fundamental domain for a space group Γ ≤
Isom(Rn), then

Φ : cl(F )/Γ −→ Rn/Γ, Γ(x) ∩ cl(F ) 7−→ Γ(x)

is a homeomorphism.

Proof. We will show that Φ is a bijective, continuous, open map. The first two
properties are almost immediate: If Γ(x) = Γ(y), then clearly

Γ(x) ∩ cl(F ) = Γ(y) ∩ cl(F )

from which we get injectivity. For any orbit Γ(x), we can find γ ∈ Γ with
x ∈ γ(cl(F )), i.e., γ−1(x) ∈ cl(F ) and thus

Φ(Γ(γ−1(x)) ∩ cl(F )) = Φ(Γ(x) ∩ cl(F )) = Γ(x).

So Φ is also surjective. Continuity is implied by the commutative diagram

cl(F ) Rn

cl(F )/Γ Rn/Γ,

i

p q

Φ

where p and q are quotient maps, and the fact that p is an open map. The last
claim follows from p−1(p(U)) =

⋃
γ∈Γ γ(U) for all sets U ⊆ cl(F ).

To show openness of Φ, choose any open subset U ⊆ cl(F )/Γ. Then p−1(U) is
open in cl(F ), i.e., there exists an open set V ⊆ Rn such that p−1(U) = cl(F )∩V .
Setting

W =
⋃
γ∈Γ

γ(cl(F ) ∩ V ),

we get

q(W ) = q(cl(F ) ∩ V ) = qi(cl(F ) ∩ V ) = Φp(cl(F ) ∩ V ) = Φ(U).

Since for any (open) set O ⊆ Rn, we again have q−1(q(O)) =
⋃
γ∈Γ γ(O), the

map q is open and thus we only need to prove openness of W .
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To this end choose any w ∈W . We actually may assume that w ∈ cl(F )∩V ,
because γ(W ) = W for all γ ∈ Γ. Fix r > 0. Since F is a fundamental
domain, only finitely many members of {γ(cl(F )) : γ ∈ Γ} meet B(w, r), say,
γ1(cl(F )), . . . , γm(cl(F )). We have

B(w, r) ⊆
m⋃
i=1

γi(cl(F )). (1.3)

If γi(cl(F )) does not contain w, then B(w, r)−γi(cl(F )) is an open neighborhood
of w. In this case we shrink r to avoid γi(cl(F )). We therefore may assume
that each γi(cl(F )) contains w, or, put differently, that γ−1(w) ∈ cl(F ) for
i = 1, . . . ,m. Applying q yields q(γ−1

i (w)) = q(w) ∈ q(cl(F ) ∩ V ) = U , which
in turn implies

γi(w) ∈ q−1(U) = cl(F ) ∩ V.

This means that w ∈ γi(V ) for i = 1, . . . ,m. Possibly further shrinking of r
yields

B(w, r) ⊆
m⋂
i=1

(γi(V )). (1.4)

From (1.3) and (1.4) we can deduce B(w, r) ⊆W . W is thus open and Φ must
be a homeomorphism.

The orbit space of a space group can not only be considered as a (topological)
quotient space but it can also be endowed with a metric in the following way:
Given two orbits Γ(x),Γ(y), we can define the distance function

D(Γ(x),Γ(y)) = inf
{

d(x′, y′) : x′ ∈ Γ(x), y′ ∈ Γ(y)
}

on Rn/Γ. It is laborious but not difficult to show that (Rn/Γ,D) is in fact a
metric space. If Γ(x) is a point of this metric space it can be shown further that
there exists a ball BD(Γ(x), r) in Rn/Γ which is isometric to the quotient space
B(x, r)/ StabΓ(x). Details of this construction are given in Bonahon [Bon09].

We will end with topological and geometric characterizations of space groups,
which we state without proof.

Theorem 1.2.12. Let Γ be a discrete subgroup of Isom(Rn). Then the following
are equivalent:

(i) Γ is a space group.

(ii) The orbit space Rn/Γ is compact.

(iii) The group Isom(Rn)/Γ is compact.

Remark 1.2.13. A group action of a topological group on a topological space
is called cocompact if the orbit space is compact. Often the group itself is
called cocompact. Thus, (ii) could be rephrased as saying that a space group is
a discrete, cocompact subgroup of Isom(Rn).
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1.3 Algebraic properties

From Bieberbach’s Theorem 1.1.5 we know that the subgroup of all translations
in a space group Γ forms a lattice L of full rank such that the (crystallo-
graphic) point group P = Γ/L is finite. (Another name for point group is
holonomy group.) Assuming this result, we will now give a concise introduc-
tion to algebraic aspects of space groups. We assume familiarity with terminol-
ogy from homological algebra and a few basic facts from group cohomology that
are summarized in Appendix A. Further details can be found in [Rot95; Rot09;
Rot10]. If not stated otherwise, we will always assume that Γ is a space group
of Rn with lattice L and point group P .

Proposition 1.3.1. Let Γ be a space group of Rn. The lattice L is a normal
subgroup and the point group P acts on L faithfully by conjugation.

Proof. Choose an arbitrary element (A, a) ∈ Γ. We then have for all (I, t) ∈ L

(A, a)(I, t)(A, a)−1 = (I, At), (1.5)

which is a pure translation and therefore an element of L again. This already
shows normality and that P acts on the lattice by conjugation. Since L is of
rank n and thus contains a basis of Rn, the above equality also shows that only
the identity element of P acts trivially on L.

As a semidirect product, Isom(Rn) = O(n) nRn comes with the projection

π : O(n) nRn → O(n), (A, a) 7→ A (1.6)

for which we have π(Γ) ∼= Γ/ ker(π) = Γ/L. The point group can hence be
identified with the group of all linear parts of Γ. By (1.5), every linear part
maps lattice vectors again to lattice vectors. This means that if we represent
Γ with respect to a lattice basis of L, the lattice becomes Zn and the point
group is a finite subgroup of GL(n,Z). In other words, Γ can be understood
as a group extension of Zn by a finite unimodular group P that acts faithfully
on Zn. Zassenhaus proved the converse, namely that every such extension is
isomorphic to a space group.

Theorem 1.3.2 (Zassenhaus [Zas48]). Let P ≤ GL(n,Z) be a finite group and
consider Zn as a P -module with the natural action of P on Zn. Every extension
G of Zn by P that “realizes the operators” (see Appendix A) is isomorphic to
an n-dimensional space group.

Proof. Let

0 Zn G P 1i π

be an extension that realizes the operators. We will construct a space group Γ ≤
Isom(Rn) and provide an explicit isomorphism G ∼= Γ. For this purpose choose
a basis of Rn such that P ≤ O(n); this is possible, for details see Berger [Ber09a,
Theorem 8.2.5]. Pick a transversal g1, . . . , gm ∈ G of Zn in G such that π(gi) =
Ai ∈ P . For arbitrarily chosen a1, . . . , am ∈ Rn define a mapping

Ψ : G =

m⋃
i=1

giZn → Isom(Rn), git 7→ (Ai, ai). (1.7)

16



In general Ψ will not be a homomorphism. For Ai, Aj ∈ P with AiAj = Ak we
have

(Ai, ai)(Aj , aj) = (AiAj , Aiaj + ai) = (Ak, ak + tij) = (I, tij)(Ak, ak)

for some tij ∈ Rn. This implies

(I, tij) = (Ai, ai)(Aj , aj)(Ak, ak)−1

and induces a mapping

f : P × P → Rn, (Ai, Aj) 7→ tij .

An arduous calculation shows that f satisfies the cocycle identity and is thus
an element of Z2(P,Rn). From Lemma A.1 in Appendix A we know that
Z2(P,Rn) = B2(P,Rn), and hence there exists a function h : P → Rn sat-
isfying the coboundary identity

f(Ai, Aj) = Aih(Aj)− h(AiAj) + h(Ai).

Replace each ai by ai − h(Ai) in (1.7). This turns Ψ into a homomorphism,
which is bijective by construction.

So every space group corresponds to an element of the second cohomology
group H2(P,Zn) and vice versa. However, two different elements of the co-
homology group might correspond to isomorphic space groups. The following
theorem shows how to partition H2(P,Zn) into classes of nonisomorphic groups.

Theorem 1.3.3. Let Γ ≤ Isom(Rn) be a space group with lattice Zn and point
group P ≤ GL(n,Z). The normalizer N of P in GL(n,Z) acts on H2(P,Zn).
There exists a bijective correspondence between the isomorphism classes of ex-
tensions and the orbits of the action.

Proof. Consider Rn as a P -module with the natural action of P on Rn. Lem-
ma A.1 of Appendix A implies that

H1(P,Rn) = H2(P,Rn) = 0.

The long exact cohomology sequence (A.2) of the short exact sequence

0 Zn Rn Rn/Zn 0

of P -modules yields
H1(P,Rn/Zn) ∼= H2(P,Zn).

It is therefore sufficient to define the group action and establish the corre-
spondence for the first cohomology group. To this end choose a derivation
d : P → Rn/Zn from H1(P,Rn/Zn). We can then define a space group associ-
ated to it by setting

Γ =
{

(A, d(A) + t) : A ∈ P and t ∈ Zn
}
.

It follows immediately from the defining property of a derivation that Γ is a
space group indeed.
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By Bieberbach’s Theorem 1.1.5 are two space groups Γ,Γ′ isomorphic if and
only if there exists an affine mapping (B, b) with Γ′ = (B, b)Γ(B, b)−1. Since

(B, b)(A, d(A) + t)(B, b)−1 = (BAB−1,−BAB−1b+Bd(A) +Bt+ b),

two derivations d, d′ ∈ H1(P,Rn/Zn) induce isomorphic space groups if and
only if for all A ∈ P

BAB−1 ∈ P and d′(A) = −BAB−1b+Bd(A) + b ≡ Bd(A),

where “≡” denotes equality in H1(P,Rn/Zn). Put differently, we must have
B ∈ N and d′(A) = Bd(A) under the induced action

N ×H1(P,Rn/Zn)→ H1(P,Rn/Zn), (B, d) 7→ (A 7→ Bd(A)).

This establishes the bijective correspondence between orbits and isomorphism
classes.

All space groups are finitely presented: This is a corollary of the following
more general theorem.

Theorem 1.3.4 ([Joh97, Chap. 10]). Let K = 〈X | R〉 and Q = 〈Y | S〉 be
finitely presented groups. If Γ is a group extension of K by Q

1 K Γ Q 1,i π

then Γ is also finitely presented.

Corollary 1.3.5. Every space group is finitely presented.

Proof. Since every lattice L in Rn is isomorphic to a free abelian group with
basis X = {x1, . . . , xn}, it is finitely presented as

L ∼= 〈X |xixjx−1
i x−1

j = 1 for all xi, xj ∈ X〉.

Furthermore, all point groups are finite and therefore in particular finitely pre-
sented.

The proof of Theorem 1.3.4 is constructive. Yet another method to obtain
finite presentations for space groups is by means of Poincaré’s Theorem: Given
a fundamental domain one calculates so-called cycle and side-pairing relations,
which yield a finite presentation. Nice discussions of Poincaré’s theorem can be
found in Iversen [Ive90] and Ratcliffe [Rat06].

Remark 1.3.6. Finite presentations for space groups can be calculated with
the GAP package Cryst [EGN13].

The above Corollary 1.3.5 of course implies in particular that space groups
are finitely generated and of countable cardinality. Thus it makes sense to ask
for an upper bound on the size of the smallest generating set for n-dimensional
space groups. Why would that be interesting? Consider the following situation:
Assume we are given an n-dimensional flat manifold like the torus Tn, and we
are wondering what finite groups can act freely on it. If F is such a finite group,
then Mn = Tn/F is a manifold as well and we have the sequence

1 π1(Tn) π1(Mn) F 1.
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π1(Mn) is (isomorphic) to an n-dimensional Bieberbach group. Thus a bound
on the number of generators of π1(Mn) restricts the possibilities for F .

It is generally believed that the number of generators of a space group in
dimension n is bounded by 2n, while the minimal number of generators of an
n-dimensional Bieberbach group is conjectured to be just n.

Example 1.3.7. One can easily see that if the bounds are correct, they are
sharp. From Example 1.1.4 we know that in dimension n = 1, there are two
space groups, namely the Bieberbach group Z and the infinite dihedral group
Z2 n Z (where Z2 acts nontrivially on Z). Of course Z is generated by one
element, while the latter group is not torsion-free and thus cannot be generated
by just a single element. However, it has the presentation 〈x, y | x2 = y2 = 1〉;
see Robinson [Rob96, p. 51].

In the following theorem we list all bounds on the number of generators
known to us.

Theorem 1.3.8. (i) The minimal number of generators of an n-dimensional
Bieberbach group is bounded by ≤

√
2nπ 2n−2.

(ii) Let Γ ≤ Rn be a space group such that its point group is a p-group. Fur-
thermore, denote by β1 the rank of the abelian group Γ/[Γ,Γ] and let a = 2
if p ≤ 19 and a = 3 otherwise. Then the minimal number of generators of
Γ is bounded by a(n− β1)/(p− 1) + β1.

Pointers to proofs. (i) This bound was proved by Gromov for the minimal num-
ber of generators of fundamental groups of general negatively curved n-mani-
folds; see [Mey89, p. 21] for an exposition.

(ii) This result can be found in Adem et al. [Ade+12, Theorem A]. See
Dekimpe & Penninckx [DP09] for slightly weaker results.

Remark 1.3.9. Closely related to the above discussion is the notion of growth
type of a finitely generated group. Let S be a finite generating set of a group Γ.
The word length `S(γ) of an element γ ∈ Γ is defined to be the smallest n for
which there exists s1, . . . , sn ∈ S ∪ S−1 such that γ = s1 · · · sn. One defines for
a pair (Γ, S) the growth function to be

β(Γ,S) : N −→ N, k 7−→ β(Γ,S)(k) = #{γ ∈ Γ : `S(γ) ≤ k}.

One can now define groups of exponential growth, intermediate growth, or poly-
nomial growth, depending on the type of growth function the groups possess.

A famous theorem by Gromov [Gro81] states that a group is of polynomial
growth if and only if it is virtually nilpotent , that is, if it has a nilpotent2

subgroup of finite index. In particular every abelian group is nilpotent; thus,
every space group is of polynomial growth.

We will continue with a few structural results about space groups, beginning
with their subgroups. Of course not every subgroup of a space group is again a
space group – some of them are finite – but the large ones are. The following
proposition is a direct consequence of Bieberbach’s Theorem 1.1.5.

2If G is a group, the upper central series

1 = Z0 ≤ Z1 ≤ . . . ≤ Zn−1 ≤ Zn ≤ . . .

is a sequence of subgroups of G, where each Zn is defined by Zn = {g ∈ G | ∀h ∈ G : [g, h] ∈
Zn−1}. G is called nilpotent if Zn = G for some n. Nilpotent groups are “almost abelian.”

19



Proposition 1.3.10. Assume Γ2 ≤ Γ1 ≤ Isom(Rn) with [Γ1 : Γ2] < ∞. Then
Γ1 is a space group if and only if Γ2 is a space group.

The lattice of a space group is a maximal abelian subgroup.

Proposition 1.3.11. Let Γ be a space group of Rn and let L be its lattice. Then
L is maximal abelian.

Proof. Assume that there exists an abelian subgroup M of Γ with L < M .
Choose γ ∈M − L and consider the sequence

0 L Γ Γ/L 1.i π

From (1.6) we know that Γ/L can be identified with P , and Proposition 1.3.1
shows that P acts faithfully on L. However, if Ψ : P → Aut(L) denotes the
action, we have the contradiction Ψ(π(γ)) = Ψ(1).

The previous theorem has the following nice corollary.

Corollary 1.3.12. Any abelian space group is a lattice.

Two subgroups of a group whose intersection is of finite index in both of
them are called commensurable . Commensurability is an equivalence relation
in the set of all subgroups of a group.

Theorem 1.3.13 ([VGS00, Chap. 1, Prop. 1.10]). Let Γ1 and Γ2 be subgroups
of Isom(Rn), and suppose that their intersection has finite index in both groups.
If one of the groups is a space group then so is the other.

Proposition 1.3.14. For every space group Γ, the center Z(Γ) consists of trans-
lations.

Proof. Let Γ ≤ Isom(Rn) be a space group and

τ1 = (I, t1), . . . , τn = (I, tn)

be a lattice of its basis. For (A, a) ∈ Z(Γ) we have

(I, ti)(A, a) = (A, ti + a) (A, a)(I, ti) = (A,Ati + a)

for every i = 1, . . . , n. Since the lattice is of rank n, however, we must have
A = I.

Proposition 1.3.15. Every space group has only finitely many conjugacy clas-
ses of finite subgroups.

Proof. Let Γ be a space group of Rn and let DV(a) ⊂ Rn be the Dirichlet–
Voronoi domain for some point a ∈ Rn. If H ≤ Γ is a finite subgroup, all its
isometries fix a common point x ∈ Rn (see Yale [Yal68, Theorem 3.5]). Let
γ ∈ Γ be an isometry, such that y = γ(x) ∈ DV(a). We then have for all δ ∈ H,
that γδγ−1(y) = y, i.e., H is conjugate to a group of isometries from the set

I =
{
α ∈ Γ : cl(DV(a)) ∩ α(cl(DV(a))) 6= ∅

}
.

We will next show that I is finite, which yields the desired result. LetB be an
enclosing ball of DV(a). Since Γ(a) is a discrete set, all but finitely many of the
(open) halfspaces defining DV(a) will contain B. Since cl(DV(a))∩cl(α(DV(a)))
will be nonempty if their separating hyperplane induces a halfspace, that does
not contain B in its interior, we have I <∞.
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Every space group can be embedded into another space group of the same
dimension, such that the index is finite and such that the supergroup is of
particularly simple structure.

Theorem 1.3.16 (Ratcliffe [Rat06]). Let Γ be a space group of Rn with lattice
L and point group P of order m. Then Γ embeds into the semidirect product
Γ∗ = P n 1

mL. The supergroup Γ∗ is also a space group of Rn for which we have
that [Γ∗ : Γ] = mn.

Remark 1.3.17. The group Γ∗ in the theorem above is called the splitting
group of Γ.

Since the point group P of an n-dimensional space group is conjugate to a
subgroup of O(n) as well as to a subgroup of GL(n,Z), there exists a restriction
on the order of the elements of P . This can be seen as follows: On the one
hand, every element A ∈ P is similar to a matrix of the form

A ∼


R1

. . .

Rk
I`
−Im

 with Ri =

[
cos(φi) − sin(φi)
sin(φi) cos(φi)

]
.

This is a result that dates back to Schläfli [Sch66]. On the other hand, the
characteristic polynomial χA(t) ∈ Z[t] has integer coefficients only. Together
this yields, for example, for n = 2, 3 that the only possible orders for a lattice
symmetry A are

ord(A) = 1, 2, 3, 4, 6.

A more general result in this direction was proved by Hiller [Hil85]; see also
Baake & Grimm [BG13]. It is best formulated using the additive Euler totient
function φa : N→ Z defined as follows:

φa(m) =


0 m = 1
φ(pr) m = pr with p prime and r ≥ 1
φa(k) m = 2k with k > 1 odd
φ(2r) + φa(k) m = 2rk with k > 1 odd and r ≥ 2
φa(k) + φa(`) m = kl odd with k, l > 1 coprime

Here φ denotes the usual Euler totient function.

Theorem 1.3.18. Let Γ ≤ Isom(Rn) be a space group with point group P . For
every element A ∈ P we have n ≥ φa(ord(A)).

Remark 1.3.19. This theorem is commonly called the crystallographic re-
striction . The first few values of φa are

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
φa(m) 0 1 2 2 4 2 6 4 6 4 10 4 12 6 6

We will end by discussing the natural action of a space group and the action
of point groups on lattices.

Proposition 1.3.20. A space group is torsion-free if and only if it acts freely
on Rn.
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Proof. (⇒) Assume γ(x) = x for some γ ∈ Γ and x ∈ Rn. If we choose the
origin to be in x, we get γ ∈ G = Γ ∩ O(n). G is a discrete subgroup of a
compact group and therefore finite. Hence, G must be trivial and the action
has to be free.

(⇐) Choose an element γ ∈ Γ of finite order and consider G = 〈γ〉. Since
this is a finite group of isometries, all elements must have a common fixed point.
This implies that G is trivial and Γ therefore torsion-free.

Given a lattice and a finite group acting on it, how can one construct a
space group that realizes this data? Assuming that we write a space group with
respect to a basis of its lattice, the question boils down to the construction of a
group with lattice Zn and point group P ≤ GL(n,Z). There is always an easy
solution, namely

Γ =
{

(A, a) : A ∈ P, a ∈ Zn
}
.

This group is isomorphic to the semidirect product PnZn. However, most space
groups that realize the data are not semidirect products. Finding all other space
groups with the given data involves solving so-called Frobenius congruences. All
this is presented in a very accessible form in Souvignier [Sou08].

Theorem 1.3.21 (Auslander & Kuranishi [AK57]). Given an arbitrary finite
group G, there exists a Bieberbach group with point group isomorphic to G.

22



Chapter 2

Dirichlet–Voronoi
Stereohedra

In a convex monohedral tiling T of Rn all tiles are congruent to a convex n-
dimensional polytope P , the prototile of T . It is a long-standing open problem
if the number of facets of P is bounded by a function depending just on the
dimension n; see Brass et al. [BMP06, p. 177f]. For prototiles that are stereohe-
dra we have Delone’s bound. However, at least for DV-stereohedra this bound
seems to be much too high. To get a more realistic estimate of how many facets
a DV-stereohedron can have in R3, we are going to investigate in this chapter
the tetragonal, trigonal, hexagonal, and cubic space groups with respect to what
f -vectors their DV-stereohedra possess.

2.1 Setting the stage

Let us recall that a tiling T = {Ti : i = 1, 2, . . .} is a collection of closed n-
dimensional topological balls which covers Rn; the members Ti ∈ T are called
tiles and they intersect at most in their boundaries. If all tiles are congruent to
some fixed prototile P ⊂ Rn, the tiling is called monohedral.

The fundamental problem to determine all prototiles of monohedral tilings
cannot realistically expected to be solved in this generality. It therefore is highly
desirable to restrict considerations to convex monohedral tilings. However, even
with this restriction prospects of a complete classification are gloomy. Already
the case n = 2 is open and has an intricate history: Reinhardt’s thesis [Rei18]
was one of the first systematic investigations of tilings of the plane. Even though
he explicitly writes about pentagonal and hexagonal prototiles:

“Dabei wollen wir die Sechsecke vollständig, die Fünfecke jedoch nur
so weit ins Auge fassen, als eine mit ihnen ausgeführte Bedeckung
der Ebene ohne das Auftreten singulärer Ecken möglich ist.” [Rei18,
p. 66],

it was “known” for many years that he had classified all planar monohedral
tilings. However, the first time a complete classification was actually claimed
was only 45 years later by Heesch & Kienzle [HK63]. They applied a classi-
fication scheme developed by Heesch in 1932. But shortly afterwards Kersh-
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ner [Ker68] discovered three more types of pentagonal tiles not included in their
classification. Again, a complete classification was claimed, this time by Ker-
shner. He did not include a proof since it “is extremely laborious and will
be given elsewhere.” Before it could appear Gardner [Gar75b] gave an expo-
sition of Kershner’s results prompting the reader Marjorie Rice to submit yet
another pentagonal prototile not covered by Kershner’s classification [Gar75a].
After that it seems no more claims about full classifications were made and new
pentagonal tiles were found very recently by Mann et al. [MMV15].

Given that a full classification of convex monohedral prototiles has not even
been achieved for the plane, it seems appropriate to consider more modest prob-
lems. A first step in this direction was made by Grünbaum & Shephard [GS77;
GS78] by (successfully) classifying all isohedral planar tilings. Furthermore, a
list of seven tiling problems (A) – (G) was presented by them in [GS80] of which
problem (G) is the following:

(G) Determine the least upper bound for the number of (n − 1)-dimensional
faces of convex polyhedra which are prototiles of monohedral tilings of Rn.

This problem is open for n ≥ 3 and not much is known. It is not even clear
that the number of facets can be bounded at all. We only have Delone’s general
bound for stereohedra (Theorem 1.2.6) and Tarasov’s slight improvement (Re-
mark 1.2.7). Current perception is that these bounds are much too high. We
share this assessment and believe it to be supported by results in low dimensions
listed in the following table.

dimension # facets Delone Tarasov

n = 2 6 50 44
n = 3 ≥ 38 390 378
n = 4 ≥ 40 18 446 18 422

Lower bounds for problem (G) are almost always based on the construction
of explicit Dirichlet–Voronoi stereohedra. Much research was conducted in this
direction; details for the period before 1935 can be found in Nowacki [Now35]
and references for later results are given in [Koc73] and [Eng86]. The current
record stereohedron has 38 facets and was discovered by Engel [Eng81a]. His
discoveries are based on preliminary work by Koch. In her thesis [Koc72], Koch
described a fairly efficient way to calculate DV-stereohedra for space groups
and did a lot of experiments in subsequent years. Since she lacked the necessary
computing power to fully investigate the space group IT(214) = I4132, she told
Engel about it on a conference who went on and used her algorithms, partial
results, and the University of Bern’s strong computing resources to find his
example [Koc15]. In total he discovered four different combinatorial types with
38 facets. None of his presentations are fully rigorous, but we were able to
confirm his results.

Starting in 2001, Santos et al. [BS01; BS06; SS08; SS11] studied the upper
bound problem for Dirichlet–Voronoi stereohedra in great detail. They gave
bounds for the maximal number of facets of DV-stereohedra that are in general
much better than Delone’s.

Let us conclude this overview by mentioning that if one lessens the restriction
in (G), the number of facets is always unbounded. If convexity is not required,
we have the following prototiles in R2 with f1 unbounded.
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. . .

Giving up monohedrality and only requiring all (convex and bounded) tiles
to be of the same combinatorial type, is also not enough to bound the number
of facets: For each k ≥ 3 the plane admits a face-to-face tiling by convex k-gons,
see [GS87]. And finally, giving up boundedness but keeping monohedrality and
convexity allows for examples with arbitrarily many facets as discovered by
Erickson & Kim [EK03].

2.2 Face vectors of DV-stereohedra

To get a realistic estimate of how many facets a DV-stereohedron can have in
R3, we investigated the f -vectors of DV-stereohedra of the tetragonal, trigonal,
hexagonal, and cubic space groups. Due to the enormous complexity of this
task we decided to not also examine the triclinic, monoclinic, and orthorhombic
groups. The triclinic ones are understood anyway (we quickly summarize the
results below) and the monoclinic and orthorhombic groups will always yield
stereohedra with less than 38 facets [BS01; BS06; SS08; SS11].

The space groups were examined by first fixing a fundamental domain F for
a group Γ ≤ Isom(R3) and then approximating F with an extremely fine point
grid. For each point of the grid we then calculated the DV-stereohedron and its
f -vector. Here it is important to note that not the whole fundamental domain
has to be used but only a fundamental domain of the normalizer N(Γ) of Γ in
Isom(R3). The reason for this is simple: For every α ∈ N(Γ) and every β ∈ Γ
we have

α(β(x)) = β(α′(x)) for x ∈ R3 and some α′ ∈ N(Γ).

All normalizers of space groups were first calculated by the crystallographer
Hirshfeld [Hir68] who did not know about the concept of normalizers. He chris-
tened these groups “Cheshire groups”, a name that even nowadays can still
be encountered. Hirshfeld’s article is very short; more details were later given
by Gubler [Gub82] and Fischer & Koch [FK83]. All normalizers can be found
nicely presented in the International Tables [Hah05, Chap. 15]. The normalizer
of a space group does not need to be a space group again. In fact, it does not
even need to be a discrete group anymore.

The algorithm for computing the DV-stereohedron of a grid point x ∈ F with
respect to its orbit Γ(x) very much depends on using an orthogonal sublattice
L′ of the space group’s lattice L ≤ Γ. Fortunately, the tetragonal, trigonal,
hexagonal, and cubic groups are classified in such a way that it is always obvious
which orthogonal lattice to use. We denote the basis of such a lattice by b′1, b

′
2, b
′
3

(it is worth mentioning that crystallographers normally call exactly the same
basis a, b, c). If the normalizer of a space group is not a discrete group anymore,
with a fundamental domain that is a lower-dimensional polytope, the directions
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that are “shrunken” by the normalizer will be denoted by εb′1, εb′2, or εb′3. For
details on the algorithm see Appendix B.

Of course one has to wonder how useful such an approximation is with respect
to finding a stereohedron with the most number of facets. An assessment can
easily be derived from a result of Eggleston et al.: The set of all convex polytopes
P can be turned into a metric space by introducing the Hausdorff metric

δ(P,Q) = max
{

max
x∈P

min
y∈Q

d(x, y), max
y∈Q

min
x∈P

d(x, y)
}

for P,Q ∈ P.

Eggleston et al. [EGK64] (see also [Grü03, Section 5.3]) proved the lower semi-
continuity of the function

fk : P −→ Z P 7−→ fk(P ).

Furthermore, it is not difficult to show that the function

F −→ P x 7−→ DV(x)

is continuous. Altogether this means that if a point x ∈ F corresponds to a
DV-stereohedron with the most number of facets, there will be a neighborhood
B(x, r) in F , such that fk(DV(y)) = fk(DV(x)) for all y ∈ B(x, r). Finding
a lower bound for the radius r seems to be difficult, a starting point might be
the dissection presented by Koch [Koc72] and Engel [Eng86]. Nonetheless, the
above discussion shows that if the grid is fine enough, the approximation is
sufficient for finding an extremal stereohedron.

In the following sections we present basic information about the space groups,
the fundamental domain of their normalizer that we computed (expressed in
the coordinate system of the space group), details on the approximation of the
group’s fundamental domain, and of course the f -vectors we found together
with necessary data to reconstruct the associated DV-stereohedra. All param-
eter choices were carefully made on basis of experiments conducted before the
main computations.

As usual it is impossible to present the massive amount of data generated or
to even properly convey the gist of it. We therefore highly encourage the reader
to download the data and explore it themselves.

2.2.1 Triclinic groups

The triclinic groups allow for arbitrary 3-dimensional lattices. This generality,
however, severely limits the possible space group types. Only two space groups
are triclinic, and problem (G) is completely solved for the first one of them; for
the second triclinic group IT(2) the problem is solved only for Dirichlet–Voronoi
stereohedra.

Space group type (3, 1, 1, 1, 1); IT(1) = P1

The space group IT(1) corresponds to an arbitrary lattice in R3. For those
lattices Fedorov [Fed85] derived all possible combinatorial types of stereohedra
(in this case they are even parallelepipeds), see Conway & Sloane [CS92] for a
modern presentation. The possible stereohedra are
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stereohedron f -vector

truncated octahedron f = (24, 36, 14)
hexarhombic dodecahedron f = (18, 28, 12)

rhombic dodecahedron f = (14, 24, 12)
hexagonal prism f = (12, 18, 8)

cube f = (8, 12, 6)

The maximal number of facets for IT(1) is therefore 14.

Space group type (3, 1, 2, 1, 1); IT(2) = P 1̄

This group is already much more complicated then IT(1), even though every
orbit decomposes into at most two lattices. In his seminal work Štogrin [Što75]
derived all possible combinatorial types of Dirichlet–Voronoi stereohedra. In
total there are 165 types; five of them have 20 facets, others have any number
from 5 to 19.

2.2.2 Tetragonal groups

Tetragonal groups do not allow for great variation of their metrical parameters.
The following types of fundamental parallelepipeds of the sublattice L′ ≤ L of
the space group Γ occur:

b′1b′2

b′3

primitive
(P )

b′1b′2

b′3

body-centered
(I)

The lengths of b′1 and b′2 have to be equal, the length of b′3 can be freely chosen.
We can therefore encode all lengths by the b-ratio ‖b

′
3‖/‖b′1‖. The angles between

all pairs of vectors always have to be π/2.

Space group type (3, 4, 1, 1, 1); IT(75) = P4

Normalizer: IT(123) = P 14/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), εb′3

Reduced fundamental domain:

R75 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0)
}

Upper bound on number of facets: f2 ≤ 38 (Theorem 1.2.6)

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
Since the fundamental domain was reduced by the normalizer to a 2-
dimensional polytope, the approximation is already similarly good for each
value ‖b

′
3‖/‖b′1‖ as our approximation in the case of cubic groups. Our grid

uses 1 000 405 points for each b-ratio.
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f-vector b-ratio generating grid point
(6, 9, 5) 1/2 (706/1413, 0, 0)
(8, 12, 6) 1/2 (0, 0, 0)
(10, 15, 7) 1/2 (2825/5652,−1/5652, 0)

Space group type (3, 4, 1, 1, 2); IT(76) = P41, IT(78) = P43

Normalizer: IT(89) = P 1422 with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), εb′3

Reduced fundamental domain:

R76 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4, 1/4, 0), (1/4,−1/4, 0)
}

Upper bound on number of facets: f2 ≤ 38 (Theorem 1.2.6)

Remarks concerning lower bounds: Koch & Fischer [KF72] found a stereohe-
dron with 24 facets for this group.

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
Since the fundamental domain was reduced by the normalizer to a 2-
dimensional polytope, the approximation is already similarly good for each
value ‖b

′
3‖/‖b′1‖ as our approximation in the case of cubic groups. Our grid

uses 1 000 000 points for each b-ratio.

f-vector b-ratio generating grid point
(8, 12, 6) 3497/1000 (0, 0, 0)
(12, 18, 8) 3497/1000 (1/4,−1/4, 0)
(8, 14, 8) 2 (1/4,−1/4, 0)
(14, 24, 12) 2 (27/148, 23/148, 0)
(18, 28, 12) 3497/1000 (1/2, 0, 0)
(24, 36, 14) 797/1000 (1/2, 0, 0)
(24, 38, 16) 797/1000 (173/3996, 173/3996, 0)
(28, 42, 16) 797/1000 (1079/3996, 919/3996, 0)
(32, 48, 18) 797/1000 (1/4,−1/4, 0)
(36, 54, 20) 797/1000 (1597/3996, 401/3996, 0)
(40, 60, 22) 797/1000 (1807/3996, 191/3996, 0)
(44, 66, 24) 797/1000 (20/333, 44/999, 0)

Space group type (3, 4, 1, 1, 3); IT(77) = P42

Normalizer: IT(123) = P 14/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), εb′3

Reduced fundamental domain:

R77 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0)
}

Upper bound on number of facets: f2 ≤ 38 (Theorem 1.2.6)

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
Since the fundamental domain was reduced by the normalizer to a 2-
dimensional polytope, the approximation is already similarly good for each
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value ‖b
′
3‖/‖b′1‖ as our approximation in the case of cubic groups. Our grid

uses 1 000 405 points for each b-ratio.

f-vector b-ratio generating grid point
(8, 12, 6) 1/2 (0, 0, 0)
(12, 18, 8) 1/2 (88/1413, 0, 0)
(16, 24, 10) 1/2 (706/1413, 0, 0)
(18, 28, 12) 1/2 (21/628,−21/628, 0)
(21, 32, 13) 1/2 (2825/5652,−1/5652, 0)
(24, 36, 14) 1/2 (1/4,−1/4, 0)
(25, 38, 15) 1/2 (313/628,−1/5652, 0)
(28, 42, 16) 1/2 (539/5652,−187/5652, 0)

Space group type (3, 4, 1, 2, 1); IT(79) = I4

Normalizer: IT(123) = P 14/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), εb′3

Reduced fundamental domain:

R79 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0)
}

Upper bound on number of facets: f2 ≤ 38 (Theorem 1.2.6)

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
Since the fundamental domain was reduced by the normalizer to a 2-
dimensional polytope, the approximation is already similarly good for each
value ‖b

′
3‖/‖b′1‖ as our approximation in the case of cubic groups. Our grid

uses 1 000 405 points for each b-ratio.

f-vector b-ratio generating grid point
(8, 12, 6) 1/2 (1/4,−1/4, 0)
(8, 13, 7) 1/2 (706/1413, 0, 0)
(12, 18, 8) 1/2 (103/471,−103/471, 0)
(14, 21, 9) 1/2 (206/471, 0, 0)
(14, 23, 11) 1/2 (2825/5652,−1/5652, 0)
(17, 26, 11) 1/2 (2471/5652,−1/5652, 0)
(18, 28, 12) 7/2 (0, 0, 0)
(18, 29, 13) 1/2 (2395/5652,−431/5652, 0)
(21, 32, 13) 1/2 (823/1884,−1/1884, 0)
(24, 36, 14) 1/2 (0, 0, 0)

Space group type (3, 4, 1, 2, 2); IT(80) = I41

Normalizer: IT(125) = P 14/nbm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), εb′3

Reduced fundamental domain:

R80 = conv
{

(0, 0, 0), (1/4, 1/4, 0), (1/4,−1/4, 0)
}

Upper bound on number of facets: f2 ≤ 38 (Theorem 1.2.6)

29



Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
Since the fundamental domain was reduced by the normalizer to a 2-
dimensional polytope, the approximation is already similarly good for each
value ‖b

′
3‖/‖b′1‖ as our approximation in the case of cubic groups. Our grid

uses 1 000 405 points for each b-ratio.

f-vector b-ratio generating grid point
(8, 12, 6) 3497/1000 (1/4,−1/4, 0)
(12, 18, 8) 3497/1000 (0, 0, 0)
(8, 14, 8) 2 (0, 0, 0)
(19, 29, 12) 323/250 (178/1413, 0, 0)
(22, 34, 14) 409/500 (353/1413, 0, 0)
(25, 38, 15) 797/1000 (739/5652, 155/5652, 0)
(24, 38, 16) 3497/1000 (33/157, 18/157, 0)
(25, 39, 16) 1289/1000 (151/942, 0, 0)
(26, 40, 16) 3497/1000 (353/1413, 353/1413, 0)
(28, 42, 16) 797/1000 (1/4, 305/5652, 0)
(26, 41, 17) 797/1000 (739/5652, 739/5652, 0)
(29, 44, 17) 797/1000 (739/5652, 497/5652, 0)
(30, 45, 17) 797/1000 (191/942, 191/942, 0)
(28, 44, 18) 619/500 (33/157, 18/157, 0)
(32, 48, 18) 3497/1000 (353/1413, 235/942, 0)
(30, 47, 19) 4/5 (79/628, 59/628, 0)
(33, 50, 19) 797/1000 (739/5652, 737/5652, 0)
(34, 51, 19) 797/1000 (33/157, 33/157, 0)
(36, 54, 20) 3497/1000 (1/4, 1411/5652, 0)
(37, 56, 21) 797/1000 (739/5652, 581/5652, 0)
(38, 57, 21) 797/1000 (1411/5652, 965/5652, 0)
(39, 59, 22) 148/125 (33/157, 18/157, 0)
(40, 60, 22) 797/1000 (353/1413, 593/2826, 0)
(42, 63, 23) 797/1000 (353/1413, 241/1413, 0)
(44, 66, 24) 797/1000 (1/4, 395/1884, 0)
(46, 69, 25) 317/250 (377/1884, 559/5652, 0)
(48, 72, 26) 797/1000 (1/4, 389/1884, 0)

Space group type (3, 4, 2, 1, 1); IT(81) = P 4̄

Normalizer: IT(123) = P4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

Reduced fundamental domain:

R81 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/2, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 38 (Theorem 1.2.6)

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.
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f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (62/125, 0, 0)
(8, 12, 6) 3497/1000 (0, 0, 0)
(10, 15, 7) 3497/1000 (249/500,−1/500, 0)
(10, 16, 8) 4/5 (4/25, 0, 1/4)
(12, 18, 8) 3497/1000 (62/125, 0, 1/4)
(16, 24, 10) 3497/1000 (62/125, 0, 1/50)
(14, 24, 12) 4/5 (1/10,−1/10, 1/4)
(18, 28, 12) 3497/1000 (1/4,−1/4, 1/4)
(18, 29, 13) 4/5 (121/250,−1/250, 13/100)
(19, 30, 13) 4/5 (33/100,−17/100, 1/4)
(21, 32, 13) 3497/1000 (249/500,−1/500, 1/50)
(21, 33, 14) 4/5 (31/250,−1/250, 13/100)
(24, 36, 14) 3497/1000 (1/4,−1/4, 1/100)
(23, 36, 15) 4/5 (123/500,−43/500, 1/4)
(25, 38, 15) 3497/1000 (247/500,−1/500, 1/50)
(28, 42, 16) 3497/1000 (31/500,−27/500, 1/250)

Space group type (3, 4, 2, 2, 1); IT(82) = I 4̄

Normalizer: IT(139) = I4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

Reduced fundamental domain:

R82 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/8),

(1/2, 0, 1/8), (1/4,−1/4, 1/8)
}

Upper bound on number of facets: f2 ≤ 38 (Theorem 1.2.6)

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(7, 11, 6) 4/5 (17/100,−17/100, 0)
(8, 12, 6) 3497/1000 (1/4,−1/4, 0)
(6, 11, 7) 4/5 (17/50, 0, 0)
(8, 13, 7) 3497/1000 (62/125, 0, 0)
(10, 16, 8) 7/2 (49/125, 0, 4/125)
(12, 18, 8) 3497/1000 (62/125, 0, 1/8)
(13, 20, 9) 3497/1000 (0, 0, 1/8)
(14, 21, 9) 797/1000 (17/50, 0, 0)
(9, 16, 9) 2 (0, 0, 1/8)
(16, 24, 10) 3497/1000 (1/2, 0, 1/25)
(13, 22, 11) 4/5 (169/500,−1/500, 0)
(14, 23, 11) 3497/1000 (249/500,−1/500, 0)
(17, 26, 11) 797/1000 (167/500,−1/500, 0)
(14, 24, 12) 4/5 (1/4,−17/100, 1/8)
(15, 25, 12) 4/5 (21/50, 0, 1/8)
(18, 28, 12) 3497/1000 (0, 0, 0)
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f-vector b-ratio generating grid point
(18, 29, 13) 527/1000 (41/100,−9/100, 0)
(19, 30, 13) 7/2 (223/500,−27/500, 4/125)
(21, 32, 13) 797/1000 (169/500,−1/500, 0)
(18, 30, 14) 4/5 (3/10, 0, 1/8)
(21, 33, 14) 7/2 (2/25,−3/50, 1/100)
(22, 34, 14) 797/1000 (21/50, 0, 1/8)
(23, 35, 14) 3497/1000 (62/125, 0, 1/25)
(24, 36, 14) 3497/1000 (1/4,−1/4, 11/500)
(23, 36, 15) 7/2 (221/500,−1/20, 4/125)
(26, 39, 15) 3497/1000 (249/500,−1/500, 1/25)
(25, 39, 16) 797/1000 (24/125,−7/125, 1/10)
(28, 42, 16) 3497/1000 (73/250,−1/5, 23/1000)
(27, 42, 17) 1/2 (2/25,−3/50, 1/10)
(30, 45, 17) 3497/1000 (247/500,−1/500, 1/25)
(29, 45, 18) 527/1000 (2/25,−3/50, 1/20)
(32, 48, 18) 797/1000 (201/500,−1/500, 101/1000)
(31, 48, 19) 32/25 (21/125,−3/250, 1/20)
(34, 51, 19) 3497/1000 (241/500,−1/500, 3/500)
(33, 51, 20) 26/25 (27/100,−3/100, 1/8)
(36, 54, 20) 797/1000 (9/100,−19/500, 4/125)
(35, 54, 21) 32/25 (31/250,−1/250, 2/25)
(38, 57, 21) 3497/1000 (219/500,−1/500, 9/500)
(40, 60, 22) 839/1000 (119/500,−21/500, 109/1000)
(42, 63, 23) 3497/1000 (171/500,−1/500, 19/1000)

Space group type (3, 4, 3, 1, 1); IT(83) = P4/m

Normalizer: IT(123) = P4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

Reduced fundamental domain:

R83 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/2, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 15 [BS01, Theorem 2.12] for points with
trivial stabilizer and f2 ≤ 70 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (62/125, 0, 1/4)
(8, 12, 6) 3497/1000 (0, 0, 0)
(10, 15, 7) 3497/1000 (249/500,−1/500, 0)

Space group type (3, 4, 3, 1, 2); IT(84) = P42/m

Normalizer: IT(123) = P4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3
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Reduced fundamental domain:

R84 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/2, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 15 [BS01, Theorem 2.12] for points with
trivial stabilizer and f2 ≤ 70 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (62/125, 0, 1/4)
(8, 12, 6) 3497/1000 (0, 0, 0)
(10, 15, 7) 3497/1000 (107/250, 0, 107/500)
(8, 13, 7) 7/2 (49/250, 0, 117/500)
(10, 16, 8) 4/5 (4/25, 0, 0)
(12, 18, 8) 3497/1000 (62/125, 0, 31/125)
(11, 18, 9) 5/4 (3/10,−1/10, 61/500)
(12, 19, 9) 4/5 (101/250,−1/50, 47/500)
(13, 20, 9) 3497/1000 (1/4,−1/4, 57/250)
(14, 21, 9) 3497/1000 (249/500,−1/500, 31/125)
(9, 16, 9) 4/5 (2/25,−2/25, 1/25)
(14, 22, 10) 4/5 (1/5,−2/25, 7/250)
(16, 24, 10) 3497/1000 (1/4,−1/4, 31/125)
(15, 24, 11) 4/5 (16/125,−8/125, 4/125)
(17, 26, 11) 7/2 (207/500,−11/500, 109/500)
(18, 27, 11) 3497/1000 (58/125,−4/125, 27/125)
(14, 24, 12) 4/5 (1/10,−1/10, 0)
(18, 28, 12) 3497/1000 (1/4,−1/4, 0)
(20, 30, 12) 3497/1000 (181/500,−47/500, 57/250)
(19, 30, 13) 4/5 (33/100,−17/100, 0)
(21, 32, 13) 797/1000 (249/500,−1/500, 0)
(24, 36, 14) 3497/1000 (247/500,−1/500, 0)
(23, 36, 15) 4/5 (123/500,−43/500, 0)
(25, 38, 15) 797/1000 (49/100,−1/500, 0)
(28, 42, 16) 797/1000 (121/500,−43/500, 0)

Space group type (3, 4, 3, 1, 3); IT(85) = P4/n

Normalizer: IT(123) = P4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

Reduced fundamental domain:

R85 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/2, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 16 [BS06, Corollary 1.6] for points with
trivial stabilizer and f2 ≤ 70 in general (Theorem 1.2.6).
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Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (249/500,−1/500, 0)
(8, 12, 6) 3497/1000 (0, 0, 0)
(10, 15, 7) 3497/1000 (62/125, 0, 0)
(6, 11, 7) 4/5 (1/4,−9/100, 1/4)
(8, 13, 7) 3497/1000 (1/4,−123/500, 1/4)
(10, 17, 9) 1/2 (13/50,−9/50, 1/5)
(14, 21, 9) 3497/1000 (1/4,−99/500, 1/500)
(11, 20, 11) 1/2 (31/100,−17/100, 1/5)
(13, 22, 11) 4/5 (17/50, 0, 1/4)
(14, 23, 11) 3497/1000 (62/125, 0, 1/4)
(17, 26, 11) 3497/1000 (11/25, 0, 1/500)
(18, 29, 13) 3497/1000 (97/500,−97/500, 1/500)
(21, 32, 13) 3497/1000 (56/125, 0, 1/500)

Space group type (3, 4, 3, 1, 4); IT(86) = P42/n

Normalizer: IT(123) = P4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

Reduced fundamental domain:

R86 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/2, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 38 [BS06, Proposition 2.5] for points
with trivial stabilizer and f2 ≤ 70 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(8, 12, 6) 3497/1000 (0, 0, 1/4)
(6, 11, 7) 4/5 (1/4,−9/100, 1/4)
(8, 13, 7) 3497/1000 (1/4,−123/500, 1/4)
(10, 16, 8) 4/5 (41/100,−9/100, 0)
(12, 18, 8) 3497/1000 (249/500,−1/500, 0)
(13, 20, 9) 3497/1000 (1/2, 0, 57/250)
(14, 21, 9) 797/1000 (1/4,−9/100, 1/4)
(9, 16, 9) 5/4 (1/2, 0, 9/100)
(11, 19, 10) 7/2 (1/4,−27/500, 2/125)
(16, 24, 10) 3497/1000 (1/2, 0, 31/125)
(13, 22, 11) 4/5 (17/50, 0, 1/4)
(14, 23, 11) 3497/1000 (62/125, 0, 1/4)
(17, 26, 11) 3497/1000 (239/500,−11/500, 57/250)
(18, 28, 12) 3497/1000 (0, 0, 0)
(18, 29, 13) 4/5 (157/500,−9/100, 3/20)
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f-vector b-ratio generating grid point
(19, 30, 13) 4/5 (41/100,−1/500, 0)
(21, 32, 13) 797/1000 (17/50, 0, 1/4)
(20, 32, 14) 2 (3/25,−3/25, 1/10)
(21, 33, 14) 7/2 (19/125,−19/125, 121/500)
(23, 35, 14) 3497/1000 (29/100,−21/100, 1/25)
(24, 36, 14) 3497/1000 (1/4,−1/4, 31/125)
(22, 35, 15) 7/2 (27/500,−27/500, 117/500)
(23, 36, 15) 4/5 (41/100,−43/500, 0)
(24, 37, 15) 3497/1000 (12/25,−1/50, 23/100)
(25, 38, 15) 797/1000 (247/500,−1/500, 0)
(26, 39, 15) 3497/1000 (117/250, 0, 31/125)
(25, 39, 16) 7/2 (38/125, 0, 2/125)
(27, 41, 16) 3497/1000 (249/500,−1/500, 31/125)
(28, 42, 16) 3497/1000 (58/125, 0, 29/125)
(27, 42, 17) 1/2 (56/125,−9/250, 53/250)
(29, 44, 17) 7/2 (223/500,−11/500, 117/500)
(30, 45, 17) 3497/1000 (59/125, 0, 31/125)
(29, 45, 18) 527/1000 (9/20,−3/100, 23/500)
(32, 48, 18) 3497/1000 (12/25, 0, 6/25)
(34, 51, 19) 3497/1000 (79/250, 0, 119/500)
(36, 54, 20) 3497/1000 (62/125, 0, 31/125)

Space group type (3, 4, 3, 2, 1); IT(87) = I4/m

Normalizer: IT(123) = P4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

Reduced fundamental domain:

R87 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/2, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 15 [BS01, Theorem 2.12] for points with
trivial stabilizer and f2 ≤ 70 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (249/500,−1/500, 1/4)
(5, 9, 6) 7/2 (38/125, 0, 117/500)
(7, 11, 6) 3497/1000 (62/125, 0, 31/125)
(8, 12, 6) 3497/1000 (0, 0, 1/4)
(10, 15, 7) 3497/1000 (247/500,−1/500, 1/4)
(6, 11, 7) 4/5 (17/50, 0, 0)
(8, 13, 7) 3497/1000 (62/125, 0, 0)
(10, 16, 8) 4/5 (217/500,−17/500, 1/5)
(12, 18, 8) 3497/1000 (47/100,−1/500, 31/125)
(11, 18, 9) 7/2 (151/500,−1/500, 117/500)
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f-vector b-ratio generating grid point
(12, 19, 9) 3497/1000 (249/500,−1/500, 31/125)
(13, 20, 9) 3497/1000 (0, 0, 26/125)
(14, 21, 9) 797/1000 (17/50, 0, 0)
(9, 16, 9) 4/5 (159/500,−63/500, 11/100)
(14, 22, 10) 3497/1000 (237/500,−13/500, 31/125)
(16, 24, 10) 3497/1000 (0, 0, 31/125)
(13, 22, 11) 4/5 (169/500,−1/500, 0)
(14, 23, 11) 3497/1000 (249/500,−1/500, 0)
(17, 26, 11) 797/1000 (167/500,−1/500, 0)
(18, 28, 12) 3497/1000 (0, 0, 0)
(18, 29, 13) 527/1000 (41/100,−9/100, 0)
(21, 32, 13) 797/1000 (169/500,−1/500, 0)
(24, 36, 14) 797/1000 (0, 0, 0)

Space group type (3, 4, 3, 2, 2); IT(88) = I41/a

Normalizer: IT(134) = P42/nnm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

Reduced fundamental domain:

R88 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/2, 1/2, 0), (0, 0, 1/8),

(1/2, 0, 1/8), (1/2, 1/2, 1/8)
}

Upper bound on number of facets: f2 ≤ 70 (Theorem 1.2.6)

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(8, 12, 6) 3497/1000 (62/125, 0, 0)
(10, 15, 7) 3497/1000 (1/2, 0, 21/250)
(12, 18, 8) 3497/1000 (0, 0, 0)
(14, 21, 9) 797/1000 (61/125, 0, 0)
(10, 18, 10) 2 (0, 0, 1/8)
(12, 20, 10) 3497/1000 (0, 0, 1/8)
(13, 21, 10) 7/2 (1/2, 38/125, 4/125)
(15, 24, 11) 7/2 (1/2, 57/125, 101/1000)
(17, 26, 11) 3497/1000 (1/2, 0, 13/125)
(18, 27, 11) 797/1000 (62/125, 0, 0)
(15, 25, 12) 4/5 (3/25, 3/25, 1/8)
(17, 27, 12) 899/1000 (1/2, 113/250, 1/8)
(19, 29, 12) 797/1000 (31/250, 31/250, 1/8)
(20, 30, 12) 3497/1000 (1/2, 62/125, 0)
(17, 28, 13) 4/5 (36/125, 1/25, 1/8)
(18, 29, 13) 3497/1000 (62/125, 0, 1/8)
(19, 30, 13) 7/2 (109/250, 13/250, 13/1000)
(20, 31, 13) 797/1000 (0, 0, 1/8)
(21, 32, 13) 3497/1000 (1/2, 0, 31/250)
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f-vector b-ratio generating grid point
(21, 33, 14) 7/2 (38/125, 38/125, 4/125)
(22, 34, 14) 409/500 (0, 0, 0)
(23, 35, 14) 7/2 (101/250, 9/25, 101/1000)
(24, 36, 14) 3497/1000 (1/5, 1/5, 1/20)
(21, 34, 15) 109/125 (19/50, 3/125, 1/8)
(22, 35, 15) 1/2 (29/125, 2/125, 117/1000)
(23, 36, 15) 7/2 (11/25, 49/125, 9/200)
(24, 37, 15) 797/1000 (111/250, 0, 1/8)
(25, 38, 15) 4/5 (1/10, 2/125, 1/40)
(26, 39, 15) 3497/1000 (21/50, 21/50, 21/200)
(24, 38, 16) 797/1000 (1/2, 62/125, 0)
(25, 39, 16) 3497/1000 (58/125, 56/125, 0)
(27, 41, 16) 7/2 (19/250, 19/250, 117/1000)
(28, 42, 16) 3497/1000 (3/250, 3/250, 3/1000)
(25, 40, 17) 23/25 (3/25, 3/25, 1/8)
(27, 42, 17) 797/1000 (19/50, 17/50, 0)
(28, 43, 17) 797/1000 (89/250, 0, 1/8)
(29, 44, 17) 4/5 (21/125, 8/125, 1/10)
(30, 45, 17) 3497/1000 (11/25, 11/25, 11/100)
(29, 45, 18) 3497/1000 (121/250, 103/250, 0)
(31, 47, 18) 7/2 (113/250, 51/125, 101/1000)
(32, 48, 18) 3497/1000 (62/125, 123/250, 0)
(31, 48, 19) 403/500 (21/50, 19/50, 27/250)
(32, 49, 19) 797/1000 (22/125, 12/125, 1/8)
(33, 50, 19) 4/5 (19/125, 4/125, 1/20)
(34, 51, 19) 3497/1000 (62/125, 62/125, 31/250)
(33, 51, 20) 76/125 (11/50, 3/50, 57/500)
(35, 53, 20) 7/2 (62/125, 113/250, 101/1000)
(36, 54, 20) 3497/1000 (62/125, 113/250, 0)
(37, 56, 21) 7/8 (4/25, 1/125, 3/1000)
(38, 57, 21) 3497/1000 (1/250, 1/250, 61/500)
(40, 60, 22) 3497/1000 (62/125, 13/50, 17/1000)
(42, 63, 23) 3497/1000 (62/125, 52/125, 13/125)

Space group type (3, 4, 4, 1, 1); IT(89) = P422

Normalizer: IT(123) = P4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

Reduced fundamental domain:

R89 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/2, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 16 [BS06, Corollary 1.6] for points with
trivial stabilizer and f2 ≤ 70 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.
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f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (249/500,−1/500, 0)
(8, 12, 6) 3497/1000 (0, 0, 0)
(11, 20, 11) 4/5 (13/50,−9/50, 1/20)
(14, 23, 11) 3497/1000 (249/500,−1/500, 1/4)
(18, 29, 13) 3497/1000 (111/250,−7/125, 1/500)

Space group type (3, 4, 4, 1, 4); IT(90) = P4212

Normalizer: IT(123) = P4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

Reduced fundamental domain:

R90 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/2, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 16 [BS06, Corollary 1.6] for points with
trivial stabilizer and f2 ≤ 70 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (249/500,−1/500, 0)
(7, 11, 6) 4/5 (33/100,−17/100, 1/4)
(8, 12, 6) 3497/1000 (0, 0, 0)
(10, 15, 7) 3497/1000 (31/125,−31/125, 0)
(6, 11, 7) 4/5 (4/25, 0, 1/4)
(8, 13, 7) 3497/1000 (62/125, 0, 1/4)
(12, 18, 8) 3497/1000 (249/500,−1/500, 1/50)
(14, 21, 9) 3497/1000 (62/125, 0, 1/50)
(18, 28, 12) 3497/1000 (1/2, 0, 1/4)
(17, 28, 13) 4/5 (41/125,−21/125, 1/4)
(18, 29, 13) 3497/1000 (247/500,−1/500, 1/4)
(21, 32, 13) 3497/1000 (247/500,−1/500, 1/100)
(24, 36, 14) 3497/1000 (1/2, 0, 1/50)
(25, 38, 15) 3497/1000 (247/500,−1/500, 1/50)

Space group type (3, 4, 4, 1, 2); IT(91) = P4122, IT(95) = P4322

Normalizer: IT(93) = P4222 with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

Reduced fundamental domain:

R91 = conv
{

(0, 0, 0), (1/4,−1/4, 0), (3/4, 1/4, 0), (1/2, 1/2, 0),

(0, 0, 1/8), (1/4,−1/4, 1/8), (3/4, 1/4, 1/8), (1/2, 1/2, 1/8)
}

Upper bound on number of facets: f2 ≤ 50 [BS06, Corollary 2.6] for points with
trivial stabilizer and f2 ≤ 70 in general (Theorem 1.2.6).
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Remarks concerning lower bounds: Lemma 4.2 in [BS06] implies that there ex-
ists a stereohedron with at least 17 facets for this group.

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 2 000 376 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 4/5 (1/50,−1/50, 3/25)
(8, 12, 6) 4/5 (0, 0, 0)
(10, 15, 7) 3497/1000 (3/4, 1/4, 31/250)
(10, 16, 8) 4/5 (1/25, 0, 0)
(12, 18, 8) 3497/1000 (1/4,−1/4, 1/8)
(8, 14, 8) 14/25 (51/100, 49/100, 1/8)
(13, 20, 9) 4/5 (1/2, 995/1998, 1/7992)
(9, 16, 9) 44/25 (1/2, 117/250, 17/200)
(11, 19, 10) 56/25 (127/250, 101/250, 3/200)
(15, 23, 10) 4/5 (13/3996,−1/444, 61/2664)
(16, 24, 10) 4/5 (1/3, 0, 0)
(11, 20, 11) 88/125 (1/2, 121/250, 1/8)
(13, 22, 11) 4/5 (1/2, 997/1998, 1/8)
(14, 24, 12) 88/125 (121/250, 121/250, 1/8)
(15, 25, 12) 7/2 (57/100, 7/20, 2/125)
(16, 26, 12) 4/5 (1/2, 319/666, 1/8)
(18, 28, 12) 3497/1000 (62/125, 62/125, 1/8)
(15, 26, 13) 4/5 (1/2, 23/50, 1/50)
(16, 27, 13) 4/5 (1/50, 1/50, 1/200)
(17, 28, 13) 4/5 (1/3, 0, 1/8)
(18, 29, 13) 4/5 (2/5, 1/5, 0)
(19, 30, 13) 4/5 (1/25, 1/25, 1/50)
(20, 31, 13) 3497/1000 (1/4,−1/4, 0)
(21, 32, 13) 4/5 (985/1998, 319/666, 1/8)
(17, 29, 14) 4/5 (1/2, 23/50, 1/100)
(18, 30, 14) 44/25 (2/125, 2/125, 21/200)
(19, 31, 14) 4/5 (1/2, 29/666, 1/1332)
(20, 32, 14) 7/2 (13/25, 1/5, 61/1000)
(21, 33, 14) 4/5 (12/25, 12/25, 3/25)
(22, 34, 14) 14/25 (7/3996,−1/1332, 61/2664)
(23, 35, 14) 4/5 (19/333, 17/999, 61/2664)
(24, 36, 14) 797/1000 (1/4,−1/4, 0)
(20, 33, 15) 14/25 (271/500, 49/500, 1/8)
(21, 34, 15) 4/5 (1/2, 179/666, 115/3996)
(22, 35, 15) 4/5 (1/2, 29/666, 1/666)
(23, 36, 15) 7/2 (37/100, 7/20, 93/1000)
(24, 37, 15) 4/5 (17/333, 0, 61/2664)
(25, 38, 15) 4/5 (1997/3996, 19/444, 7/2664)
(26, 39, 15) 14/25 (149/3996,−89/3996, 61/2664)
(22, 36, 16) 4/5 (9/50,−3/50, 2/25)
(24, 38, 16) 4/5 (19/37, 1/27, 25/3996)
(25, 39, 16) 4/5 (3/25, 1/25, 1/50)
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f-vector b-ratio generating grid point
(26, 40, 16) 14/25 (679/1332, 13/1332, 1/8)
(27, 41, 16) 14/25 (151/444, 3/148, 0)
(28, 42, 16) 4/5 (1997/3996, 1075/3996, 5/7992)
(24, 39, 17) 4/5 (3/10,−1/10, 1/20)
(26, 41, 17) 797/1000 (373/500, 123/500, 1/8)
(27, 42, 17) 4/5 (66/125, 11/25, 1/8)
(28, 43, 17) 4/5 (53/1332,−31/3996, 61/2664)
(29, 44, 17) 14/25 (2/37, 8/999, 61/2664)
(30, 45, 17) 797/1000 (309/500, 59/500, 1/8)
(28, 44, 18) 4/5 (131/250, 23/50, 7/100)
(29, 45, 18) 797/1000 (173/250, 69/250, 1/10)
(30, 46, 18) 14/25 (113/222, 5/222, 1/216)
(31, 47, 18) 14/25 (7/333,−2/999, 61/2664)
(32, 48, 18) 14/25 (229/3996, 71/3996, 61/2664)
(28, 45, 19) 4/5 (7/74,−5/74, 17/148)
(30, 47, 19) 44/25 (7/25,−4/25, 1/20)
(31, 48, 19) 797/1000 (29/50, 17/50, 1/20)
(32, 49, 19) 797/1000 (133/250, 113/250, 1/10)
(33, 50, 19) 3497/1000 (84/125, 28/125, 14/125)
(34, 51, 19) 14/25 (677/1332, 347/1332, 263/7992)
(32, 50, 20) 7/5 (139/250, 17/50, 9/200)
(33, 51, 20) 14/25 (1223/1998, 313/1998, 2/27)
(35, 53, 20) 4/5 (131/222, 7/74, 1/36)
(36, 54, 20) 3497/1000 (37/50, 61/250, 31/250)
(32, 51, 21) 4/5 (51/125,−1/25, 33/1000)
(35, 54, 21) 4/5 (13/25, 9/25, 1/40)
(36, 55, 21) 14/25 (506/999, 25/999, 1/296)
(37, 56, 21) 14/25 (101/1998,−5/1998, 61/2664)
(38, 57, 21) 797/1000 (269/500, 19/500, 9/125)
(34, 54, 22) 4/5 (1019/1998, 25/54, 187/3996)
(34, 54, 22) 4/5 (133/250, 23/50, 51/500)
(37, 57, 22) 4/5 (47/111,−17/333, 23/999)
(39, 59, 22) 14/25 (527/999, 32/999, 1/72)
(40, 60, 22) 14/25 (223/444, 355/1332, 239/7992)
(39, 60, 23) 4/5 (131/250, 1/10, 1/50)
(41, 62, 23) 797/1000 (269/500, 19/500, 9/500)
(42, 63, 23) 797/1000 (207/500,−43/500, 41/1000)
(41, 63, 24) 4/5 (139/250, 3/50, 1/40)
(43, 65, 24) 14/25 (1063/1998, 71/1998, 1/54)
(44, 66, 24) 14/25 (409/666, 103/666, 62/999)
(46, 69, 25) 14/25 (355/666, 67/1998, 11/666)
(48, 72, 26) 14/25 (538/999, 13/333, 71/2664)

Space group type (3, 4, 4, 1, 5); IT(92) = P41212, IT(96) = P43212

Normalizer: IT(93) = P4222 with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3
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Reduced fundamental domain:

R92 = conv
{

(0, 0, 0), (1/4,−1/4, 0), (3/4, 1/4, 0), (1/2, 1/2, 0),

(0, 0, 1/8), (1/4,−1/4, 1/8), (3/4, 1/4, 1/8), (1/2, 1/2, 1/8)
}

Upper bound on number of facets: f2 ≤ 64 [BS06, Corollary 1.6] for points with
trivial stabilizer and f2 ≤ 70 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 2 000 376 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(8, 12, 6) 7/5 (0, 0, 1/8)
(12, 18, 8) 7/5 (1/2, 997/1998, 1/8)
(13, 20, 9) 3497/1000 (1/2, 1/2, 43/1000)
(15, 23, 10) 3497/1000 (1/4, 123/500, 31/500)
(16, 24, 10) 7/5 (1/2, 1/2, 499/3996)
(14, 24, 12) 14/25 (51/100, 1/100, 0)
(15, 25, 12) 7/5 (1/2, 9/74, 0)
(16, 26, 12) 7/5 (377/999, 0, 1/7992)
(18, 28, 12) 7/5 (761/1332, 95/1332, 0)
(16, 27, 13) 2 (1/4,−1/4, 1/8)
(17, 28, 13) 4/5 (7/20, 1/20, 0)
(18, 29, 13) 7/5 (1/2, 49/1998, 799/7992)
(19, 30, 13) 7/5 (769/1332, 1/12, 101/7992)
(20, 31, 13) 7/5 (2243/3996, 245/3996, 125/1998)
(21, 32, 13) 797/1000 (73/100, 27/100, 23/200)
(16, 28, 14) 4/5 (2/25, 0, 1/8)
(18, 30, 14) 4/5 (23/50, 23/50, 0)
(21, 33, 14) 7/5 (475/999, 0, 799/7992)
(22, 34, 14) 7/5 (499/999, 1/3, 83/666)
(24, 36, 14) 7/5 (2455/3996, 617/3996, 3/74)
(22, 35, 15) 7/5 (1/2, 49/666, 133/2664)
(23, 36, 15) 7/5 (623/1332, 35/444, 125/1998)
(24, 37, 15) 797/1000 (9/20, 7/20, 0)
(25, 38, 15) 7/5 (1927/3996, 3/148, 13/108)
(26, 39, 15) 7/5 (46/999,−16/999, 61/2664)
(16, 30, 16) 4/5 (1/2, 1/10, 1/8)
(22, 36, 16) 4/5 (1/2, 3/10, 1/8)
(24, 38, 16) 797/1000 (1/2, 113/250, 1/8)
(25, 39, 16) 7/5 (560/999, 160/999, 445/7992)
(26, 40, 16) 7/5 (23/222, 23/222, 23/888)
(27, 41, 16) 797/1000 (12/25, 0, 3/25)
(28, 42, 16) 7/5 (133/1998, 91/1998, 61/2664)
(26, 41, 17) 797/1000 (48/125, 19/125, 0)
(27, 42, 17) 7/5 (293/666, 71/666, 25/999)
(28, 43, 17) 3497/1000 (1/4, 7/500, 123/1000)
(29, 44, 17) 797/1000 (273/500, 227/500, 1/8)
(30, 45, 17) 7/5 (49/999,−7/999, 61/2664)
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f-vector b-ratio generating grid point
(26, 42, 18) 26/25 (37/100,−13/500, 1/8)
(27, 43, 18) 797/1000 (197/500, 91/500, 0)
(29, 45, 18) 7/5 (289/666, 391/1998, 11/3996)
(30, 46, 18) 7/5 (1997/3996, 1/4, 499/3996)
(31, 47, 18) 797/1000 (91/250, 23/250, 0)
(32, 48, 18) 7/5 (22/333, 44/999, 61/2664)
(30, 47, 19) 1/2 (59/125, 0, 99/1000)
(31, 48, 19) 7/5 (1/3, 80/999, 799/7992)
(32, 49, 19) 4/5 (2/25, 2/125, 1/10)
(33, 50, 19) 797/1000 (49/100, 43/500, 0)
(34, 51, 19) 7/5 (85/1998,−29/1998, 61/2664)
(33, 51, 20) 7/5 (10/27, 0, 869/7992)
(34, 52, 20) 7/5 (497/999, 2/9, 55/444)
(35, 53, 20) 797/1000 (117/250, 33/250, 0)
(36, 54, 20) 7/5 (73/999, 22/333, 61/2664)
(35, 54, 21) 7/5 (421/1332, 199/1332, 125/1998)
(37, 56, 21) 797/1000 (59/125, 16/125, 0)
(38, 57, 21) 797/1000 (129/250, 21/50, 1/8)
(34, 54, 22) 67/50 (17/100,−1/500, 1/8)
(37, 57, 22) 4/5 (107/250,−3/250, 3/25)
(39, 59, 22) 797/1000 (56/125, 0, 14/125)
(40, 60, 22) 7/5 (1951/3996, 1/3996, 1/7992)
(41, 62, 23) 7/5 (223/666, 5/54, 11/148)
(42, 63, 23) 797/1000 (263/500, 197/500, 1/8)
(43, 65, 24) 1061/1000 (51/125, 1/25, 1/10)
(44, 66, 24) 797/1000 (57/125, 2/125, 1/8)
(43, 66, 25) 23/25 (43/100, 1/20, 1/8)
(46, 69, 25) 797/1000 (223/500, 17/500, 1/8)
(48, 72, 26) 797/1000 (113/250, 9/250, 1/8)
(50, 75, 27) 797/1000 (9/20, 19/500, 1/8)
(52, 78, 28) 7/5 (1163/3996, 59/1332, 827/7992)
(54, 81, 29) 7/5 (583/1998, 103/1998, 29/296)

Space group type (3, 4, 4, 1, 3); IT(93) = P4222

Normalizer: IT(123) = P4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

Reduced fundamental domain:

R93 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/2, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 38 [BS06, Proposition 2.5] for points
with trivial stabilizer and f2 ≤ 70 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.
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f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (62/125, 0, 1/4)
(7, 11, 6) 4/5 (33/100,−17/100, 0)
(8, 12, 6) 3497/1000 (0, 0, 0)
(10, 15, 7) 3497/1000 (107/250, 0, 107/500)
(8, 13, 7) 7/2 (49/250, 0, 117/500)
(10, 16, 8) 4/5 (17/50,−4/25, 1/4)
(12, 18, 8) 3497/1000 (62/125, 0, 31/125)
(13, 20, 9) 3497/1000 (1/4,−1/4, 31/125)
(9, 16, 9) 4/5 (2/25,−2/25, 21/100)
(16, 24, 10) 3497/1000 (1/4,−1/4, 1/50)
(13, 22, 11) 41/25 (38/125,−49/250, 4/25)
(17, 26, 11) 3497/1000 (58/125,−9/250, 107/500)
(14, 24, 12) 4/5 (1/10,−1/10, 1/4)
(18, 28, 12) 3497/1000 (1/4,−1/4, 1/4)
(20, 32, 14) 7/2 (87/250,−19/125, 117/500)
(24, 36, 14) 797/1000 (1/4,−1/4, 1/4)
(22, 35, 15) 7/2 (201/500,−49/500, 1/125)
(23, 36, 15) 4/5 (133/500,−117/500, 1/5)
(24, 37, 15) 3497/1000 (27/100,−23/100, 1/50)
(25, 39, 16) 7/2 (173/500,−3/20, 117/500)
(26, 40, 16) 4/5 (21/250,−13/250, 1/5)
(27, 41, 16) 3497/1000 (249/500,−1/500, 31/125)
(27, 42, 17) 7/2 (31/125,−49/250, 9/500)
(30, 45, 17) 3497/1000 (231/500,−17/500, 107/500)
(29, 45, 18) 7/2 (83/250,−17/125, 117/500)
(32, 48, 18) 3497/1000 (247/500,−1/500, 123/500)
(31, 48, 19) 4/5 (19/250,−9/125, 1/5)
(34, 51, 19) 3497/1000 (67/250,−57/250, 1/50)
(33, 51, 20) 4/5 (6/125,−2/125, 121/500)
(36, 54, 20) 3497/1000 (58/125,−4/125, 27/125)
(38, 57, 21) 3497/1000 (3/10,−9/50, 6/25)
(40, 60, 22) 3497/1000 (113/250,−1/50, 27/125)

Space group type (3, 4, 4, 1, 6); IT(94) = P42212

Normalizer: IT(123) = P4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

Reduced fundamental domain:

R94 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/2, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 38 [BS06, Proposition 2.5] for points
with trivial stabilizer and f2 ≤ 70 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.
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f-vector b-ratio generating grid point
(8, 12, 6) 3497/1000 (0, 0, 1/4)
(10, 15, 7) 3497/1000 (31/125,−31/125, 1/4)
(6, 11, 7) 4/5 (17/50, 0, 0)
(8, 13, 7) 3497/1000 (62/125, 0, 0)
(10, 16, 8) 7/2 (27/250, 0, 109/500)
(12, 18, 8) 3497/1000 (249/500,−1/500, 0)
(12, 19, 9) 4/5 (169/500,−1/500, 0)
(13, 20, 9) 3497/1000 (1/4,−1/4, 57/250)
(14, 21, 9) 3497/1000 (59/250,−59/250, 31/125)
(9, 16, 9) 5/4 (1/4,−1/4, 9/100)
(11, 19, 10) 7/2 (38/125, 0, 117/500)
(16, 24, 10) 3497/1000 (1/4,−1/4, 31/125)
(14, 23, 11) 3497/1000 (249/500,−1/500, 1/4)
(17, 26, 11) 3497/1000 (229/500,−21/500, 26/125)
(15, 25, 12) 2 (4/25, 0, 1/5)
(18, 28, 12) 3497/1000 (0, 0, 0)
(16, 27, 13) 2 (23/100,−7/100, 1/5)
(18, 29, 13) 527/1000 (41/100,−9/100, 1/4)
(19, 30, 13) 7/2 (151/500,−1/500, 117/500)
(21, 32, 13) 797/1000 (17/100,−17/100, 0)
(20, 32, 14) 2 (33/100,−17/100, 1/5)
(21, 33, 14) 7/2 (201/500,−49/500, 121/500)
(22, 34, 14) 3497/1000 (3/125, 0, 31/125)
(23, 35, 14) 3497/1000 (249/500,−1/500, 31/125)
(24, 36, 14) 3497/1000 (1/2, 0, 31/125)
(22, 35, 15) 7/2 (38/125,−49/250, 117/500)
(23, 36, 15) 1/2 (41/100,−7/100, 17/100)
(24, 37, 15) 3497/1000 (33/100,−17/100, 59/250)
(26, 39, 15) 3497/1000 (237/500,−13/500, 31/125)
(25, 39, 16) 7/2 (121/500,−31/500, 117/500)
(27, 41, 16) 3497/1000 (131/500,−119/500, 31/125)
(28, 42, 16) 3497/1000 (247/500,−1/500, 123/500)
(27, 42, 17) 7/2 (103/500,−49/500, 23/100)
(30, 45, 17) 3497/1000 (57/125,−1/25, 26/125)
(29, 45, 18) 7/2 (3/50,−6/125, 109/500)
(32, 48, 18) 3497/1000 (23/50,−9/250, 53/250)
(31, 48, 19) 7/2 (61/500,−23/500, 28/125)
(34, 51, 19) 3497/1000 (79/250,−39/250, 59/250)
(33, 51, 20) 7/2 (53/500,−1/500, 109/500)
(36, 54, 20) 3497/1000 (9/20,−3/100, 21/100)
(38, 57, 21) 3497/1000 (31/100,−73/500, 57/250)
(40, 60, 22) 3497/1000 (49/250,−6/125, 57/250)

Space group type (3, 4, 4, 2, 1); IT(97) = I422

Normalizer: IT(123) = P4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3
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Reduced fundamental domain:

R97 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/2, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 32 [BS06, Corollary 1.6] for points with
trivial stabilizer and f2 ≤ 70 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(5, 8, 5) 4/5 (169/500,−1/500, 0)
(6, 9, 5) 3497/1000 (249/500,−1/500, 0)
(5, 9, 6) 7/2 (38/125, 0, 117/500)
(7, 11, 6) 3497/1000 (62/125, 0, 31/125)
(8, 12, 6) 3497/1000 (0, 0, 1/4)
(10, 15, 7) 3497/1000 (59/125, 0, 31/125)
(6, 11, 7) 4/5 (17/50, 0, 0)
(8, 13, 7) 3497/1000 (62/125, 0, 0)
(10, 16, 8) 3497/1000 (247/500,−1/500, 1/4)
(12, 18, 8) 797/1000 (17/100,−17/100, 0)
(12, 19, 9) 3497/1000 (249/500,−1/500, 31/125)
(13, 20, 9) 3497/1000 (0, 0, 26/125)
(14, 21, 9) 797/1000 (17/50, 0, 0)
(9, 16, 9) 5/4 (2/5,−1/10, 6/125)
(12, 20, 10) 4/5 (149/500,−17/100, 1/5)
(14, 22, 10) 3497/1000 (237/500,−13/500, 1/500)
(16, 24, 10) 3497/1000 (0, 0, 31/125)
(14, 23, 11) 3497/1000 (249/500,−1/500, 1/4)
(13, 23, 12) 23/25 (99/250,−7/250, 1/10)
(15, 25, 12) 7/2 (151/500,−1/500, 117/500)
(16, 26, 12) 3497/1000 (247/500,−1/500, 123/500)
(18, 28, 12) 3497/1000 (0, 0, 0)
(17, 28, 13) 4/5 (151/500,−51/500, 1/10)
(18, 29, 13) 527/1000 (41/100,−9/100, 1/4)
(17, 29, 14) 7/2 (28/125,−49/250, 1/500)
(19, 31, 14) 4/5 (3/10,−12/125, 51/500)
(20, 32, 14) 3497/1000 (59/125,−3/125, 1/500)
(24, 36, 14) 797/1000 (0, 0, 0)
(21, 34, 15) 1/2 (29/125,−8/125, 2/25)
(24, 37, 15) 797/1000 (153/500,−49/500, 13/125)
(23, 37, 16) 7/5 (13/125,−13/250, 9/50)
(26, 40, 16) 3497/1000 (47/100,−1/500, 31/125)
(26, 41, 17) 3497/1000 (47/100,−13/500, 1/500)
(28, 43, 17) 797/1000 (34/125,−3/50, 1/500)
(30, 46, 18) 3497/1000 (21/50,−13/250, 31/125)
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Space group type (3, 4, 4, 2, 2); IT(98) = I4122

Normalizer: IT(134) = P42/nnm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

Reduced fundamental domain:

R98 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/2, 1/2, 0), (0, 0, 1/8),

(1/2, 0, 1/8), (1/2, 1/2, 1/8)
}

Upper bound on number of facets: f2 ≤ 70 (Theorem 1.2.6)

Remarks concerning lower bounds: In [BS06, Example 4.5] a stereohedron with
29 facets was constructed for this group.

Metrical parameters: Initially we let the b-ratio vary from 1/2, . . . , 7/2 in 1001
steps of 3/1000. For each step we used 1 008 126 grid points in the ap-
proximating grid. An analysis of the results suggested that it would be
interesting to use a finer grid for the b-ratios 377/250 and 38/25. In these
cases, the approximating grids had 1 000 981 800 points.

f-vector b-ratio generating grid point
(10, 15, 7) 38/25 (1/2, 315/1259, 1257/10072)
(8, 13, 7) 7/2 (1/2, 87/250, 109/1000)
(12, 18, 8) 38/25 (993/2518, 133/1259, 0)
(8, 14, 8) 2 (0, 0, 0)
(14, 21, 9) 38/25 (1/2, 629/1259, 1/5036)
(10, 18, 10) 2 (1/2, 62/125, 0)
(12, 20, 10) 3497/1000 (1/2, 62/125, 0)
(13, 21, 10) 7/2 (1/2, 19/125, 109/1000)
(16, 24, 10) 797/1000 (62/125, 1/250, 0)
(13, 22, 11) 7/5 (13/50, 13/50, 21/200)
(14, 23, 11) 38/25 (885/2518, 885/2518, 1/8)
(15, 24, 11) 7/2 (1/2, 38/125, 2/125)
(17, 26, 11) 38/25 (713/2518, 713/2518, 713/10072)
(14, 24, 12) 2 (1/2, 0, 0)
(15, 25, 12) 797/1000 (62/125, 62/125, 1/8)
(16, 26, 12) 7/2 (49/125, 0, 4/125)
(17, 27, 12) 797/1000 (41/125, 41/125, 1/8)
(18, 28, 12) 38/25 (727/2518, 0, 1/8)
(20, 30, 12) 38/25 (1/2, 921/2518, 921/10072)
(16, 27, 13) 2 (0, 0, 1/8)
(17, 28, 13) 38/25 (993/2518, 629/2518, 0)
(18, 29, 13) 5/4 (1/2, 2/5, 3/500)
(19, 30, 13) 4/5 (8/25, 33/250, 3/25)
(20, 31, 13) 38/25 (1/2, 1/2, 169/5036)
(21, 32, 13) 38/25 (323/1259, 613/2518, 565/5036)
(22, 33, 13) 38/25 (1/2, 889/2518, 889/10072)
(16, 28, 14) 7/2 (87/250, 87/250, 109/1000)
(18, 30, 14) 4/5 (1/2, 13/50, 1/8)
(20, 32, 14) 797/1000 (62/125, 62/125, 31/250)
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f-vector b-ratio generating grid point
(21, 33, 14) 4/5 (21/50, 0, 1/8)
(22, 34, 14) 38/25 (629/1259, 629/1259, 629/5036)
(23, 35, 14) 797/1000 (62/125, 0, 1/8)
(24, 36, 14) 797/1000 (0, 0, 1/8)
(20, 33, 15) 2 (3/10, 6/25, 27/1000)
(21, 34, 15) 797/1000 (62/125, 1/250, 31/250)
(22, 35, 15) 7/2 (87/250, 19/125, 109/1000)
(23, 36, 15) 7/2 (31/125, 19/125, 109/1000)
(24, 37, 15) 38/25 (487/1259, 487/1259, 487/5036)
(25, 38, 15) 38/25 (767/2518, 246/1259, 781/10072)
(26, 39, 15) 797/1000 (21/50, 0, 1/8)
(22, 36, 16) 14/25 (13/50, 13/50, 0)
(23, 37, 16) 38/25 (385/1259, 385/1259, 385/5036)
(24, 38, 16) 797/1000 (1/2, 13/50, 1/8)
(25, 39, 16) 38/25 (849/2518, 205/1259, 565/5036)
(26, 40, 16) 38/25 (849/2518, 849/2518, 0)
(27, 41, 16) 38/25 (333/1259, 593/2518, 565/5036)
(28, 42, 16) 38/25 (229/2518, 227/2518, 57/2518)
(26, 41, 17) 797/1000 (62/125, 62/125, 0)
(27, 42, 17) 7/2 (19/50, 19/125, 109/1000)
(28, 43, 17) 38/25 (659/2518, 300/1259, 565/5036)
(29, 44, 17) 797/1000 (61/125, 2/125, 0)
(30, 45, 17) 38/25 (1129/2518, 564/1259, 565/5036)
(25, 41, 18) 1/2 (69/250, 32/125, 2/25)
(26, 42, 18) 2 (3/10, 6/25, 3/25)
(27, 43, 18) 2 (8/25, 6/25, 3/25)
(28, 44, 18) 7/2 (107/250, 19/125, 109/1000)
(29, 45, 18) 38/25 (1215/2518, 1171/2518, 317/5036)
(30, 46, 18) 3497/1000 (121/250, 103/250, 121/1000)
(31, 47, 18) 38/25 (471/1259, 319/1259, 565/5036)
(32, 48, 18) 38/25 (1129/2518, 129/2518, 565/5036)
(28, 45, 19) 527/1000 (9/25, 7/25, 1/10)
(29, 46, 19) 2 (23/50, 2/5, 1/20)
(30, 47, 19) 7/2 (109/250, 87/250, 109/1000)
(31, 48, 19) 38/25 (1171/2518, 449/2518, 625/5036)
(32, 49, 19) 38/25 (476/1259, 398/1259, 1/8)
(33, 50, 19) 38/25 (496/1259, 374/1259, 565/5036)
(34, 51, 19) 38/25 (1129/2518, 559/1259, 565/5036)
(29, 47, 20) 4/5 (91/250, 3/10, 1/10)
(30, 48, 20) 2 (2/5, 17/50, 39/1000)
(32, 50, 20) 7/2 (109/250, 19/125, 109/1000)
(33, 51, 20) 38/25 (611/1259, 1171/2518, 247/5036)
(34, 52, 20) 703/500 (107/250, 97/250, 1/20)
(35, 53, 20) 38/25 (1129/2518, 397/1259, 565/5036)
(36, 54, 20) 38/25 (1129/2518, 517/2518, 565/5036)
(31, 50, 21) 5/4 (59/125, 93/250, 8/125)
(34, 53, 21) 7/2 (54/125, 47/125, 119/1000)
(35, 54, 21) 38/25 (1235/2518, 1059/2518, 217/2518)
(36, 55, 21) 797/1000 (1/2, 62/125, 1/500)
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f-vector b-ratio generating grid point
(37, 56, 21) 38/25 (1093/2518, 321/1259, 565/5036)
(38, 57, 21) 38/25 (1129/2518, 446/1259, 565/5036)
(34, 54, 22) 797/1000 (9/25, 7/25, 1/10)
(36, 56, 22) 4/5 (9/25, 37/125, 1/10)
(37, 57, 22) 38/25 (508/1259, 405/1259, 317/5036)
(38, 58, 22) 3497/1000 (8/25, 6/25, 31/250)
(39, 59, 22) 38/25 (1129/2518, 739/2518, 565/5036)
(40, 60, 22) 38/25 (1129/2518, 553/1259, 565/5036)
(38, 59, 23) 5/4 (123/250, 49/125, 8/125)
(39, 60, 23) 38/25 (1237/2518, 1171/2518, 67/5036)
(40, 61, 23) 821/1000 (1/2, 63/250, 123/1000)
(41, 62, 23) 38/25 (1129/2518, 357/1259, 565/5036)
(42, 63, 23) 38/25 (1129/2518, 859/2518, 565/5036)
(40, 62, 24) 5/4 (12/25, 19/50, 8/125)
(41, 63, 24) 38/25 (1215/2518, 427/1259, 317/5036)
(42, 64, 24) 119/100 (17/50, 67/250, 1/10)
(43, 65, 24) 38/25 (1129/2518, 721/2518, 565/5036)
(44, 66, 24) 38/25 (781/2518, 333/1259, 565/5036)
(43, 66, 25) 4/5 (113/250, 13/50, 3/25)
(44, 67, 25) 106/125 (1/2, 33/125, 14/125)
(45, 68, 25) 38/25 (1121/2518, 645/2518, 565/5036)
(46, 69, 25) 38/25 (491/1259, 827/2518, 565/5036)
(44, 68, 26) 38/25 (595/1259, 753/2518, 467/5036)
(45, 69, 26) 4/5 (73/250, 13/50, 9/100)
(46, 70, 26) 89/100 (3/10, 63/250, 3/25)
(47, 71, 26) 797/1000 (2/5, 7/25, 1/10)
(48, 72, 26) 38/25 (645/2518, 315/1259, 1257/10072)
(46, 71, 27) 38/25 (1247/2518, 443/1259, 625/10072)
(47, 72, 27) 4/5 (69/250, 32/125, 1/20)
(48, 73, 27) 7/5 (57/125, 32/125, 3/25)
(49, 74, 27) 797/1000 (36/125, 63/250, 59/500)
(50, 75, 27) 797/1000 (1/2, 83/250, 83/1000)
(49, 75, 28) 4/5 (39/125, 32/125, 1/10)
(50, 76, 28) 439/500 (3/10, 63/250, 3/25)
(51, 77, 28) 38/25 (596/1259, 807/2518, 803/10072)
(52, 78, 28) 797/1000 (101/250, 69/250, 101/1000)
(50, 77, 29) 38/25 (629/1259, 897/2518, 625/10072)
(52, 79, 29) 419/250 (121/250, 91/250, 1/20)
(53, 80, 29) 403/500 (73/250, 63/250, 59/500)
(54, 81, 29) 797/1000 (51/125, 69/250, 51/500)
(53, 81, 30) 41/25 (62/125, 17/50, 3/50)
(54, 82, 30) 433/500 (3/10, 63/250, 3/25)
(55, 83, 30) 403/500 (73/250, 63/250, 119/1000)
(56, 84, 30) 797/1000 (71/250, 32/125, 71/1000)
(55, 84, 31) 44/25 (123/250, 19/50, 1/25)
(57, 86, 31) 493/500 (87/250, 63/250, 3/25)
(58, 87, 31) 797/1000 (39/125, 33/125, 39/500)
(59, 89, 32) 803/1000 (73/250, 63/250, 119/1000)
(60, 90, 32) 409/500 (37/125, 63/250, 119/1000)
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f-vector b-ratio generating grid point
(62, 93, 33) 403/500 (39/125, 63/250, 117/1000)
(63, 95, 34) 38/25 (625/1259, 727/2518, 231/2518)
(66, 99, 35) 727/500 (62/125, 41/125, 79/1000)

Space group type (3, 4, 5, 1, 1); IT(99) = P4mm

Normalizer: IT(123) = P 14/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), εb′3

Reduced fundamental domain:

R99 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0)
}

Upper bound on number of facets: f2 ≤ 18 [BS01, Theorem 2.7] for points with
trivial stabilizer and f2 ≤ 70 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
Since the fundamental domain was reduced by the normalizer to a 2-
dimensional polytope, the approximation is already similarly good for each
value ‖b

′
3‖/‖b′1‖ as our approximation in the case of cubic groups. Our grid

uses 1 000 405 points for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 1/2 (2825/5652,−1/5652, 0)
(8, 12, 6) 1/2 (0, 0, 0)

Space group type (3, 4, 5, 1, 5); IT(100) = P4bm

Normalizer: IT(123) = P 14/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), εb′3

Reduced fundamental domain:

R100 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0)
}

Upper bound on number of facets: f2 ≤ 18 [BS01, Theorem 2.7] for points with
trivial stabilizer and f2 ≤ 70 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
Since the fundamental domain was reduced by the normalizer to a 2-
dimensional polytope, the approximation is already similarly good for each
value ‖b

′
3‖/‖b′1‖ as our approximation in the case of cubic groups. Our grid

uses 1 000 405 points for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 1/2 (353/1413,−353/1413, 0)
(8, 12, 6) 1/2 (0, 0, 0)
(10, 15, 7) 1/2 (2825/5652,−1/5652, 0)
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Space group type (3, 4, 5, 1, 4); IT(101) = P42cm

Normalizer: IT(123) = P 14/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), εb′3

Reduced fundamental domain:

R101 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0)
}

Upper bound on number of facets: f2 ≤ 18 [BS01, Theorem 2.7] for points with
trivial stabilizer and f2 ≤ 70 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
Since the fundamental domain was reduced by the normalizer to a 2-
dimensional polytope, the approximation is already similarly good for each
value ‖b

′
3‖/‖b′1‖ as our approximation in the case of cubic groups. Our grid

uses 1 000 405 points for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 1/2 (706/1413, 0, 0)
(8, 12, 6) 1/2 (0, 0, 0)
(12, 18, 8) 1/2 (2825/5652,−1/5652, 0)
(16, 24, 10) 1/2 (206/471,−59/942, 0)
(18, 28, 12) 1/2 (21/628,−21/628, 0)
(24, 36, 14) 1/2 (1/4,−1/4, 0)

Space group type (3, 4, 5, 1, 8); IT(102) = P42nm

Normalizer: IT(123) = P 14/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), εb′3

Reduced fundamental domain:

R102 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0)
}

Upper bound on number of facets: f2 ≤ 18 [BS01, Theorem 2.7] for points with
trivial stabilizer and f2 ≤ 70 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
Since the fundamental domain was reduced by the normalizer to a 2-
dimensional polytope, the approximation is already similarly good for each
value ‖b

′
3‖/‖b′1‖ as our approximation in the case of cubic groups. Our grid

uses 1 000 405 points for each b-ratio.

f-vector b-ratio generating grid point
(8, 12, 6) 1/2 (1/2, 0, 0)
(8, 13, 7) 1/2 (706/1413, 0, 0)
(12, 18, 8) 1/2 (2825/5652,−1/5652, 0)
(14, 21, 9) 1/2 (206/471, 0, 0)
(16, 24, 10) 1/2 (206/471,−59/942, 0)
(18, 28, 12) 7/2 (0, 0, 0)
(21, 32, 13) 1/2 (103/471,−103/471, 0)
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f-vector b-ratio generating grid point
(24, 36, 14) 1/2 (0, 0, 0)

Space group type (3, 4, 5, 1, 3); IT(103) = P4cc

Normalizer: IT(123) = P 14/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), εb′3

Reduced fundamental domain:

R103 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0)
}

Upper bound on number of facets: f2 ≤ 16 [BS06, Corollary 1.6] for points with
trivial stabilizer and f2 ≤ 70 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
Since the fundamental domain was reduced by the normalizer to a 2-
dimensional polytope, the approximation is already similarly good for each
value ‖b

′
3‖/‖b′1‖ as our approximation in the case of cubic groups. Our grid

uses 1 000 405 points for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 1/2 (706/1413, 0, 0)
(8, 12, 6) 1/2 (0, 0, 0)
(14, 23, 11) 1/2 (2825/5652,−1/5652, 0)
(18, 29, 13) 1/2 (2395/5652,−431/5652, 0)

Space group type (3, 4, 5, 1, 7); IT(104) = P4nc

Normalizer: IT(123) = P 14/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), εb′3

Reduced fundamental domain:

R104 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0)
}

Upper bound on number of facets: f2 ≤ 16 [BS06, Corollary 1.6] for points with
trivial stabilizer and f2 ≤ 70 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
Since the fundamental domain was reduced by the normalizer to a 2-
dimensional polytope, the approximation is already similarly good for each
value ‖b

′
3‖/‖b′1‖ as our approximation in the case of cubic groups. Our grid

uses 1 000 405 points for each b-ratio.

f-vector b-ratio generating grid point
(8, 12, 6) 1/2 (1/4,−1/4, 0)
(10, 15, 7) 1/2 (2825/5652,−1/5652, 0)
(8, 13, 7) 1/2 (706/1413, 0, 0)
(12, 18, 8) 1/2 (103/471,−103/471, 0)
(14, 21, 9) 1/2 (206/471, 0, 0)
(18, 28, 12) 7/2 (0, 0, 0)
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f-vector b-ratio generating grid point
(18, 29, 13) 1/2 (941/1884,−1/5652, 0)
(21, 32, 13) 1/2 (2471/5652,−1/5652, 0)
(24, 36, 14) 1/2 (0, 0, 0)
(25, 38, 15) 1/2 (823/1884,−1/1884, 0)

Space group type (3, 4, 5, 1, 2); IT(105) = P42mc

Normalizer: IT(123) = P 14/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), εb′3

Reduced fundamental domain:

R105 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0)
}

Upper bound on number of facets: f2 ≤ 18 [BS01, Theorem 2.7] for points with
trivial stabilizer and f2 ≤ 70 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
Since the fundamental domain was reduced by the normalizer to a 2-
dimensional polytope, the approximation is already similarly good for each
value ‖b

′
3‖/‖b′1‖ as our approximation in the case of cubic groups. Our grid

uses 1 000 405 points for each b-ratio.

f-vector b-ratio generating grid point
(8, 12, 6) 1/2 (0, 0, 0)
(12, 18, 8) 1/2 (2825/5652,−1/5652, 0)
(16, 24, 10) 1/2 (706/1413, 0, 0)
(18, 28, 12) 7/2 (1/2, 0, 0)
(24, 36, 14) 1/2 (1/2, 0, 0)

Space group type (3, 4, 5, 1, 6); IT(106) = P42bc

Normalizer: IT(123) = P 14/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), εb′3

Reduced fundamental domain:

R106 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0)
}

Upper bound on number of facets: f2 ≤ 22 [BS06, Corollary 1.6] for points with
trivial stabilizer and f2 ≤ 70 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
Since the fundamental domain was reduced by the normalizer to a 2-
dimensional polytope, the approximation is already similarly good for each
value ‖b

′
3‖/‖b′1‖ as our approximation in the case of cubic groups. Our grid

uses 1 000 405 points for each b-ratio.

f-vector b-ratio generating grid point
(8, 12, 6) 1/2 (0, 0, 0)
(10, 15, 7) 1/2 (2825/5652,−1/5652, 0)
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f-vector b-ratio generating grid point
(14, 23, 11) 1/2 (353/1413,−353/1413, 0)
(18, 28, 12) 1/2 (706/1413, 0, 0)
(18, 29, 13) 1/2 (193/942,−193/942, 0)
(24, 36, 14) 1/2 (67/157, 0, 0)
(28, 42, 16) 1/2 (596/1413,−13/2826, 0)

Space group type (3, 4, 5, 2, 1); IT(107) = I4mm

Normalizer: IT(123) = P 14/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), εb′3

Reduced fundamental domain:

R107 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0)
}

Upper bound on number of facets: f2 ≤ 18 [BS01, Theorem 2.7] for points with
trivial stabilizer and f2 ≤ 70 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
Since the fundamental domain was reduced by the normalizer to a 2-
dimensional polytope, the approximation is already similarly good for each
value ‖b

′
3‖/‖b′1‖ as our approximation in the case of cubic groups. Our grid

uses 1 000 405 points for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 1/2 (2825/5652,−1/5652, 0)
(8, 12, 6) 1/2 (1/4,−1/4, 0)
(10, 15, 7) 1/2 (2471/5652,−1/5652, 0)
(8, 13, 7) 1/2 (706/1413, 0, 0)
(12, 18, 8) 1/2 (103/471,−103/471, 0)
(14, 21, 9) 1/2 (206/471, 0, 0)
(18, 28, 12) 7/2 (0, 0, 0)
(24, 36, 14) 1/2 (0, 0, 0)

Space group type (3, 4, 5, 2, 2); IT(108) = I4cm

Normalizer: IT(123) = P 14/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), εb′3

Reduced fundamental domain:

R108 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0)
}

Upper bound on number of facets: f2 ≤ 18 [BS01, Theorem 2.7] for points with
trivial stabilizer and f2 ≤ 70 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
Since the fundamental domain was reduced by the normalizer to a 2-
dimensional polytope, the approximation is already similarly good for each
value ‖b

′
3‖/‖b′1‖ as our approximation in the case of cubic groups. Our grid

uses 1 000 405 points for each b-ratio.
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f-vector b-ratio generating grid point
(6, 9, 5) 1/2 (353/1413,−353/1413, 0)
(8, 12, 6) 1/2 (0, 0, 0)
(10, 16, 8) 1/2 (941/1884,−1/5652, 0)
(14, 22, 10) 1/2 (2393/5652,−431/5652, 0)
(14, 23, 11) 1/2 (2825/5652,−1/5652, 0)
(18, 29, 13) 1/2 (2395/5652,−431/5652, 0)

Space group type (3, 4, 5, 2, 3); IT(109) = I41md

Normalizer: IT(125) = P 14/nbm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), εb′3

Reduced fundamental domain:

R109 = conv
{

(0, 0, 0), (1/4, 1/4, 0), (1/4,−1/4, 0)
}

Upper bound on number of facets: f2 ≤ 18 [BS01, Theorem 2.7] for points with
trivial stabilizer and f2 ≤ 70 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
Since the fundamental domain was reduced by the normalizer to a 2-
dimensional polytope, the approximation is already similarly good for each
value ‖b

′
3‖/‖b′1‖ as our approximation in the case of cubic groups. Our grid

uses 1 000 405 points for each b-ratio.

f-vector b-ratio generating grid point
(8, 12, 6) 3497/1000 (1/4,−1/4, 0)
(12, 18, 8) 3497/1000 (0, 0, 0)
(8, 14, 8) 2 (0, 0, 0)
(14, 21, 9) 797/1000 (1/4, 107/628, 0)
(16, 24, 10) 797/1000 (241/1413, 241/1413, 0)
(18, 27, 11) 797/1000 (1/4, 65/5652, 0)
(19, 29, 12) 323/250 (178/1413, 0, 0)
(22, 34, 14) 409/500 (353/1413, 0, 0)
(25, 38, 15) 797/1000 (41/314, 0, 0)
(24, 38, 16) 283/200 (0, 0, 0)
(25, 39, 16) 1289/1000 (151/942, 0, 0)
(26, 40, 16) 1157/1000 (5/2826, 0, 0)
(28, 42, 16) 797/1000 (353/1413, 0, 0)
(32, 48, 18) 797/1000 (0, 0, 0)
(36, 54, 20) 1157/1000 (0, 0, 0)

Space group type (3, 4, 5, 2, 4); IT(110) = I41cd

Normalizer: IT(125) = P 14/nbm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), εb′3

Reduced fundamental domain:

R110 = conv
{

(0, 0, 0), (1/4, 1/4, 0), (1/4,−1/4, 0)
}
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Upper bound on number of facets: f2 ≤ 44 [BS06, Proposition 3.4] for points
with trivial stabilizer and f2 ≤ 70 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
Since the fundamental domain was reduced by the normalizer to a 2-
dimensional polytope, the approximation is already similarly good for each
value ‖b

′
3‖/‖b′1‖ as our approximation in the case of cubic groups. Our grid

uses 1 000 405 points for each b-ratio.

f-vector b-ratio generating grid point
(8, 12, 6) 3497/1000 (1/4,−1/4, 0)
(14, 24, 12) 2 (0, 0, 0)
(18, 28, 12) 3497/1000 (0, 0, 0)
(18, 29, 13) 3497/1000 (353/1413, 353/1413, 0)
(21, 32, 13) 797/1000 (33/157, 0, 0)
(24, 36, 14) 3497/1000 (1/4, 1411/5652, 0)
(26, 39, 15) 797/1000 (33/157, 65/471, 0)
(28, 42, 16) 3497/1000 (353/1413, 235/942, 0)
(30, 45, 17) 797/1000 (33/157, 33/157, 0)
(32, 48, 18) 797/1000 (671/2826, 515/2826, 0)
(34, 51, 19) 797/1000 (28/157, 28/157, 0)
(36, 54, 20) 797/1000 (1217/5652, 353/1884, 0)
(38, 57, 21) 797/1000 (1111/5652, 265/1884, 0)
(40, 60, 22) 527/1000 (344/1413, 583/2826, 0)

Space group type (3, 4, 6, 1, 1); IT(111) = P 4̄2m

Normalizer: IT(123) = P4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

Reduced fundamental domain:

R111 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/2, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 18 [BS01, Theorem 2.7] for points with
trivial stabilizer and f2 ≤ 70 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (249/500,−1/500, 0)
(8, 12, 6) 3497/1000 (0, 0, 0)
(10, 16, 8) 4/5 (17/50,−4/25, 1/4)
(12, 18, 8) 3497/1000 (249/500,−1/500, 1/4)
(16, 24, 10) 3497/1000 (13/50,−6/25, 1/100)
(14, 24, 12) 4/5 (1/10,−1/10, 1/4)
(18, 28, 12) 3497/1000 (1/4,−1/4, 1/4)
(24, 36, 14) 3497/1000 (1/4,−1/4, 1/100)
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Space group type (3, 4, 6, 1, 2); IT(112) = P 4̄2c

Normalizer: IT(123) = P4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

Reduced fundamental domain:

R112 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/2, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 38 [BS06, Proposition 2.5] for points
with trivial stabilizer and f2 ≤ 70 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (62/125, 0, 0)
(7, 11, 6) 4/5 (33/100,−17/100, 1/4)
(8, 12, 6) 3497/1000 (0, 0, 0)
(10, 15, 7) 3497/1000 (62/125, 0, 31/125)
(8, 13, 7) 7/2 (49/125, 0, 4/125)
(10, 16, 8) 4/5 (4/25, 0, 1/4)
(12, 18, 8) 3497/1000 (62/125, 0, 1/4)
(13, 20, 9) 3497/1000 (1/2, 0, 31/125)
(16, 24, 10) 3497/1000 (1/2, 0, 1/25)
(14, 23, 11) 3497/1000 (249/500,−1/500, 0)
(14, 24, 12) 4/5 (1/50,−1/50, 3/20)
(18, 28, 12) 3497/1000 (1/2, 0, 1/4)
(18, 29, 13) 527/1000 (41/100,−9/100, 0)
(19, 30, 13) 7/2 (223/500,−27/500, 4/125)
(21, 33, 14) 29/25 (12/125,−9/250, 3/20)
(24, 36, 14) 3497/1000 (1/4,−1/4, 31/125)
(23, 36, 15) 7/2 (221/500,−1/20, 4/125)
(26, 39, 15) 3497/1000 (249/500,−1/500, 1/25)
(28, 42, 16) 3497/1000 (1/4,−103/500, 11/500)
(30, 45, 17) 3497/1000 (247/500,−1/500, 1/25)

Space group type (3, 4, 6, 1, 3); IT(113) = P 4̄21m

Normalizer: IT(123) = P4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

Reduced fundamental domain:

R113 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/2, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 18 [BS01, Theorem 2.7] for points with
trivial stabilizer and f2 ≤ 70 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

56



f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (31/125,−31/125, 0)
(8, 12, 6) 3497/1000 (0, 0, 0)
(10, 15, 7) 3497/1000 (249/500,−1/500, 0)
(6, 11, 7) 4/5 (4/25, 0, 1/4)
(8, 13, 7) 3497/1000 (62/125, 0, 1/4)
(10, 16, 8) 4/5 (4/25,−4/25, 1/4)
(12, 18, 8) 3497/1000 (31/125,−31/125, 1/4)
(12, 19, 9) 4/5 (41/125,−21/125, 1/4)
(14, 21, 9) 3497/1000 (62/125, 0, 1/50)
(16, 24, 10) 3497/1000 (31/125,−31/125, 1/100)
(14, 24, 12) 5/4 (1/4,−1/4, 1/10)
(18, 28, 12) 3497/1000 (1/4,−1/4, 1/4)
(19, 30, 13) 4/5 (33/100,−17/100, 1/4)
(21, 32, 13) 3497/1000 (249/500,−1/500, 1/50)
(24, 36, 14) 3497/1000 (1/4,−1/4, 1/100)

Space group type (3, 4, 6, 1, 4); IT(114) = P 4̄21c

Normalizer: IT(123) = P4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

Reduced fundamental domain:

R114 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/2, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 38 [BS06, Proposition 2.5] for points
with trivial stabilizer and f2 ≤ 70 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(7, 11, 6) 4/5 (17/100,−17/100, 0)
(8, 12, 6) 3497/1000 (0, 0, 1/4)
(10, 15, 7) 3497/1000 (249/500,−1/500, 0)
(6, 11, 7) 4/5 (17/50, 0, 0)
(8, 13, 7) 3497/1000 (62/125, 0, 0)
(10, 16, 8) 7/2 (27/250, 0, 109/500)
(12, 18, 8) 3497/1000 (52/125, 0, 26/125)
(13, 20, 9) 3497/1000 (0, 0, 26/125)
(14, 21, 9) 797/1000 (17/50, 0, 0)
(11, 19, 10) 7/2 (38/125, 0, 117/500)
(16, 24, 10) 3497/1000 (0, 0, 31/125)
(14, 23, 11) 3497/1000 (31/125,−31/125, 1/4)
(14, 24, 12) 2 (1/5,−1/5, 3/25)
(15, 25, 12) 2 (4/25, 0, 1/5)
(18, 28, 12) 3497/1000 (0, 0, 0)
(17, 28, 13) 4/5 (169/500,−1/500, 0)

57



f-vector b-ratio generating grid point
(18, 29, 13) 3497/1000 (247/500,−1/500, 0)
(19, 30, 13) 7/2 (19/125,−19/125, 117/500)
(21, 32, 13) 3497/1000 (249/500,−1/500, 31/125)
(21, 33, 14) 7/2 (151/500,−1/500, 117/500)
(22, 34, 14) 3497/1000 (3/125, 0, 31/125)
(24, 36, 14) 3497/1000 (1/4,−1/4, 31/125)
(23, 36, 15) 7/2 (53/500,−1/500, 109/500)
(25, 38, 15) 797/1000 (169/500,−1/500, 0)
(26, 39, 15) 3497/1000 (59/250,−59/250, 31/125)
(25, 39, 16) 1/2 (107/250,−1/50, 21/500)
(28, 42, 16) 3497/1000 (31/125,−51/250, 11/500)
(30, 45, 17) 3497/1000 (23/50,−9/250, 53/250)
(29, 45, 18) 1/2 (81/500,−69/500, 1/50)
(32, 48, 18) 797/1000 (43/250,−41/250, 1/250)
(34, 51, 19) 3497/1000 (29/500,−1/500, 61/250)
(36, 54, 20) 797/1000 (17/100,−83/500, 1/500)

Space group type (3, 4, 6, 2, 1); IT(115) = P 4̄m2

Normalizer: IT(123) = P4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

Reduced fundamental domain:

R115 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/2, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 18 [BS01, Theorem 2.7] for points with
trivial stabilizer and f2 ≤ 70 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (249/500,−1/500, 0)
(7, 11, 6) 4/5 (33/100,−17/100, 1/4)
(8, 12, 6) 3497/1000 (0, 0, 0)
(10, 16, 8) 4/5 (4/25, 0, 1/4)
(12, 18, 8) 3497/1000 (62/125, 0, 1/4)
(16, 24, 10) 3497/1000 (62/125, 0, 1/50)
(18, 28, 12) 3497/1000 (1/2, 0, 1/4)
(24, 36, 14) 3497/1000 (1/2, 0, 1/50)

Space group type (3, 4, 6, 2, 2); IT(116) = P 4̄c2

Normalizer: IT(123) = P4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3
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Reduced fundamental domain:

R116 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/2, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 38 [BS06, Proposition 2.5] for points
with trivial stabilizer and f2 ≤ 70 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (62/125, 0, 1/4)
(8, 12, 6) 3497/1000 (0, 0, 0)
(10, 16, 8) 4/5 (17/50,−4/25, 1/4)
(12, 18, 8) 3497/1000 (52/125, 0, 26/125)
(13, 20, 9) 3497/1000 (1/4,−1/4, 31/125)
(9, 16, 9) 4/5 (2/25,−2/25, 21/100)
(16, 24, 10) 3497/1000 (62/125, 0, 31/125)
(14, 23, 11) 3497/1000 (249/500,−1/500, 0)
(17, 26, 11) 3497/1000 (229/500,−21/500, 26/125)
(14, 24, 12) 4/5 (1/10,−1/10, 1/4)
(18, 28, 12) 3497/1000 (1/4,−1/4, 1/4)
(18, 29, 13) 527/1000 (41/100,−9/100, 0)
(20, 32, 14) 2 (33/100,−17/100, 1/5)
(21, 33, 14) 7/2 (201/500,−49/500, 1/125)
(23, 35, 14) 3497/1000 (249/500,−1/500, 31/125)
(24, 36, 14) 3497/1000 (1/2, 0, 31/125)
(22, 35, 15) 7/2 (38/125,−49/250, 2/125)
(23, 36, 15) 1/2 (1/5,−3/50, 1/10)
(24, 37, 15) 3497/1000 (27/100,−23/100, 1/50)
(26, 39, 15) 3497/1000 (237/500,−13/500, 1/500)
(25, 39, 16) 11/10 (3/50,−2/125, 13/500)
(27, 41, 16) 3497/1000 (67/250,−29/125, 9/500)
(28, 42, 16) 3497/1000 (247/500,−1/500, 123/500)
(27, 42, 17) 7/2 (31/125,−49/250, 9/500)
(30, 45, 17) 3497/1000 (57/125,−1/25, 26/125)
(29, 45, 18) 4/5 (1/10,−1/50, 1/5)
(32, 48, 18) 3497/1000 (23/50,−9/250, 53/250)
(31, 48, 19) 4/5 (3/50,−13/250, 3/20)
(34, 51, 19) 3497/1000 (67/250,−57/250, 1/50)
(36, 54, 20) 3497/1000 (113/250,−4/125, 21/100)
(38, 57, 21) 3497/1000 (119/500,−99/500, 1/50)

Space group type (3, 4, 6, 2, 3); IT(117) = P 4̄b2

Normalizer: IT(123) = P4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3
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Reduced fundamental domain:

R117 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/2, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 22 [BS06, Corollary 1.6] for points with
trivial stabilizer and f2 ≤ 70 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (31/125,−31/125, 0)
(8, 12, 6) 3497/1000 (0, 0, 0)
(10, 15, 7) 3497/1000 (249/500,−1/500, 0)
(14, 23, 11) 3497/1000 (31/125,−31/125, 1/4)
(18, 28, 12) 3497/1000 (62/125, 0, 1/4)
(18, 29, 13) 3497/1000 (109/500,−109/500, 1/500)
(24, 36, 14) 3497/1000 (247/500,−1/500, 1/4)
(28, 42, 16) 3497/1000 (11/50,−27/125, 1/500)

Space group type (3, 4, 6, 2, 4); IT(118) = P 4̄n2

Normalizer: IT(123) = P4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

Reduced fundamental domain:

R118 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/2, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 38 [BS06, Proposition 2.5] for points
with trivial stabilizer and f2 ≤ 70 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(7, 11, 6) 4/5 (17/100,−17/100, 0)
(8, 12, 6) 3497/1000 (0, 0, 1/4)
(10, 15, 7) 3497/1000 (249/500,−1/500, 0)
(6, 11, 7) 4/5 (4/25, 0, 1/4)
(8, 13, 7) 3497/1000 (62/125, 0, 1/4)
(10, 16, 8) 7/2 (38/125, 0, 117/500)
(12, 18, 8) 3497/1000 (62/125, 0, 31/125)
(12, 19, 9) 4/5 (41/125,−21/125, 1/4)
(13, 20, 9) 3497/1000 (1/4,−1/4, 31/125)
(14, 21, 9) 3497/1000 (249/500,−1/500, 1/25)
(9, 16, 9) 5/4 (1/4,−1/4, 4/25)
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f-vector b-ratio generating grid point
(16, 24, 10) 3497/1000 (1/4,−1/4, 1/50)
(13, 22, 11) 41/25 (49/250,−49/250, 4/25)
(17, 26, 11) 3497/1000 (31/125,−31/125, 31/125)
(15, 25, 12) 4/5 (16/125, 0, 1/5)
(18, 28, 12) 3497/1000 (0, 0, 0)
(16, 27, 13) 4/5 (149/500,−17/100, 1/5)
(17, 28, 13) 4/5 (169/500,−1/500, 0)
(18, 29, 13) 3497/1000 (247/500,−1/500, 0)
(19, 30, 13) 4/5 (33/100,−17/100, 1/4)
(21, 32, 13) 797/1000 (249/500,−1/500, 1/4)
(18, 30, 14) 4/5 (4/25, 0, 9/100)
(20, 32, 14) 7/2 (19/125,−19/125, 117/500)
(22, 34, 14) 797/1000 (4/25, 0, 123/500)
(23, 35, 14) 3497/1000 (59/125, 0, 31/125)
(24, 36, 14) 797/1000 (0, 0, 0)
(22, 35, 15) 7/2 (49/250,−49/250, 2/125)
(23, 36, 15) 4/5 (117/500,−117/500, 1/5)
(24, 37, 15) 3497/1000 (61/250,−61/250, 1/50)
(25, 38, 15) 797/1000 (169/500,−1/500, 0)
(25, 39, 16) 7/2 (173/500,−3/20, 2/125)
(27, 41, 16) 3497/1000 (31/125,−31/125, 1/50)
(28, 42, 16) 797/1000 (62/125, 0, 31/125)
(27, 42, 17) 7/8 (59/250,−12/125, 101/500)
(28, 43, 17) 44/25 (27/250,−7/250, 1/25)
(29, 44, 17) 797/1000 (2/5,−12/125, 6/25)
(30, 45, 17) 3497/1000 (247/500,−1/500, 123/500)
(26, 42, 18) 2 (1/4,−1/20, 1/20)
(29, 45, 18) 7/2 (111/250,−13/250, 4/125)
(31, 47, 18) 797/1000 (4/25,−17/250, 1/20)
(32, 48, 18) 3497/1000 (67/250,−57/250, 1/50)
(31, 48, 19) 7/2 (147/500,−49/500, 1/50)
(33, 50, 19) 3497/1000 (9/20,−3/500, 3/100)
(34, 51, 19) 3497/1000 (131/500,−111/500, 1/50)
(33, 51, 20) 7/2 (219/500,−23/500, 4/125)
(36, 54, 20) 3497/1000 (227/500,−21/500, 17/500)
(35, 54, 21) 41/25 (79/250,−1/25, 1/10)
(37, 56, 21) 3497/1000 (2/5,−3/250, 3/100)
(38, 57, 21) 3497/1000 (43/250,−18/125, 9/500)
(37, 57, 22) 7/2 (38/125,−1/250, 119/500)
(40, 60, 22) 3497/1000 (12/25,−2/125, 19/500)
(42, 63, 23) 3497/1000 (247/500,−1/500, 1/25)
(44, 66, 24) 3497/1000 (229/500,−1/500, 31/125)

Space group type (3, 4, 6, 3, 1); IT(119) = I 4̄m2

Normalizer: IT(139) = I4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3
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Reduced fundamental domain:

R119 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/8),

(1/2, 0, 1/8), (1/4,−1/4, 1/8)
}

Upper bound on number of facets: f2 ≤ 18 [BS01, Theorem 2.7] for points with
trivial stabilizer and f2 ≤ 70 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(5, 8, 5) 4/5 (169/500,−1/500, 0)
(6, 9, 5) 3497/1000 (249/500,−1/500, 0)
(7, 11, 6) 7/2 (223/500,−27/500, 4/125)
(8, 12, 6) 3497/1000 (1/4,−1/4, 0)
(10, 15, 7) 3497/1000 (249/500,−1/500, 1/25)
(6, 11, 7) 4/5 (17/50, 0, 0)
(8, 13, 7) 3497/1000 (62/125, 0, 0)
(10, 16, 8) 7/2 (49/125, 0, 4/125)
(12, 18, 8) 3497/1000 (62/125, 0, 1/8)
(12, 19, 9) 4/5 (34/125,−1/125, 1/8)
(13, 20, 9) 3497/1000 (0, 0, 1/8)
(14, 21, 9) 3497/1000 (247/500,−1/500, 1/25)
(9, 16, 9) 2 (0, 0, 1/8)
(16, 24, 10) 3497/1000 (1/2, 0, 1/25)
(18, 27, 11) 797/1000 (149/500,−1/500, 3/40)
(15, 25, 12) 4/5 (21/50, 0, 1/8)
(18, 28, 12) 3497/1000 (0, 0, 0)
(18, 30, 14) 4/5 (3/10, 0, 1/8)
(22, 34, 14) 797/1000 (21/50, 0, 1/8)
(23, 35, 14) 3497/1000 (62/125, 0, 1/25)
(24, 36, 14) 797/1000 (0, 0, 0)
(28, 42, 16) 797/1000 (38/125, 0, 1/8)

Space group type (3, 4, 6, 3, 2); IT(120) = I 4̄c2

Normalizer: IT(139) = I4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

Reduced fundamental domain:

R120 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/8),

(1/2, 0, 1/8), (1/4,−1/4, 1/8)
}

Upper bound on number of facets: f2 ≤ 40 [BS06, Corollary 3.5] for points with
trivial stabilizer and f2 ≤ 70 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.
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f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (31/125,−31/125, 0)
(8, 12, 6) 3497/1000 (0, 0, 0)
(10, 16, 8) 3497/1000 (247/500,−1/500, 0)
(12, 19, 9) 3497/1000 (31/125,−31/125, 1/8)
(9, 16, 9) 5/4 (1/10,−1/10, 6/125)
(14, 22, 10) 3497/1000 (121/500,−121/500, 1/1000)
(14, 23, 11) 3497/1000 (249/500,−1/500, 0)
(18, 28, 12) 3497/1000 (62/125, 0, 1/8)
(18, 29, 13) 527/1000 (41/100,−9/100, 0)
(21, 33, 14) 7/2 (69/250,−7/250, 1/500)
(24, 36, 14) 3497/1000 (247/500,−1/500, 31/250)
(23, 36, 15) 1/2 (16/125,−9/125, 31/250)
(25, 39, 16) 7/2 (69/250,−49/250, 1/500)
(28, 42, 16) 3497/1000 (27/125,−49/250, 1/200)
(30, 45, 17) 3497/1000 (54/125,−13/250, 1/1000)
(32, 48, 18) 527/1000 (189/500,−59/500, 1/1000)
(34, 51, 19) 3497/1000 (61/250,−6/25, 1/1000)

Space group type (3, 4, 6, 4, 1); IT(121) = I 4̄2m

Normalizer: IT(123) = P4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

Reduced fundamental domain:

R121 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/2, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 18 [BS01, Theorem 2.7] for points with
trivial stabilizer and f2 ≤ 70 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(5, 8, 5) 4/5 (169/500,−1/500, 0)
(6, 9, 5) 3497/1000 (249/500,−1/500, 0)
(5, 9, 6) 7/2 (38/125, 0, 117/500)
(7, 11, 6) 3497/1000 (62/125, 0, 31/125)
(8, 12, 6) 3497/1000 (0, 0, 1/4)
(10, 15, 7) 3497/1000 (59/125, 0, 31/125)
(6, 11, 7) 4/5 (17/50, 0, 0)
(8, 13, 7) 3497/1000 (62/125, 0, 0)
(10, 16, 8) 3497/1000 (247/500,−1/500, 1/4)
(12, 18, 8) 3497/1000 (249/500,−1/500, 31/125)
(12, 19, 9) 7/2 (151/500,−1/500, 117/500)
(13, 20, 9) 3497/1000 (0, 0, 26/125)
(14, 21, 9) 797/1000 (17/50, 0, 0)
(14, 22, 10) 527/1000 (51/250,−23/125, 1/4)
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f-vector b-ratio generating grid point
(16, 24, 10) 3497/1000 (27/100,−23/100, 1/50)
(14, 23, 11) 3497/1000 (31/125,−31/125, 1/4)
(14, 24, 12) 2 (1/5,−1/5, 3/25)
(18, 28, 12) 3497/1000 (0, 0, 0)
(20, 30, 12) 797/1000 (43/250,−41/250, 1/250)
(18, 29, 13) 527/1000 (49/250,−49/250, 1/4)
(19, 30, 13) 7/2 (19/125,−19/125, 117/500)
(24, 36, 14) 3497/1000 (1/4,−1/4, 31/125)
(26, 39, 15) 3497/1000 (59/250,−59/250, 31/125)
(30, 45, 17) 797/1000 (21/125,−21/125, 1/250)

Space group type (3, 4, 6, 4, 2); IT(122) = I 4̄2d

Normalizer: IT(134) = P42/nnm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

Reduced fundamental domain:

R122 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/2, 1/2, 0), (0, 0, 1/8),

(1/2, 0, 1/8), (1/2, 1/2, 1/8)
}

Upper bound on number of facets: f2 ≤ 70 (Theorem 1.2.6)

Metrical parameters: Initially we let the b-ratio vary from 1/2, . . . , 7/2 in 1001
steps of 3/1000. For each step we used 1 008 126 grid points in the ap-
proximating grid. An analysis of the results suggested that it would be
interesting to use a finer grid for the b-ratio 5/4. In this case, the approx-
imating grid had 1 000 981 800 points.

f-vector b-ratio generating grid point
(8, 12, 6) 5/4 (875/2518, 875/2518, 0)
(10, 15, 7) 3497/1000 (1/2, 1/2, 21/250)
(8, 13, 7) 7/2 (1/2, 87/250, 109/1000)
(12, 18, 8) 5/4 (1121/2518, 1121/2518, 0)
(8, 14, 8) 2 (0, 0, 0)
(12, 19, 9) 2 (63/250, 63/250, 31/250)
(14, 21, 9) 283/200 (1/2, 62/125, 1/500)
(10, 18, 10) 2 (1/2, 62/125, 0)
(12, 20, 10) 3497/1000 (1/2, 62/125, 0)
(13, 21, 10) 7/2 (1/2, 19/125, 109/1000)
(16, 24, 10) 797/1000 (62/125, 62/125, 0)
(15, 24, 11) 7/2 (1/2, 38/125, 2/125)
(17, 26, 11) 3497/1000 (1/2, 26/125, 13/250)
(14, 24, 12) 2 (1/2, 0, 0)
(15, 25, 12) 3497/1000 (62/125, 62/125, 1/8)
(16, 26, 12) 7/2 (49/125, 0, 4/125)
(17, 27, 12) 5/4 (1/2, 983/2518, 0)
(18, 28, 12) 3497/1000 (1/2, 0, 0)
(20, 30, 12) 3497/1000 (1/2, 62/125, 31/250)
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f-vector b-ratio generating grid point
(16, 27, 13) 4/5 (23/50, 23/50, 1/8)
(18, 29, 13) 5/4 (1121/2518, 1121/2518, 1/8)
(19, 30, 13) 5/4 (96/1259, 75/2518, 75/5036)
(20, 31, 13) 5/4 (1/2, 629/1259, 0)
(21, 32, 13) 5/4 (1121/2518, 0, 1/8)
(22, 33, 13) 3497/1000 (1/2, 51/125, 51/500)
(18, 30, 14) 7/2 (87/250, 87/250, 109/1000)
(19, 31, 14) 4/5 (21/50, 9/25, 0)
(20, 32, 14) 5/4 (629/1259, 629/1259, 1/8)
(21, 33, 14) 5/4 (546/1259, 74/1259, 1109/10072)
(22, 34, 14) 5/4 (629/1259, 1257/2518, 0)
(23, 35, 14) 797/1000 (62/125, 0, 1/8)
(24, 36, 14) 797/1000 (0, 0, 1/8)
(20, 33, 15) 2 (3/10, 6/25, 123/1000)
(21, 34, 15) 4/5 (87/250, 6/25, 0)
(22, 35, 15) 7/2 (38/125, 38/125, 4/125)
(23, 36, 15) 5/4 (546/1259, 300/1259, 1109/10072)
(24, 37, 15) 797/1000 (87/250, 59/250, 0)
(25, 38, 15) 3497/1000 (62/125, 63/250, 31/250)
(26, 39, 15) 797/1000 (21/50, 0, 1/8)
(21, 35, 16) 4/5 (23/50, 33/125, 1/8)
(22, 36, 16) 2 (2/5, 17/50, 89/1000)
(23, 37, 16) 4/5 (17/50, 83/250, 0)
(24, 38, 16) 7/2 (109/250, 87/250, 109/1000)
(25, 39, 16) 7/2 (48/125, 19/125, 109/1000)
(26, 40, 16) 5/4 (1245/2518, 619/1259, 0)
(27, 41, 16) 797/1000 (62/125, 61/125, 0)
(28, 42, 16) 5/4 (56/1259, 111/2518, 1131/10072)
(25, 40, 17) 797/1000 (23/50, 67/250, 1/8)
(26, 41, 17) 7/2 (109/250, 19/125, 109/1000)
(27, 42, 17) 5/4 (592/1259, 875/2518, 627/5036)
(28, 43, 17) 797/1000 (54/125, 46/125, 0)
(29, 44, 17) 5/4 (1/2, 389/1259, 389/5036)
(30, 45, 17) 5/4 (115/1259, 113/2518, 57/5036)
(28, 44, 18) 7/2 (23/50, 26/125, 9/200)
(29, 45, 18) 5/4 (546/1259, 329/1259, 1109/10072)
(30, 46, 18) 797/1000 (89/250, 63/250, 0)
(31, 47, 18) 5/4 (1/2, 442/1259, 221/2518)
(32, 48, 18) 5/4 (229/2518, 227/2518, 57/2518)
(30, 47, 19) 1157/1000 (1/2, 62/125, 1/500)
(31, 48, 19) 5/4 (617/1259, 1225/2518, 619/5036)
(32, 49, 19) 797/1000 (91/250, 9/25, 0)
(33, 50, 19) 5/4 (1/2, 427/1259, 427/5036)
(34, 51, 19) 5/4 (1129/2518, 1115/2518, 565/5036)
(32, 50, 20) 2 (121/250, 19/50, 2/25)
(33, 51, 20) 5/4 (544/1259, 663/2518, 136/1259)
(35, 53, 20) 5/4 (628/1259, 1255/2518, 1/8)
(36, 54, 20) 3497/1000 (34/125, 34/125, 31/250)
(35, 54, 21) 5/4 (626/1259, 1227/2518, 8/1259)
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f-vector b-ratio generating grid point
(36, 55, 21) 797/1000 (1/2, 62/125, 1/500)
(37, 56, 21) 5/4 (1/2, 839/2518, 839/10072)
(38, 57, 21) 5/4 (1129/2518, 687/2518, 565/5036)
(36, 56, 22) 5/4 (1/2, 521/1259, 555/10072)
(37, 57, 22) 5/4 (1247/2518, 1067/2518, 209/10072)
(38, 58, 22) 571/500 (59/125, 41/125, 3/50)
(39, 59, 22) 3497/1000 (123/250, 33/125, 123/1000)
(40, 60, 22) 5/4 (1129/2518, 679/2518, 565/5036)
(38, 59, 23) 5/4 (1/2, 592/1259, 8/1259)
(39, 60, 23) 5/4 (629/1259, 1233/2518, 8/1259)
(40, 61, 23) 821/1000 (1/2, 63/250, 123/1000)
(41, 62, 23) 797/1000 (61/125, 44/125, 1/20)
(42, 63, 23) 797/1000 (61/125, 63/250, 61/500)
(41, 63, 24) 4/5 (1/2, 113/250, 1/40)
(43, 65, 24) 5/4 (1/2, 877/2518, 877/10072)
(44, 66, 24) 797/1000 (62/125, 63/250, 31/250)
(43, 66, 25) 5/4 (629/1259, 604/1259, 16/1259)
(44, 67, 25) 5/4 (1/2, 1257/2518, 3/10072)
(45, 68, 25) 797/1000 (123/250, 73/250, 9/100)
(46, 69, 25) 797/1000 (1/2, 42/125, 21/250)
(45, 69, 26) 5/4 (1195/2518, 667/2518, 1195/10072)
(47, 71, 26) 821/1000 (1/2, 32/125, 121/1000)
(48, 72, 26) 797/1000 (59/125, 32/125, 59/500)
(47, 72, 27) 5/4 (615/1259, 667/2518, 1195/10072)
(49, 74, 27) 527/1000 (123/250, 73/250, 9/100)
(50, 75, 27) 797/1000 (1/2, 83/250, 83/1000)
(49, 75, 28) 5/4 (1251/2518, 967/2518, 683/10072)
(51, 77, 28) 227/250 (58/125, 69/250, 1/10)
(52, 78, 28) 821/1000 (62/125, 32/125, 121/1000)
(53, 80, 29) 121/125 (12/25, 7/25, 1/10)
(54, 81, 29) 5/4 (622/1259, 633/2518, 1253/10072)
(56, 84, 30) 881/1000 (58/125, 63/250, 123/1000)
(58, 87, 31) 5/4 (629/1259, 1249/2518, 3/2518)

Space group type (3, 4, 7, 1, 1); IT(123) = P4/mmm

Normalizer: IT(123) = P4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3; so the

normalizer is identical with the group itself but the basis is different.

Reduced fundamental domain:

R123 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/2, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 8 [BS01, Theorem 2.4] for points with
trivial stabilizer and f2 ≤ 134 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.
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f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (249/500,−1/500, 0)
(8, 12, 6) 3497/1000 (0, 0, 0)

Space group type (3, 4, 7, 1, 2); IT(124) = P4/mcc

Normalizer: IT(123) = P4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

Reduced fundamental domain:

R124 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/2, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 15 [BS01, Theorem 2.12] for points with
trivial stabilizer and f2 ≤ 134 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (62/125, 0, 1/4)
(8, 12, 6) 3497/1000 (0, 0, 0)
(12, 19, 9) 3497/1000 (249/500,−1/500, 31/125)
(9, 16, 9) 4/5 (57/250,−51/250, 27/125)
(14, 22, 10) 3497/1000 (237/500,−13/500, 31/125)
(14, 23, 11) 3497/1000 (249/500,−1/500, 0)
(18, 29, 13) 527/1000 (41/100,−9/100, 0)

Space group type (3, 4, 7, 1, 5); IT(125) = P4/nbm

Normalizer: IT(123) = P4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

Reduced fundamental domain:

R125 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/2, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 18 [BS01, Theorem 2.7] for points with
trivial stabilizer and f2 ≤ 134 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (249/500,−1/500, 0)
(8, 12, 6) 3497/1000 (0, 0, 0)
(10, 16, 8) 3497/1000 (62/125, 0, 1/4)
(8, 14, 8) 4/5 (17/50, 0, 1/20)
(14, 22, 10) 3497/1000 (54/125, 0, 1/500)
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f-vector b-ratio generating grid point
(14, 23, 11) 3497/1000 (249/500,−1/500, 1/4)
(18, 29, 13) 3497/1000 (97/500,−97/500, 1/500)

Space group type (3, 4, 7, 1, 6); IT(126) = P4/nnc

Normalizer: IT(123) = P4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

Reduced fundamental domain:

R126 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/2, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 32 [BS06, Corollary 1.6] for points with
trivial stabilizer and f2 ≤ 134 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(5, 8, 5) 4/5 (17/50, 0, 1/4)
(6, 9, 5) 3497/1000 (249/500,−1/500, 0)
(5, 9, 6) 7/2 (1/4,−27/500, 2/125)
(7, 11, 6) 3497/1000 (1/4,−123/500, 1/500)
(8, 12, 6) 3497/1000 (0, 0, 0)
(10, 15, 7) 3497/1000 (1/4,−111/500, 1/500)
(6, 11, 7) 4/5 (1/4,−9/100, 1/4)
(8, 13, 7) 3497/1000 (1/4,−123/500, 1/4)
(14, 21, 9) 797/1000 (1/4,−9/100, 1/4)
(11, 20, 11) 5/4 (43/100,−7/100, 9/50)
(13, 22, 11) 7/2 (38/125, 0, 2/125)
(14, 23, 11) 3497/1000 (62/125, 0, 31/125)
(17, 28, 13) 1/2 (2/5, 0, 1/5)
(18, 29, 13) 3497/1000 (28/125,−28/125, 1/500)
(20, 31, 13) 3497/1000 (59/125, 0, 1/500)
(24, 37, 15) 3497/1000 (56/125, 0, 1/250)

Space group type (3, 4, 7, 1, 13); IT(127) = P4/mbm

Normalizer: IT(123) = P4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

Reduced fundamental domain:

R127 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/2, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 8 [BS01, Theorem 2.4] for points with
trivial stabilizer and f2 ≤ 134 in general (Theorem 1.2.6).
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Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (31/125,−31/125, 0)
(8, 12, 6) 3497/1000 (0, 0, 0)
(10, 15, 7) 3497/1000 (249/500,−1/500, 0)

Space group type (3, 4, 7, 1, 14); IT(128) = P4/mnc

Normalizer: IT(123) = P4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

Reduced fundamental domain:

R128 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/2, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 15 [BS01, Theorem 2.12] for points with
trivial stabilizer and f2 ≤ 134 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (31/125,−31/125, 1/4)
(5, 9, 6) 7/2 (38/125, 0, 117/500)
(7, 11, 6) 3497/1000 (62/125, 0, 31/125)
(8, 12, 6) 3497/1000 (0, 0, 1/4)
(10, 15, 7) 3497/1000 (249/500,−1/500, 0)
(6, 11, 7) 4/5 (17/50, 0, 0)
(8, 13, 7) 3497/1000 (62/125, 0, 0)
(12, 18, 8) 797/1000 (17/100,−17/100, 0)
(12, 19, 9) 4/5 (81/250,−17/250, 16/125)
(13, 20, 9) 3497/1000 (0, 0, 26/125)
(14, 21, 9) 3497/1000 (47/100,−1/500, 31/125)
(13, 21, 10) 7/2 (151/500,−1/500, 117/500)
(14, 22, 10) 3497/1000 (247/500,−1/500, 123/500)
(16, 24, 10) 3497/1000 (0, 0, 31/125)
(18, 27, 11) 3497/1000 (213/500,−23/500, 31/125)
(18, 28, 12) 3497/1000 (0, 0, 0)
(17, 28, 13) 4/5 (169/500,−1/500, 0)
(18, 29, 13) 3497/1000 (247/500,−1/500, 0)
(21, 32, 13) 797/1000 (167/500,−1/500, 0)
(24, 36, 14) 797/1000 (0, 0, 0)
(25, 38, 15) 797/1000 (169/500,−1/500, 0)
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Space group type (3, 4, 7, 1, 9); IT(129) = P4/nmm

Normalizer: IT(123) = P4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

Reduced fundamental domain:

R129 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/2, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 18 [BS01, Theorem 2.7] for points with
trivial stabilizer and f2 ≤ 134 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(5, 8, 5) 4/5 (17/50, 0, 1/4)
(6, 9, 5) 3497/1000 (249/500,−1/500, 0)
(8, 12, 6) 3497/1000 (0, 0, 0)
(10, 15, 7) 3497/1000 (56/125, 0, 1/500)
(6, 11, 7) 4/5 (1/4,−9/100, 1/4)
(8, 13, 7) 3497/1000 (1/4,−123/500, 1/4)
(14, 21, 9) 3497/1000 (1/4,−99/500, 1/500)

Space group type (3, 4, 7, 1, 10); IT(130) = P4/ncc

Normalizer: IT(123) = P4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

Reduced fundamental domain:

R130 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/2, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 32 [BS06, Corollary 1.6] for points with
trivial stabilizer and f2 ≤ 134 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (249/500,−1/500, 0)
(8, 12, 6) 3497/1000 (0, 0, 0)
(6, 11, 7) 2 (1/4,−9/100, 1/20)
(8, 13, 7) 3497/1000 (1/4,−123/500, 1/500)
(10, 16, 8) 3497/1000 (62/125, 0, 1/4)
(12, 19, 9) 3497/1000 (249/500,−1/500, 31/125)
(14, 21, 9) 3497/1000 (1/4,−111/500, 1/500)
(9, 16, 9) 5/4 (3/20,−3/20, 6/125)
(14, 22, 10) 3497/1000 (28/125,−28/125, 1/500)
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f-vector b-ratio generating grid point
(14, 23, 11) 3497/1000 (249/500,−1/500, 1/4)
(15, 25, 12) 4/5 (4/25, 0, 9/100)
(16, 26, 12) 3497/1000 (62/125, 0, 31/125)
(18, 29, 13) 527/1000 (223/500,−27/500, 1/4)
(20, 31, 13) 3497/1000 (59/125, 0, 1/500)
(17, 29, 14) 4/5 (173/500,−3/20, 57/500)
(19, 31, 14) 4/5 (217/500,−9/500, 21/100)
(20, 32, 14) 3497/1000 (113/500,−111/500, 1/500)
(22, 34, 14) 3497/1000 (52/125, 0, 31/125)
(24, 37, 15) 527/1000 (209/500,−37/500, 31/125)
(26, 40, 16) 3497/1000 (59/125, 0, 31/125)
(26, 41, 17) 3497/1000 (28/125,−11/50, 1/500)

Space group type (3, 4, 7, 1, 3); IT(131) = P42/mmc

Normalizer: IT(123) = P4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

Reduced fundamental domain:

R131 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/2, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 8 [BS01, Theorem 2.4] for points with
trivial stabilizer and f2 ≤ 134 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (62/125, 0, 1/4)
(7, 11, 6) 7/2 (87/250,−19/125, 117/500)
(8, 12, 6) 3497/1000 (0, 0, 0)
(10, 15, 7) 3497/1000 (107/250, 0, 107/500)
(8, 13, 7) 7/2 (49/250, 0, 117/500)
(10, 16, 8) 4/5 (4/25, 0, 0)
(12, 18, 8) 3497/1000 (62/125, 0, 31/125)
(13, 20, 9) 3497/1000 (1/2, 0, 26/125)
(16, 24, 10) 3497/1000 (1/2, 0, 31/125)
(18, 28, 12) 3497/1000 (1/2, 0, 0)
(24, 36, 14) 797/1000 (1/2, 0, 0)

Space group type (3, 4, 7, 1, 4); IT(132) = P42/mcm

Normalizer: IT(123) = P4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

71



Reduced fundamental domain:

R132 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/2, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 8 [BS01, Theorem 2.4] for points with
trivial stabilizer and f2 ≤ 134 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (62/125, 0, 1/4)
(8, 12, 6) 3497/1000 (0, 0, 0)
(10, 15, 7) 3497/1000 (249/500,−1/500, 31/125)
(8, 13, 7) 7/2 (201/500,−49/500, 121/500)
(10, 16, 8) 4/5 (17/50,−4/25, 0)
(12, 18, 8) 3497/1000 (249/500,−1/500, 0)
(13, 20, 9) 3497/1000 (1/4,−1/4, 57/250)
(9, 16, 9) 4/5 (2/25,−2/25, 1/25)
(16, 24, 10) 3497/1000 (1/4,−1/4, 31/125)
(14, 24, 12) 4/5 (1/10,−1/10, 0)
(18, 28, 12) 3497/1000 (1/4,−1/4, 0)
(24, 36, 14) 797/1000 (1/4,−1/4, 0)

Space group type (3, 4, 7, 1, 7); IT(133) = P42/nbc

Normalizer: IT(123) = P4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

Reduced fundamental domain:

R133 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/2, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 40 [BS06, Corollary 3.5] for points with
trivial stabilizer and f2 ≤ 134 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (249/500,−1/500, 0)
(8, 12, 6) 3497/1000 (0, 0, 0)
(10, 16, 8) 3497/1000 (62/125, 0, 1/4)
(12, 18, 8) 3497/1000 (62/125, 0, 0)
(13, 20, 9) 3497/1000 (1/4,−123/500, 1/500)
(9, 16, 9) 4/5 (1/4,−9/100, 2/25)
(16, 24, 10) 3497/1000 (1/4,−111/500, 31/125)
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f-vector b-ratio generating grid point
(11, 20, 11) 5/4 (43/100,−7/100, 9/50)
(14, 23, 11) 3497/1000 (249/500,−1/500, 31/125)
(18, 28, 12) 3497/1000 (1/4,−123/500, 0)
(18, 29, 13) 3497/1000 (28/125,−28/125, 1/500)
(21, 33, 14) 7/5 (3/20,−13/100, 1/20)
(24, 36, 14) 3497/1000 (62/125, 0, 31/125)
(23, 36, 15) 1/2 (1/10, 0, 1/20)
(25, 39, 16) 7/2 (38/125, 0, 121/500)
(28, 42, 16) 3497/1000 (59/125, 0, 31/125)
(27, 42, 17) 4/5 (77/500,−51/500, 1/20)
(30, 45, 17) 3497/1000 (103/250, 0, 31/125)
(32, 48, 18) 3497/1000 (79/250, 0, 1/250)
(34, 51, 19) 3497/1000 (56/125, 0, 31/125)

Space group type (3, 4, 7, 1, 8); IT(134) = P42/nnm

Normalizer: IT(123) = P4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

Reduced fundamental domain:

R134 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/2, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 18 [BS01, Theorem 2.7] for points with
trivial stabilizer and f2 ≤ 134 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(5, 8, 5) 4/5 (17/50, 0, 1/4)
(6, 9, 5) 3497/1000 (62/125, 0, 1/4)
(5, 9, 6) 7/2 (1/4,−71/500, 4/125)
(7, 11, 6) 3497/1000 (1/4,−89/500, 9/250)
(8, 12, 6) 3497/1000 (0, 0, 1/4)
(10, 15, 7) 3497/1000 (1/4,−123/500, 1/500)
(8, 13, 7) 3497/1000 (1/4,−123/500, 1/4)
(10, 16, 8) 4/5 (41/100,−9/100, 0)
(12, 18, 8) 3497/1000 (249/500,−1/500, 0)
(12, 19, 9) 7/2 (38/125, 0, 2/125)
(13, 20, 9) 3497/1000 (1/4,−1/4, 31/125)
(14, 21, 9) 797/1000 (1/4,−123/500, 1/4)
(9, 16, 9) 5/4 (1/2, 0, 9/100)
(14, 22, 10) 4/5 (93/250, 0, 1/5)
(15, 23, 10) 7/2 (87/250, 0, 121/500)
(16, 24, 10) 3497/1000 (58/125, 0, 29/125)
(13, 22, 11) 41/25 (27/500,−27/500, 9/100)
(16, 25, 11) 4/5 (43/125,−1/10, 11/50)
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f-vector b-ratio generating grid point
(17, 26, 11) 3497/1000 (239/500,−11/500, 57/250)
(18, 27, 11) 3497/1000 (62/125, 0, 31/125)
(18, 28, 12) 3497/1000 (0, 0, 0)
(22, 33, 13) 797/1000 (42/125, 0, 31/125)
(20, 32, 14) 7/2 (49/250,−49/250, 4/125)
(24, 36, 14) 797/1000 (0, 0, 0)
(22, 35, 15) 7/2 (19/125,−19/125, 121/500)
(23, 36, 15) 4/5 (8/125,−8/125, 1/5)
(24, 37, 15) 3497/1000 (12/25,−1/50, 23/100)
(25, 39, 16) 4/5 (109/500,−109/500, 1/5)
(27, 41, 16) 3497/1000 (249/500,−1/500, 31/125)
(30, 45, 17) 797/1000 (219/500,−31/500, 47/250)
(34, 51, 19) 797/1000 (11/125,−11/125, 1/500)

Space group type (3, 4, 7, 1, 15); IT(135) = P42/mbc

Normalizer: IT(123) = P4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

Reduced fundamental domain:

R135 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/2, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 15 [BS01, Theorem 2.12] for points with
trivial stabilizer and f2 ≤ 134 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (31/125,−31/125, 1/4)
(8, 12, 6) 3497/1000 (0, 0, 0)
(10, 15, 7) 3497/1000 (249/500,−1/500, 0)
(12, 19, 9) 3497/1000 (31/125,−31/125, 31/125)
(13, 20, 9) 3497/1000 (62/125, 0, 31/125)
(9, 16, 9) 4/5 (4/25, 0, 2/25)
(14, 22, 10) 3497/1000 (59/250,−59/250, 31/125)
(16, 24, 10) 3497/1000 (59/125, 0, 31/125)
(14, 23, 11) 3497/1000 (31/125,−31/125, 0)
(15, 24, 11) 1/2 (7/25,−1/5, 22/125)
(18, 27, 11) 3497/1000 (247/500,−1/500, 123/500)
(18, 28, 12) 3497/1000 (62/125, 0, 0)
(20, 30, 12) 3497/1000 (54/125,−1/25, 31/125)
(18, 29, 13) 527/1000 (49/250,−49/250, 0)
(24, 36, 14) 3497/1000 (247/500,−1/500, 0)
(28, 42, 16) 527/1000 (193/500,−13/500, 0)
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Space group type (3, 4, 7, 1, 16); IT(136) = P42/mnm

Normalizer: IT(123) = P4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

Reduced fundamental domain:

R136 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/2, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 8 [BS01, Theorem 2.4] for points with
trivial stabilizer and f2 ≤ 134 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (249/500,−1/500, 1/4)
(5, 9, 6) 7/2 (38/125, 0, 117/500)
(7, 11, 6) 3497/1000 (62/125, 0, 31/125)
(8, 12, 6) 3497/1000 (0, 0, 1/4)
(10, 15, 7) 3497/1000 (249/500,−1/500, 31/125)
(6, 11, 7) 4/5 (17/50, 0, 0)
(8, 13, 7) 3497/1000 (62/125, 0, 0)
(9, 14, 7) 7/2 (151/500,−1/500, 117/500)
(10, 16, 8) 4/5 (17/50,−4/25, 0)
(12, 18, 8) 3497/1000 (249/500,−1/500, 0)
(12, 19, 9) 4/5 (169/500,−1/500, 0)
(13, 20, 9) 3497/1000 (1/4,−1/4, 57/250)
(14, 21, 9) 3497/1000 (59/250,−59/250, 31/125)
(9, 16, 9) 5/4 (1/4,−1/4, 9/100)
(16, 24, 10) 3497/1000 (1/4,−1/4, 31/125)
(18, 28, 12) 3497/1000 (0, 0, 0)
(19, 30, 13) 4/5 (17/100,−17/100, 0)
(21, 32, 13) 797/1000 (17/100,−17/100, 0)
(24, 36, 14) 797/1000 (0, 0, 0)

Space group type (3, 4, 7, 1, 11); IT(137) = P42/nmc

Normalizer: IT(123) = P4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

Reduced fundamental domain:

R137 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/2, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 18 [BS01, Theorem 2.7] for points with
trivial stabilizer and f2 ≤ 134 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.
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f-vector b-ratio generating grid point
(5, 8, 5) 4/5 (17/50, 0, 1/4)
(6, 9, 5) 3497/1000 (249/500,−1/500, 0)
(7, 11, 6) 7/2 (49/250,−49/250, 4/125)
(8, 12, 6) 3497/1000 (0, 0, 0)
(10, 15, 7) 3497/1000 (71/250,−27/125, 17/500)
(8, 13, 7) 3497/1000 (1/4,−123/500, 1/4)
(10, 16, 8) 7/2 (1/4,−71/500, 4/125)
(12, 18, 8) 3497/1000 (62/125, 0, 0)
(13, 20, 9) 3497/1000 (1/4,−1/4, 31/125)
(14, 21, 9) 3497/1000 (141/500,−107/500, 17/500)
(11, 19, 10) 5/4 (1/4,−1/20, 24/125)
(16, 24, 10) 3497/1000 (1/4,−1/4, 1/25)
(15, 25, 12) 2 (1/4,−9/100, 1/20)
(18, 28, 12) 3497/1000 (1/4,−1/4, 1/4)
(22, 34, 14) 3497/1000 (1/4,−123/500, 1/500)
(24, 36, 14) 797/1000 (1/4,−1/4, 1/4)

Space group type (3, 4, 7, 1, 12); IT(138) = P42/ncm

Normalizer: IT(123) = P4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

Reduced fundamental domain:

R138 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/2, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 18 [BS01, Theorem 2.7] for points with
trivial stabilizer and f2 ≤ 134 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (249/500,−1/500, 1/4)
(7, 11, 6) 4/5 (41/100,−43/500, 0)
(8, 12, 6) 3497/1000 (0, 0, 1/4)
(10, 15, 7) 3497/1000 (12/25,−1/50, 23/100)
(6, 11, 7) 2 (1/4,−9/100, 1/20)
(8, 13, 7) 3497/1000 (1/4,−123/500, 1/500)
(10, 16, 8) 3497/1000 (62/125, 0, 1/4)
(12, 18, 8) 3497/1000 (249/500,−1/500, 0)
(12, 19, 9) 2 (17/50, 0, 1/5)
(13, 20, 9) 3497/1000 (1/2, 0, 57/250)
(14, 21, 9) 3497/1000 (34/125, 0, 31/125)
(9, 16, 9) 5/4 (1/2, 0, 9/100)
(14, 22, 10) 1/2 (3/20,−9/100, 1/20)
(15, 23, 10) 7/2 (87/250,−17/125, 121/500)
(16, 24, 10) 3497/1000 (58/125, 0, 29/125)
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f-vector b-ratio generating grid point
(18, 27, 11) 3497/1000 (62/125, 0, 31/125)
(18, 28, 12) 3497/1000 (0, 0, 0)
(20, 30, 12) 797/1000 (123/250, 0, 1/500)
(24, 36, 14) 797/1000 (0, 0, 0)

Space group type (3, 4, 7, 2, 1); IT(139) = I4/mmm

Normalizer: IT(123) = P4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

Reduced fundamental domain:

R139 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/2, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 8 [BS01, Theorem 2.4] for points with
trivial stabilizer and f2 ≤ 134 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(5, 8, 5) 7/2 (151/500,−1/500, 117/500)
(6, 9, 5) 3497/1000 (249/500,−1/500, 0)
(5, 9, 6) 7/2 (38/125, 0, 117/500)
(7, 11, 6) 3497/1000 (62/125, 0, 31/125)
(8, 12, 6) 3497/1000 (0, 0, 1/4)
(10, 15, 7) 3497/1000 (59/125, 0, 31/125)
(6, 11, 7) 4/5 (17/50, 0, 0)
(8, 13, 7) 3497/1000 (62/125, 0, 0)
(12, 18, 8) 797/1000 (17/100,−17/100, 0)
(13, 20, 9) 3497/1000 (0, 0, 26/125)
(14, 21, 9) 797/1000 (17/50, 0, 0)
(16, 24, 10) 3497/1000 (0, 0, 31/125)
(18, 28, 12) 3497/1000 (0, 0, 0)
(24, 36, 14) 797/1000 (0, 0, 0)

Space group type (3, 4, 7, 2, 2); IT(140) = I4/mcm

Normalizer: IT(123) = P4/mmm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

Reduced fundamental domain:

R140 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/2, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 8 [BS01, Theorem 2.4] for points with
trivial stabilizer and f2 ≤ 134 in general (Theorem 1.2.6).
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Remarks concerning lower bounds: Examples of stereohedra with 8 facets are
known for this group, see [BS01, Example 2.5].

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (249/500,−1/500, 1/4)
(8, 12, 6) 3497/1000 (0, 0, 0)
(7, 12, 7) 7/2 (28/125,−49/250, 31/125)
(9, 14, 7) 3497/1000 (247/500,−1/500, 123/500)
(10, 16, 8) 3497/1000 (247/500,−1/500, 0)
(11, 17, 8) 3497/1000 (47/100,−13/500, 31/125)
(12, 19, 9) 3497/1000 (249/500,−1/500, 31/125)
(9, 16, 9) 5/4 (2/5,−1/10, 101/500)
(14, 22, 10) 3497/1000 (237/500,−13/500, 31/125)
(14, 23, 11) 3497/1000 (249/500,−1/500, 0)
(18, 29, 13) 527/1000 (41/100,−9/100, 0)

Space group type (3, 4, 7, 2, 3); IT(141) = I41/amd

Normalizer: IT(134) = P42/nnm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

Reduced fundamental domain:

R141 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/2, 1/2, 0), (0, 0, 1/8),

(1/2, 0, 1/8), (1/2, 1/2, 1/8)
}

Upper bound on number of facets: f2 ≤ 18 [BS01, Theorem 2.7] for points with
trivial stabilizer and f2 ≤ 134 in general (Theorem 1.2.6).

Remarks concerning lower bounds: Examples of stereohedra with 18 facets are
known for this group, see [BS01, Example 2.9].

Metrical parameters: Initially we let the b-ratio vary from 1/2, . . . , 7/2 in 1001
steps of 3/1000. For each step we used 1 008 126 grid points in the ap-
proximating grid. An analysis of the results suggested that it would be
interesting to use a finer grid for the b-ratio 1/2. In this case, the approx-
imating grid had 1 000 981 800 points.

f-vector b-ratio generating grid point
(7, 11, 6) 7/2 (13/50, 9/50, 9/200)
(8, 12, 6) 3497/1000 (54/125, 54/125, 27/250)
(10, 15, 7) 3497/1000 (1/2, 0, 21/250)
(7, 12, 7) 4/5 (36/125, 1/25, 1/8)
(8, 13, 7) 3497/1000 (62/125, 0, 1/8)
(10, 16, 8) 4/5 (1/5, 2/125, 1/20)
(11, 17, 8) 7/2 (53/125, 53/125, 117/1000)
(12, 18, 8) 3497/1000 (0, 0, 0)
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f-vector b-ratio generating grid point
(9, 15, 8) 4/5 (19/50, 19/50, 1/8)
(12, 19, 9) 4/5 (1/25, 1/25, 1/8)
(13, 20, 9) 797/1000 (62/125, 0, 1/8)
(14, 21, 9) 3497/1000 (62/125, 62/125, 31/250)
(10, 18, 10) 2 (0, 0, 1/8)
(12, 20, 10) 3497/1000 (0, 0, 1/8)
(14, 22, 10) 797/1000 (19/50, 19/50, 1/8)
(15, 23, 10) 797/1000 (44/125, 17/250, 1/10)
(16, 24, 10) 797/1000 (26/125, 26/125, 1/8)
(15, 24, 11) 7/2 (1/2, 87/250, 117/1000)
(16, 25, 11) 797/1000 (62/125, 62/125, 0)
(17, 26, 11) 3497/1000 (1/2, 0, 13/125)
(18, 27, 11) 797/1000 (62/125, 0, 0)
(15, 25, 12) 4/5 (1/2, 19/50, 1/8)
(16, 26, 12) 5/4 (1/2, 7/25, 7/100)
(17, 27, 12) 797/1000 (56/125, 81/250, 3/25)
(18, 28, 12) 4/5 (47/125, 7/125, 2/25)
(19, 29, 12) 797/1000 (2/5, 19/50, 1/10)
(20, 30, 12) 3497/1000 (1/2, 62/125, 0)
(20, 31, 13) 797/1000 (0, 0, 1/8)
(21, 32, 13) 3497/1000 (1/2, 0, 31/250)
(22, 33, 13) 3497/1000 (1/2, 123/250, 1/1000)
(20, 32, 14) 797/1000 (1/2, 19/50, 1/8)
(21, 33, 14) 527/1000 (56/125, 81/250, 3/25)
(22, 34, 14) 4/5 (2/5, 12/125, 1/10)
(23, 35, 14) 797/1000 (1/2, 0, 31/250)
(24, 36, 14) 797/1000 (97/250, 97/250, 97/1000)
(23, 36, 15) 299/250 (1/2, 62/125, 1/500)
(24, 37, 15) 1/2 (53/125, 101/250, 3/50)
(25, 38, 15) 527/1000 (2/5, 2/5, 1/10)
(26, 39, 15) 797/1000 (101/250, 101/250, 101/1000)
(24, 38, 16) 797/1000 (1/2, 62/125, 0)
(26, 40, 16) 1/2 (103/250, 3/50, 1/20)
(28, 42, 16) 797/1000 (0, 0, 0)
(26, 41, 17) 5/4 (1/2, 3/10, 93/1000)
(27, 42, 17) 4/5 (1/2, 107/250, 3/40)
(29, 44, 17) 427/500 (1/2, 123/250, 11/1000)
(30, 45, 17) 797/1000 (62/125, 69/250, 121/1000)
(29, 45, 18) 1/2 (1/2, 865/2518, 3/10072)
(31, 47, 18) 797/1000 (1/2, 52/125, 13/125)
(32, 48, 18) 527/1000 (49/125, 49/125, 107/1000)
(30, 47, 19) 1157/1000 (1/2, 62/125, 1/500)
(31, 48, 19) 5/4 (1/2, 2/5, 8/125)
(33, 50, 19) 106/125 (1/2, 123/250, 11/1000)
(34, 51, 19) 797/1000 (1/2, 2/5, 1/10)
(33, 51, 20) 409/500 (1/2, 62/125, 1/500)
(36, 55, 21) 797/1000 (1/2, 62/125, 1/500)
(37, 56, 21) 959/1000 (1/2, 121/250, 3/200)
(38, 57, 21) 797/1000 (1/2, 47/125, 31/250)
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f-vector b-ratio generating grid point
(39, 60, 23) 4/5 (1/2, 119/250, 1/40)
(40, 61, 23) 1/2 (1/2, 629/1259, 1/5036)
(43, 65, 24) 797/1000 (1/2, 41/125, 41/500)
(44, 67, 25) 169/200 (1/2, 121/250, 3/200)
(46, 69, 25) 797/1000 (1/2, 93/250, 93/1000)
(47, 71, 26) 821/1000 (1/2, 62/125, 3/1000)
(50, 75, 27) 797/1000 (1/2, 89/250, 89/1000)
(54, 81, 29) 527/1000 (1/2, 89/250, 89/1000)

Space group type (3, 4, 7, 2, 4); IT(142) = I41/acd

Normalizer: IT(134) = P42/nnm with basis 1
2 (b′1 − b′2), 1

2 (b′1 + b′2), 1
2b
′
3

Reduced fundamental domain:

R142 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/2, 1/2, 0), (0, 0, 1/8),

(1/2, 0, 1/8), (1/2, 1/2, 1/8)
}

Upper bound on number of facets: f2 ≤ 80 [BS06, Corollary 3.5] for points with
trivial stabilizer and f2 ≤ 134 in general (Theorem 1.2.6).

Metrical parameters: Initially we let the b-ratio vary from 1/2, . . . , 7/2 in 1001
steps of 3/1000. For each step we used 1 008 126 grid points in the ap-
proximating grid. An analysis of the results suggested that it would be
interesting to use a finer grid for the b-ratio 253/500. In this case, the
approximating grid had 1 000 981 800 points.

f-vector b-ratio generating grid point
(7, 11, 6) 4/5 (1/2, 23/50, 1/8)
(8, 12, 6) 3497/1000 (0, 0, 1/8)
(12, 18, 8) 3497/1000 (1/2, 62/125, 0)
(13, 20, 9) 3497/1000 (1/2, 0, 13/125)
(10, 18, 10) 4/5 (23/50, 23/50, 1/8)
(16, 24, 10) 3497/1000 (1/2, 0, 31/250)
(11, 20, 11) 4/5 (3/10, 0, 1/8)
(12, 21, 11) 4/5 (1/25, 1/25, 1/8)
(13, 22, 11) 3497/1000 (62/125, 0, 1/8)
(17, 26, 11) 3497/1000 (1/2, 52/125, 13/125)
(15, 25, 12) 4/5 (47/250, 1/25, 1/8)
(16, 26, 12) 797/1000 (56/125, 0, 1/8)
(18, 28, 12) 3497/1000 (0, 0, 0)
(17, 28, 13) 527/1000 (111/250, 0, 1/8)
(18, 29, 13) 4/5 (123/250, 123/250, 1/40)
(20, 31, 13) 797/1000 (26/125, 26/125, 1/8)
(21, 32, 13) 527/1000 (1/5, 1/5, 1/8)
(19, 31, 14) 4/5 (11/25, 13/50, 1/8)
(20, 32, 14) 7/2 (1/2, 38/125, 4/125)
(21, 33, 14) 3497/1000 (23/50, 3/10, 0)
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f-vector b-ratio generating grid point
(22, 34, 14) 3497/1000 (62/125, 62/125, 0)
(23, 35, 14) 3497/1000 (93/250, 93/250, 0)
(24, 36, 14) 3497/1000 (109/250, 109/250, 109/1000)
(20, 33, 15) 2 (13/250, 9/250, 9/500)
(22, 35, 15) 7/2 (1/2, 87/250, 117/1000)
(23, 36, 15) 7/2 (57/125, 38/125, 4/125)
(24, 37, 15) 3497/1000 (1/2, 109/250, 109/1000)
(25, 38, 15) 797/1000 (103/250, 103/250, 0)
(26, 39, 15) 797/1000 (23/50, 23/50, 23/200)
(25, 39, 16) 3497/1000 (23/50, 3/10, 33/1000)
(27, 41, 16) 3497/1000 (1/2, 62/125, 31/250)
(28, 42, 16) 3497/1000 (93/250, 93/250, 93/1000)
(27, 42, 17) 7/2 (56/125, 101/250, 14/125)
(29, 44, 17) 7/2 (2/5, 63/250, 117/1000)
(30, 45, 17) 3497/1000 (58/125, 58/125, 29/250)
(26, 42, 18) 2 (11/25, 2/5, 19/500)
(29, 45, 18) 7/2 (87/250, 87/250, 117/1000)
(31, 47, 18) 3497/1000 (12/25, 2/125, 1/500)
(32, 48, 18) 3497/1000 (33/250, 33/250, 31/250)
(31, 48, 19) 3497/1000 (23/50, 3/10, 4/125)
(33, 50, 19) 3497/1000 (93/250, 93/250, 61/500)
(34, 51, 19) 3497/1000 (62/125, 62/125, 31/250)
(33, 51, 20) 3497/1000 (23/50, 3/10, 27/1000)
(35, 53, 20) 797/1000 (17/125, 17/125, 57/500)
(36, 54, 20) 3497/1000 (13/50, 13/50, 31/250)
(35, 54, 21) 1/2 (9/50, 9/50, 31/500)
(37, 56, 21) 7/2 (69/250, 31/250, 117/1000)
(38, 57, 21) 3497/1000 (93/250, 93/250, 31/250)
(40, 60, 22) 3497/1000 (27/250, 27/250, 7/1000)
(42, 63, 23) 3497/1000 (123/250, 13/50, 31/250)
(44, 66, 24) 797/1000 (4/25, 27/250, 113/1000)
(46, 69, 25) 503/1000 (31/125, 49/250, 1/500)

2.2.3 Trigonal groups

In the case of the trigonal and hexagonal crystal systems we need to apply a
change of basis to get cuboidal fundamental parallelepipeds for the sublattice L′.
The space groups of these systems are given in the IT with respect to sublattice
parallelepipeds of the following types:
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b′1 b′2

b′3

primitive
(P )

b′1 b′2

b′3

rhombohedral
(R)

The lengths of b′1 and b′2 have to be equal, the length of b′3 can be freely
chosen. The angle between b′1 and b′2 must be ∠(b′1, b

′
2) = 2π/3, the angles

between b′1 and b′3 and between b′2 and b′3 have to be ∠(b′1, b
′
3) = ∠(b′2, b

′
3) =

π/2. To obtain orthogonal fundamental cells, we need to apply a coordinate
transformation between

B′ = (b′1, b
′
2, b
′
3) and B′′ = (b′′1 , b

′′
2 , b
′′
3) = (2b′1 + b′2, b

′
2, b
′
3).

We get the new sublattice L′′ = 〈b′′1 , b′′2 , b′′3〉. Of course we have to apply this
transformation to the trigonal and hexagonal groups of the IT accordingly. The
basis exchange matrix X = XB′′→B′ is

X =

 2 0 0
1 1 0
0 0 1

 and X−1 =

 1/2 0 0
−1/2 1 0

0 0 1

 ,
and thus, if Γ is a trigonal or hexagonal group from the IT and (A, a) ∈ Γ is an
isometry, we have to work with the isometry (X−1AX,X−1a) instead. After the
coordinate transformation we have the following two orthogonal fundamental
parallelepiped types for sublattices:

b′′1

b′′2

b′′3

transformed
primitive

b′′1

b′′2

b′′3

transformed
rhombohedral

Here we need to have ‖b′′1‖ =
√

3‖b′′2‖, the length of b′′3 can be freely chosen, and
the angles between all pairs of vectors have to be π/2.

Space group type (3, 5, 1, 2, 1); IT(143) = P3

Normalizer: IT(191) = P 16/mmm with basis 2
3b
′
1 + 1

3b
′
2,− 1

3b
′
1 + 1

3b
′
2, εb

′
3
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Reduced fundamental domain:

R143 = conv
{

(0, 0, 0), (1/6, 0, 0), (1/6, 1/6, 0)
}

Upper bound on number of facets: f2 ≤ 30 (Theorem 1.2.6)

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
Since the fundamental domain was reduced by the normalizer to a 2-
dimensional polytope, the approximation is already similarly good for each
value ‖b

′
3‖/‖b′1‖ as our approximation in the case of cubic groups. Our grid

uses 1 000 405 points for each b-ratio.

f-vector b-ratio generating grid point
(8, 12, 6) 3497/1000 (1/6, 0, 0)
(12, 18, 8) 3497/1000 (0, 0, 0)

Space group type (3, 5, 1, 2, 2); IT(144) = P31, IT(145) = P32

Normalizer: IT(177) = P 1622 with basis 2
3b
′
1 + 1

3b
′
2,− 1

3b
′
1 + 1

3b
′
2, εb

′
3

Reduced fundamental domain:

R144 = conv
{

(0, 0, 0), (1/6, 0, 0), (1/6, 1/6, 0), (1/12, 1/4, 0)
}

Upper bound on number of facets: f2 ≤ 30 (Theorem 1.2.6)

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
Since the fundamental domain was reduced by the normalizer to a 2-
dimensional polytope, the approximation is already similarly good for each
value ‖b

′
3‖/‖b′1‖ as our approximation in the case of cubic groups. Our grid

uses 1 000 405 points for each b-ratio.

f-vector b-ratio generating grid point
(12, 18, 8) 3497/1000 (0, 0, 0)
(14, 24, 12) 3497/1000 (1/6, 1/6, 0)
(18, 28, 12) 3497/1000 (1997/11988, 1997/11988, 0)
(24, 36, 14) 3497/1000 (1/6, 0, 0)
(25, 39, 16) 1/2 (29/324, 25/108, 0)
(26, 40, 16) 797/1000 (35/666, 35/666, 0)
(28, 42, 16) 797/1000 (1/6, 0, 0)
(32, 48, 18) 797/1000 (11/111, 15/74, 0)
(36, 54, 20) 797/1000 (9/148, 1/12, 0)

Space group type (3, 5, 1, 1, 1); IT(146) = R3

Normalizer: IT(162) = P 13̄1m with basis 2
3b
′
1 + 1

3b
′
2,− 1

3b
′
1 + 1

3b
′
2, εb

′
3

Reduced fundamental domain:

R146 = conv
{

(0, 0, 0), (1/6, 0, 0), (1/6, 1/6, 0), (1/12, 1/4, 0)
}
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Upper bound on number of facets: f2 ≤ 30 (Theorem 1.2.6)

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
Since the fundamental domain was reduced by the normalizer to a 2-
dimensional polytope, the approximation is already similarly good for each
value ‖b

′
3‖/‖b′1‖ as our approximation in the case of cubic groups. Our grid

uses 1 000 000 points for each b-ratio.

f-vector b-ratio generating grid point
(12, 18, 8) 3497/1000 (1/6, 1/6, 0)
(8, 14, 8) 3497/1000 (1/6, 0, 0)
(12, 22, 12) 1/2 (5/36, 5/36, 0)
(14, 24, 12) 3497/1000 (0, 0, 0)
(15, 25, 12) 3497/1000 (5/37, 6/37, 0)
(19, 29, 12) 797/1000 (7/162, 7/54, 0)
(17, 29, 14) 1/2 (1769/11988, 659/3996, 0)
(18, 30, 14) 3497/1000 (250/2997, 749/2997, 0)
(19, 31, 14) 1/2 (1/9, 1/6, 0)
(20, 32, 14) 797/1000 (227/1998, 53/333, 0)
(21, 33, 14) 797/1000 (575/11988, 575/3996, 0)
(23, 35, 14) 797/1000 (941/11988, 421/3996, 0)
(24, 36, 14) 797/1000 (0, 0, 0)
(22, 36, 16) 797/1000 (461/3996, 205/1332, 0)
(23, 37, 16) 1/2 (1573/11988, 1757/11988, 0)
(24, 38, 16) 797/1000 (250/2997, 749/2997, 0)
(27, 41, 16) 797/1000 (575/5994, 32/333, 0)
(28, 44, 18) 527/1000 (1529/11988, 577/3996, 0)
(31, 47, 18) 797/1000 (31/324, 385/3996, 0)

Space group type (3, 5, 2, 2, 1); IT(147) = P 3̄

Normalizer: IT(191) = P6/mmm with basis b′1, b
′
2,

1
2b
′
3

Reduced fundamental domain:

R147 = conv
{

(0, 0, 0), (1/3, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/3, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 16 [BS06, Corollary 1.6] for points with
trivial stabilizer and f2 ≤ 54 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (1/3, 0, 0)
(7, 11, 6) 4/5 (29/100,−13/100, 1/4)
(8, 12, 6) 3497/1000 (1/4,−1/4, 0)
(10, 15, 7) 3497/1000 (33/100,−1/500, 0)
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f-vector b-ratio generating grid point
(12, 18, 8) 3497/1000 (0, 0, 0)
(6, 12, 8) 4/5 (4/25, 0, 1/4)
(8, 14, 8) 3497/1000 (124/375, 0, 1/4)
(14, 22, 10) 3497/1000 (124/375, 0, 3/250)
(13, 23, 12) 4/5 (36/125,−16/125, 1/4)
(14, 24, 12) 3497/1000 (1/3, 0, 1/4)
(17, 27, 12) 3497/1000 (33/100,−1/500, 1/125)
(18, 30, 14) 3497/1000 (1/3, 0, 7/500)
(21, 33, 14) 3497/1000 (33/100,−1/500, 3/250)

Space group type (3, 5, 2, 1, 1); IT(148) = R3̄

Normalizer: IT(166) = R3̄m with basis −b′1,−b′2, 1
2b
′
3

Reduced fundamental domain:

R148 = conv
{

(0, 0, 0), (−1/3, 0, 0), (−1/6,−1/2, 0), (0, 0, 1/12),

(−1/3, 0, 1/12), (−1/6,−1/2, 1/12)
}

Upper bound on number of facets: f2 ≤ 48 [BS06, Proposition 2.7] for points
with trivial stabilizer and f2 ≤ 54 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (−1/250,−1/250, 0)
(10, 15, 7) 797/1000 (−51/250,−51/250, 0)
(6, 11, 7) 7/2 (−49/375,−49/125, 4/125)
(7, 12, 7) 7/2 (−163/750,−87/250, 2/125)
(8, 13, 7) 3497/1000 (−1/750,−1/250, 1/12)
(12, 18, 8) 797/1000 (−1/250,−1/250, 0)
(6, 12, 8) 13/5 (−88/375, 0, 1/15)
(8, 14, 8) 3497/1000 (−1/375, 0, 1/12)
(11, 18, 9) 797/1000 (−1/15,−1/5, 1/12)
(14, 21, 9) 527/1000 (−29/125,−29/125, 0)
(13, 21, 10) 3497/1000 (−1/3, 0, 1/12)
(15, 23, 10) 797/1000 (−1/150,−1/250, 0)
(12, 21, 11) 5/4 (−4/15,−1/5, 19/750)
(13, 22, 11) 3497/1000 (−1/750,−1/250, 0)
(14, 23, 11) 3497/1000 (−83/250,−1/250, 0)
(16, 25, 11) 3497/1000 (−63/250,−61/250, 1/1500)
(11, 21, 12) 17/10 (−63/250,−9/50, 1/15)
(12, 22, 12) 7/2 (−49/375, 0, 1/125)
(13, 23, 12) 7/2 (−11/50,−1/50, 2/75)
(14, 24, 12) 3497/1000 (−1/6,−1/2, 1/12)
(15, 25, 12) 4/5 (−17/150,−37/250, 1/12)
(16, 26, 12) 3497/1000 (−1/150,−1/250, 0)
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f-vector b-ratio generating grid point
(19, 29, 12) 797/1000 (−7/750,−1/250, 0)
(15, 26, 13) 4/5 (−77/375, 0, 1/60)
(16, 27, 13) 4/5 (−91/375,−1/5, 1/20)
(17, 28, 13) 3497/1000 (−101/375, 0, 2/125)
(18, 29, 13) 3497/1000 (−14/125,−42/125, 41/1500)
(19, 30, 13) 3497/1000 (−1/6,−1/2, 0)
(20, 31, 13) 3497/1000 (−83/250,−1/250, 1/1500)
(17, 29, 14) 3497/1000 (−29/150,−17/50, 1/150)
(18, 30, 14) 3497/1000 (−59/250,−29/250, 11/750)
(19, 31, 14) 797/1000 (−29/150,−17/50, 1/150)
(20, 32, 14) 3497/1000 (−163/750,−1/250, 43/1500)
(21, 33, 14) 797/1000 (−23/375,−23/125, 79/1500)
(22, 34, 14) 797/1000 (−9/125, 0, 1/12)
(23, 35, 14) 797/1000 (−13/750,−1/250, 0)
(24, 36, 14) 797/1000 (−1/3, 0, 1/12)
(20, 33, 15) 4/5 (−97/375,−27/125, 1/20)
(21, 34, 15) 7/2 (−97/375,−16/125, 1/125)
(23, 36, 15) 527/1000 (−97/375,−1/5, 0)
(16, 30, 16) 5/4 (0, 0, 1/150)
(21, 35, 16) 3497/1000 (−9/50,−19/50, 1/50)
(22, 36, 16) 3497/1000 (−1/3, 0, 31/1500)
(23, 37, 16) 797/1000 (−21/250,−37/250, 77/1500)
(24, 38, 16) 3497/1000 (−83/375,−2/125, 2/75)
(26, 40, 16) 797/1000 (−1/250,−1/250, 1/12)
(25, 40, 17) 7/2 (−4/15,−17/125, 1/125)
(27, 42, 17) 797/1000 (−11/375,−11/125, 1/12)
(25, 41, 18) 68/25 (−104/375,−16/125, 1/60)
(27, 43, 18) 1/2 (−4/15,−4/25, 11/150)
(28, 44, 18) 3497/1000 (−41/125,−1/125, 1/1500)
(29, 45, 18) 797/1000 (−3/50,−9/50, 4/75)
(30, 46, 18) 797/1000 (−7/125,−21/125, 83/1500)
(29, 46, 19) 7/2 (−203/750,−7/50, 1/125)
(31, 48, 19) 3497/1000 (−1/6,−1/2, 1/1500)
(29, 47, 20) 47/25 (−217/750,−1/10, 1/30)
(32, 50, 20) 3497/1000 (−104/375,−4/25, 1/750)
(34, 52, 20) 797/1000 (−19/375,−19/125, 29/500)
(34, 53, 21) 797/1000 (−49/750,−49/250, 1/12)
(36, 56, 22) 3497/1000 (−199/750,−49/250, 1/250)
(38, 58, 22) 797/1000 (−13/50,−53/250, 6/125)
(42, 64, 24) 4/5 (−98/375,−26/125, 89/1500)
(46, 70, 26) 821/1000 (−98/375,−26/125, 7/125)

Space group type (3, 5, 3, 2, 1); IT(149) = P312

Normalizer: IT(191) = P6/mmm with basis 2
3b
′
1 + 1

3b
′
2,− 1

3b
′
1 + 1

3b
′
2,

1
2b
′
3
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Reduced fundamental domain:

R149 = conv
{

(0, 0, 0), (1/6, 0, 0), (1/6, 1/6, 0), (0, 0, 1/4),

(1/6, 0, 1/4), (1/6, 1/6, 1/4)
}

Upper bound on number of facets: f2 ≤ 16 [BS06, Corollary 1.6] for points with
trivial stabilizer and f2 ≤ 54 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (1/6, 1/6, 0)
(8, 12, 6) 3497/1000 (1/6, 0, 0)
(12, 18, 8) 3497/1000 (0, 0, 0)
(14, 24, 12) 3497/1000 (1/6, 1/6, 1/4)
(18, 30, 14) 3497/1000 (1/6, 1/6, 1/250)

Space group type (3, 5, 3, 3, 1); IT(150) = P321

Normalizer: IT(191) = P6/mmm with basis b′1, b
′
2,

1
2b
′
3

Reduced fundamental domain:

R150 = conv
{

(0, 0, 0), (1/3, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/3, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 16 [BS06, Corollary 1.6] for points with
trivial stabilizer and f2 ≤ 54 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (1/3, 0, 0)
(7, 11, 6) 4/5 (29/100,−13/100, 1/4)
(8, 12, 6) 3497/1000 (1/4,−1/4, 0)
(12, 18, 8) 3497/1000 (0, 0, 0)
(6, 12, 8) 4/5 (4/25, 0, 1/4)
(8, 14, 8) 3497/1000 (124/375, 0, 1/4)
(14, 22, 10) 3497/1000 (124/375, 0, 3/250)
(14, 24, 12) 3497/1000 (1/3, 0, 1/4)
(17, 29, 14) 4/5 (36/125,−16/125, 1/4)
(18, 30, 14) 3497/1000 (1/3, 0, 7/500)
(21, 33, 14) 3497/1000 (33/100,−1/500, 1/125)
(22, 36, 16) 3497/1000 (81/500,−57/500, 1/500)
(25, 39, 16) 3497/1000 (33/100,−1/500, 3/250)
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Space group type (3, 5, 3, 2, 2); IT(151) = P3112, IT(153) = P3212

Normalizer: IT(180) = P6222 with basis 2
3b
′
1 + 1

3b
′
2,− 1

3b
′
1 + 1

3b
′
2,

1
2b
′
3 (only the

normalizer for IT(151) but not for IT(153))

Reduced fundamental domain:

R151 = conv
{

(0, 0, 0), (1/3, 0, 0), (1/6, 1/2, 0), (0, 0, 1/12),

(1/3, 0, 1/12), (1/6, 1/2, 1/12)
}

Upper bound on number of facets: f2 ≤ 48 [BS06, Corollary 1.6] for points with
trivial stabilizer and f2 ≤ 54 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(12, 18, 8) 3497/1000 (0, 0, 0)
(12, 19, 9) 4/5 (1/75, 0, 23/300)
(13, 22, 11) 3497/1000 (62/375, 62/125, 0)
(18, 27, 11) 3497/1000 (62/375, 62/125, 1/12)
(16, 26, 12) 797/1000 (23/150, 23/50, 0)
(18, 30, 14) 4/5 (133/750, 53/250, 0)
(20, 32, 14) 797/1000 (109/750, 109/250, 1/12)
(22, 34, 14) 3497/1000 (1/6, 123/250, 0)
(24, 36, 14) 3497/1000 (21/125, 62/125, 31/375)
(22, 35, 15) 3497/1000 (4/75, 4/25, 2/75)
(23, 36, 15) 4/5 (13/75, 12/25, 23/300)
(25, 38, 15) 797/1000 (67/375, 57/125, 0)
(24, 38, 16) 797/1000 (193/750, 13/250, 0)
(25, 39, 16) 4/5 (169/750, 13/50, 39/500)
(27, 41, 16) 797/1000 (6/25, 18/125, 1/12)
(28, 42, 16) 797/1000 (13/75, 12/25, 2/25)
(27, 42, 17) 4/5 (7/30, 11/50, 23/300)
(29, 44, 17) 797/1000 (13/50, 39/250, 1/12)
(30, 45, 17) 3497/1000 (7/25, 4/25, 2/75)
(29, 45, 18) 4/5 (1/6, 23/50, 23/300)
(31, 47, 18) 797/1000 (2/75, 2/125, 1/12)
(32, 48, 18) 3497/1000 (19/75, 6/25, 1/25)
(31, 48, 19) 4/5 (4/15, 9/125, 6/125)
(34, 51, 19) 797/1000 (47/150, 1/50, 2/25)
(33, 51, 20) 4/5 (34/125, 8/125, 9/250)
(35, 53, 20) 797/1000 (101/375, 8/125, 16/375)
(36, 54, 20) 3497/1000 (6/125, 16/125, 17/750)
(38, 57, 21) 797/1000 (223/750, 7/250, 2/375)
(40, 60, 22) 797/1000 (113/375, 1/125, 1/300)
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Space group type (3, 5, 3, 3, 2); IT(152) = P3121, IT(154) = P3221

Normalizer: IT(180) = P6222 with basis b′1 + b′2,−b′1, 1
2b
′
3 (only the normalizer

for IT(152) but not for IT(154))

Reduced fundamental domain:

R152 = conv
{

(0, 0, 0), (1/2, 1/2, 0), (0, 1, 0), (0, 0, 1/12),

(1/2, 1/2, 1/12), (0, 1, 1/12)
}

Upper bound on number of facets: f2 ≤ 48 [BS06, Corollary 1.6] for points with
trivial stabilizer and f2 ≤ 54 in general (Theorem 1.2.6).

Remarks concerning lower bounds: Lemma 4.2 in [BS06] implies that there ex-
ists a stereohedron with at least 13 facets for this group.

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(12, 18, 8) 3497/1000 (0, 0, 0)
(15, 23, 10) 3497/1000 (62/125, 62/125, 1/12)
(13, 22, 11) 3497/1000 (31/125, 93/125, 0)
(15, 24, 11) 2 (1/5, 1/5, 7/150)
(18, 27, 11) 3497/1000 (83/250, 83/250, 1/12)
(15, 25, 12) 7/5 (3/50, 1/10, 3/50)
(16, 26, 12) 797/1000 (31/125, 93/125, 0)
(18, 28, 12) 3497/1000 (62/125, 63/125, 1/12)
(18, 29, 13) 3497/1000 (21/125, 62/125, 0)
(19, 30, 13) 797/1000 (3/125, 6/125, 1/12)
(21, 32, 13) 3497/1000 (83/250, 33/50, 1/12)
(19, 31, 14) 17/10 (111/250, 113/250, 4/375)
(20, 32, 14) 797/1000 (59/250, 177/250, 0)
(21, 33, 14) 7/2 (9/50, 31/50, 22/375)
(22, 34, 14) 3497/1000 (83/250, 167/250, 0)
(23, 35, 14) 3497/1000 (71/250, 121/250, 19/1500)
(24, 36, 14) 3497/1000 (83/250, 167/250, 1/12)
(18, 31, 15) 797/1000 (27/125, 44/125, 0)
(22, 35, 15) 3497/1000 (1/250, 247/250, 0)
(23, 36, 15) 4/5 (3/125, 121/125, 7/1500)
(25, 38, 15) 3497/1000 (62/125, 63/125, 0)
(26, 39, 15) 797/1000 (54/125, 61/125, 1/12)
(24, 38, 16) 3497/1000 (0, 41/125, 41/1500)
(25, 39, 16) 4/5 (28/125, 89/125, 61/1500)
(26, 40, 16) 3497/1000 (4/25, 21/25, 31/750)
(27, 41, 16) 3497/1000 (7/25, 53/125, 0)
(28, 42, 16) 3497/1000 (61/250, 189/250, 61/1500)
(23, 38, 17) 2 (0, 3/5, 7/100)
(26, 41, 17) 4/5 (22/125, 54/125, 9/125)
(27, 42, 17) 3497/1000 (0, 11/25, 11/300)

89



f-vector b-ratio generating grid point
(28, 43, 17) 797/1000 (23/125, 46/125, 1/30)
(29, 44, 17) 3497/1000 (0, 3/5, 1/60)
(30, 45, 17) 3497/1000 (49/250, 187/250, 49/1500)
(25, 41, 18) 4/5 (37/250, 117/250, 9/125)
(27, 43, 18) 797/1000 (59/250, 19/50, 0)
(28, 44, 18) 4/5 (41/250, 121/250, 9/250)
(29, 45, 18) 4/5 (11/50, 101/250, 61/1500)
(30, 46, 18) 3497/1000 (12/125, 53/125, 2/125)
(31, 47, 18) 3497/1000 (41/125, 16/25, 59/1500)
(32, 48, 18) 3497/1000 (0, 83/125, 1/1500)
(28, 45, 19) 4/5 (4/25, 11/25, 23/300)
(30, 47, 19) 797/1000 (57/250, 119/250, 0)
(31, 48, 19) 3497/1000 (0, 13/25, 43/1500)
(32, 49, 19) 797/1000 (27/125, 39/125, 1/60)
(33, 50, 19) 3497/1000 (41/250, 209/250, 41/1500)
(34, 51, 19) 3497/1000 (1/5, 4/5, 1/30)
(30, 48, 20) 4/5 (4/25, 53/125, 22/375)
(33, 51, 20) 1/2 (4/125, 2/5, 16/375)
(35, 53, 20) 797/1000 (22/125, 11/25, 1/12)
(36, 54, 20) 3497/1000 (24/125, 101/125, 4/125)
(32, 51, 21) 29/25 (29/250, 21/50, 23/300)
(35, 54, 21) 4/5 (9/50, 83/250, 7/1500)
(37, 56, 21) 3497/1000 (6/125, 98/125, 1/125)
(38, 57, 21) 797/1000 (109/250, 23/50, 1/12)
(34, 54, 22) 14/25 (49/250, 19/50, 23/300)
(37, 57, 22) 136/125 (7/50, 101/250, 1/12)
(39, 59, 22) 797/1000 (43/250, 109/250, 1/12)
(40, 60, 22) 3497/1000 (13/250, 177/250, 13/1500)
(41, 62, 23) 797/1000 (53/250, 73/250, 61/1500)
(42, 63, 23) 797/1000 (21/125, 53/125, 1/12)
(43, 65, 24) 1037/1000 (51/250, 73/250, 53/1500)
(44, 66, 24) 797/1000 (41/250, 109/250, 1/12)
(45, 68, 25) 527/1000 (57/250, 71/250, 43/1500)
(46, 69, 25) 797/1000 (1/5, 37/125, 1/50)

Space group type (3, 5, 3, 1, 1); IT(155) = R32

Normalizer: IT(166) = R3̄m with basis −b′1,−b′2, 1
2b
′
3

Reduced fundamental domain:

R155 = conv
{

(0, 0, 0), (−1/3, 0, 0), (−1/6,−1/2, 0), (0, 0, 1/12),

(−1/3, 0, 1/12), (−1/6,−1/2, 1/12)
}

Upper bound on number of facets: f2 ≤ 42 [BS06, Proposition 2.7] for points
with trivial stabilizer and f2 ≤ 54 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.
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f-vector b-ratio generating grid point
(6, 11, 7) 7/2 (−49/375,−49/125, 4/125)
(7, 12, 7) 7/2 (−163/750,−87/250, 2/125)
(8, 13, 7) 3497/1000 (−1/750,−1/250, 1/12)
(10, 16, 8) 3497/1000 (−247/750,−1/250, 0)
(6, 12, 8) 13/5 (−88/375, 0, 1/15)
(8, 14, 8) 3497/1000 (−1/375, 0, 1/12)
(11, 18, 9) 7/2 (−38/375,−29/125, 2/125)
(13, 20, 9) 797/1000 (−247/750,−1/250, 0)
(13, 21, 10) 3497/1000 (−1/3, 0, 1/12)
(11, 20, 11) 4/5 (−71/375,−2/125, 0)
(12, 21, 11) 5/4 (−4/15,−1/5, 19/750)
(13, 22, 11) 3497/1000 (−1/750,−1/250, 0)
(14, 23, 11) 3497/1000 (−83/250,−1/250, 0)
(15, 24, 11) 3497/1000 (−1/250,−1/250, 1/12)
(16, 25, 11) 3497/1000 (−63/250,−61/250, 1/1500)
(12, 22, 12) 7/2 (−49/375, 0, 1/125)
(14, 24, 12) 3497/1000 (−1/6,−1/2, 1/12)
(15, 25, 12) 4/5 (−17/150,−17/250, 1/12)
(16, 26, 12) 797/1000 (−1/750,−1/250, 0)
(14, 25, 13) 7/2 (−26/375,−1/5, 2/125)
(15, 26, 13) 4/5 (−77/375, 0, 1/60)
(16, 27, 13) 4/5 (−61/750,−61/250, 1/30)
(17, 28, 13) 3497/1000 (−101/375, 0, 2/125)
(18, 29, 13) 3497/1000 (−14/125,−42/125, 41/1500)
(19, 30, 13) 3497/1000 (−1/6,−1/2, 0)
(20, 31, 13) 3497/1000 (−83/250,−1/250, 1/1500)
(15, 27, 14) 7/5 (−67/375,−29/125, 1/15)
(16, 28, 14) 4/5 (−77/375,−24/125, 1/60)
(17, 29, 14) 7/2 (−11/50,−1/50, 2/75)
(18, 30, 14) 3497/1000 (−2/375,−1/125, 1/12)
(19, 31, 14) 3497/1000 (−247/750,−1/250, 1/1500)
(20, 32, 14) 797/1000 (−43/375, 0, 1/12)
(21, 33, 14) 797/1000 (−23/375,−23/125, 79/1500)
(22, 34, 14) 797/1000 (−9/125, 0, 1/12)
(24, 36, 14) 797/1000 (−1/3, 0, 1/12)
(19, 32, 15) 7/2 (−49/375,−31/125, 4/375)
(20, 33, 15) 527/1000 (−203/750,−47/250, 0)
(21, 34, 15) 3497/1000 (−32/125,−11/125, 3/250)
(22, 35, 15) 3497/1000 (−67/250,−1/250, 2/125)
(23, 36, 15) 3497/1000 (−121/750,−43/250, 1/1500)
(24, 37, 15) 797/1000 (−1/150,−3/250, 1/12)
(16, 30, 16) 5/4 (0, 0, 1/150)
(19, 33, 16) 4/5 (−76/375,−22/125, 1/20)
(21, 35, 16) 4/5 (−103/750,−7/50, 1/20)
(22, 36, 16) 3497/1000 (−1/3, 0, 31/1500)
(23, 37, 16) 797/1000 (−2/25,−4/25, 1/20)
(24, 38, 16) 3497/1000 (−163/750,−1/250, 43/1500)
(25, 39, 16) 797/1000 (−81/250,−3/250, 0)
(26, 40, 16) 797/1000 (−2/375, 0, 1/1500)
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f-vector b-ratio generating grid point
(23, 38, 17) 797/1000 (−46/375,−19/125, 1/12)
(24, 39, 17) 4/5 (−163/750,−9/50, 1/60)
(25, 40, 17) 3497/1000 (−1/6,−77/250, 2/125)
(26, 41, 17) 3497/1000 (−77/250,−7/250, 1/250)
(27, 42, 17) 797/1000 (−11/375,−11/125, 1/12)
(28, 43, 17) 797/1000 (−4/125,−11/125, 1/12)
(25, 41, 18) 4/5 (−13/150,−9/50, 1/12)
(27, 43, 18) 4/5 (−91/375,−1/5, 1/20)
(28, 44, 18) 3497/1000 (−82/375,−1/125, 7/250)
(29, 45, 18) 797/1000 (−3/50,−9/50, 4/75)
(30, 46, 18) 797/1000 (−7/125,−21/125, 83/1500)
(26, 43, 19) 2 (−32/125,−24/125, 3/250)
(27, 44, 19) 7/2 (−181/750,−37/250, 1/375)
(28, 45, 19) 797/1000 (−44/375,−19/125, 1/12)
(29, 46, 19) 3497/1000 (−191/750,−31/250, 7/750)
(30, 47, 19) 3497/1000 (−39/125,−3/125, 1/300)
(31, 48, 19) 3497/1000 (−1/6,−1/2, 1/1500)
(32, 49, 19) 797/1000 (−1/30,−23/250, 1/12)
(29, 47, 20) 44/25 (−33/125,−1/5, 1/60)
(31, 49, 20) 4/5 (−76/375,−24/125, 1/300)
(32, 50, 20) 3497/1000 (−41/125,−1/125, 1/1500)
(33, 51, 20) 797/1000 (−28/375,−23/125, 1/12)
(34, 52, 20) 797/1000 (−19/375,−19/125, 29/500)
(31, 50, 21) 7/2 (−101/375,−22/125, 2/375)
(32, 51, 21) 7/5 (−103/375,−18/125, 1/20)
(33, 52, 21) 3497/1000 (−19/75,−4/25, 1/150)
(34, 53, 21) 3497/1000 (−79/250,−1/50, 1/375)
(35, 54, 21) 797/1000 (−13/150,−7/50, 1/12)
(36, 55, 21) 797/1000 (−17/375,−16/125, 1/12)
(33, 53, 22) 7/2 (−197/750,−47/250, 1/250)
(35, 55, 22) 4/5 (−86/375,−26/125, 1/60)
(36, 56, 22) 3497/1000 (−199/750,−37/250, 7/1500)
(38, 58, 22) 797/1000 (−26/375,−24/125, 1/12)
(38, 59, 23) 3497/1000 (−98/375,−16/125, 11/1500)
(40, 61, 23) 797/1000 (−53/750,−43/250, 1/12)
(39, 61, 24) 7/8 (−8/125,−22/125, 61/750)
(40, 62, 24) 3497/1000 (−33/125,−22/125, 7/1500)
(42, 64, 24) 797/1000 (−19/250,−39/250, 1/12)
(44, 67, 25) 797/1000 (−1/15,−24/125, 1/12)
(48, 73, 27) 797/1000 (−193/750,−53/250, 6/125)

Space group type (3, 5, 4, 2, 1); IT(156) = P3m1

Normalizer: IT(191) = P 16/mmm with basis 2
3b
′
1 + 1

3b
′
2,− 1

3b
′
1 + 1

3b
′
2, εb

′
3

Reduced fundamental domain:

R156 = conv
{

(0, 0, 0), (1/6, 0, 0), (1/6, 1/6, 0)
}
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Upper bound on number of facets: f2 ≤ 18 [BS01, Theorem 2.7] for points with
trivial stabilizer and f2 ≤ 54 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
Since the fundamental domain was reduced by the normalizer to a 2-
dimensional polytope, the approximation is already similarly good for each
value ‖b

′
3‖/‖b′1‖ as our approximation in the case of cubic groups. Our grid

uses 1 000 405 points for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (1/6, 1/6, 0)
(8, 12, 6) 3497/1000 (1/6, 0, 0)
(12, 18, 8) 3497/1000 (0, 0, 0)

Space group type (3, 5, 4, 3, 1); IT(157) = P31m

Normalizer: IT(191) = P 16/mmm with basis b′1, b
′
2, εb

′
3

Reduced fundamental domain:

R157 = conv
{

(0, 0, 0), (1/3, 0, 0), (1/4,−1/4, 0)
}

Upper bound on number of facets: f2 ≤ 18 [BS01, Theorem 2.7] for points with
trivial stabilizer and f2 ≤ 54 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
Since the fundamental domain was reduced by the normalizer to a 2-
dimensional polytope, the approximation is already similarly good for each
value ‖b

′
3‖/‖b′1‖ as our approximation in the case of cubic groups. Our grid

uses 1 000 405 points for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (1/3, 0, 0)
(8, 12, 6) 3497/1000 (1/4,−1/4, 0)
(12, 18, 8) 3497/1000 (0, 0, 0)

Space group type (3, 5, 4, 2, 2); IT(158) = P3c1

Normalizer: IT(191) = P 16/mmm with basis 2
3b
′
1 + 1

3b
′
2,− 1

3b
′
1 + 1

3b
′
2, εb

′
3

Reduced fundamental domain:

R158 = conv
{

(0, 0, 0), (1/6, 0, 0), (1/6, 1/6, 0)
}

Upper bound on number of facets: f2 ≤ 16 [BS06, Corollary 1.6] for points with
trivial stabilizer and f2 ≤ 54 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
Since the fundamental domain was reduced by the normalizer to a 2-
dimensional polytope, the approximation is already similarly good for each
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value ‖b
′
3‖/‖b′1‖ as our approximation in the case of cubic groups. Our grid

uses 1 000 405 points for each b-ratio.

f-vector b-ratio generating grid point
(8, 12, 6) 3497/1000 (1/6, 0, 0)
(12, 18, 8) 3497/1000 (0, 0, 0)
(14, 24, 12) 3497/1000 (1/6, 1/6, 0)
(18, 30, 14) 527/1000 (1/6, 1/6, 0)

Space group type (3, 5, 4, 3, 2); IT(159) = P31c

Normalizer: IT(191) = P 16/mmm with basis b′1, b
′
2, εb

′
3

Reduced fundamental domain:

R159 = conv
{

(0, 0, 0), (1/3, 0, 0), (1/4,−1/4, 0)
}

Upper bound on number of facets: f2 ≤ 16 [BS06, Corollary 1.6] for points with
trivial stabilizer and f2 ≤ 54 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
Since the fundamental domain was reduced by the normalizer to a 2-
dimensional polytope, the approximation is already similarly good for each
value ‖b

′
3‖/‖b′1‖ as our approximation in the case of cubic groups. Our grid

uses 1 000 405 points for each b-ratio.

f-vector b-ratio generating grid point
(8, 12, 6) 3497/1000 (1/4,−1/4, 0)
(12, 18, 8) 3497/1000 (0, 0, 0)
(8, 14, 8) 3497/1000 (1412/4239, 0, 0)
(14, 22, 10) 797/1000 (1412/4239, 0, 0)
(14, 24, 12) 3497/1000 (1/3, 0, 0)
(18, 30, 14) 3497/1000 (5647/16956,−1/5652, 0)
(21, 33, 14) 797/1000 (5647/16956,−1/5652, 0)
(22, 36, 16) 797/1000 (703/4239,−10/1413, 0)
(25, 39, 16) 797/1000 (5645/16956,−1/1884, 0)

Space group type (3, 5, 4, 1, 1); IT(160) = R3m

Normalizer: IT(162) = P 13̄1m with basis 2
3b
′
1 + 1

3b
′
2,− 1

3b
′
1 + 1

3b
′
2, εb

′
3

Reduced fundamental domain:

R160 = conv
{

(0, 0, 0), (1/6, 0, 0), (1/6, 1/6, 0), (1/12, 1/4, 0)
}

Upper bound on number of facets: f2 ≤ 18 [BS01, Theorem 2.7] for points with
trivial stabilizer and f2 ≤ 54 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
Since the fundamental domain was reduced by the normalizer to a 2-
dimensional polytope, the approximation is already similarly good for each
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value ‖b
′
3‖/‖b′1‖ as our approximation in the case of cubic groups. Our grid

uses 1 000 000 points for each b-ratio.

f-vector b-ratio generating grid point
(4, 6, 4) 1/2 (5/36, 5/36, 0)
(5, 8, 5) 1/2 (1831/11988, 721/3996, 0)
(6, 9, 5) 3497/1000 (1/6, 1/6, 0)
(7, 11, 6) 1/2 (1/9, 1/6, 0)
(10, 15, 7) 797/1000 (250/2997, 749/2997, 0)
(8, 13, 7) 1/2 (1/9, 2/9, 0)
(9, 14, 7) 1/2 (1333/11988, 1997/11988, 0)
(10, 16, 8) 1/2 (443/3996, 667/3996, 0)
(12, 18, 8) 797/1000 (383/3996, 383/3996, 0)
(8, 14, 8) 3497/1000 (1/6, 0, 0)
(9, 15, 8) 1/2 (38/333, 53/333, 0)
(14, 21, 9) 797/1000 (575/5994, 32/333, 0)
(14, 24, 12) 3497/1000 (0, 0, 0)
(19, 29, 12) 797/1000 (7/162, 7/54, 0)
(20, 32, 14) 527/1000 (1/6, 0, 0)
(21, 33, 14) 797/1000 (575/11988, 575/3996, 0)
(24, 36, 14) 797/1000 (0, 0, 0)

Space group type (3, 5, 4, 1, 2); IT(161) = R3c

Normalizer: IT(162) = P 13̄1m with basis 2
3b
′
1 + 1

3b
′
2,− 1

3b
′
1 + 1

3b
′
2, εb

′
3

Reduced fundamental domain:

R161 = conv
{

(0, 0, 0), (1/6, 0, 0), (1/6, 1/6, 0), (1/12, 1/4, 0)
}

Upper bound on number of facets: f2 ≤ 42 [BS06, Proposition 2.7] for points
with trivial stabilizer and f2 ≤ 54 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
Since the fundamental domain was reduced by the normalizer to a 2-
dimensional polytope, the approximation is already similarly good for each
value ‖b

′
3‖/‖b′1‖ as our approximation in the case of cubic groups. Our grid

uses 1 000 000 points for each b-ratio.

f-vector b-ratio generating grid point
(8, 14, 8) 3497/1000 (1/6, 0, 0)
(8, 16, 10) 2 (1/18, 1/18, 0)
(11, 21, 12) 2 (1/6, 1/6, 0)
(13, 23, 12) 2 (1/9, 2/9, 0)
(14, 24, 12) 3497/1000 (0, 0, 0)
(19, 29, 12) 797/1000 (893/11988, 893/3996, 0)
(18, 30, 14) 797/1000 (1/6, 1/6, 0)
(19, 31, 14) 2 (221/3996, 223/3996, 0)
(20, 32, 14) 797/1000 (1/6, 0, 0)
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f-vector b-ratio generating grid point
(21, 33, 14) 709/500 (166/2997, 166/999, 0)
(22, 34, 14) 797/1000 (1211/11988, 787/3996, 0)
(24, 36, 14) 797/1000 (0, 0, 0)
(24, 38, 16) 797/1000 (787/5994, 605/2997, 0)
(26, 40, 16) 797/1000 (1271/11988, 727/3996, 0)
(28, 44, 18) 797/1000 (565/3996, 211/1332, 0)
(30, 46, 18) 1397/1000 (1331/11988, 455/3996, 0)
(32, 50, 20) 527/1000 (428/2997, 1081/5994, 0)

Space group type (3, 5, 5, 2, 1); IT(162) = P 3̄1m

Normalizer: IT(191) = P6/mmm with basis b′1, b
′
2,

1
2b
′
3

Reduced fundamental domain:

R162 = conv
{

(0, 0, 0), (1/3, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/3, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 18 [BS01, Theorem 2.7] for points with
trivial stabilizer and f2 ≤ 102 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (1/3, 0, 0)
(8, 12, 6) 3497/1000 (1/4,−1/4, 0)
(10, 16, 8) 3497/1000 (33/100,−1/500, 1/4)
(12, 18, 8) 3497/1000 (0, 0, 0)
(8, 14, 8) 4/5 (3/25,−8/125, 1/20)
(14, 22, 10) 3497/1000 (88/375,−29/125, 1/500)
(14, 24, 12) 3497/1000 (31/125,−31/125, 1/4)
(18, 30, 14) 3497/1000 (117/500,−117/500, 1/500)

Space group type (3, 5, 5, 2, 2); IT(163) = P 3̄1c

Normalizer: IT(191) = P6/mmm with basis b′1, b
′
2,

1
2b
′
3

Reduced fundamental domain:

R163 = conv
{

(0, 0, 0), (1/3, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/3, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 32 [BS06, Corollary 1.6] for points with
trivial stabilizer and f2 ≤ 102 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.
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f-vector b-ratio generating grid point
(5, 8, 5) 4/5 (36/125,−16/125, 1/4)
(6, 9, 5) 3497/1000 (1/3, 0, 0)
(7, 11, 6) 4/5 (29/100,−13/100, 1/4)
(8, 12, 6) 3497/1000 (1/4,−1/4, 0)
(10, 15, 7) 3497/1000 (499/1500,−1/500, 13/500)
(6, 11, 7) 4/5 (16/125, 0, 1/5)
(8, 13, 7) 3497/1000 (124/375, 0, 31/125)
(11, 17, 8) 3497/1000 (124/375, 0, 13/500)
(12, 18, 8) 3497/1000 (0, 0, 0)
(6, 12, 8) 4/5 (4/25, 0, 1/4)
(8, 14, 8) 3497/1000 (124/375, 0, 1/4)
(10, 18, 10) 2 (11/50,−1/50, 1/20)
(13, 21, 10) 3497/1000 (1/3, 0, 31/125)
(14, 22, 10) 797/1000 (124/375, 0, 1/4)
(14, 23, 11) 3497/1000 (33/100,−1/500, 0)
(15, 24, 11) 3497/1000 (1/3, 0, 13/500)
(11, 21, 12) 5/4 (3/25,−3/25, 3/25)
(13, 23, 12) 4/5 (29/125,−13/125, 1/5)
(14, 24, 12) 3497/1000 (1/3, 0, 1/4)
(18, 30, 14) 3497/1000 (121/500,−121/500, 1/500)
(20, 32, 14) 3497/1000 (33/100,−1/500, 2/125)
(24, 38, 16) 3497/1000 (33/100,−1/500, 13/500)

Space group type (3, 5, 5, 3, 1); IT(164) = P 3̄m1

Normalizer: IT(191) = P6/mmm with basis b′1, b
′
2,

1
2b
′
3

Reduced fundamental domain:

R164 = conv
{

(0, 0, 0), (1/3, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/3, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 18 [BS01, Theorem 2.7] for points with
trivial stabilizer and f2 ≤ 102 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(5, 8, 5) 4/5 (36/125,−16/125, 1/4)
(6, 9, 5) 3497/1000 (1/3, 0, 0)
(7, 11, 6) 4/5 (29/100,−13/100, 1/4)
(8, 12, 6) 3497/1000 (1/4,−1/4, 0)
(10, 15, 7) 3497/1000 (33/100,−1/500, 3/250)
(12, 18, 8) 3497/1000 (0, 0, 0)
(6, 12, 8) 4/5 (4/25, 0, 1/4)
(8, 14, 8) 3497/1000 (124/375, 0, 1/4)
(14, 22, 10) 3497/1000 (124/375, 0, 3/250)
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f-vector b-ratio generating grid point
(14, 24, 12) 3497/1000 (1/3, 0, 1/4)
(18, 30, 14) 3497/1000 (1/3, 0, 7/500)

Space group type (3, 5, 5, 3, 2); IT(165) = P 3̄c1

Normalizer: IT(191) = P6/mmm with basis b′1, b
′
2,

1
2b
′
3

Reduced fundamental domain:

R165 = conv
{

(0, 0, 0), (1/3, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/3, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 32 [BS06, Corollary 1.6] for points with
trivial stabilizer and f2 ≤ 102 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (1/3, 0, 0)
(7, 11, 6) 2 (29/100,−13/100, 1/5)
(8, 12, 6) 3497/1000 (1/4,−1/4, 0)
(10, 16, 8) 3497/1000 (33/100,−1/500, 1/4)
(12, 18, 8) 3497/1000 (0, 0, 0)
(6, 12, 8) 2 (4/25, 0, 1/5)
(8, 14, 8) 3497/1000 (37/125, 0, 111/500)
(10, 18, 10) 5/4 (1/5,−1/5, 8/125)
(13, 21, 10) 3497/1000 (31/125,−31/125, 31/125)
(14, 22, 10) 3497/1000 (124/375, 0, 31/125)
(14, 23, 11) 3497/1000 (33/100,−1/500, 0)
(15, 24, 11) 3497/1000 (121/500,−121/500, 1/500)
(14, 24, 12) 3497/1000 (31/125,−31/125, 1/4)
(15, 26, 13) 7/2 (23/125,−7/125, 1/250)
(16, 27, 13) 3497/1000 (161/500,−13/500, 111/500)
(18, 30, 14) 3497/1000 (1/3, 0, 31/125)
(20, 32, 14) 3497/1000 (36/125,−13/125, 1/500)
(17, 30, 15) 4/5 (6/25,−28/125, 7/100)
(20, 33, 15) 3497/1000 (307/1500,−97/500, 1/125)
(22, 35, 15) 3497/1000 (33/100,−1/500, 123/500)
(24, 38, 16) 527/1000 (59/250,−43/250, 31/125)
(26, 41, 17) 3497/1000 (41/125,−1/125, 6/25)
(26, 42, 18) 3497/1000 (91/375,−6/25, 1/500)

Space group type (3, 5, 5, 1, 1); IT(166) = R3̄m

Normalizer: IT(166) = R3̄m with basis −b′1,−b′2, 1
2b
′
3; so the normalizer is iden-

tical with the group itself but the basis is different.
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Reduced fundamental domain:

R166 = conv
{

(0, 0, 0), (−1/3, 0, 0), (−1/6,−1/2, 0), (0, 0, 1/12),

(−1/3, 0, 1/12), (−1/6,−1/2, 1/12)
}

Upper bound on number of facets: f2 ≤ 18 [BS01, Theorem 2.7] for points with
trivial stabilizer and f2 ≤ 102 in general (Theorem 1.2.6).

Remarks concerning lower bounds: In Dress et al. [DHM93] a stereohedron with
6 facets for this group is presented.

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(5, 8, 5) 7/2 (−11/50,−1/50, 2/75)
(6, 9, 5) 3497/1000 (−1/250,−1/250, 1/12)
(8, 12, 6) 797/1000 (−59/750,−49/250, 1/12)
(10, 15, 7) 3497/1000 (−163/750,−1/250, 43/1500)
(6, 11, 7) 7/2 (−49/375,−49/125, 4/125)
(7, 12, 7) 7/2 (−163/750,−87/250, 2/125)
(8, 13, 7) 3497/1000 (−1/750,−1/250, 1/12)
(9, 14, 7) 3497/1000 (−1/150,−1/250, 0)
(10, 16, 8) 4/5 (−17/150,−9/250, 1/12)
(11, 17, 8) 797/1000 (−19/375,−16/125, 1/12)
(12, 18, 8) 3497/1000 (−67/250,−1/250, 2/125)
(6, 12, 8) 13/5 (−88/375, 0, 1/15)
(8, 14, 8) 3497/1000 (−1/375, 0, 1/12)
(11, 18, 9) 797/1000 (−1/15,−1/5, 1/12)
(12, 19, 9) 797/1000 (−1/150,−1/250, 0)
(13, 20, 9) 797/1000 (−17/375,−8/125, 1/150)
(14, 21, 9) 797/1000 (−19/250,−1/250, 1/12)
(13, 21, 10) 3497/1000 (−1/3, 0, 1/12)
(14, 22, 10) 4/5 (−32/375,−3/25, 1/60)
(15, 23, 10) 1/2 (−13/375,−2/25, 17/250)
(16, 24, 10) 797/1000 (−1/30,−23/250, 1/12)
(12, 21, 11) 5/4 (−4/15,−1/5, 19/750)
(13, 22, 11) 3497/1000 (−1/750,−1/250, 0)
(14, 23, 11) 3497/1000 (−83/250,−1/250, 0)
(15, 24, 11) 4/5 (−19/250,−39/250, 1/20)
(16, 25, 11) 3497/1000 (−63/250,−61/250, 1/1500)
(17, 26, 11) 4/5 (−7/150,−33/250, 1/20)
(18, 27, 11) 797/1000 (−17/375,−16/125, 1/12)
(12, 22, 12) 7/2 (−49/375, 0, 1/125)
(14, 24, 12) 3497/1000 (−1/6,−1/2, 1/12)
(15, 25, 12) 7/8 (−38/375, 0, 29/375)
(16, 26, 12) 797/1000 (−1/750,−1/250, 0)
(18, 28, 12) 1/2 (−13/250,−31/250, 3/50)
(20, 30, 12) 797/1000 (−26/375,−24/125, 1/12)
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f-vector b-ratio generating grid point
(15, 26, 13) 4/5 (−77/375, 0, 1/60)
(16, 27, 13) 4/5 (−61/750,−61/250, 1/30)
(17, 28, 13) 3497/1000 (−101/375, 0, 2/125)
(18, 29, 13) 3497/1000 (−14/125,−42/125, 41/1500)
(19, 30, 13) 3497/1000 (−1/6,−1/2, 0)
(20, 31, 13) 3497/1000 (−83/250,−1/250, 1/1500)
(22, 33, 13) 797/1000 (−1/150,−3/250, 1/1500)
(20, 32, 14) 797/1000 (−43/375, 0, 1/12)
(21, 33, 14) 797/1000 (−23/375,−23/125, 79/1500)
(22, 34, 14) 797/1000 (−9/125, 0, 1/12)
(24, 36, 14) 797/1000 (−1/3, 0, 1/12)
(20, 33, 15) 527/1000 (−203/750,−47/250, 0)
(16, 30, 16) 5/4 (0, 0, 1/150)
(22, 36, 16) 3497/1000 (−1/3, 0, 31/1500)
(23, 37, 16) 7/8 (−19/375,−19/125, 29/750)
(24, 38, 16) 1/2 (−94/375,−31/125, 1/750)
(26, 40, 16) 797/1000 (−2/375, 0, 1/1500)
(25, 40, 17) 1/2 (−3/10,−1/10, 1/15)
(27, 42, 17) 797/1000 (−11/375,−11/125, 1/12)
(29, 45, 18) 797/1000 (−3/50,−9/50, 4/75)
(30, 46, 18) 797/1000 (−7/125,−21/125, 83/1500)
(29, 46, 19) 4/5 (−16/375,−16/125, 1/20)
(31, 48, 19) 3497/1000 (−1/6,−1/2, 1/1500)
(34, 52, 20) 797/1000 (−19/375,−19/125, 29/500)
(34, 53, 21) 797/1000 (−49/750,−49/250, 1/12)
(38, 58, 22) 527/1000 (−16/375,−16/125, 31/500)

Space group type (3, 5, 5, 1, 2); IT(167) = R3̄c

Normalizer: IT(166) = R3̄m with basis −b′1,−b′2, 1
2b
′
3

Reduced fundamental domain:

R167 = conv
{

(0, 0, 0), (−1/3, 0, 0), (−1/6,−1/2, 0), (0, 0, 1/12),

(−1/3, 0, 1/12), (−1/6,−1/2, 1/12)
}

Upper bound on number of facets: f2 ≤ 79 [BS06, Corollary 2.8] for points with
trivial stabilizer and f2 ≤ 102 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (−1/250,−1/250, 0)
(10, 15, 7) 797/1000 (−22/125,−22/125, 0)
(6, 11, 7) 7/2 (−29/125,−38/125, 77/1500)
(8, 13, 7) 3497/1000 (−37/375, 0, 22/375)
(12, 18, 8) 797/1000 (−1/250,−1/250, 0)
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f-vector b-ratio generating grid point
(10, 17, 9) 3497/1000 (−1/250,−1/250, 1/12)
(14, 21, 9) 797/1000 (−51/250,−51/250, 0)
(12, 20, 10) 7/2 (−1/6,−107/250, 8/125)
(13, 21, 10) 3497/1000 (−1/6,−1/2, 41/500)
(12, 21, 11) 7/2 (−223/750,−27/250, 29/1500)
(13, 22, 11) 3497/1000 (−1/750,−1/250, 0)
(14, 23, 11) 3497/1000 (−1/375, 0, 1/12)
(16, 25, 11) 3497/1000 (−31/375, 0, 47/750)
(12, 22, 12) 7/2 (−49/375,−49/125, 4/125)
(13, 23, 12) 4/5 (−119/750,−17/250, 0)
(14, 24, 12) 3497/1000 (−1/6,−1/2, 1/12)
(15, 25, 12) 7/2 (−223/750,−1/250, 29/1500)
(16, 26, 12) 3497/1000 (−1/150,−1/250, 0)
(18, 28, 12) 797/1000 (−7/250,−7/250, 1/12)
(19, 29, 12) 527/1000 (−4/25,−48/125, 1/12)
(13, 24, 13) 7/2 (−11/50,−13/50, 3/100)
(14, 25, 13) 1/2 (−1/6,−43/250, 8/125)
(15, 26, 13) 7/2 (−14/75,−7/125, 4/125)
(16, 27, 13) 3497/1000 (−73/750,−1/250, 22/375)
(17, 28, 13) 3497/1000 (−1/750,−1/250, 31/375)
(18, 29, 13) 3497/1000 (−64/375, 0, 61/1500)
(19, 30, 13) 3497/1000 (−1/3, 0, 1/12)
(20, 31, 13) 3497/1000 (−1/375, 0, 31/375)
(21, 32, 13) 797/1000 (−8/75,−33/125, 1/12)
(17, 29, 14) 7/2 (−29/150,−1/50, 1/25)
(18, 30, 14) 797/1000 (−1/6,−49/250, 1/12)
(19, 31, 14) 3497/1000 (−247/750,−1/250, 1/1500)
(20, 32, 14) 3497/1000 (−56/375,−6/25, 13/500)
(21, 33, 14) 3497/1000 (−1/6,−1/250, 59/1500)
(22, 34, 14) 3497/1000 (−49/150,−1/250, 2/375)
(23, 35, 14) 797/1000 (−71/750,−69/250, 1/12)
(24, 36, 14) 3497/1000 (−1/3, 0, 1/500)
(17, 30, 15) 7/2 (−16/75,−37/125, 2/125)
(19, 32, 15) 3497/1000 (−13/50,−1/10, 1/20)
(20, 33, 15) 3497/1000 (−64/375,−1/125, 1/25)
(21, 34, 15) 3497/1000 (−88/375,−14/125, 23/1500)
(22, 35, 15) 3497/1000 (−1/250,−1/250, 41/500)
(23, 36, 15) 797/1000 (−41/150,−3/50, 1/100)
(24, 37, 15) 3497/1000 (−39/125,−7/125, 41/1500)
(21, 35, 16) 3497/1000 (−29/150,−11/50, 1/60)
(22, 36, 16) 3497/1000 (−1/6,−1/2, 31/750)
(23, 37, 16) 3497/1000 (−61/750,−1/250, 1/60)
(24, 38, 16) 3497/1000 (−43/250,−1/250, 1/25)
(25, 39, 16) 3497/1000 (−247/750,−1/250, 1/250)
(26, 40, 16) 797/1000 (−13/125,−39/125, 0)
(23, 38, 17) 1/2 (−1/5,−1/5, 1/15)
(24, 39, 17) 4/5 (−39/250,−33/250, 1/30)
(25, 40, 17) 797/1000 (−29/125,−31/125, 7/250)
(26, 41, 17) 3497/1000 (−7/75,−1/125, 89/1500)
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f-vector b-ratio generating grid point
(27, 42, 17) 797/1000 (−6/125, 0, 107/1500)
(28, 43, 17) 3497/1000 (−41/125,−1/125, 7/1500)
(25, 41, 18) 1/2 (−37/150,−63/250, 11/300)
(26, 42, 18) 3497/1000 (−149/750,−37/250, 8/375)
(27, 43, 18) 3497/1000 (−57/250,−73/250, 1/100)
(28, 44, 18) 3497/1000 (−86/375,−32/125, 7/1500)
(29, 45, 18) 797/1000 (−4/25, 0, 13/300)
(30, 46, 18) 797/1000 (−22/375, 0, 103/1500)
(27, 44, 19) 1/2 (−161/750,−53/250, 2/25)
(29, 46, 19) 4/5 (−13/75,−59/125, 2/25)
(30, 47, 19) 3497/1000 (−1/150,−1/250, 61/750)
(31, 48, 19) 3497/1000 (−1/6,−1/2, 1/1500)
(32, 49, 19) 3497/1000 (−77/250,−7/250, 7/500)
(30, 48, 20) 3497/1000 (−21/125,−26/125, 3/125)
(31, 49, 20) 527/1000 (−59/250,−59/250, 11/250)
(32, 50, 20) 3497/1000 (−24/125,−44/125, 37/1500)
(33, 51, 20) 797/1000 (−83/375,−41/125, 43/1500)
(34, 52, 20) 797/1000 (−1/15, 0, 1/15)
(34, 53, 21) 3497/1000 (−37/750,−1/250, 53/750)
(35, 54, 21) 181/200 (−139/750,−89/250, 11/300)
(36, 55, 21) 797/1000 (−53/375,−6/125, 11/250)
(35, 55, 22) 2 (−17/75,−39/125, 7/250)
(36, 56, 22) 527/1000 (−173/750,−57/250, 17/375)
(37, 57, 22) 769/500 (−68/375,−52/125, 1/15)
(38, 58, 22) 797/1000 (−14/125, 0, 83/1500)
(39, 60, 23) 131/100 (−29/125,−7/25, 9/500)
(40, 61, 23) 797/1000 (−127/750,−111/250, 109/1500)
(42, 64, 24) 299/250 (−169/750,−71/250, 19/1500)
(44, 67, 25) 649/500 (−91/375,−33/125, 17/1500)
(46, 70, 26) 323/250 (−41/250,−1/250, 59/750)

2.2.4 Hexagonal groups

The remarks at the beginning of Subsection 2.2.3 apply here as well.

Space group type (3, 6, 1, 1, 1); IT(168) = P6

Normalizer: IT(191) = P 16/mmm with basis b′1, b
′
2, εb

′
3

Reduced fundamental domain:

R168 = conv
{

(0, 0, 0), (1/3, 0, 0), (1/4,−1/4, 0)
}

Upper bound on number of facets: f2 ≤ 8 [BS06, Corollary 1.6] for points with
trivial stabilizer and f2 ≤ 54 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
Since the fundamental domain was reduced by the normalizer to a 2-
dimensional polytope, the approximation is already similarly good for each
value ‖b

′
3‖/‖b′1‖ as our approximation in the case of cubic groups. Our grid

uses 1 000 405 points for each b-ratio.
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f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (1/3, 0, 0)
(8, 12, 6) 3497/1000 (1/4,−1/4, 0)
(10, 15, 7) 3497/1000 (5647/16956,−1/5652, 0)
(12, 18, 8) 3497/1000 (0, 0, 0)

Space group type (3, 6, 1, 1, 4); IT(169) = P61, IT(170) = P65

Normalizer: IT(177) = P 1622 with basis b′1, b
′
2, εb

′
3

Reduced fundamental domain:

R169 = conv
{

(0, 0, 0), (1/3, 0, 0), (1/4, 1/4, 0), (1/4,−1/4, 0)
}

Upper bound on number of facets: f2 ≤ 48 [BS06, Corollary 1.6] for points with
trivial stabilizer and f2 ≤ 54 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
Since the fundamental domain was reduced by the normalizer to a 2-
dimensional polytope, the approximation is already similarly good for each
value ‖b

′
3‖/‖b′1‖ as our approximation in the case of cubic groups. Our grid

uses 1 000 000 points for each b-ratio.

f-vector b-ratio generating grid point
(12, 18, 8) 3497/1000 (0, 0, 0)
(14, 24, 12) 3497/1000 (1/3, 0, 0)
(18, 28, 12) 3497/1000 (1997/5994, 0, 0)
(18, 30, 14) 797/1000 (1/3, 0, 0)
(22, 34, 14) 797/1000 (1997/5994, 0, 0)
(24, 36, 14) 3497/1000 (1/4,−1/4, 0)
(25, 39, 16) 2 (2/9, 1/9, 0)
(28, 42, 16) 797/1000 (1/4,−1/4, 0)
(26, 42, 18) 1/2 (1/27, 0, 0)
(29, 45, 18) 4/5 (2/9, 2/9, 0)
(30, 46, 18) 797/1000 (1885/5994, 0, 0)
(32, 48, 18) 797/1000 (1595/5994, 403/1998, 0)
(36, 54, 20) 797/1000 (1/4, 715/3996, 0)
(40, 60, 22) 797/1000 (1/4, 685/3996, 0)
(44, 66, 24) 797/1000 (1/4, 5/148, 0)
(48, 72, 26) 797/1000 (55/1998, 5/1998, 0)

Space group type (3, 6, 1, 1, 2); IT(171) = P62, IT(172) = P64

Normalizer: IT(177) = P 1622 with basis b′1, b
′
2, εb

′
3

Reduced fundamental domain:

R171 = conv
{

(0, 0, 0), (1/3, 0, 0), (1/4, 1/4, 0), (1/4,−1/4, 0)
}

Upper bound on number of facets: f2 ≤ 36 [BS06, Corollary 1.6] for points with
trivial stabilizer and f2 ≤ 54 in general (Theorem 1.2.6).

103



Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
Since the fundamental domain was reduced by the normalizer to a 2-
dimensional polytope, the approximation is already similarly good for each
value ‖b

′
3‖/‖b′1‖ as our approximation in the case of cubic groups. Our grid

uses 1 000 000 points for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (1/3, 0, 0)
(12, 18, 8) 3497/1000 (0, 0, 0)
(12, 19, 9) 3497/1000 (1/6, 0, 0)
(12, 23, 13) 1/2 (17/54, 1/18, 0)
(18, 29, 13) 3497/1000 (1499/5994, 499/1998, 0)
(20, 31, 13) 797/1000 (1/6, 0, 0)
(18, 30, 14) 1/2 (1/18, 1/18, 0)
(20, 32, 14) 1/2 (5/27, 4/27, 0)
(21, 33, 14) 1/2 (293/999, 1/18, 0)
(22, 34, 14) 3497/1000 (1/4, 997/3996, 0)
(23, 35, 14) 3497/1000 (28/111, 15/74, 0)
(24, 36, 14) 3497/1000 (1/4,−1/4, 0)
(18, 31, 15) 797/1000 (1499/5994, 499/1998, 0)
(20, 33, 15) 1/2 (1/54, 0, 0)
(22, 35, 15) 3497/1000 (166/999, 0, 0)
(23, 36, 15) 1/2 (17/54, 19/666, 0)
(26, 39, 15) 797/1000 (1/4, 467/3996, 0)
(24, 38, 16) 797/1000 (499/1998, 499/1998, 0)
(25, 39, 16) 7/8 (104/333, 35/666, 0)
(27, 41, 16) 797/1000 (1/4, 997/3996, 0)
(28, 42, 16) 3497/1000 (1499/5994, 83/333, 0)
(27, 42, 17) 1/2 (17/54, 55/999, 0)
(30, 45, 17) 797/1000 (1/4, 563/3996, 0)
(28, 44, 18) 1/2 (383/1332, 19/148, 0)
(29, 45, 18) 1/2 (619/1998, 1/18, 0)
(31, 47, 18) 797/1000 (3001/11988, 331/1332, 0)
(32, 48, 18) 3497/1000 (665/3996, 1/3996, 0)
(31, 48, 19) 1/2 (47/1998, 5/666, 0)
(34, 51, 19) 797/1000 (3431/11988, 563/3996, 0)
(33, 51, 20) 1/2 (943/2997, 1/18, 0)
(35, 53, 20) 797/1000 (3005/11988, 989/3996, 0)
(36, 54, 20) 797/1000 (286/999, 227/1998, 0)
(38, 57, 21) 797/1000 (1715/5994, 47/333, 0)
(40, 60, 22) 797/1000 (52/999, 5/666, 0)

Space group type (3, 6, 1, 1, 3); IT(173) = P63

Normalizer: IT(191) = P 16/mmm with basis b′1, b
′
2, εb

′
3

Reduced fundamental domain:

R173 = conv
{

(0, 0, 0), (1/3, 0, 0), (1/4,−1/4, 0)
}
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Upper bound on number of facets: f2 ≤ 16 [BS06, Corollary 1.6] for points with
trivial stabilizer and f2 ≤ 54 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
Since the fundamental domain was reduced by the normalizer to a 2-
dimensional polytope, the approximation is already similarly good for each
value ‖b

′
3‖/‖b′1‖ as our approximation in the case of cubic groups. Our grid

uses 1 000 405 points for each b-ratio.

f-vector b-ratio generating grid point
(8, 12, 6) 3497/1000 (1/4,−1/4, 0)
(12, 18, 8) 3497/1000 (0, 0, 0)
(8, 14, 8) 3497/1000 (1412/4239, 0, 0)
(14, 22, 10) 797/1000 (1412/4239, 0, 0)
(14, 24, 12) 3497/1000 (1/3, 0, 0)
(17, 27, 12) 797/1000 (5647/16956,−1/5652, 0)
(18, 30, 14) 797/1000 (1/3, 0, 0)
(21, 33, 14) 797/1000 (5645/16956,−1/1884, 0)

Space group type (3, 6, 2, 1, 1); IT(174) = P 6̄

Normalizer: IT(191) = P6/mmm with basis 2
3b
′
1 + 1

3b
′
2,− 1

3b
′
1 + 1

3b
′
2,

1
2b
′
3

Reduced fundamental domain:

R174 = conv
{

(0, 0, 0), (1/6, 0, 0), (1/6, 1/6, 0), (0, 0, 1/4),

(1/6, 0, 1/4), (1/6, 1/6, 1/4)
}

Upper bound on number of facets: f2 ≤ 15 [BS01, Theorem 2.12] for points with
trivial stabilizer and f2 ≤ 54 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(8, 12, 6) 3497/1000 (1/6, 0, 0)
(12, 18, 8) 3497/1000 (0, 0, 0)

Space group type (3, 6, 3, 1, 1); IT(175) = P6/m

Normalizer: IT(191) = P6/mmm with basis b′1, b
′
2,

1
2b
′
3

Reduced fundamental domain:

R175 = conv
{

(0, 0, 0), (1/3, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/3, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 15 [BS01, Theorem 2.12] for points with
trivial stabilizer and f2 ≤ 102 in general (Theorem 1.2.6).
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Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (1/3, 0, 0)
(8, 12, 6) 3497/1000 (1/4,−1/4, 0)
(10, 15, 7) 3497/1000 (33/100,−1/500, 1/4)
(12, 18, 8) 3497/1000 (0, 0, 0)

Space group type (3, 6, 3, 1, 2); IT(176) = P63/m

Normalizer: IT(191) = P6/mmm with basis b′1, b
′
2,

1
2b
′
3

Reduced fundamental domain:

R176 = conv
{

(0, 0, 0), (1/3, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/3, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 15 [BS01, Theorem 2.12] for points with
trivial stabilizer and f2 ≤ 102 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (1/3, 0, 0)
(7, 11, 6) 4/5 (29/100,−13/100, 1/4)
(8, 12, 6) 3497/1000 (1/4,−1/4, 0)
(10, 15, 7) 3497/1000 (33/100,−1/500, 0)
(6, 11, 7) 4/5 (16/125, 0, 1/5)
(8, 13, 7) 3497/1000 (124/375, 0, 31/125)
(11, 17, 8) 3497/1000 (124/375, 0, 13/500)
(12, 18, 8) 3497/1000 (0, 0, 0)
(6, 12, 8) 4/5 (4/25, 0, 1/4)
(8, 14, 8) 3497/1000 (124/375, 0, 1/4)
(11, 18, 9) 4/5 (87/500,−39/500, 3/20)
(13, 20, 9) 3497/1000 (33/100,−1/500, 2/125)
(10, 18, 10) 5/4 (1/5,−1/5, 8/125)
(12, 20, 10) 4/5 (29/125,−13/125, 1/5)
(13, 21, 10) 3497/1000 (1/3, 0, 31/125)
(14, 22, 10) 797/1000 (124/375, 0, 1/4)
(15, 24, 11) 3497/1000 (1/3, 0, 13/500)
(17, 26, 11) 3497/1000 (33/100,−1/500, 13/500)
(13, 23, 12) 4/5 (36/125,−16/125, 1/4)
(14, 24, 12) 3497/1000 (1/3, 0, 1/4)
(17, 27, 12) 797/1000 (33/100,−1/500, 1/4)
(18, 30, 14) 797/1000 (1/3, 0, 1/4)
(21, 33, 14) 797/1000 (493/1500,−3/500, 1/4)
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Space group type (3, 6, 4, 1, 1); IT(177) = P622

Normalizer: IT(191) = P6/mmm with basis b′1, b
′
2,

1
2b
′
3

Reduced fundamental domain:

R177 = conv
{

(0, 0, 0), (1/3, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/3, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 16 [BS06, Corollary 1.6] for points with
trivial stabilizer and f2 ≤ 102 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (1/3, 0, 0)
(8, 12, 6) 3497/1000 (1/4,−1/4, 0)
(12, 18, 8) 3497/1000 (0, 0, 0)
(14, 23, 11) 3497/1000 (33/100,−1/500, 1/4)
(18, 29, 13) 797/1000 (88/375,−29/125, 1/500)

Space group type (3, 6, 4, 1, 4); IT(178) = P6122, IT(179) = P6522

Normalizer: IT(180) = P6222 with basis b′1, b
′
2,

1
2b
′
3 (only the normalizer for

IT(178) but not for IT(179))

Reduced fundamental domain:

R178 = conv
{

(0, 0, 0), (1/2, 1/2, 0), (1/2,−1/2, 0), (0, 0, 1/12),

(1/2, 1/2, 1/12), (1/2,−1/2, 1/12)
}

Upper bound on number of facets: f2 ≤ 78 [BS06, Proposition 4.1] for points
with trivial stabilizer and f2 ≤ 102 in general (Theorem 1.2.6).

Remarks concerning lower bounds: In [BS06, Example 4.4] a stereohedron with
32 facets is constructed for this group.

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(12, 18, 8) 3497/1000 (0, 0, 0)
(12, 19, 9) 44/25 (121/250,−121/250, 4/75)
(15, 23, 10) 3497/1000 (41/125, 0, 31/375)
(11, 20, 11) 4/5 (8/25, 0, 3/50)
(13, 22, 11) 3497/1000 (62/125, 0, 0)
(18, 27, 11) 3497/1000 (21/125,−21/125, 7/250)
(15, 25, 12) 3497/1000 (62/125, 61/125, 1/12)
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f-vector b-ratio generating grid point
(16, 26, 12) 797/1000 (62/125, 0, 0)
(18, 28, 12) 3497/1000 (41/125, 0, 1/12)
(15, 26, 13) 2 (2/5, 0, 11/300)
(16, 27, 13) 4/5 (17/50, 1/50, 0)
(18, 29, 13) 3497/1000 (83/250,−1/250, 0)
(20, 31, 13) 16/5 (1/2, 9/50, 3/100)
(21, 32, 13) 3497/1000 (1/250, 1/250, 121/1500)
(18, 30, 14) 4/5 (8/25, 0, 1/150)
(20, 32, 14) 797/1000 (62/125, 0, 31/375)
(21, 33, 14) 4/5 (69/250, 61/250, 1/15)
(22, 34, 14) 3497/1000 (62/125,−62/125, 1/12)
(23, 35, 14) 3497/1000 (1/2,−43/250, 41/1500)
(24, 36, 14) 3497/1000 (62/125,−62/125, 0)
(18, 31, 15) 797/1000 (8/25,−1/25, 0)
(22, 35, 15) 3497/1000 (62/125, 61/125, 0)
(23, 36, 15) 797/1000 (1/2, 23/50, 1/150)
(24, 37, 15) 3497/1000 (119/250, 67/250, 1/60)
(25, 38, 15) 3497/1000 (1/250, 1/250, 41/500)
(26, 39, 15) 3497/1000 (53/125,−6/125, 53/750)
(22, 36, 16) 4/5 (59/250, 9/250, 1/12)
(23, 37, 16) 797/1000 (3/10, 1/10, 1/12)
(24, 38, 16) 797/1000 (1/2, 107/250, 1/12)
(25, 39, 16) 3497/1000 (11/25, 0, 11/150)
(26, 40, 16) 3497/1000 (67/250, 1/250, 23/300)
(27, 41, 16) 3497/1000 (44/125,−11/125, 0)
(28, 42, 16) 3497/1000 (62/125, 62/125, 31/375)
(26, 41, 17) 797/1000 (58/125, 0, 29/375)
(27, 42, 17) 4/5 (23/50,−13/50, 1/60)
(29, 44, 17) 3497/1000 (41/250, 41/250, 41/1500)
(30, 45, 17) 3497/1000 (41/125, 41/125, 41/750)
(27, 43, 18) 527/1000 (56/125, 0, 28/375)
(28, 44, 18) 797/1000 (13/50, 1/250, 1/12)
(29, 45, 18) 7/2 (9/50, 7/50, 53/1500)
(30, 46, 18) 797/1000 (81/250,−17/250, 0)
(31, 47, 18) 3497/1000 (31/250, 31/250, 17/375)
(32, 48, 18) 3497/1000 (19/50, 19/50, 19/300)
(30, 47, 19) 4/5 (36/125,−16/125, 3/500)
(31, 48, 19) 797/1000 (57/250,−3/50, 7/100)
(32, 49, 19) 3497/1000 (29/125, 12/125, 1/300)
(33, 50, 19) 3497/1000 (91/250,−3/10, 91/1500)
(34, 51, 19) 3497/1000 (7/50, 7/50, 37/750)
(32, 50, 20) 2 (1/10,−9/250, 47/750)
(33, 51, 20) 797/1000 (69/250,−1/50, 2/25)
(34, 52, 20) 797/1000 (81/250,−11/250, 0)
(35, 53, 20) 3497/1000 (77/250,−1/250, 77/1500)
(36, 54, 20) 3497/1000 (1/2, 27/250, 19/375)
(35, 54, 21) 4/5 (34/125, 18/125, 39/500)
(36, 55, 21) 163/200 (3/125,−1/125, 1/20)
(37, 56, 21) 3497/1000 (1/2, 43/250, 37/1500)
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f-vector b-ratio generating grid point
(38, 57, 21) 3497/1000 (1/2, 21/250, 73/1500)
(37, 57, 22) 797/1000 (57/250,−3/250, 2/25)
(38, 58, 22) 797/1000 (3/10,−9/250, 11/150)
(39, 59, 22) 797/1000 (38/125,−6/125, 19/375)
(40, 60, 22) 3497/1000 (1/2, 41/250, 13/500)
(39, 60, 23) 797/1000 (27/125,−1/125, 39/500)
(40, 61, 23) 977/1000 (4/125,−3/125, 1/60)
(41, 62, 23) 797/1000 (38/125,−2/125, 29/375)
(42, 63, 23) 797/1000 (113/250,−7/50, 0)
(41, 63, 24) 797/1000 (19/250,−1/250, 2/25)
(42, 64, 24) 833/1000 (69/250,−23/250, 1/20)
(43, 65, 24) 797/1000 (3/10,−9/250, 1/20)
(44, 66, 24) 797/1000 (56/125,−14/125, 0)
(40, 63, 25) 7/5 (53/250,−21/250, 71/1500)
(43, 66, 25) 797/1000 (28/125,−2/125, 39/500)
(44, 67, 25) 827/1000 (6/25,−24/125, 1/60)
(45, 68, 25) 797/1000 (77/250,−3/250, 119/1500)
(46, 69, 25) 797/1000 (3/10,−7/250, 1/20)
(45, 69, 26) 797/1000 (67/250,−3/250, 2/25)
(46, 70, 26) 163/200 (69/250,−23/250, 1/20)
(47, 71, 26) 797/1000 (69/250,−27/250, 23/500)
(48, 72, 26) 797/1000 (34/125,−12/125, 17/375)
(46, 71, 27) 4/5 (1/25,−2/125, 1/20)
(47, 72, 27) 797/1000 (37/125,−1/125, 2/25)
(48, 73, 27) 797/1000 (6/25,−24/125, 1/60)
(49, 74, 27) 797/1000 (3/10,−3/250, 2/25)
(50, 75, 27) 797/1000 (33/125,−16/125, 11/250)
(46, 72, 28) 4/5 (73/250,−3/50, 49/750)
(49, 75, 28) 797/1000 (11/250,−3/250, 4/75)
(51, 77, 28) 797/1000 (69/250,−1/10, 23/500)
(52, 78, 28) 797/1000 (34/125,−13/125, 17/375)
(51, 78, 29) 4/5 (29/125,−14/125, 1/25)
(53, 80, 29) 797/1000 (6/125,−2/125, 1/20)
(54, 81, 29) 797/1000 (67/250,−1/10, 67/1500)
(55, 83, 30) 797/1000 (33/125,−17/125, 13/375)
(56, 84, 30) 797/1000 (67/250,−27/250, 67/1500)
(57, 86, 31) 1031/1000 (51/250,−49/250, 1/300)
(58, 87, 31) 797/1000 (32/125,−3/25, 16/375)
(60, 90, 32) 797/1000 (34/125,−14/125, 17/375)
(62, 93, 33) 103/125 (57/250,−51/250, 7/750)
(64, 96, 34) 163/200 (32/125,−19/125, 43/1500)

Space group type (3, 6, 4, 1, 2); IT(180) = P6222, IT(181) = P6422

Normalizer: IT(180) = P6222 with basis b′1, b
′
2,

1
2b
′
3 (only the normalizer for

IT(181) but not for IT(180))
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Reduced fundamental domain:

R180 = conv
{

(0, 0, 0), (1/2, 1/2, 0), (1/2,−1/2, 0), (0, 0, 1/12),

(1/2, 1/2, 1/12), (1/2,−1/2, 1/12)
}

Upper bound on number of facets: f2 ≤ 78 [BS06, Corollary 1.6] for points with
trivial stabilizer and f2 ≤ 102 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(9, 14, 7) 3497/1000 (62/125, 0, 0)
(11, 17, 8) 797/1000 (62/125, 0, 0)
(12, 18, 8) 3497/1000 (0, 0, 0)
(9, 15, 8) 3497/1000 (62/125, 62/125, 0)
(11, 18, 9) 797/1000 (107/250, 107/250, 0)
(11, 19, 10) 4/5 (12/25,−12/25, 23/300)
(14, 22, 10) 3497/1000 (83/250, 1/250, 83/1500)
(15, 23, 10) 3497/1000 (62/125,−62/125, 1/12)
(13, 22, 11) 3497/1000 (62/125,−1/125, 0)
(14, 23, 11) 1/2 (123/250, 119/250, 17/750)
(16, 25, 11) 3497/1000 (62/125, 61/125, 31/375)
(16, 26, 12) 797/1000 (23/50,−3/10, 0)
(15, 26, 13) 4/5 (93/250,−93/250, 1/30)
(16, 27, 13) 797/1000 (44/125,−43/125, 0)
(18, 29, 13) 3497/1000 (83/250,−1/250, 0)
(19, 30, 13) 797/1000 (62/125,−1/125, 0)
(15, 27, 14) 4/5 (47/125, 0, 1/60)
(17, 29, 14) 7/2 (38/125, 38/125, 3/125)
(18, 30, 14) 797/1000 (49/125,−49/125, 1/12)
(19, 31, 14) 3497/1000 (62/125, 12/25, 0)
(20, 32, 14) 3497/1000 (123/250, 123/250, 1/1500)
(21, 33, 14) 797/1000 (109/250,−77/250, 109/1500)
(22, 34, 14) 3497/1000 (62/125,−62/125, 0)
(18, 31, 15) 797/1000 (71/250,−37/250, 0)
(20, 33, 15) 3497/1000 (62/125, 0, 11/375)
(21, 34, 15) 3497/1000 (4/25, 4/25, 2/75)
(22, 35, 15) 3497/1000 (62/125, 61/125, 0)
(23, 36, 15) 3497/1000 (62/125,−61/125, 1/1500)
(24, 37, 15) 797/1000 (62/125, 4/125, 0)
(26, 39, 15) 797/1000 (79/250,−3/250, 79/1500)
(24, 38, 16) 797/1000 (89/250,−89/250, 0)
(25, 39, 16) 7/2 (34/125,−3/125, 4/375)
(26, 40, 16) 3497/1000 (1/2, 121/250, 1/1500)
(28, 42, 16) 3497/1000 (1/2,−1/50, 1/25)
(27, 42, 17) 7/2 (21/50,−33/250, 3/125)
(29, 44, 17) 1037/1000 (46/125, 26/125, 1/15)
(30, 45, 17) 3497/1000 (51/250, 27/250, 17/500)
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f-vector b-ratio generating grid point
(29, 45, 18) 4/5 (62/125, 48/125, 1/60)
(31, 47, 18) 239/250 (44/125, 19/125, 2/25)
(32, 48, 18) 3497/1000 (62/125, 1/125, 31/375)
(31, 48, 19) 7/2 (12/25, 6/125, 3/125)
(33, 50, 19) 797/1000 (91/250, 69/250, 1/12)
(34, 51, 19) 3497/1000 (51/250, 29/250, 17/500)
(33, 51, 20) 7/2 (38/125, 16/125, 2/125)
(35, 53, 20) 797/1000 (17/50, 3/50, 1/30)
(36, 54, 20) 3497/1000 (51/250, 33/250, 17/500)
(34, 53, 21) 4/5 (38/125,−17/125, 1/20)
(35, 54, 21) 797/1000 (89/250, 41/250, 1/12)
(37, 56, 21) 797/1000 (17/50, 13/50, 1/20)
(38, 57, 21) 3497/1000 (11/125,−2/125, 11/750)
(37, 57, 22) 797/1000 (52/125, 49/125, 1/12)
(39, 59, 22) 3497/1000 (91/250, 73/250, 1/150)
(40, 60, 22) 3497/1000 (51/250, 31/250, 17/500)
(39, 60, 23) 797/1000 (2/5, 9/25, 1/15)
(41, 62, 23) 797/1000 (37/125,−18/125, 1/30)
(42, 63, 23) 3497/1000 (19/50,−37/250, 29/1500)
(41, 63, 24) 7/2 (38/125, 31/125, 4/375)
(43, 65, 24) 5/4 (87/250, 33/250, 1/30)
(44, 66, 24) 3497/1000 (11/25, 49/125, 1/1500)
(43, 66, 25) 797/1000 (9/25, 8/25, 1/12)
(45, 68, 25) 797/1000 (49/125, 44/125, 1/15)
(46, 69, 25) 3497/1000 (99/250, 63/250, 1/1500)
(45, 69, 26) 2 (33/125, 6/25, 9/125)
(47, 71, 26) 1289/1000 (37/125,−28/125, 1/15)
(48, 72, 26) 3497/1000 (47/125, 19/125, 1/750)
(50, 75, 27) 3497/1000 (51/125, 31/125, 1/1500)
(52, 78, 28) 3497/1000 (9/25, 17/125, 1/300)
(54, 81, 29) 3497/1000 (87/250, 23/250, 1/500)
(56, 84, 30) 607/500 (34/125,−31/125, 67/1500)

Space group type (3, 6, 4, 1, 3); IT(182) = P6322

Normalizer: IT(191) = P6/mmm with basis b′1, b
′
2,

1
2b
′
3

Reduced fundamental domain:

R182 = conv
{

(0, 0, 0), (1/3, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/3, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 32 [BS06, Corollary 1.6] for points with
trivial stabilizer and f2 ≤ 102 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.
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f-vector b-ratio generating grid point
(5, 8, 5) 4/5 (36/125,−16/125, 1/4)
(6, 9, 5) 3497/1000 (1/3, 0, 0)
(7, 11, 6) 4/5 (29/100,−13/100, 1/4)
(8, 12, 6) 3497/1000 (1/4,−1/4, 0)
(10, 15, 7) 3497/1000 (499/1500,−1/500, 13/500)
(6, 11, 7) 4/5 (16/125, 0, 1/5)
(8, 13, 7) 3497/1000 (124/375, 0, 31/125)
(10, 16, 8) 3497/1000 (33/100,−1/500, 0)
(11, 17, 8) 3497/1000 (124/375, 0, 13/500)
(12, 18, 8) 3497/1000 (0, 0, 0)
(6, 12, 8) 4/5 (4/25, 0, 1/4)
(8, 14, 8) 3497/1000 (124/375, 0, 1/4)
(10, 18, 10) 5/4 (1/5,−1/5, 93/500)
(13, 21, 10) 3497/1000 (1/3, 0, 31/125)
(14, 22, 10) 797/1000 (124/375, 0, 1/4)
(15, 24, 11) 3497/1000 (1/3, 0, 13/500)
(14, 24, 12) 3497/1000 (1/3, 0, 1/4)
(15, 26, 13) 4/5 (29/250,−13/250, 1/10)
(16, 27, 13) 3497/1000 (33/100,−1/500, 123/500)
(17, 29, 14) 4/5 (29/125,−13/125, 1/5)
(18, 30, 14) 797/1000 (1/3, 0, 1/4)
(17, 30, 15) 7/2 (23/125,−7/125, 123/500)
(19, 32, 15) 4/5 (4/15,−4/125, 26/125)
(20, 33, 15) 3497/1000 (17/100,−73/500, 1/500)
(21, 35, 16) 1/2 (7/25,−1/25, 1/5)
(24, 38, 16) 797/1000 (33/100,−1/500, 31/125)
(26, 41, 17) 3497/1000 (33/100,−1/500, 2/125)
(26, 42, 18) 3497/1000 (36/125,−13/125, 31/125)
(28, 44, 18) 797/1000 (122/375,−2/125, 31/125)
(30, 47, 19) 3497/1000 (33/100,−1/500, 13/500)

Space group type (3, 6, 5, 1, 1); IT(183) = P6mm

Normalizer: IT(191) = P 16/mmm with basis b′1, b
′
2, εb

′
3

Reduced fundamental domain:

R183 = conv
{

(0, 0, 0), (1/3, 0, 0), (1/4,−1/4, 0)
}

Upper bound on number of facets: f2 ≤ 18 [BS01, Theorem 2.7] for points with
trivial stabilizer and f2 ≤ 102 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
Since the fundamental domain was reduced by the normalizer to a 2-
dimensional polytope, the approximation is already similarly good for each
value ‖b

′
3‖/‖b′1‖ as our approximation in the case of cubic groups. Our grid

uses 1 000 405 points for each b-ratio.
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f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (1/3, 0, 0)
(8, 12, 6) 3497/1000 (1/4,−1/4, 0)
(12, 18, 8) 3497/1000 (0, 0, 0)

Space group type (3, 6, 5, 1, 2); IT(184) = P6cc

Normalizer: IT(191) = P 16/mmm with basis b′1, b
′
2, εb

′
3

Reduced fundamental domain:

R184 = conv
{

(0, 0, 0), (1/3, 0, 0), (1/4,−1/4, 0)
}

Upper bound on number of facets: f2 ≤ 16 [BS06, Corollary 1.6] for points with
trivial stabilizer and f2 ≤ 102 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
Since the fundamental domain was reduced by the normalizer to a 2-
dimensional polytope, the approximation is already similarly good for each
value ‖b

′
3‖/‖b′1‖ as our approximation in the case of cubic groups. Our grid

uses 1 000 405 points for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (1/3, 0, 0)
(8, 12, 6) 3497/1000 (1/4,−1/4, 0)
(12, 18, 8) 3497/1000 (0, 0, 0)
(14, 23, 11) 3497/1000 (5647/16956,−1/5652, 0)

Space group type (3, 6, 5, 1, 4); IT(185) = P63cm

Normalizer: IT(191) = P 16/mmm with basis b′1, b
′
2, εb

′
3

Reduced fundamental domain:

R185 = conv
{

(0, 0, 0), (1/3, 0, 0), (1/4,−1/4, 0)
}

Upper bound on number of facets: f2 ≤ 18 [BS01, Theorem 2.7] for points with
trivial stabilizer and f2 ≤ 102 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
Since the fundamental domain was reduced by the normalizer to a 2-
dimensional polytope, the approximation is already similarly good for each
value ‖b

′
3‖/‖b′1‖ as our approximation in the case of cubic groups. Our grid

uses 1 000 405 points for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (1/3, 0, 0)
(8, 12, 6) 3497/1000 (1/4,−1/4, 0)
(10, 16, 8) 3497/1000 (5647/16956,−1/5652, 0)
(12, 18, 8) 3497/1000 (0, 0, 0)
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f-vector b-ratio generating grid point
(14, 22, 10) 527/1000 (1907/8478,−635/2826, 0)
(14, 24, 12) 3497/1000 (353/1413,−353/1413, 0)
(18, 30, 14) 527/1000 (1271/5652,−1271/5652, 0)

Space group type (3, 6, 5, 1, 3); IT(186) = P63mc

Normalizer: IT(191) = P 16/mmm with basis b′1, b
′
2, εb

′
3

Reduced fundamental domain:

R186 = conv
{

(0, 0, 0), (1/3, 0, 0), (1/4,−1/4, 0)
}

Upper bound on number of facets: f2 ≤ 18 [BS01, Theorem 2.7] for points with
trivial stabilizer and f2 ≤ 102 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
Since the fundamental domain was reduced by the normalizer to a 2-
dimensional polytope, the approximation is already similarly good for each
value ‖b

′
3‖/‖b′1‖ as our approximation in the case of cubic groups. Our grid

uses 1 000 405 points for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (353/1413,−353/1413, 0)
(8, 12, 6) 3497/1000 (1/4,−1/4, 0)
(10, 15, 7) 797/1000 (5647/16956,−1/5652, 0)
(12, 18, 8) 3497/1000 (0, 0, 0)
(8, 14, 8) 3497/1000 (1412/4239, 0, 0)
(14, 22, 10) 797/1000 (1412/4239, 0, 0)
(14, 24, 12) 3497/1000 (1/3, 0, 0)
(18, 30, 14) 797/1000 (1/3, 0, 0)

Space group type (3, 6, 6, 1, 1); IT(187) = P 6̄m2

Normalizer: IT(191) = P6/mmm with basis 2
3b
′
1 + 1

3b
′
2,− 1

3b
′
1 + 1

3b
′
2,

1
2b
′
3

Reduced fundamental domain:

R187 = conv
{

(0, 0, 0), (1/6, 0, 0), (1/6, 1/6, 0), (0, 0, 1/4),

(1/6, 0, 1/4), (1/6, 1/6, 1/4)
}

Upper bound on number of facets: f2 ≤ 18 [BS01, Theorem 2.7] for points with
trivial stabilizer and f2 ≤ 102 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (1/6, 1/6, 0)
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f-vector b-ratio generating grid point
(8, 12, 6) 3497/1000 (1/6, 0, 0)
(12, 18, 8) 3497/1000 (0, 0, 0)

Space group type (3, 6, 6, 1, 2); IT(188) = P 6̄c2

Normalizer: IT(191) = P6/mmm with basis 2
3b
′
1 + 1

3b
′
2,− 1

3b
′
1 + 1

3b
′
2,

1
2b
′
3

Reduced fundamental domain:

R188 = conv
{

(0, 0, 0), (1/6, 0, 0), (1/6, 1/6, 0), (0, 0, 1/4),

(1/6, 0, 1/4), (1/6, 1/6, 1/4)
}

Upper bound on number of facets: f2 ≤ 15 [BS01, Theorem 2.12] for points with
trivial stabilizer and f2 ≤ 102 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (1/6, 1/6, 0)
(8, 12, 6) 3497/1000 (1/6, 0, 0)
(12, 18, 8) 3497/1000 (0, 0, 0)
(10, 18, 10) 1/2 (46/375, 2/125, 14/125)
(13, 21, 10) 3497/1000 (62/375, 62/375, 31/125)
(15, 24, 11) 3497/1000 (1/6, 1/6, 1/125)
(14, 24, 12) 3497/1000 (1/6, 1/6, 1/4)
(18, 30, 14) 527/1000 (1/6, 1/6, 1/4)

Space group type (3, 6, 6, 2, 1); IT(189) = P 6̄2m

Normalizer: IT(191) = P6/mmm with basis b′1, b
′
2,

1
2b
′
3

Reduced fundamental domain:

R189 = conv
{

(0, 0, 0), (1/3, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/3, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 18 [BS01, Theorem 2.7] for points with
trivial stabilizer and f2 ≤ 102 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (1/3, 0, 0)
(8, 12, 6) 3497/1000 (1/4,−1/4, 0)
(12, 18, 8) 3497/1000 (0, 0, 0)
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Space group type (3, 6, 6, 2, 2); IT(190) = P 6̄2c

Normalizer: IT(191) = P6/mmm with basis b′1, b
′
2,

1
2b
′
3

Reduced fundamental domain:

R190 = conv
{

(0, 0, 0), (1/3, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/3, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 15 [BS01, Theorem 2.12] for points with
trivial stabilizer and f2 ≤ 102 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (1/3, 0, 0)
(7, 11, 6) 4/5 (29/100,−13/100, 1/4)
(8, 12, 6) 3497/1000 (1/4,−1/4, 0)
(10, 15, 7) 3497/1000 (499/1500,−1/500, 13/500)
(6, 11, 7) 4/5 (16/125, 0, 1/5)
(8, 13, 7) 3497/1000 (124/375, 0, 31/125)
(11, 17, 8) 3497/1000 (124/375, 0, 13/500)
(12, 18, 8) 3497/1000 (0, 0, 0)
(6, 12, 8) 4/5 (4/25, 0, 1/4)
(8, 14, 8) 3497/1000 (124/375, 0, 1/4)
(13, 21, 10) 3497/1000 (1/3, 0, 31/125)
(14, 22, 10) 797/1000 (124/375, 0, 1/4)
(15, 23, 10) 3497/1000 (33/100,−1/500, 2/125)
(14, 23, 11) 4/5 (29/125,−13/125, 1/5)
(15, 24, 11) 3497/1000 (1/3, 0, 13/500)
(14, 24, 12) 3497/1000 (1/3, 0, 1/4)
(17, 27, 12) 3497/1000 (81/500,−69/500, 1/500)
(19, 29, 12) 3497/1000 (33/100,−1/500, 13/500)
(17, 29, 14) 4/5 (36/125,−16/125, 1/4)
(18, 30, 14) 3497/1000 (33/100,−1/500, 1/4)
(21, 33, 14) 797/1000 (33/100,−1/500, 1/4)
(22, 36, 16) 527/1000 (62/375,−12/125, 1/4)
(25, 39, 16) 797/1000 (493/1500,−3/500, 1/4)

Space group type (3, 6, 7, 1, 1); IT(191) = P6/mmm

Normalizer: IT(191) = P6/mmm with basis b′1, b
′
2,

1
2b
′
3; so the normalizer is

identical with the group itself but the basis is different.

Reduced fundamental domain:

R191 = conv
{

(0, 0, 0), (1/3, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/3, 0, 1/4), (1/4,−1/4, 1/4)
}
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Upper bound on number of facets: f2 ≤ 8 [BS01, Theorem 2.4] for points with
trivial stabilizer and f2 ≤ 198 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (1/3, 0, 0)
(8, 12, 6) 3497/1000 (1/4,−1/4, 0)
(12, 18, 8) 3497/1000 (0, 0, 0)

Space group type (3, 6, 7, 1, 2); IT(192) = P6/mcc

Normalizer: IT(191) = P6/mmm with basis b′1, b
′
2,

1
2b
′
3

Reduced fundamental domain:

R192 = conv
{

(0, 0, 0), (1/3, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/3, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 8 [BS01, Theorem 2.4] for points with
trivial stabilizer and f2 ≤ 198 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (1/3, 0, 0)
(8, 12, 6) 3497/1000 (1/4,−1/4, 0)
(12, 18, 8) 3497/1000 (0, 0, 0)
(12, 19, 9) 3497/1000 (33/100,−1/500, 123/500)
(9, 16, 9) 1/2 (3/20,−11/100, 7/50)
(14, 22, 10) 3497/1000 (433/1500,−47/500, 31/125)
(14, 23, 11) 3497/1000 (33/100,−1/500, 0)

Space group type (3, 6, 7, 1, 4); IT(193) = P63/mcm

Normalizer: IT(191) = P6/mmm with basis b′1, b
′
2,

1
2b
′
3

Reduced fundamental domain:

R193 = conv
{

(0, 0, 0), (1/3, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/3, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 8 [BS01, Theorem 2.4] for points with
trivial stabilizer and f2 ≤ 198 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

117



f-vector b-ratio generating grid point
(6, 9, 5) 3497/1000 (1/3, 0, 0)
(8, 12, 6) 3497/1000 (1/4,−1/4, 0)
(7, 12, 7) 7/2 (23/125,−7/125, 1/250)
(9, 14, 7) 3497/1000 (33/100,−1/500, 123/500)
(10, 16, 8) 3497/1000 (33/100,−1/500, 1/4)
(11, 17, 8) 3497/1000 (91/375,−6/25, 1/500)
(12, 18, 8) 3497/1000 (0, 0, 0)
(8, 14, 8) 14/25 (17/100,−49/500, 1/4)
(10, 18, 10) 5/4 (1/5,−1/5, 8/125)
(13, 21, 10) 3497/1000 (31/125,−31/125, 31/125)
(14, 22, 10) 527/1000 (343/1500,−21/100, 1/4)
(15, 24, 11) 3497/1000 (121/500,−121/500, 1/500)
(14, 24, 12) 3497/1000 (31/125,−31/125, 1/4)
(18, 30, 14) 527/1000 (28/125,−28/125, 1/4)

Space group type (3, 6, 7, 1, 3); IT(194) = P63/mmc

Normalizer: IT(191) = P6/mmm with basis b′1, b
′
2,

1
2b
′
3

Reduced fundamental domain:

R194 = conv
{

(0, 0, 0), (1/3, 0, 0), (1/4,−1/4, 0), (0, 0, 1/4),

(1/3, 0, 1/4), (1/4,−1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 8 [BS01, Theorem 2.4] for points with
trivial stabilizer and f2 ≤ 198 in general (Theorem 1.2.6).

Metrical parameters: The b-ratio varies from 1/2, . . . , 7/2 in 1001 steps of 3/1000.
We used 1 008 126 grid points in the approximating grid for each b-ratio.

f-vector b-ratio generating grid point
(5, 8, 5) 4/5 (36/125,−16/125, 1/4)
(6, 9, 5) 3497/1000 (1/3, 0, 0)
(7, 11, 6) 4/5 (29/100,−13/100, 1/4)
(8, 12, 6) 3497/1000 (1/4,−1/4, 0)
(10, 15, 7) 3497/1000 (499/1500,−1/500, 13/500)
(6, 11, 7) 4/5 (16/125, 0, 1/5)
(8, 13, 7) 3497/1000 (124/375, 0, 31/125)
(11, 17, 8) 3497/1000 (124/375, 0, 13/500)
(12, 18, 8) 3497/1000 (0, 0, 0)
(6, 12, 8) 4/5 (4/25, 0, 1/4)
(8, 14, 8) 3497/1000 (124/375, 0, 1/4)
(13, 21, 10) 3497/1000 (1/3, 0, 31/125)
(14, 22, 10) 797/1000 (124/375, 0, 1/4)
(15, 24, 11) 3497/1000 (1/3, 0, 13/500)
(14, 24, 12) 3497/1000 (1/3, 0, 1/4)
(18, 30, 14) 797/1000 (1/3, 0, 1/4)
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2.2.5 Cubic groups

The metrical parameters for cubic groups do not allow for great variation. All
angles have to be right angles and the length of the basis vectors are all the same.
We therefore list under Metrical parameters only the number of grid points used
in the approximating grid. The possible types of fundamental parallelepipeds
of the sublattice L′ ≤ L of the space group Γ are

b′1
b′2

b′3

primitive
(P )

b′1
b′2

b′3

body-centered
(I)

b′1
b′2

b′3

face-centered
(F )

The lengths of b′1, b′2, and b′3 have to be the same and the angles between all
pairs of vectors have to be π/2.

Space group type (3, 7, 1, 1, 1); IT(195) = P23

Normalizer: IT(229) = Im3̄m with basis b′1, b
′
2, b
′
3

Reduced fundamental domain:

R195 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/2, 1/2, 0), (1/4, 1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 15 [SS08, Section 5] for points with
trivial stabilizer and f2 ≤ 102 in general (Theorem 1.2.6).

Remarks concerning lower bounds: Engel [Eng81b] found a stereohedron with
13 facets for this group.

Metrical parameters: We used 1 001 452 269 grid points in the approximating
grid.

f-vector generating grid point frequency
(5, 8, 5) (1815/3632, 0, 0) 1815
(5, 9, 6) (1815/3632, 1815/3632, 0) 1815
(8, 12, 6) (0, 0, 0) 1
(6, 11, 7) (1815/3632, 907/1816, 0) 1 646 205
(8, 13, 7) (1817/7264, 1817/7264, 1815/7264) 3 296 040
(6, 12, 8) (1/2, 0, 0) 2
(8, 16, 10) (1/2, 1815/3632, 0) 1815
(14, 24, 12) (1/4, 1/4, 1/4) 1816
(16, 27, 13) (15/227, 45/3632, 7/3632) 996 502 760
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Space group type (3, 7, 1, 2, 1); IT(196) = F23

Normalizer: IT(229) = Im3̄m with basis 1
2b
′
1,

1
2b
′
2,

1
2b
′
3

Reduced fundamental domain:

R196 = conv
{

(0, 0, 0), (1/8, 1/8, 1/8), (1/4, 0, 0), (1/4, 1/4, 0)
}

Upper bound on number of facets: f2 ≤ 10 [SS08, Corollary 3.5] for points with
trivial stabilizer and f2 ≤ 102 in general (Theorem 1.2.6).

Remarks concerning lower bounds: Engel [Eng81b] found a stereohedron with
12 facets for this group.

Metrical parameters: We used 1 001 452 269 grid points in the approximating
grid.

f-vector generating grid point frequency
(5, 8, 5) (1817/14528, 1817/14528, 1815/14528) 2 446 166
(8, 12, 6) (1/8, 1/8, 1/8) 1816
(6, 12, 8) (1/4, 0, 0) 1817
(8, 16, 10) (15/454, 45/7264, 7/7264) 751 819 081
(14, 24, 12) (0, 0, 0) 1

Space group type (3, 7, 1, 3, 1); IT(197) = I23

Normalizer: IT(229) = Im3̄m with basis b′1, b
′
2, b
′
3

Reduced fundamental domain:

R197 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/2, 1/2, 0), (1/4, 1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 21 [SS08, Section 5] for points with
trivial stabilizer and f2 ≤ 102 in general (Theorem 1.2.6).

Remarks concerning lower bounds: Engel [Eng81b] found a stereohedron with
17 facets for this group.

Metrical parameters: We used 1 001 452 269 grid points in the approximating
grid.

f-vector generating grid point frequency
(4, 6, 4) (1/2, 1/4, 0) 1
(5, 9, 6) (3/8, 3/8, 0) 454
(8, 12, 6) (1/4, 1/4, 1/4) 1
(6, 12, 8) (1/4, 1/4, 0) 908
(10, 17, 9) (909/3632, 909/3632, 453/1816) 453
(12, 19, 9) (1817/7264, 1817/7264, 1815/7264) 1 980 209
(8, 15, 9) (13/32, 13/32, 1/32) 908
(10, 18, 10) (1815/3632, 1/4, 0) 907
(11, 19, 10) (1815/3632, 1815/3632, 0) 1 303 152
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f-vector generating grid point frequency
(12, 20, 10) (907/3632, 907/3632, 0) 823 556
(7, 15, 10) (3/16, 1/8, 0) 1
(9, 17, 10) (1361/3632, 1361/3632, 0) 453
(13, 22, 11) (121/454, 967/3632, 789/3632) 545 615
(14, 23, 11) (1817/7264, 1817/7264, 1813/7264) 491 821
(10, 20, 12) (1/2, 0, 0) 2
(13, 23, 12) (909/3632, 1/4, 53/227) 408 105
(14, 25, 13) (1/2, 1815/3632, 0) 1814
(15, 26, 13) (179/3632, 125/3632, 67/3632) 3420
(17, 28, 13) (1815/3632, 0, 0) 1815
(18, 29, 13) (15/227, 45/3632, 7/3632) 760 106 234
(20, 32, 14) (249/7264, 247/7264, 243/7264) 190 266 816
(24, 36, 14) (0, 0, 0) 1
(20, 33, 15) (3285/7264, 3283/7264, 229/7264) 20 486 921
(22, 35, 15) (3285/7264, 3279/7264, 229/7264) 73 198
(26, 39, 15) (1815/7264, 1815/7264, 1815/7264) 1815
(24, 38, 16) (251/7264, 247/7264, 241/7264) 15 412 212
(24, 39, 17) (207/454, 1515/3632, 101/3632) 3 606 077

Space group type (3, 7, 1, 1, 2); IT(198) = P213

Normalizer: IT(230) = Ia3̄d with basis b′1, b
′
2, b
′
3

Reduced fundamental domain:

R198 = conv
{

(0, 0, 0), (1/8, 1/8, 1/8), (−1/8, 1/8, 1/8),

(−1/8,−1/8, 1/8), (1/8,−1/8, 1/8), (1/8, 1/8, 1/4),

(−1/8, 1/8, 1/4), (−1/8,−1/8, 1/4), (1/8,−1/8, 1/4)
}

Upper bound on number of facets: f2 ≤ 69 [SS11] for points with trivial stabi-
lizer and f2 ≤ 102 in general (Theorem 1.2.6).

Remarks concerning lower bounds: Koch found for this group a stereohedron
with 18 facets, see [Koc72, p. 87].

Metrical parameters: We used 1 000 677 997 grid points in the approximating
grid.

f-vector generating grid point frequency
(8, 14, 8) (−1/8,−1/8, 1/8) 2619
(11, 21, 12) (−51/776,−79/776, 121/776) 4335
(12, 22, 12) (−455/6984,−655/6984, 545/3492) 801 918 314
(14, 24, 12) (0, 0, 0) 667
(19, 31, 14) (65/582, 19/1164, 13/72) 1041
(21, 35, 16) (847/6984, 547/6984, 1547/6984) 260
(22, 36, 16) (−455/6984,−709/6984, 545/3492) 159 598 648
(26, 40, 16) (239/2328, 239/6984, 1403/6984) 168
(26, 42, 18) (871/6984, 19/776, 183/776) 146
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f-vector generating grid point frequency
(30, 46, 18) (1/8, 1/24, 5/24) 843
(32, 48, 18) (1/8, 1/8, 1/8) 207
(29, 47, 20) (10/97, 0, 45/194) 1
(30, 48, 20) (851/6984, 15/776, 1627/6984) 284
(32, 50, 20) (1/8, 535/6984, 1577/6984) 24 345 171
(33, 53, 22) (857/6984, 169/2328, 173/776) 2
(34, 54, 22) (871/6984, 1/24, 1567/6984) 104
(36, 56, 22) (1/8, 149/2328, 511/2328) 12 349 276
(40, 62, 24) (1/8, 419/6984, 1519/6984) 2 455 911

Space group type (3, 7, 1, 3, 2); IT(199) = I213

Normalizer: IT(230) = Ia3̄d with basis b′1, b
′
2, b
′
3

Reduced fundamental domain:

R199 = conv
{

(0, 0, 0), (1/8, 1/8, 1/8), (−1/8, 1/8, 1/8),

(−1/8,−1/8, 1/8), (1/8,−1/8, 1/8), (1/8, 1/8, 1/4),

(−1/8, 1/8, 1/4), (−1/8,−1/8, 1/4), (1/8,−1/8, 1/4)
}

Upper bound on number of facets: f2 ≤ 46 [SS11] for points with trivial stabi-
lizer and f2 ≤ 102 in general (Theorem 1.2.6).

Remarks concerning lower bounds: Koch found for this group a stereohedron
with 20 facets, see [Koc72, p. 88].

Metrical parameters: We used 1 000 677 997 grid points in the approximating
grid.

f-vector generating grid point frequency
(8, 12, 6) (0, 0, 0) 1
(10, 17, 9) (0, 0, 1/2328) 436
(13, 22, 11) (−1/8, 5/72, 5/24) 5646
(13, 24, 13) (211/6984, 539/6984, 527/2328) 3088
(14, 25, 13) (1/24, 1/8, 5/24) 1
(15, 26, 13) (121/2328, 613/6984, 179/776) 256
(16, 27, 13) (−455/6984,−655/6984, 545/3492) 319 640 243
(18, 29, 13) (7/72, 1/24, 1/8) 1
(17, 29, 14) (67/6984, 71/6984, 113/6984) 339 289
(19, 31, 14) (29/6984, 67/6984, 1675/6984) 240
(19, 32, 15) (221/6984, 655/6984, 509/2328) 680
(21, 34, 15) (271/2328, 815/6984, 1513/6984) 392
(22, 35, 15) (−13/3492, 10/97, 863/6984) 300 082 779
(23, 36, 15) (175/2328, 257/2328, 5/24) 381
(22, 36, 16) (−1/8, 7/2328, 473/3492) 118 346 173
(23, 37, 16) (289/6984, 295/6984, 73/873) 395
(24, 38, 16) (31/1746, 109/873, 1369/6984) 94 655 719
(25, 39, 16) (145/1164, 145/3492, 727/3492) 347
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f-vector generating grid point frequency
(26, 40, 16) (13/388, 59/1746, 55/1164) 579
(23, 38, 17) (577/6984, 1/776, 581/2328) 12
(25, 40, 17) (371/6984, 205/2328, 64/291) 101
(26, 41, 17) (253/2328, 761/6984, 319/1746) 8 729 121
(27, 42, 17) (871/6984, 19/776, 183/776) 840
(28, 43, 17) (815/6984, 817/6984, 1385/6984) 918
(29, 44, 17) (145/1164, 109/873, 1505/6984) 25 457 960
(30, 45, 17) (1/8, 1/8, 1/8) 115
(27, 43, 18) (175/6984, 221/6984, 283/6984) 31
(28, 44, 18) (1/2328, 41/6984, 71/291) 3 581 726
(31, 47, 18) (145/1164, 109/873, 1135/6984) 51 073 549
(30, 47, 19) (439/6984, 49/776, 527/2328) 168
(33, 50, 19) (145/1164, 109/873, 1435/6984) 50 529 910
(32, 50, 20) (149/2328, 259/2328, 157/776) 4865
(33, 51, 20) (15/194, 28/291, 455/2328) 24
(34, 52, 20) (71/776, 235/2328, 153/776) 76
(35, 53, 20) (11/873, 49/3492, 109/6984) 7 342 771
(36, 54, 20) (379/3492, 379/3492, 379/3492) 758
(34, 53, 21) (145/2328, 1/8, 437/2328) 37
(37, 56, 21) (295/6984, 287/2328, 81/388) 288 840
(36, 56, 22) (7/97, 41/388, 153/776) 245
(37, 57, 22) (1/12, 35/388, 77/388) 7
(38, 58, 22) (61/776, 715/6984, 449/2328) 27
(39, 59, 22) (721/6984, 241/2328, 147/776) 1 934 183
(41, 62, 23) (539/6984, 755/6984, 701/3492) 858 361
(43, 65, 24) (139/1746, 355/3492, 1343/6984) 454 748

Space group type (3, 7, 2, 1, 1); IT(200) = Pm3̄

Normalizer: IT(229) = Im3̄m with basis b′1, b
′
2, b
′
3

Reduced fundamental domain:

R200 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/2, 1/2, 0), (1/4, 1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 8 [BS01, Theorem 2.4] for points with
trivial stabilizer and f2 ≤ 198 in general (Theorem 1.2.6).

Remarks concerning lower bounds: Koch found for this group a stereohedron
with 10 facets, see [Koc72, p. 81].

Metrical parameters: We used 1 001 452 269 grid points in the approximating
grid.

f-vector generating grid point frequency
(5, 8, 5) (1817/7264, 1817/7264, 1815/7264) 3 297 855
(5, 9, 6) (1815/3632, 1815/3632, 0) 1815
(6, 10, 6) (15/227, 45/3632, 7/3632) 987 665 556
(8, 12, 6) (0, 0, 0) 1817
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f-vector generating grid point frequency
(6, 11, 7) (1815/3632, 907/1816, 0) 1 646 205
(6, 12, 8) (1/2, 0, 0) 2
(8, 16, 10) (1/2, 1815/3632, 0) 1815

Space group type (3, 7, 2, 1, 2); IT(201) = Pn3̄

Normalizer: IT(229) = Im3̄m with basis b′1, b
′
2, b
′
3

Reduced fundamental domain:

R201 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/2, 1/2, 0), (1/4, 1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 23 [SS08, Section 5] for points with
trivial stabilizer and f2 ≤ 198 in general (Theorem 1.2.6).

Metrical parameters: We used 1 001 452 269 grid points in the approximating
grid.

f-vector generating grid point frequency
(6, 12, 8) (1/2, 1815/3632, 0) 3630
(12, 19, 9) (435/908, 19/908, 9/1816) 2 452 464
(11, 19, 10) (1/4, 907/3632, 849/3632) 538 173
(12, 20, 10) (909/3632, 1/4, 907/3632) 3 292 410
(7, 15, 10) (3/8, 1/4, 1/16) 2
(13, 22, 11) (1/4, 439/1816, 849/3632) 267 949
(14, 24, 12) (0, 0, 0) 3
(15, 26, 13) (75/1816, 15/454, 6/227) 8164
(17, 28, 13) (1/4, 1/4, 0) 908
(18, 29, 13) (15/227, 45/3632, 7/3632) 651 503 995
(17, 29, 14) (90/227, 18/227, 15/227) 4
(20, 32, 14) (111/1816, 13/1816, 25/3632) 299 205 822
(24, 36, 14) (1/4, 1/4, 1/4) 1
(22, 35, 15) (491/7264, 39/7264, 3/7264) 750 704
(24, 38, 16) (239/3632, 43/3632, 1/454) 24 158 006
(25, 39, 16) (1817/7264, 1817/7264, 1815/7264) 5445

Space group type (3, 7, 2, 2, 1); IT(202) = Fm3̄

Normalizer: IT(221) = Pm3̄m with basis 1
2b
′
1,

1
2b
′
2,

1
2b
′
3

Reduced fundamental domain:

R202 = conv
{

(0, 0, 0), (1/4, 0, 0), (1/4, 1/4, 0), (1/4, 1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 8 [BS01, Theorem 2.4] for points with
trivial stabilizer and f2 ≤ 198 in general (Theorem 1.2.6).

Remarks concerning lower bounds: Engel [Eng81b] found a stereohedron with
12 facets for this group.
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Metrical parameters: We used 1 001 452 269 grid points in the approximating
grid.

f-vector generating grid point frequency
(4, 6, 4) (1815/7264, 1815/7264, 907/3632) 1 646 205
(5, 8, 5) (1/4, 1/4, 1815/7264) 3630
(5, 9, 6) (1/4, 1815/7264, 1815/7264) 105 954
(8, 12, 6) (1/4, 1/4, 1/4) 1
(6, 11, 7) (247/7264, 13/1816, 7/3632) 609 531 852
(6, 12, 8) (1/4, 0, 0) 1817
(8, 16, 10) (1/4, 1815/7264, 0) 444 978
(14, 24, 12) (0, 0, 0) 1

Space group type (3, 7, 2, 2, 2); IT(203) = Fd3̄

Normalizer: IT(224) = Pn3̄m with basis 1
2b
′
1,

1
2b
′
2,

1
2b
′
3

Reduced fundamental domain:

R203 = conv
{

(0, 0, 0), (1/4, 0, 0), (1/4, 1/4, 0), (1/8, 1/8, 1/8),

(1/8, 1/8,−1/8)
}

Upper bound on number of facets: f2 ≤ 14 [SS08, Corollary 3.5] for points with
trivial stabilizer and f2 ≤ 198 in general (Theorem 1.2.6).

Metrical parameters: We used 1 000 520 885 grid points in the approximating
grid.

f-vector generating grid point frequency
(5, 8, 5) (360/1441, 360/1441, 0) 1680
(8, 12, 6) (0, 0, 0) 2
(10, 15, 7) (180/1441, 180/1441, 180/1441) 2880
(8, 13, 7) (721/5764, 180/1441,−180/1441) 4 104 085
(9, 14, 7) (721/5764, 721/5764, 719/5764) 1 035 360
(8, 15, 9) (107/5764, 103/5764,−1/1441) 319 644
(10, 20, 12) (1/8, 1/8,−1/8) 721
(12, 22, 12) (1/8, 1/8, 1439/11528) 720
(14, 24, 12) (107/5764, 103/5764, 1/1441) 729 064 290
(14, 25, 13) (107/5764, 103/5764,−5/5764) 156 709 442
(18, 30, 14) (107/5764, 103/5764, 2/131) 25 031 717
(16, 30, 16) (1/8, 1/8, 1/8) 1

Space group type (3, 7, 2, 3, 1); IT(204) = Im3̄

Normalizer: IT(229) = Im3̄m with basis b′1, b
′
2, b
′
3

Reduced fundamental domain:

R204 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/2, 1/2, 0), (1/4, 1/4, 1/4)
}
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Upper bound on number of facets: f2 ≤ 8 [BS01, Theorem 2.4] for points with
trivial stabilizer and f2 ≤ 198 in general (Theorem 1.2.6).

Remarks concerning lower bounds: Engel [Eng81b] found a stereohedron with
14 facets for this group.

Metrical parameters: We used 1 001 452 269 grid points in the approximating
grid.

f-vector generating grid point frequency
(4, 6, 4) (1/2, 1/4, 0) 908
(5, 8, 5) (121/454, 967/3632, 789/3632) 206 492
(5, 9, 6) (3/8, 3/8, 0) 454
(8, 12, 6) (1/4, 1/4, 1/4) 1
(10, 15, 7) (1815/7264, 1815/7264, 1815/7264) 1815
(6, 11, 7) (179/3632, 125/3632, 67/3632) 1475
(7, 12, 7) (909/3632, 1/4, 53/227) 396 005
(8, 13, 7) (15/227, 45/3632, 7/3632) 683 530 603
(9, 14, 7) (1815/7264, 1815/7264, 1813/7264) 822 649
(10, 16, 8) (249/7264, 247/7264, 243/7264) 155 997 990
(6, 12, 8) (1/4, 1/4, 0) 1
(10, 18, 10) (1815/3632, 1/4, 0) 907
(11, 19, 10) (1815/3632, 1815/3632, 0) 1 303 152
(12, 20, 10) (907/3632, 907/3632, 0) 907
(7, 15, 10) (3/16, 1/8, 0) 1
(9, 17, 10) (1361/3632, 1361/3632, 0) 453
(13, 22, 11) (907/1816, 909/3632, 0) 342 145
(10, 20, 12) (1/2, 0, 0) 2
(14, 25, 13) (1/2, 1815/3632, 0) 1814
(17, 28, 13) (1815/3632, 0, 0) 1815
(24, 36, 14) (0, 0, 0) 1

Space group type (3, 7, 2, 1, 3); IT(205) = Pa3̄

Normalizer: IT(206) = Ia3̄ with basis b′1, b
′
2, b
′
3

Reduced fundamental domain:

R205 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/2, 1/2, 0), (0, 1/2, 0), (1/4, 1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 86 [SS11] for points with trivial stabi-
lizer and f2 ≤ 198 in general (Theorem 1.2.6).

Remarks concerning lower bounds: Koch found for this group a stereohedron
with 13 facets, see [Koc72, p. 84].

Metrical parameters: We used 1 000 520 885 grid points in the approximating
grid.
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f-vector generating grid point frequency
(8, 12, 6) (1/4, 1/4, 1/4) 1
(6, 12, 8) (721/2882, 360/1441, 360/1441) 10 800
(7, 13, 8) (360/1441, 721/2882, 0) 1440
(10, 18, 10) (720/1441, 1/2882, 0) 1440
(11, 21, 12) (1343/2882, 1427/2882, 1/1441) 741 739
(12, 22, 12) (456/1441, 481/1441, 433/2882) 100 165
(13, 23, 12) (105/2882, 105/2882, 50/1441) 1 035 360
(14, 24, 12) (897/2882, 496/1441, 224/1441) 245 230
(15, 25, 12) (9/262, 107/2882, 23/2882) 4692
(19, 30, 13) (360/1441, 360/1441, 360/1441) 1440
(15, 27, 14) (807/2882, 839/2882, 269/1441) 765
(16, 28, 14) (2689/5764, 2867/5764, 1/5764) 96 725 811
(17, 29, 14) (38/1441, 127/2882, 73/2882) 298 649
(18, 30, 14) (103/2882, 107/2882, 51/1441) 447 854 805
(19, 31, 14) (353/2882, 99/262, 337/2882) 371
(20, 32, 14) (211/5764, 19/524, 199/5764) 200 379 547
(21, 33, 14) (747/5764, 2133/5764, 705/5764) 501
(20, 34, 16) (1819/5764, 1919/5764, 871/5764) 31 900 381
(21, 35, 16) (18/131, 40/131, 14/131) 1
(22, 36, 16) (1957/5764, 937/5764, 735/5764) 74 827 770
(24, 38, 16) (221/5764, 199/5764, 191/5764) 98 525 278
(25, 39, 16) (73/524, 2075/5764, 485/5764) 505
(26, 42, 18) (3/22, 1139/2882, 5/131) 170 301
(28, 44, 18) (197/5764, 223/5764, 195/5764) 47 395 035

Space group type (3, 7, 2, 3, 2); IT(206) = Ia3̄

Normalizer: IT(230) = Ia3̄d with basis b′1, b
′
2, b
′
3

Reduced fundamental domain:

R206 = conv
{

(0, 0, 0), (1/8, 1/8, 1/8), (−1/8, 1/8, 1/8),

(−1/8,−1/8, 1/8), (1/8,−1/8, 1/8), (1/8, 1/8, 1/4),

(−1/8, 1/8, 1/4), (−1/8,−1/8, 1/4), (1/8,−1/8, 1/4)
}

Upper bound on number of facets: f2 ≤ 57 [SS11] for points with trivial stabi-
lizer and f2 ≤ 198 in general (Theorem 1.2.6).

Remarks concerning lower bounds: Koch found for this group a stereohedron
with 17 facets, see [Koc72, p. 85].

Metrical parameters: We used 1 000 677 997 grid points in the approximating
grid.

f-vector generating grid point frequency
(5, 8, 5) (0, 0, 1/2328) 436
(8, 12, 6) (0, 0, 0) 1
(10, 18, 10) (−1/24,−1/8, 1/6) 436
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f-vector generating grid point frequency
(9, 17, 10) (−1/8,−1/8, 1/4) 1648
(10, 19, 11) (−1/8,−1/8, 1/8) 2619
(13, 22, 11) (−9/388,−6/97, 33/388) 1
(8, 17, 11) (1/8,−1/24, 5/24) 1
(13, 23, 12) (−1/6984,−1/8, 1/4) 328 474
(14, 24, 12) (−1/6984,−233/2328, 131/873) 84 229
(15, 25, 12) (0, 187/1746, 1121/6984) 526 290
(16, 26, 12) (−1/8,−167/6984, 130/873) 105 946
(14, 25, 13) (−1/8, 145/2328, 1/4) 63 722
(16, 27, 13) (1/8, 145/2328, 1/4) 97 920
(17, 28, 13) (317/3492, 0, 317/2328) 29 943
(18, 29, 13) (1/8,−125/2328, 187/1164) 41 466 623
(17, 29, 14) (−869/6984, 341/6984, 11/72) 137 526
(18, 30, 14) (−1/8, 55/6984, 116/873) 25 744 231
(19, 31, 14) (−805/6984,−535/6984, 1607/6984) 103 743
(20, 32, 14) (−13/3492, 10/97, 863/6984) 344 538 059
(21, 33, 14) (−283/2328,−1/2328, 377/2328) 88
(22, 34, 14) (31/1746, 109/873, 1369/6984) 145 823 351
(17, 30, 15) (−1/8,−437/6984, 1745/6984) 252
(18, 31, 15) (37/388, 0, 15/97) 134
(19, 32, 15) (−1/8, 145/2328, 581/2328) 11 752
(20, 33, 15) (−457/6984,−211/2328, 545/3492) 36 467
(21, 34, 15) (−59/776,−595/6984, 119/776) 453
(22, 35, 15) (−57/776,−577/6984, 545/3492) 4 479 902
(19, 33, 16) (−841/6984, 269/6984, 361/2328) 59
(21, 35, 16) (−241/2328,−179/2328, 427/2328) 51 129
(22, 36, 16) (−457/6984,−475/6984, 545/3492) 51 774 410
(23, 37, 16) (−713/6984, 211/6984, 1219/6984) 12 318
(24, 38, 16) (−1/8,−1/6984, 319/2328) 25 827 890
(25, 39, 16) (−595/6984,−17/6984, 1037/6984) 55
(26, 40, 16) (799/6984, 89/776, 49/388) 9 805 841
(23, 38, 17) (−1/8, 35/776, 189/776) 643
(24, 39, 17) (−455/6984,−655/6984, 545/3492) 14 629 703
(25, 40, 17) (1/8, 437/6984, 1745/6984) 1024
(26, 41, 17) (−57/776,−193/2328, 545/3492) 36 088 498
(28, 43, 17) (211/2328, 1/6984, 475/3492) 1 849 214
(30, 45, 17) (1/8, 1/8, 1/8) 873
(23, 39, 18) (−865/6984, 173/6984, 1211/6984) 16
(25, 41, 18) (−1/8, 1/24, 13/72) 80
(26, 42, 18) (−1/8, 55/2328, 437/3492) 9 494 176
(27, 43, 18) (−821/6984, 199/6984, 1229/6984) 80
(28, 44, 18) (−1/8, 335/6984, 18/97) 4 091 645
(29, 45, 18) (−25/1164,−17/1164, 65/1164) 8
(30, 46, 18) (785/6984, 787/6984, 425/3492) 30 035 545
(25, 42, 19) (−1/8, 85/2328, 461/2328) 160
(27, 44, 19) (−1/582,−5/3492, 101/2328) 72
(28, 45, 19) (−457/6984,−491/6984, 545/3492) 3 768 069
(29, 46, 19) (19/194, 19/291, 211/1164) 190
(30, 47, 19) (−461/6984,−473/6984, 545/3492) 8 842 620
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f-vector generating grid point frequency
(32, 49, 19) (1/8, 523/6984, 1571/6984) 17 287 516
(29, 47, 20) (−545/6984, 37/2328, 157/776) 26
(30, 48, 20) (−1/8, 37/776, 1207/6984) 1 676 938
(31, 49, 20) (−857/6984,−463/6984, 1453/6984) 3
(32, 50, 20) (−457/6984,−51/776, 545/3492) 4 326 364
(34, 52, 20) (691/6984, 463/6984, 317/1746) 5 767 035
(32, 51, 21) (−1/8, 209/6984, 323/1746) 1 601 262
(33, 52, 21) (11/194, 77/3492, 671/6984) 767
(34, 53, 21) (−515/6984,−565/6984, 545/3492) 144 144
(36, 55, 21) (1/8, 379/6984, 1499/6984) 13 657 787
(34, 54, 22) (−1/8, 35/776, 1253/6984) 427 874
(36, 56, 22) (−1/776,−1/6984, 1567/6984) 16 987
(38, 58, 22) (80/873, 221/3492, 1181/6984) 5 013 031
(37, 58, 23) (27/388, 11/291, 155/1164) 304
(40, 61, 23) (1/8, 125/2328, 499/2328) 22 842 322
(42, 64, 24) (13/194, 179/3492, 881/6984) 995 100
(41, 64, 25) (1/194, 17/3492, 61/6984) 104
(44, 67, 25) (1/8, 373/6984, 187/873) 3 931 406
(46, 70, 26) (415/6984, 109/2328, 131/1164) 272 968
(50, 76, 28) (7/582, 1/97, 9/388) 90 445

Space group type (3, 7, 3, 1, 1); IT(207) = P432

Normalizer: IT(229) = Im3̄m with basis b′1, b
′
2, b
′
3

Reduced fundamental domain:

R207 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/2, 1/2, 0), (1/4, 1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 11 [SS08, Corollary 4.3] for points with
trivial stabilizer and f2 ≤ 198 in general (Theorem 1.2.6).

Remarks concerning lower bounds: Engel [Eng81b] found a stereohedron with 9
facets for this group.

Metrical parameters: We used 1 001 452 269 grid points in the approximating
grid.

f-vector generating grid point frequency
(4, 6, 4) (1/2, 1815/3632, 0) 1 648 020
(5, 8, 5) (1817/7264, 1817/7264, 1815/7264) 3 297 855
(5, 9, 6) (1815/3632, 1815/3632, 0) 1815
(8, 12, 6) (0, 0, 0) 1817
(6, 12, 8) (1/2, 0, 0) 2
(8, 15, 9) (15/227, 45/3632, 7/3632) 638 181 275

Space group type (3, 7, 3, 1, 3); IT(208) = P4232

Normalizer: IT(229) = Im3̄m with basis b′1, b
′
2, b
′
3
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Reduced fundamental domain:

R208 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/2, 1/2, 0), (1/4, 1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 25 [SS08, Section 6] for points with
trivial stabilizer and f2 ≤ 198 in general (Theorem 1.2.6).

Remarks concerning lower bounds: Corollary 6.2 in [SS08] states that every ster-
eohedron with “base point” in general position has at least 11 facets. Fur-
thermore, examples were found of stereohedra with facets any number
between 14 and 17.

Metrical parameters: We used 1 001 452 269 grid points in the approximating
grid.

f-vector generating grid point frequency
(5, 9, 6) (3/8, 3/8, 0) 454
(6, 11, 7) (1817/7264, 1817/7264, 1815/7264) 3630
(6, 12, 8) (1/4, 1/4, 0) 908
(7, 13, 8) (907/1816, 907/3632, 0) 907
(11, 18, 9) (909/3632, 909/3632, 453/1816) 453
(12, 19, 9) (1/4, 907/3632, 907/3632) 1 646 205
(9, 16, 9) (1513/3632, 1513/3632, 151/1816) 151
(11, 19, 10) (909/3632, 1/4, 53/227) 1 440 089
(12, 20, 10) (907/3632, 907/3632, 0) 823 556
(8, 16, 10) (1/2, 1/4, 0) 454
(9, 17, 10) (1347/3632, 469/3632, 409/3632) 755
(13, 22, 11) (435/908, 19/908, 9/1816) 889 541
(14, 23, 11) (121/454, 967/3632, 789/3632) 1 027 254
(10, 20, 12) (1/2, 0, 0) 2
(14, 24, 12) (1/4, 1/4, 1/4) 1 645 299
(15, 25, 12) (31/908, 123/3632, 61/1816) 822 649
(16, 27, 13) (1/4, 907/3632, 849/3632) 548 282
(17, 28, 13) (185/3632, 31/1816, 61/3632) 412 384
(16, 28, 14) (1/2, 1815/3632, 0) 1814
(17, 29, 14) (279/908, 189/908, 315/1816) 13
(20, 32, 14) (15/227, 45/3632, 7/3632) 753 863 053
(24, 36, 14) (0, 0, 0) 1
(17, 30, 15) (427/908, 73/227, 3/227) 3
(20, 33, 15) (1937/7264, 1935/7264, 1577/7264) 111 858 167
(24, 38, 16) (251/7264, 247/7264, 241/7264) 114 444 764
(25, 39, 16) (1815/7264, 1815/7264, 1815/7264) 1815
(24, 39, 17) (2989/7264, 2987/7264, 525/7264) 12 019 663

Space group type (3, 7, 3, 2, 1); IT(209) = F432

Normalizer: IT(221) = Pm3̄m with basis 1
2b
′
1,

1
2b
′
2,

1
2b
′
3

Reduced fundamental domain:

R209 = conv
{

(0, 0, 0), (1/4, 0, 0), (1/4, 1/4, 0), (1/4, 1/4, 1/4)
}
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Upper bound on number of facets: f2 ≤ 14 [SS08, Corollary 3.5] for points with
trivial stabilizer and f2 ≤ 198 in general (Theorem 1.2.6).

Remarks concerning lower bounds: Engel [Eng81b] found a stereohedron with
12 facets for this group.

Metrical parameters: We used 1 001 452 269 grid points in the approximating
grid.

f-vector generating grid point frequency
(4, 6, 4) (1/4, 1815/7264, 0) 3 294 225
(5, 8, 5) (1/4, 1/4, 1815/7264) 3630
(5, 9, 6) (1/4, 1815/7264, 1815/7264) 1 599 344
(8, 12, 6) (1/4, 1/4, 1/4) 1
(6, 12, 8) (1/4, 0, 0) 1817
(8, 15, 9) (247/7264, 13/1816, 7/3632) 654 164 225
(14, 24, 12) (0, 0, 0) 1

Space group type (3, 7, 3, 2, 2); IT(210) = F4132

Normalizer: IT(224) = Pn3̄m with basis 1
2b
′
1,

1
2b
′
2,

1
2b
′
3

Reduced fundamental domain:

R210 = conv
{

(0, 0, 0), (1/4, 0, 0), (1/4, 1/4, 0), (1/8, 1/8, 1/8),

(1/8, 1/8,−1/8)
}

Upper bound on number of facets: f2 ≤ 17 [SS08, Corollary 3.5] for points with
trivial stabilizer and f2 ≤ 198 in general (Theorem 1.2.6).

Remarks concerning lower bounds: Koch found for this group a stereohedron
with 10 facets, see [Koc72, p. 68].

Metrical parameters: We used 1 000 520 885 grid points in the approximating
grid.

f-vector generating grid point frequency
(5, 8, 5) (1443/11528, 1443/11528, 1437/11528) 811
(8, 12, 6) (1/8, 1/8, 1/8) 1
(10, 15, 7) (180/1441, 180/1441, 180/1441) 1440
(8, 13, 7) (1/8, 1/8, 1439/11528) 2 694 599
(9, 14, 7) (180/1441, 719/5764, 719/5764) 222 045
(10, 18, 10) (1631/11528, 1439/11528, 1249/11528) 247 069
(8, 16, 10) (1443/11528, 1/8, 1439/11528) 188
(10, 20, 12) (1/4, 0, 0) 722
(12, 22, 12) (180/1441, 0, 0) 720
(13, 23, 12) (215/11528, 205/11528, 195/11528) 494 662
(14, 24, 12) (1/8, 1/8,−1/8) 1441
(15, 26, 13) (3/88, 19/11528, 1/1048) 390
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f-vector generating grid point frequency
(16, 27, 13) (107/5764, 103/5764, 2/131) 230 824 607
(16, 28, 14) (769/5764, 673/5764, 61/524) 116 802 788
(19, 32, 15) (257/11528, 1/88, 125/11528) 244
(20, 33, 15) (219/11528, 201/11528, 185/11528) 110 275 905
(16, 30, 16) (0, 0, 0) 1
(24, 39, 17) (215/11528, 205/11528, 203/11528) 7 479 832

Space group type (3, 7, 3, 3, 1); IT(211) = I432

Normalizer: IT(229) = Im3̄m with basis b′1, b
′
2, b
′
3

Reduced fundamental domain:

R211 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/2, 1/2, 0), (1/4, 1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 22 [SS08, Corollary 4.3] for points with
trivial stabilizer and f2 ≤ 198 in general (Theorem 1.2.6).

Remarks concerning lower bounds: Engel [Eng81b] found a stereohedron with
16 facets for this group.

Metrical parameters: We used 1 001 452 269 grid points in the approximating
grid.

f-vector generating grid point frequency
(4, 6, 4) (1/2, 1/4, 0) 454
(5, 8, 5) (1/4, 1/4, 907/3632) 2267
(6, 9, 5) (1/2, 1815/3632, 0) 1814
(5, 9, 6) (3/8, 3/8, 0) 1
(7, 11, 6) (907/1816, 909/3632, 0) 205 209
(8, 12, 6) (1/4, 1/4, 1/4) 1 439 637
(10, 15, 7) (1815/7264, 1815/7264, 1815/7264) 1815
(8, 13, 7) (1817/7264, 1817/7264, 1815/7264) 2 472 031
(9, 14, 7) (1815/7264, 1815/7264, 1813/7264) 822 649
(6, 12, 8) (1/4, 1/4, 0) 1
(10, 17, 9) (121/454, 967/3632, 789/3632) 179 872
(8, 15, 9) (909/3632, 1/4, 907/3632) 907
(10, 18, 10) (909/3632, 1/4, 53/227) 366 253
(11, 19, 10) (1815/3632, 1815/3632, 0) 453
(12, 20, 10) (907/3632, 907/3632, 0) 907
(9, 17, 10) (1361/3632, 1361/3632, 0) 453
(12, 21, 11) (1819/7264, 1817/7264, 1813/7264) 1 645 298
(13, 22, 11) (31/908, 123/3632, 61/1816) 683 840
(10, 20, 12) (1/2, 0, 0) 2
(15, 25, 12) (115/1816, 14/227, 5/1816) 1041
(16, 26, 12) (15/227, 45/3632, 7/3632) 429 155 207
(16, 27, 13) (1819/7264, 1817/7264, 1695/7264) 111 811 155
(17, 28, 13) (1815/3632, 0, 0) 1815
(19, 31, 14) (257/7264, 255/7264, 225/7264) 886
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f-vector generating grid point frequency
(20, 32, 14) (489/7264, 487/7264, 3/7264) 270 726 064
(24, 36, 14) (0, 0, 0) 1
(24, 38, 16) (249/7264, 247/7264, 243/7264) 42 951 936

Space group type (3, 7, 3, 1, 2); IT(212) = P4332, IT(213) = P4132

Normalizer: IT(214) = I4132 with basis b′1, b
′
2, b
′
3

Reduced fundamental domain:

R212 = conv
{

(1/8, 1/8, 1/8), (1/8, 1/8, 3/8), (1/8,−1/8, 1/8),

(−1/8, 1/8, 1/8), (−1/8,−1/8,−1/8), (−3/8, 1/8, 3/8),

(−3/8,−1/8, 1/8)
}

Upper bound on number of facets: f2 ≤ 92 [SS11] for points with trivial stabi-
lizer and f2 ≤ 198 in general (Theorem 1.2.6).

Remarks concerning lower bounds: Koch found for this group a stereohedron
with 22 facets, see [Koc72, p. 70].

Metrical parameters: We used 1 000 964 383 grid points in the approximating
grid.

f-vector generating grid point frequency
(8, 14, 8) (−1/8,−1/8, 1/8) 2
(10, 17, 9) (−1/4,−353/4248, 89/1062) 177
(8, 15, 9) (−95/472,−47/472, 1/472) 36
(10, 18, 10) (−5/24, 1/8, 7/24) 2
(12, 20, 10) (−1063/4248,−71/1416, 637/4248) 16
(9, 17, 10) (−1/8,−133/2124, 133/2124) 353
(11, 20, 11) (−89/708,−529/4248, 133/1062) 281 583
(12, 21, 11) (−1/4248,−1/8, 1/8) 1572
(13, 22, 11) (−11/1416,−167/1416, 131/1416) 2998
(14, 23, 11) (−103/1416,−103/1416, 103/1416) 353
(12, 22, 12) (−133/1062,−89/1416, 133/2124) 69 380
(13, 23, 12) (−9/472,−251/2124, 85/1062) 49 023
(14, 24, 12) (−181/1416,−127/1416,−73/1416) 41
(13, 24, 13) (0, 0, 1/8) 1
(14, 25, 13) (1/12, 1/12, 1/4) 407
(15, 26, 13) (−20/59, 227/4248, 569/2124) 181 534
(16, 27, 13) (15/472,−265/2124, 22/177) 177 122 240
(17, 28, 13) (−89/4248,−503/4248, 341/4248) 225 284
(16, 28, 14) (−19/472, 4/531, 100/531) 119 784 137
(17, 29, 14) (−305/4248,−115/1062,−32/531) 723
(18, 30, 14) (−13/177,−65/1416, 23/236) 205 167
(19, 31, 14) (−151/2124,−95/1062,−28/531) 479 396
(16, 29, 15) (−229/1062,−229/2124, 83/4248) 17
(17, 30, 15) (0, 0, 923/4248) 948
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f-vector generating grid point frequency
(19, 32, 15) (25/4248,−149/4248, 799/4248) 2411
(20, 33, 15) (−355/4248,−179/2124,−44/531) 22 087 236
(21, 34, 15) (317/4248,−107/4248, 745/4248) 557 632
(22, 35, 15) (−151/2124,−127/1416,−28/531) 251 030 427
(23, 36, 15) (−1223/4248,−103/1416, 605/4248) 13
(16, 30, 16) (0, 0, 0) 1
(19, 33, 16) (−833/4248,−437/4248, 79/4248) 10
(20, 34, 16) (−535/4248,−269/4248, 263/4248) 1 257 193
(21, 35, 16) (131/1416, 19/472, 123/472) 3205
(22, 36, 16) (−13/177,−73/2124, 463/4248) 49 080 272
(23, 37, 16) (−40/531,−527/4248,−319/4248) 246 332
(24, 38, 16) (−151/2124,−119/1416,−31/472) 32 341 849
(20, 35, 17) (−43/1416,−11/177, 89/708) 185
(21, 36, 17) (−35/354,−14/177, 55/1416) 1130
(22, 37, 17) (−47/177,−83/708, 61/1416) 19
(23, 38, 17) (−37/177,−77/708, 13/1416) 1556
(24, 39, 17) (41/4248,−11/4248, 953/4248) 41 433 937
(25, 40, 17) (−151/2124,−179/2124,−41/708) 112 271
(26, 41, 17) (−151/2124,−95/1062,−223/4248) 103 302 207
(30, 45, 17) (−3/8,−1/8, 1/8) 179
(24, 40, 18) (−29/118,−29/236, 27/472) 3
(25, 41, 18) (−103/1416,−14/177,−157/4248) 1088
(26, 42, 18) (−13/177,−49/1062, 7/72) 36 076 144
(27, 43, 18) (−355/4248,−361/4248,−39/472) 12 539
(28, 44, 18) (−151/2124,−119/1416,−91/1416) 21 520 727
(29, 45, 18) (−1/12,−43/531,−157/2124) 163
(30, 46, 18) (−55/708,−239/2124,−329/4248) 7 322 558
(32, 48, 18) (1/8, 1/8, 1/8) 1
(25, 42, 19) (−12/59,−56/531, 71/4248) 6
(27, 44, 19) (−77/1416,−283/4248, 7/72) 1085
(28, 45, 19) (−163/2124,−313/4248, 47/708) 18 007 434
(29, 46, 19) (145/2124,−53/4248, 193/1062) 49 730
(30, 47, 19) (−151/2124,−179/2124,−65/2124) 52 233 655
(31, 48, 19) (−5/36,−45/472,−1/59) 410
(32, 49, 19) (−607/4248,−58/531,−25/708) 5 939 349
(28, 46, 20) (−293/1416,−415/4248,−49/4248) 41
(29, 47, 20) (−1/8,−7/72, 1/72) 47
(30, 48, 20) (−415/2124,−109/1062, 55/4248) 63 324
(31, 49, 20) (−977/4248,−529/4248, 139/4248) 10 946
(32, 50, 20) (−151/2124,−179/2124,−199/4248) 13 855 341
(33, 51, 20) (−265/1062,−7/59, 1/72) 141
(34, 52, 20) (−40/531,−22/177,−319/4248) 7 330 859
(29, 48, 21) (−104/531,−221/2124, 67/4248) 7
(30, 49, 21) (−455/2124,−19/177,−73/4248) 7
(31, 50, 21) (−11/1062,−83/1416, 317/2124) 1041
(32, 51, 21) (7/472,−215/4248, 257/1416) 139 197
(33, 52, 21) (−289/1416,−51/472, 23/4248) 3081
(34, 53, 21) (−161/2124,−13/177, 287/4248) 16 159 109
(35, 54, 21) (−191/1416,−191/2124,−7/1062) 314
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f-vector generating grid point frequency
(36, 55, 21) (−401/2124,−265/2124, 1/1416) 4 176 683
(32, 52, 22) (−217/1062,−217/2124,−23/4248) 3
(33, 53, 22) (131/1062, 439/4248, 313/2124) 7
(34, 54, 22) (−104/531,−73/708, 55/4248) 20 995
(35, 55, 22) (−67/1416,−281/4248, 451/4248) 5780
(36, 56, 22) (−21/236,−37/472, 35/708) 2 625 931
(37, 57, 22) (−511/2124,−29/236, 1/72) 1027
(38, 58, 22) (−124/531,−265/2124, 73/4248) 337 899
(35, 56, 23) (5/177,−115/2124, 275/1416) 149
(36, 57, 23) (−104/531,−439/4248, 7/531) 20 653
(37, 58, 23) (−95/472,−45/472,−25/1416) 1528
(38, 59, 23) (−337/4248,−317/4248, 89/1416) 8 678 192
(39, 60, 23) (−481/1416, 73/1416, 383/1416) 148
(40, 61, 23) (−217/1062,−115/1062, 23/4248) 2 574 890
(39, 61, 24) (119/4248, 323/4248, 1181/4248) 1122
(40, 62, 24) (−319/4248,−311/4248, 97/1416) 608 694
(41, 63, 24) (−83/236, 25/708, 19/72) 3
(42, 64, 24) (−889/4248,−463/4248, 35/4248) 804 747
(39, 62, 25) (−815/4248,−455/4248, 107/4248) 19
(40, 63, 25) (−34/177,−493/4248, 85/2124) 170
(41, 64, 25) (−833/4248,−49/472, 1/72) 21
(42, 65, 25) (17/531,−223/4248, 209/1062) 501 550
(43, 66, 25) (−121/531,−1/9,−3/472) 7
(44, 67, 25) (−299/1416,−233/2124, 17/2124) 1 446 228
(43, 67, 26) (−1457/4248, 193/4248, 1183/4248) 26
(44, 68, 26) (−97/531,−29/236, 7/1416) 5763
(45, 69, 26) (−875/4248,−7/72,−7/472) 20
(46, 70, 26) (−889/4248,−463/4248, 11/1416) 399 754
(46, 71, 27) (−833/4248,−73/708, 13/1062) 2528
(48, 73, 27) (−1441/4248, 227/4248, 1141/4248) 107 586
(50, 76, 28) (−733/2124, 103/2124, 127/472) 49 893
(52, 79, 29) (−113/531,−49/472,−4/531) 565

Space group type (3, 7, 3, 3, 2); IT(214) = I4132

Normalizer: IT(230) = Ia3̄d with basis b′1, b
′
2, b
′
3

Reduced fundamental domain:

R214 = conv
{

(0, 0, 0), (1/8, 1/8, 1/8), (−1/8, 1/8, 1/8),

(−1/8,−1/8, 1/8), (1/8,−1/8, 1/8), (1/8, 1/8, 1/4),

(−1/8, 1/8, 1/4), (−1/8,−1/8, 1/4), (1/8,−1/8, 1/4)
}

Upper bound on number of facets: f2 ≤ 55 [SS11] for points with trivial stabi-
lizer and f2 ≤ 198 in general (Theorem 1.2.6).

Remarks concerning lower bounds: Engel found for this group four stereohedra
with 38 facets, see [Eng81a; GS80].
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Metrical parameters: We used 1 000 677 997 grid points in the approximating
grid.

f-vector generating grid point frequency
(9, 16, 9) (−145/2328, 145/2328, 437/2328) 654
(13, 21, 10) (−871/6984, 871/6984, 875/6984) 218
(13, 22, 11) (−1/8,−1/8, 1/8) 5
(14, 24, 12) (−1/6984,−1/8, 1/8) 1875
(16, 26, 12) (145/1164, 109/873, 437/3492) 478 096
(17, 27, 12) (1/8,−1/8, 1/4) 3490
(14, 25, 13) (1/24, 1/8, 5/24) 1
(15, 26, 13) (−1/8, 1/24, 5/24) 409
(16, 27, 13) (1/8, 1/24, 5/24) 1018
(17, 28, 13) (7/97, 41/388, 153/776) 93
(18, 29, 13) (−871/6984, 869/6984, 875/6984) 349 676
(19, 30, 13) (1/2328, 233/2328, 155/776) 17
(16, 28, 14) (−1/8, 289/6984, 1457/6984) 95 193
(17, 29, 14) (293/6984, 289/2328, 1459/6984) 139
(18, 30, 14) (281/6984, 289/2328, 1453/6984) 29
(19, 31, 14) (−661/6984,−871/6984, 121/776) 319 860
(20, 32, 14) (−443/6984,−73/776, 121/776) 272 521
(24, 36, 14) (0, 0, 0) 873
(19, 32, 15) (289/6984, 1/8, 727/3492) 217
(20, 33, 15) (−73/776,−659/6984, 121/776) 983 215
(21, 34, 15) (−167/2328,−75/776, 355/2328) 6660
(22, 35, 15) (−443/6984,−659/6984, 121/776) 1 070 500
(23, 36, 15) (−67/776,−625/6984, 121/776) 1544
(24, 37, 15) (−3/776, 719/6984, 133/873) 72 045 809
(21, 35, 16) (−53/776,−845/6984, 1087/6984) 59 276
(23, 37, 16) (−1/8, 205/6984, 1283/6984) 58 000
(24, 38, 16) (−661/6984,−871/6984, 545/3492) 103 290 708
(25, 39, 16) (1/72, 817/6984, 151/776) 241
(26, 40, 16) (−455/6984,−655/6984, 545/3492) 226 770 401
(24, 39, 17) (−1/6984, 697/6984, 1397/6984) 65 328
(25, 40, 17) (31/1746, 109/873, 655/3492) 28 759
(26, 41, 17) (−455/6984,−673/6984, 545/3492) 10 781 542
(27, 42, 17) (703/6984, 235/2328, 1091/6984) 448
(28, 43, 17) (−457/6984,−51/776, 545/3492) 320 083 741
(30, 45, 17) (1/8, 1/8, 1/8) 1
(25, 41, 18) (−55/776,−77/776, 121/776) 1155
(26, 42, 18) (−73/776,−659/6984, 545/3492) 49 928 325
(27, 43, 18) (−677/6984,−851/6984, 355/2328) 41 242
(28, 44, 18) (−455/6984,−841/6984, 545/3492) 68 451 893
(29, 45, 18) (109/873, 37/1746, 401/1746) 110
(30, 46, 18) (31/1746, 109/873, 1309/6984) 19 665 278
(26, 43, 19) (305/6984, 281/2328, 1465/6984) 29
(27, 44, 19) (329/6984, 77/776, 173/776) 81
(29, 46, 19) (1/24, 289/2328, 1457/6984) 27 993
(30, 47, 19) (−455/6984,−73/776, 545/3492) 48 889 552
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f-vector generating grid point frequency
(31, 48, 19) (−281/6984, 293/6984, 5/24) 256
(32, 49, 19) (31/1746, 109/873, 223/1164) 17 734 901
(31, 49, 20) (325/6984, 91/776, 491/2328) 4755
(32, 50, 20) (−463/6984,−73/776, 545/3492) 12 459 956
(33, 51, 20) (1/2328, 583/6984, 5/24) 168
(34, 52, 20) (31/1746, 109/873, 1369/6984) 14 570 609
(30, 49, 21) (7/97, 33/388, 161/776) 1
(33, 52, 21) (653/6984, 655/6984, 1249/6984) 7681
(34, 53, 21) (−1/8, 331/6984, 64/291) 12 005 153
(35, 54, 21) (69/776, 7/72, 421/2328) 17
(36, 55, 21) (869/6984, 871/6984, 439/3492) 3 519 504
(35, 55, 22) (409/6984, 277/2328, 511/2328) 4133
(36, 56, 22) (293/6984, 865/6984, 1459/6984) 205 405
(37, 57, 22) (75/776, 7/72, 407/2328) 101
(38, 58, 22) (217/1746, 145/1164, 49/388) 4 966 452
(34, 55, 23) (19/291, 21/194, 19/97) 31
(37, 58, 23) (115/1746, 379/3492, 1367/6984) 2568
(38, 59, 23) (−1/2328, 695/6984, 233/1164) 1 114 000
(39, 60, 23) (295/6984, 859/6984, 1459/6984) 171
(40, 61, 23) (10/97, 361/3492, 1123/6984) 1 660 625
(39, 61, 24) (103/6984, 239/6984, 1663/6984) 1364
(41, 63, 24) (1/24, 511/6984, 509/2328) 38
(42, 64, 24) (865/6984, 289/2328, 295/2328) 1 919 321
(41, 64, 25) (349/3492, 39/388, 599/3492) 302
(43, 66, 25) (43/388, 1/9, 529/3492) 106
(44, 67, 25) (1/24, 869/6984, 182/873) 1 771 396
(43, 67, 26) (223/6984, 655/6984, 1525/6984) 3049
(45, 69, 26) (455/6984, 5/72, 1571/6984) 25
(46, 70, 26) (289/2328, 869/6984, 49/388) 2 191 033
(45, 70, 27) (283/6984, 45/776, 1571/6984) 244
(47, 72, 27) (1/24, 469/6984, 515/2328) 41
(48, 73, 27) (865/6984, 289/2328, 443/3492) 781 779
(47, 73, 28) (121/1746, 94/873, 685/3492) 919
(49, 75, 28) (65/1164, 1/9, 239/1164) 11
(50, 76, 28) (227/2328, 683/6984, 1229/6984) 686 356
(49, 76, 29) (85/1164, 121/1164, 227/1164) 59
(51, 78, 29) (151/2328, 689/6984, 5/24) 22
(52, 79, 29) (71/582, 427/3492, 455/3492) 252 540
(51, 79, 30) (5/72, 5/72, 2/9) 51
(53, 81, 30) (55/776, 7/72, 159/776) 34
(54, 82, 30) (37/388, 167/1746, 209/1164) 89 693
(53, 82, 31) (473/6984, 247/2328, 1387/6984) 32
(55, 84, 31) (56/873, 41/388, 709/3492) 4
(56, 85, 31) (461/6984, 517/6984, 1541/6984) 137 402
(55, 85, 32) (653/6984, 343/6984, 797/3492) 1
(58, 88, 32) (463/6984, 517/6984, 257/1164) 66 313
(57, 88, 33) (215/2328, 119/2328, 529/2328) 3
(59, 90, 33) (22/291, 1/12, 247/1164) 2
(60, 91, 33) (473/6984, 757/6984, 343/1746) 11 108
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f-vector generating grid point frequency
(61, 93, 34) (15/194, 1/12, 41/194) 8
(62, 94, 34) (115/1746, 32/291, 691/3492) 9984
(61, 94, 35) (47/776, 87/776, 39/194) 10
(63, 96, 35) (52/873, 45/388, 77/388) 1
(64, 97, 35) (17/291, 100/873, 39/194) 1474
(66, 100, 36) (445/6984, 259/2328, 347/1746) 10 040
(68, 103, 37) (443/6984, 259/2328, 1387/6984) 242
(70, 106, 38) (427/6984, 761/6984, 1421/6984) 153

Space group type (3, 7, 4, 1, 1); IT(215) = P 4̄3m

Normalizer: IT(229) = Im3̄m with basis b′1, b
′
2, b
′
3

Reduced fundamental domain:

R215 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/2, 1/2, 0), (1/4, 1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 8 [BS01, Theorem 2.4] for points with
trivial stabilizer and f2 ≤ 198 in general (Theorem 1.2.6).

Remarks concerning lower bounds: Koch found for this group a stereohedron
with 12 facets, see [Koc72, p. 61].

Metrical parameters: We used 1 001 452 269 grid points in the approximating
grid.

f-vector generating grid point frequency
(4, 6, 4) (1/2, 1815/3632, 0) 1 648 020
(5, 8, 5) (1815/3632, 0, 0) 1815
(6, 9, 5) (15/227, 45/3632, 7/3632) 996 502 759
(5, 9, 6) (1815/3632, 1815/3632, 0) 1815
(8, 12, 6) (0, 0, 0) 1
(8, 13, 7) (1817/7264, 1817/7264, 1815/7264) 3 296 040
(6, 12, 8) (1/2, 0, 0) 2
(14, 24, 12) (1/4, 1/4, 1/4) 1816

Space group type (3, 7, 4, 2, 1); IT(216) = F 4̄3m

Normalizer: IT(229) = Im3̄m with basis 1
2b
′
1,

1
2b
′
2,

1
2b
′
3

Reduced fundamental domain:

R216 = conv
{

(0, 0, 0), (1/8, 1/8, 1/8), (1/4, 0, 0), (1/4, 1/4, 0)
}

Upper bound on number of facets: f2 ≤ 8 [BS01, Theorem 2.4] for points with
trivial stabilizer and f2 ≤ 198 in general (Theorem 1.2.6).

Remarks concerning lower bounds: Engel [Eng81b] found a stereohedron with
12 facets for this group.
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Metrical parameters: We used 1 001 452 269 grid points in the approximating
grid.

f-vector generating grid point frequency
(4, 6, 4) (15/454, 45/7264, 7/7264) 996 103 483
(5, 8, 5) (1817/14528, 1817/14528, 1815/14528) 3 297 855
(8, 12, 6) (1/8, 1/8, 1/8) 1816
(6, 12, 8) (1/4, 0, 0) 1817
(14, 24, 12) (0, 0, 0) 1

Space group type (3, 7, 4, 3, 1); IT(217) = I 4̄3m

Normalizer: IT(229) = Im3̄m with basis b′1, b
′
2, b
′
3

Reduced fundamental domain:

R217 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/2, 1/2, 0), (1/4, 1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 8 [BS01, Theorem 2.4] for points with
trivial stabilizer and f2 ≤ 198 in general (Theorem 1.2.6).

Remarks concerning lower bounds: Engel [Eng81b] found a stereohedron with
15 facets for this group.

Metrical parameters: We used 1 001 452 269 grid points in the approximating
grid.

f-vector generating grid point frequency
(4, 6, 4) (1/2, 1/4, 0) 1361
(5, 8, 5) (909/3632, 1/4, 53/227) 411 778
(6, 9, 5) (1/2, 1815/3632, 0) 1814
(5, 9, 6) (3/8, 3/8, 0) 1
(6, 10, 6) (3337/7264, 2819/7264, 177/7264) 1392
(7, 11, 6) (121/454, 967/3632, 789/3632) 410 418
(8, 12, 6) (15/227, 45/3632, 7/3632) 848 891 289
(10, 15, 7) (1819/7264, 1817/7264, 1695/7264) 148 432 727
(6, 12, 8) (1/4, 1/4, 0) 908
(10, 17, 9) (909/3632, 909/3632, 453/1816) 453
(12, 19, 9) (1817/7264, 1817/7264, 1815/7264) 1 980 209
(8, 15, 9) (13/32, 13/32, 1/32) 1
(11, 19, 10) (1815/3632, 1815/3632, 0) 453
(12, 20, 10) (907/3632, 907/3632, 0) 823 556
(9, 17, 10) (1361/3632, 1361/3632, 0) 453
(14, 23, 11) (1817/7264, 1817/7264, 1813/7264) 491 821
(10, 20, 12) (1/2, 0, 0) 2
(17, 28, 13) (1815/3632, 0, 0) 1815
(24, 36, 14) (0, 0, 0) 1
(26, 39, 15) (1815/7264, 1815/7264, 1815/7264) 1815
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Space group type (3, 7, 4, 1, 2); IT(218) = P 4̄3n

Normalizer: IT(229) = Im3̄m with basis b′1, b
′
2, b
′
3

Reduced fundamental domain:

R218 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/2, 1/2, 0), (1/4, 1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 23 [SS08, Section 5] for points with
trivial stabilizer and f2 ≤ 198 in general (Theorem 1.2.6).

Metrical parameters: We used 1 001 452 269 grid points in the approximating
grid.

f-vector generating grid point frequency
(5, 9, 6) (3/8, 3/8, 0) 454
(6, 10, 6) (909/3632, 1/4, 907/3632) 907
(8, 12, 6) (1/4, 1/4, 1/4) 1
(6, 12, 8) (1/4, 1/4, 0) 908
(7, 13, 8) (907/1816, 907/3632, 0) 907
(10, 17, 9) (909/3632, 909/3632, 453/1816) 453
(12, 19, 9) (1817/7264, 1817/7264, 1815/7264) 1 980 209
(8, 15, 9) (13/32, 13/32, 1/32) 1
(11, 19, 10) (1815/3632, 1815/3632, 0) 1 029 218
(12, 20, 10) (907/3632, 907/3632, 0) 823 556
(8, 16, 10) (1/2, 1/4, 0) 454
(9, 17, 10) (1361/3632, 1361/3632, 0) 453
(13, 22, 11) (121/454, 967/3632, 789/3632) 820 836
(14, 23, 11) (1817/7264, 1817/7264, 1813/7264) 491 821
(10, 20, 12) (1/2, 0, 0) 2
(14, 24, 12) (909/3632, 1/4, 53/227) 410 871
(15, 26, 13) (31/908, 123/3632, 61/1816) 824 043
(16, 27, 13) (1/4, 907/3632, 849/3632) 205 209
(17, 28, 13) (1815/3632, 0, 0) 1815
(18, 29, 13) (15/227, 45/3632, 7/3632) 310 229 312
(19, 30, 13) (369/7264, 205/7264, 123/7264) 2287
(16, 28, 14) (1/2, 1815/3632, 0) 1814
(20, 32, 14) (249/7264, 247/7264, 243/7264) 325 683 860
(24, 36, 14) (0, 0, 0) 1
(20, 33, 15) (3285/7264, 3283/7264, 229/7264) 23 274 317
(22, 35, 15) (249/7264, 245/7264, 243/7264) 287 970 712
(26, 39, 15) (1815/7264, 1815/7264, 1815/7264) 1815
(24, 38, 16) (251/7264, 247/7264, 241/7264) 46 565 718
(24, 39, 17) (3339/7264, 2805/7264, 175/7264) 1 006 663
(26, 41, 17) (3467/7264, 1753/7264, 47/7264) 123 650

Space group type (3, 7, 4, 2, 2); IT(219) = F 4̄3c

Normalizer: IT(229) = Im3̄m with basis 1
2b
′
1,

1
2b
′
2,

1
2b
′
3
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Reduced fundamental domain:

R219 = conv
{

(0, 0, 0), (1/8, 1/8, 1/8), (1/4, 0, 0), (1/4, 1/4, 0)
}

Upper bound on number of facets: f2 ≤ 14 [SS08, Corollary 3.5] for points with
trivial stabilizer and f2 ≤ 198 in general (Theorem 1.2.6).

Metrical parameters: We used 1 001 452 269 grid points in the approximating
grid.

f-vector generating grid point frequency
(4, 6, 4) (1/4, 1815/7264, 0) 1815
(5, 8, 5) (1815/7264, 0, 0) 1815
(5, 9, 6) (1815/7264, 1815/7264, 0) 1815
(8, 12, 6) (0, 0, 0) 1
(8, 13, 7) (1817/14528, 1817/14528, 1815/14528) 3 286 478
(6, 12, 8) (1/4, 0, 0) 2
(8, 15, 9) (1815/7264, 907/3632, 0) 1 561 509
(14, 24, 12) (15/454, 45/7264, 7/7264) 928 404 859

Space group type (3, 7, 4, 3, 2); IT(220) = I 4̄3d

Normalizer: IT(230) = Ia3̄d with basis b′1, b
′
2, b
′
3

Reduced fundamental domain:

R220 = conv
{

(0, 0, 0), (1/8, 1/8, 1/8), (−1/8, 1/8, 1/8),

(−1/8,−1/8, 1/8), (1/8,−1/8, 1/8), (1/8, 1/8, 1/4),

(−1/8, 1/8, 1/4), (−1/8,−1/8, 1/4), (1/8,−1/8, 1/4)
}

Upper bound on number of facets: f2 ≤ 76 [SS11] for points with trivial stabi-
lizer and f2 ≤ 198 in general (Theorem 1.2.6).

Remarks concerning lower bounds: Koch found for this group a stereohedron
with 17 facets, see [Koc72, p. 64].

Metrical parameters: We used 1 000 677 997 grid points in the approximating
grid.

f-vector generating grid point frequency
(8, 15, 9) (0, 0, 1/8) 1
(12, 20, 10) (0, 0, 73/582) 145
(10, 19, 11) (−1/8,−1/8, 1/8) 1164
(15, 24, 11) (−1/8,−1/8, 1/4) 2
(8, 17, 11) (1/8,−1/24, 5/24) 73
(9, 18, 11) (−1/8,−227/6984, 355/2328) 439
(12, 22, 12) (143/1746, 289/3492, 295/3492) 46
(13, 23, 12) (−1/8,−527/6984, 1219/6984) 186 531
(14, 24, 12) (1/8,−235/6984, 1/8) 374 107
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f-vector generating grid point frequency
(16, 26, 12) (1/8,−1/8, 1/4) 515
(17, 27, 12) (−673/6984,−587/6984, 1685/6984) 985
(14, 25, 13) (1/9, 0, 1/6) 217
(15, 26, 13) (−1/8, 15/776, 155/776) 15 723
(16, 27, 13) (−1/8, 29/6984, 157/1164) 219 449
(17, 28, 13) (−37/1164, 67/582, 173/1164) 418
(18, 29, 13) (1/8,−175/6984, 611/3492) 56 478 556
(21, 32, 13) (109/3492, 109/3492, 109/1746) 732 686
(16, 28, 14) (−221/2328, 7/2328, 463/2328) 30
(17, 29, 14) (−817/6984,−85/6984, 1379/6984) 12 435
(18, 30, 14) (−1/8,−197/2328, 1253/6984) 10 039 845
(19, 31, 14) (9/776, 277/2328, 833/6984) 313 969
(20, 32, 14) (−1/8,−83/776, 1331/6984) 218 235 938
(21, 33, 14) (145/2328, 145/2328, 1/8) 256
(22, 34, 14) (31/1746, 109/873, 1369/6984) 60 494 788
(23, 35, 14) (1/8, 871/6984, 1/8) 437 810
(24, 36, 14) (0, 0, 0) 582
(18, 31, 15) (1/12, 73/1746, 581/3492) 181
(19, 32, 15) (−259/2328,−451/6984, 751/3492) 3469
(20, 33, 15) (0, 9/388, 105/776) 1
(21, 34, 15) (−503/6984,−791/6984, 11/72) 82 757
(22, 35, 15) (−1/8, 55/2328, 437/3492) 52 090 897
(24, 37, 15) (−13/3492, 10/97, 863/6984) 179 647 272
(25, 38, 15) (109/1746, 109/1746, 109/873) 173 738
(19, 33, 16) (−251/2328,−113/2328, 505/2328) 31
(23, 37, 16) (289/3492, 145/1746, 293/3492) 120 217
(24, 38, 16) (−1/8, 27/776, 1189/6984) 8 151 923
(25, 39, 16) (−247/6984,−17/6984, 1627/6984) 150
(26, 40, 16) (−3/776, 719/6984, 133/873) 148 930 926
(27, 41, 16) (133/1746, 133/1746, 133/873) 163 682
(24, 39, 17) (−455/6984,−871/6984, 545/3492) 2 697 864
(25, 40, 17) (289/3492, 145/1746, 73/873) 92 379
(26, 41, 17) (−455/6984,−7/72, 545/3492) 25 662 261
(27, 42, 17) (0, 43/873, 347/2328) 29 836
(28, 43, 17) (−455/6984,−655/6984, 545/3492) 50 738 540
(29, 44, 17) (25/776, 25/776, 25/388) 77 647
(30, 45, 17) (1/8, 1/8, 1/8) 291
(26, 42, 18) (−737/6984,−95/2328, 1519/6984) 1 364 319
(27, 43, 18) (25/6984, 43/6984, 67/6984) 18 727
(28, 44, 18) (−63/776,−7/776, 1489/6984) 305 143
(29, 45, 18) (9/97, 3/97, 91/582) 398
(30, 46, 18) (88/873, 353/3492, 127/1164) 96 509 074
(29, 46, 19) (95/873, 19/291, 19/97) 15 117
(32, 49, 19) (−521/6984,−689/6984, 545/3492) 43 233 216
(32, 50, 20) (8/97, 40/873, 137/873) 446
(34, 52, 20) (83/1164, 251/3492, 511/6984) 17 388 410
(33, 52, 21) (235/2328, 47/776, 141/776) 31 861
(36, 55, 21) (119/6984, 121/6984, 31/1746) 8 622 524
(38, 58, 22) (707/6984, 425/6984, 1273/6984) 1 526 074
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f-vector generating grid point frequency
(37, 58, 23) (1/8, 45/776, 159/776) 2
(40, 61, 23) (1/8, 365/6984, 373/1746) 12 841 602
(42, 64, 24) (647/6984, 389/6984, 1165/6984) 78 630
(44, 67, 25) (1/8, 115/2328, 247/1164) 1 093 237

Space group type (3, 7, 5, 1, 1); IT(221) = Pm3̄m

Normalizer: IT(229) = Im3̄m with basis b′1, b
′
2, b
′
3

Reduced fundamental domain:

R221 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/2, 1/2, 0), (1/4, 1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 8 [BS01, Theorem 2.4] for points with
trivial stabilizer and f2 ≤ 390 in general (Theorem 1.2.6).

Remarks concerning lower bounds: Koch found for this group a stereohedron
with 8 facets, see [Koc72, p. 26].

Metrical parameters: We used 1 001 452 269 grid points in the approximating
grid.

f-vector generating grid point frequency
(4, 6, 4) (15/227, 45/3632, 7/3632) 998 150 780
(5, 8, 5) (1817/7264, 1817/7264, 1815/7264) 3 297 854
(5, 9, 6) (1815/3632, 1815/3632, 0) 1815
(8, 12, 6) (0, 0, 0) 1817
(6, 12, 8) (1/2, 0, 0) 2

Space group type (3, 7, 5, 1, 3); IT(222) = Pn3̄n

Normalizer: IT(229) = Im3̄m with basis b′1, b
′
2, b
′
3

Reduced fundamental domain:

R222 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/2, 1/2, 0), (1/4, 1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 23 [SS08, Corollary 4.3] for points with
trivial stabilizer and f2 ≤ 390 in general (Theorem 1.2.6).

Metrical parameters: We used 1 001 452 269 grid points in the approximating
grid.

f-vector generating grid point frequency
(5, 8, 5) (1/2, 1815/3632, 0) 3628
(8, 12, 6) (1/4, 907/3632, 849/3632) 823 077
(10, 15, 7) (1817/7264, 1817/7264, 1815/7264) 5445
(8, 13, 7) (435/908, 19/908, 9/1816) 2 469 321
(9, 14, 7) (1819/7264, 1817/7264, 1813/7264) 3 290 596
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f-vector generating grid point frequency
(6, 12, 8) (1/2, 1/4, 0) 2
(12, 20, 10) (909/3632, 1/4, 907/3632) 1814
(14, 23, 11) (15/227, 45/3632, 7/3632) 846 570 215
(17, 28, 13) (1/4, 1/4, 0) 908
(18, 29, 13) (111/1816, 13/1816, 25/3632) 147 289 831
(24, 36, 14) (1/4, 1/4, 1/4) 1

Space group type (3, 7, 5, 1, 2); IT(223) = Pm3̄n

Normalizer: IT(229) = Im3̄m with basis b′1, b
′
2, b
′
3

Reduced fundamental domain:

R223 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/2, 1/2, 0), (1/4, 1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 8 [BS01, Theorem 2.4] for points with
trivial stabilizer and f2 ≤ 390 in general (Theorem 1.2.6).

Remarks concerning lower bounds: Koch found for this group a stereohedron
with 14 facets, see [Koc72, p. 38].

Metrical parameters: We used 1 001 452 269 grid points in the approximating
grid.

f-vector generating grid point frequency
(5, 8, 5) (121/454, 967/3632, 789/3632) 206 569
(5, 9, 6) (3/8, 3/8, 0) 454
(6, 10, 6) (31/908, 123/3632, 61/1816) 823 556
(8, 12, 6) (1/4, 1/4, 1/4) 1
(10, 15, 7) (1815/7264, 1815/7264, 1815/7264) 1815
(7, 12, 7) (1/4, 907/3632, 849/3632) 205 209
(8, 13, 7) (15/227, 45/3632, 7/3632) 625 491 236
(9, 14, 7) (1815/7264, 1815/7264, 1813/7264) 822 649
(10, 16, 8) (249/7264, 247/7264, 243/7264) 372 249 579
(6, 12, 8) (1/4, 1/4, 0) 1
(7, 13, 8) (907/1816, 907/3632, 0) 907
(11, 19, 10) (1815/3632, 1815/3632, 0) 1 029 218
(12, 20, 10) (907/3632, 907/3632, 0) 907
(8, 16, 10) (1/2, 1/4, 0) 454
(9, 17, 10) (1361/3632, 1361/3632, 0) 453
(13, 22, 11) (907/1816, 909/3632, 0) 615 627
(10, 20, 12) (1/2, 0, 0) 2
(17, 28, 13) (1815/3632, 0, 0) 1815
(16, 28, 14) (1/2, 1815/3632, 0) 1814
(24, 36, 14) (0, 0, 0) 1

Space group type (3, 7, 5, 1, 4); IT(224) = Pn3̄m

Normalizer: IT(229) = Im3̄m with basis b′1, b
′
2, b
′
3
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Reduced fundamental domain:

R224 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/2, 1/2, 0), (1/4, 1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 8 [BS01, Theorem 2.4] for points with
trivial stabilizer and f2 ≤ 390 in general (Theorem 1.2.6).

Remarks concerning lower bounds: Koch found for this group a stereohedron
with 16 facets, see [Koc72, p. 40].

Metrical parameters: We used 1 001 452 269 grid points in the approximating
grid.

f-vector generating grid point frequency
(8, 12, 6) (15/227, 45/3632, 7/3632) 995 679 204
(6, 12, 8) (1/2, 1815/3632, 0) 3630
(12, 19, 9) (435/908, 19/908, 9/1816) 2 470 668
(12, 20, 10) (909/3632, 1/4, 907/3632) 3 292 410
(14, 24, 12) (0, 0, 0) 3
(17, 28, 13) (1/4, 1/4, 0) 908
(24, 36, 14) (1/4, 1/4, 1/4) 1
(25, 39, 16) (1817/7264, 1817/7264, 1815/7264) 5445

Space group type (3, 7, 5, 2, 1); IT(225) = Fm3̄m

Normalizer: IT(221) = Pm3̄m with basis 1
2b
′
1,

1
2b
′
2,

1
2b
′
3

Reduced fundamental domain:

R225 = conv
{

(0, 0, 0), (1/4, 0, 0), (1/4, 1/4, 0), (1/4, 1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 8 [BS01, Theorem 2.4] for points with
trivial stabilizer and f2 ≤ 390 in general (Theorem 1.2.6).

Remarks concerning lower bounds: Koch found for this group a stereohedron
with 12 facets, see [Koc72, p. 27].

Metrical parameters: We used 1 001 452 269 grid points in the approximating
grid.

f-vector generating grid point frequency
(4, 6, 4) (247/7264, 13/1816, 7/3632) 999 796 985
(5, 8, 5) (1/4, 1/4, 1815/7264) 3630
(5, 9, 6) (1/4, 1815/7264, 1815/7264) 1 649 835
(8, 12, 6) (1/4, 1/4, 1/4) 1
(6, 12, 8) (1/4, 0, 0) 1817
(14, 24, 12) (0, 0, 0) 1
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Space group type (3, 7, 5, 2, 2); IT(226) = Fm3̄c

Normalizer: IT(221) = Pm3̄m with basis 1
2b
′
1,

1
2b
′
2,

1
2b
′
3

Reduced fundamental domain:

R226 = conv
{

(0, 0, 0), (1/4, 0, 0), (1/4, 1/4, 0), (1/4, 1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 8 [BS01, Theorem 2.4] for points with
trivial stabilizer and f2 ≤ 390 in general (Theorem 1.2.6).

Remarks concerning lower bounds: Koch found for this group a stereohedron
with 9 facets, see [Koc72, p. 99].

Metrical parameters: We used 1 001 452 269 grid points in the approximating
grid.

f-vector generating grid point frequency
(4, 6, 4) (1/4, 1815/7264, 0) 1 648 020
(5, 8, 5) (1/4, 1/4, 1815/7264) 3 296 040
(5, 9, 6) (1815/7264, 1815/7264, 0) 3630
(8, 12, 6) (0, 0, 0) 1817
(7, 12, 7) (247/7264, 13/1816, 7/3632) 994 856 555
(6, 12, 8) (1/4, 0, 0) 2
(8, 15, 9) (1815/7264, 907/3632, 0) 1 646 205

Space group type (3, 7, 5, 2, 4); IT(227) = Fd3̄m

Normalizer: IT(224) = Pn3̄m with basis 1
2b
′
1,

1
2b
′
2,

1
2b
′
3

Reduced fundamental domain:

R227 = conv
{

(0, 0, 0), (1/4, 0, 0), (1/4, 1/4, 0), (1/8, 1/8, 1/8),

(1/8, 1/8,−1/8)
}

Upper bound on number of facets: f2 ≤ 8 [BS01, Theorem 2.4] for points with
trivial stabilizer and f2 ≤ 390 in general (Theorem 1.2.6).

Remarks concerning lower bounds: Koch found for this group a stereohedron
with 16 facets, see [Koc72, p. 28]. Smith [Smi65] even claims to have
found a stereohedron with 20 facets.

Metrical parameters: We used 1 000 520 885 grid points in the approximating
grid.

f-vector generating grid point frequency
(4, 6, 4) (107/5764, 103/5764,−1/1441) 345 600
(5, 8, 5) (360/1441, 360/1441, 0) 1680
(6, 9, 5) (107/5764, 103/5764, 2/131) 994 981 920
(8, 12, 6) (0, 0, 0) 2
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f-vector generating grid point frequency
(10, 15, 7) (180/1441, 180/1441, 180/1441) 2880
(8, 13, 7) (721/5764, 180/1441,−180/1441) 4 150 560
(9, 14, 7) (721/5764, 721/5764, 719/5764) 1 035 360
(10, 20, 12) (1/8, 1/8,−1/8) 721
(12, 22, 12) (1/8, 1/8, 1439/11528) 720
(14, 24, 12) (1/4, 0, 0) 1441
(16, 30, 16) (1/8, 1/8, 1/8) 1

Space group type (3, 7, 5, 2, 3); IT(228) = Fd3̄c

Normalizer: IT(224) = Pn3̄m with basis 1
2b
′
1,

1
2b
′
2,

1
2b
′
3

Reduced fundamental domain:

R228 = conv
{

(0, 0, 0), (1/4, 0, 0), (1/4, 1/4, 0), (1/8, 1/8, 1/8),

(1/8, 1/8,−1/8)
}

Upper bound on number of facets: f2 ≤ 25 [SS08, Corollary 3.5] for points with
trivial stabilizer and f2 ≤ 390 in general (Theorem 1.2.6).

Remarks concerning lower bounds: Koch found for this group a stereohedron
with 12 facets, see [Koc72, p. 47].

Metrical parameters: We used 1 000 520 885 grid points in the approximating
grid.

f-vector generating grid point frequency
(6, 11, 7) (721/5764, 180/1441,−180/1441) 4320
(6, 12, 8) (1/4, 360/1441, 0) 2880
(12, 19, 9) (721/5764, 721/5764, 719/5764) 3 108 240
(12, 20, 10) (1443/11528, 1/8, 1439/11528) 2 072 160
(10, 20, 12) (1/8, 1/8,−1/8) 1
(14, 24, 12) (0, 0, 0) 3
(15, 25, 12) (1101/5764, 503/2882,−163/2882) 799 102
(15, 26, 13) (247/11528, 169/11528, 65/11528) 6630
(17, 28, 13) (2141/11528, 1951/11528,−469/11528) 236 188
(18, 29, 13) (215/11528, 205/11528, 203/11528) 604 933 404
(17, 29, 14) (519/2882, 865/5764,−45/2882) 2
(20, 32, 14) (107/5764, 103/5764, 2/131) 214 368 477
(24, 36, 14) (1/8, 1/8, 1/8) 1
(22, 35, 15) (215/11528, 205/11528, 199/11528) 162 095 446
(24, 38, 16) (2089/11528, 1899/11528,−417/11528) 10 432 173
(25, 39, 16) (180/1441, 180/1441, 180/1441) 4320

Space group type (3, 7, 5, 3, 1); IT(229) = Im3̄m

Normalizer: IT(229) = Im3̄m with basis b′1, b
′
2, b
′
3; so the normalizer is identical

with the group itself.
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Reduced fundamental domain:

R229 = conv
{

(0, 0, 0), (1/2, 0, 0), (1/2, 1/2, 0), (1/4, 1/4, 1/4)
}

Upper bound on number of facets: f2 ≤ 8 [BS01, Theorem 2.4] for points with
trivial stabilizer and f2 ≤ 390 in general (Theorem 1.2.6).

Remarks concerning lower bounds: Koch found for this group a stereohedron
with 14 facets, see [Koc72, p. 29].

Metrical parameters: We used 1 001 452 269 grid points in the approximating
grid.

f-vector generating grid point frequency
(4, 6, 4) (909/3632, 1/4, 53/227) 617 441
(5, 8, 5) (1/4, 1/4, 907/3632) 2267
(6, 9, 5) (15/227, 45/3632, 7/3632) 995 887 587
(5, 9, 6) (3/8, 3/8, 0) 1
(7, 11, 6) (907/1816, 909/3632, 0) 205 209
(8, 12, 6) (1/4, 1/4, 1/4) 1 439 637
(10, 15, 7) (1815/7264, 1815/7264, 1815/7264) 1815
(8, 13, 7) (1817/7264, 1817/7264, 1815/7264) 2 472 031
(9, 14, 7) (1815/7264, 1815/7264, 1813/7264) 822 649
(6, 12, 8) (1/4, 1/4, 0) 1
(11, 19, 10) (1815/3632, 1815/3632, 0) 453
(12, 20, 10) (907/3632, 907/3632, 0) 907
(9, 17, 10) (1361/3632, 1361/3632, 0) 453
(10, 20, 12) (1/2, 0, 0) 2
(17, 28, 13) (1815/3632, 0, 0) 1815
(24, 36, 14) (0, 0, 0) 1

Space group type (3, 7, 5, 3, 2); IT(230) = Ia3̄d

Normalizer: IT(230) = Ia3̄d with basis b′1, b
′
2, b
′
3; so the normalizer is identical

with the group itself.

Reduced fundamental domain:

R230 = conv
{

(0, 0, 0), (1/8, 1/8, 1/8), (−1/8, 1/8, 1/8),

(−1/8,−1/8, 1/8), (1/8,−1/8, 1/8), (1/8, 1/8, 1/4),

(−1/8, 1/8, 1/4), (−1/8,−1/8, 1/4), (1/8,−1/8, 1/4)
}

Upper bound on number of facets: f2 ≤ 68 [SS11] for points with trivial stabi-
lizer and f2 ≤ 390 in general (Theorem 1.2.6).

Remarks concerning lower bounds: Koch found for this group a stereohedron
with 23 facets, see [Koc72, p. 57].

Metrical parameters: We used 1 000 677 997 grid points in the approximating
grid.
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f-vector generating grid point frequency
(8, 13, 7) (−1/8,−1/8, 1/4) 2
(8, 14, 8) (−1/8, 1/24, 5/24) 2
(10, 17, 9) (−1/6984,−1/6984, 1745/6984) 70
(12, 20, 10) (1/8,−1/8, 1/4) 3513
(10, 19, 11) (−1/8,−1/8, 1/8) 3
(11, 20, 11) (289/2328,−293/6984, 1453/6984) 68
(12, 21, 11) (−275/2328, 55/2328, 385/2328) 1945
(14, 23, 11) (281/6984, 289/2328, 1453/6984) 118
(12, 22, 12) (289/2328,−295/6984, 1457/6984) 35
(13, 23, 12) (−1/8,−527/6984, 1219/6984) 682
(14, 24, 12) (−1/8,−167/6984, 130/873) 837
(15, 25, 12) (−1/8, 289/6984, 1451/6984) 3942
(16, 26, 12) (1/12,−1/12, 1/6) 74 941
(17, 27, 12) (575/6984, 193/2328, 583/6984) 17 737
(19, 29, 12) (0,−25/1746, 25/1746) 639
(15, 26, 13) (1/8, 871/6984, 877/6984) 453
(17, 28, 13) (−69/776,−3/776, 151/776) 82 800
(18, 29, 13) (−545/6984,−61/2328, 521/2328) 88 823
(19, 30, 13) (19/1164, 12/97, 295/2328) 83 305
(15, 27, 14) (1/12, 1/12, 1/12) 1
(16, 28, 14) (−155/2328,−775/6984, 1085/6984) 150
(17, 29, 14) (−1/8, 173/6984, 1223/6984) 17 458
(18, 30, 14) (−1/8,−169/6984, 347/2328) 177 516
(19, 31, 14) (347/6984, 91/776, 1507/6984) 17 968
(20, 32, 14) (−73/776,−659/6984, 121/776) 263 654
(21, 33, 14) (197/2328, 197/6984, 985/6984) 35 874
(22, 34, 14) (575/6984, 193/2328, 49/582) 24 840 979
(23, 35, 14) (92/873, 185/1746, 127/776) 48 764
(24, 36, 14) (0, 0, 0) 1
(16, 29, 15) (−217/2328,−661/6984, 1307/6984) 11
(19, 32, 15) (−21/388,−59/582, 173/1164) 8
(20, 33, 15) (−53/1164,−43/582, 119/1164) 11
(21, 34, 15) (−469/6984,−779/6984, 121/776) 193 621
(22, 35, 15) (−1/8,−767/6984, 149/776) 28 444 598
(23, 36, 15) (−673/6984,−587/6984, 1685/6984) 103 745
(24, 37, 15) (−457/6984,−51/776, 545/3492) 119 145 287
(21, 35, 16) (−749/6984,−257/6984, 749/3492) 11 622
(22, 36, 16) (−1/8,−1/6984, 319/2328) 78 857
(23, 37, 16) (−469/6984,−773/6984, 545/3492) 180 601
(24, 38, 16) (−1/8, 55/2328, 437/3492) 5 243 826
(25, 39, 16) (−67/776,−625/6984, 121/776) 13 491
(26, 40, 16) (−199/2328,−205/2328, 545/3492) 32 078 653
(20, 35, 17) (−173/2328,−865/6984, 1211/6984) 3
(23, 38, 17) (−697/6984,−39/776, 1571/6984) 17 207
(24, 39, 17) (−749/6984,−251/6984, 1495/6984) 3486
(25, 40, 17) (−455/6984,−815/6984, 545/3492) 20 236
(26, 41, 17) (−73/776,−659/6984, 545/3492) 10 941 120
(27, 42, 17) (−59/776,−595/6984, 119/776) 21 632
(28, 43, 17) (−457/6984,−517/6984, 545/3492) 71 934 443
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f-vector generating grid point frequency
(30, 45, 17) (1/8, 1/8, 1/8) 582
(25, 41, 18) (−733/6984,−113/2328, 1547/6984) 5005
(26, 42, 18) (−83/776,−253/6984, 499/2328) 276 888
(27, 43, 18) (−871/6984,−293/6984, 5/24) 3947
(28, 44, 18) (−1/8, 77/6984, 51/388) 11 978 279
(29, 45, 18) (−859/6984,−287/2328, 1025/6984) 14 566
(30, 46, 18) (−455/6984,−73/776, 545/3492) 53 229 871
(25, 42, 19) (−653/6984,−73/776, 109/582) 1259
(27, 44, 19) (−653/6984,−659/6984, 1307/6984) 1230
(28, 45, 19) (−869/6984,−175/2328, 1573/6984) 476 221
(29, 46, 19) (−269/2328,−283/2328, 361/2328) 3521
(30, 47, 19) (−659/6984,−869/6984, 545/3492) 5 218 967
(31, 48, 19) (−833/6984,−623/6984, 1513/6984) 5
(32, 49, 19) (−455/6984,−773/6984, 545/3492) 8 920 763
(29, 47, 20) (−653/6984,−655/6984, 653/3492) 987
(30, 48, 20) (−245/2328,−287/6984, 190/873) 178 743
(31, 49, 20) (−805/6984,−425/6984, 527/2328) 497
(32, 50, 20) (−281/2328,−283/6984, 61/291) 2 735 367
(33, 51, 20) (−767/6984,−869/6984, 1027/6984) 12
(34, 52, 20) (−455/6984,−655/6984, 545/3492) 6 769 464
(36, 54, 20) (109/873, 109/873, 109/873) 290
(32, 51, 21) (−433/6984,−445/6984, 871/3492) 114 082
(33, 52, 21) (−265/2328,−169/2328, 265/1164) 34
(34, 53, 21) (−187/2328,−51/776, 847/3492) 355 297
(36, 55, 21) (−661/6984,−869/6984, 545/3492) 870 762
(34, 54, 22) (−439/6984,−871/6984, 109/582) 17 779
(35, 55, 22) (77/2328, 7/2328, 287/1164) 88
(36, 56, 22) (−5/97,−355/3492, 355/2328) 60 060
(37, 57, 22) (499/6984, 83/6984, 821/3492) 1
(38, 58, 22) (−583/6984,−65/776, 545/3492) 419 837
(35, 56, 23) (−655/6984,−761/6984, 1327/6984) 3
(36, 57, 23) (−653/6984,−73/776, 1307/6984) 40 225
(38, 59, 23) (−809/6984,−59/776, 179/776) 4317
(39, 60, 23) (−865/6984,−173/2328, 527/2328) 1
(40, 61, 23) (−263/2328,−149/2328, 787/3492) 132 168
(38, 60, 24) (−457/6984,−847/6984, 1297/6984) 379
(40, 62, 24) (−689/6984,−709/6984, 77/388) 1223
(42, 64, 24) (−673/6984,−869/6984, 545/3492) 31 120
(42, 65, 25) (−77/776,−707/6984, 1387/6984) 1431
(44, 67, 25) (−817/6984,−505/6984, 1589/6984) 28 571
(42, 66, 26) (−151/2328,−857/6984, 649/3492) 84
(44, 68, 26) (−691/6984,−707/6984, 347/1746) 53
(46, 70, 26) (103/2328, 1/776, 217/873) 2658
(48, 73, 27) (−863/6984,−173/2328, 175/776) 1
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2.3 Discussion of the results

In Section 2.2 we presented f -vectors of stereohedra of the tetragonal, trigo-
nal, hexagonal, and cubic groups. We investigated a total of 145 space groups
and found 3315 combinatorial types of stereohedra, most of them new. These
stereohedra yield 238 different f -vectors. Due to the complexity of our inves-
tigations we omitted the triclinic, monoclinic, and orthorhombic space groups,
since these are either already understood or would not have been able to pro-
duce stereohedra with more than 38 facets – the number of facets of Engel’s
stereohedron.

We found stereohedra with all numbers of vertices from 4 to 70 and with
all numbers of facets from 4 to 38. The maximal numbers are both realized
by Engel’s stereohedron, which is produced by the group IT(214) = I4132.
Engel found four different combinatorial types of stereohedra with f -vector
f = (70, 106, 38) and we were able to confirm this – and found no further
combinatorial types. Since our main focus is on the number of facets of the
stereohedra, we created the histogram of Figure 2.1 that shows how many dis-
tinct f -vectors realize facet numbers.

In the following we comment on specific groups. For all groups left out there
was no previous work done on them and our results are the first. All numbers
correspond to numbers given in the International Tables [Hah05].

76 We confirmed the findings of Koch & Fischer [KF72]. However, they made
mistakes in calculating the coordinates they present in their paper. These
mistakes occurred since they did not compute in exact arithmetic as we
were told by Koch.

84 Matching lower bounds for Bochiş & Santos [BS01] are provided.

91 We improved the lower bound of Bochiş & Santos [BS06] from 17 to 26
facets (both DV-stereohedra are generated by points with trivial stabi-
lizer).

98 We improved the lower bound of Bochiş & Santos [BS06] from 29 to 35
facets (both DV-stereohedra are generated by points with trivial stabi-
lizer). This group seems to generate stereohedra with the second most
facets after IT(214) = I4132.

141 Matching lower bounds for Bochiş & Santos [BS01] are provided.

150 Matching lower bounds for Bochiş & Santos [BS06] are provided.

152 We improved the lower bound of Bochiş & Santos [BS06] from 13 to 25
facets (both DV-stereohedra are generated by points with trivial stabi-
lizer).

159 Matching lower bounds for Bochiş & Santos [BS06] are provided.

166 We improved the lower bound of Dress et al. [DHM93] from 6 to 22 facets.

178 We improved the lower bound of Bochiş & Santos [BS06] from 32 to 34
facets (both DV-stereohedra are generated by points with trivial stabi-
lizer). This group seems to generate stereohedra with the third most
facets after IT(214) = I4132.
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Figure 2.1: Histogram of f -vectors by number of facets.
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195 Engel’s results [Eng81b] were almost confirmed: We found a second point,
namely (1/2, 1/2, 0), that generates the f -vector (6, 12, 8).

196 Matching lower bounds for Sabariego & Santos [SS08] are provided.

197 We were able to Confirmed Engel’s results [Eng81b].

198 We improved Koch’s result [Koc72] from 18 to 24 facets and found many
further f -vectors.

199 We improved Koch’s result [Koc72] from 20 to 24 facets and found many
further f -vectors.

200 Confirmed Engel’s and Koch’s results ([Eng81b] and [Koc72], resp.)

202 Found another f -vector not listed by Engel [Eng81b], namely (8, 16, 10).

203 Matching lower bounds for Sabariego & Santos [SS08] are provided.

204 Almost confirmed Engel’s results [Eng81b]. We found a second point,
namely (1/2, 1/2, 0), that generates the f -vector (10, 20, 12). Matching
lower bounds for Bochiş & Santos [BS01] are provided.

205 We improved Koch’s result [Koc72] from 13 to 18 facets and found many
further f -vectors.

206 We improved Koch’s result [Koc72] from 17 to 28 facets and found many
further f -vectors.

207 Almost confirmed Engel’s results [Eng81b]. We found a second point,
namely (1/2, 0, 0), that generates the f -vector (6, 12, 8).

208 Found further stereohedra with less facets than what was already found
by Sabariego & Santos [SS08].

209 We were able to confirm Engel’s results [Eng81b].

210 We improved Koch’s result [Koc72] from 10 to 17 facets and found many
further f -vectors. Matching lower bounds for Sabariego & Santos [SS08]
are provided.

211 We were able to confirm Engel’s results [Eng81b].

212 We improved Koch’s result [Koc72] from 22 to 29 facets and found many
further f -vectors.

214 Engel’s results [Eng81a] were confirmed by our computations and we found
many further f -vectors. We also reconstructed the diagram [Abb. 3,
p. 207, Ibid]. It shows a slice of the fundamental domain and how it
dissects into regions of points that produce stereohedra with the same
combinatorial type. Our (coarse) reconstruction of the diagram in Fig-
ure 2.3 is a dissection of the same slice into regions of points that pro-
duced stereohedra with same f -vector, and it shows that Engel’s diagram
(shown in Figure 2.2) contains a few mistakes.
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Figure 2.2: Engel’s original diagram [Eng81a, Abb. 3, p. 207].
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Figure 2.3: Our coarser but corrected reconstruction of Engel’s original diagram.
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215 Almost confirmed Engel’s results [Eng81b]. We found a second point,
namely (1/2, 1/2, 0), that generates the f -vector (6, 12, 8).

216 We were able to confirm Engel’s results [Eng81b].

217 We were able to confirm Engel’s results [Eng81b].

220 We improved Koch’s result [Koc72] from 17 to 25 facets and found many
further f -vectors.

221 Almost confirmed Engel’s results [Eng81b]. We found a second point,
namely (1/2, 1/2, 0), that generates the f -vector (6, 12, 8).

223 We were able to confirm Koch’s results [Koc72] and found many further
f -vectors.

224 We were able to confirm Koch’s results [Koc72] and found a few further
f -vectors.

225 We were able to confirm Koch’s results [Koc72].

226 We were able to confirm Koch’s results [Koc72].

227 We were able to confirm Koch’s results [Koc72]. The claimed results by
Smith [Smi65] we could not reproduce. Since our extremal stereohedra
for this group only have 16 facets, we are also skeptical about his rather
vague claims.

228 We improved Koch’s result [Koc72] from 12 to 16 facets and found many
further f -vectors.

229 We were able to confirm Koch’s results [Koc72] and almost confirmed
Engel’s results [Eng81b]. We found a second point, namely (1/2, 1/2, 0),
that generates the f -vector (10, 20, 12).

230 We improved Koch’s result [Koc72] from 23 to 27 facets and found many
further f -vectors.

156



Chapter 3

On the Number of Space
Groups

This chapter is about the number of space group types. We begin in Section 3.1
with a quick summary of what was already known, then derive a new upper
bound on the number of types in Section 3.2, and finally discuss the closely
related number of Z-classes in Section 3.3. Also in this chapter we have to
assume many known (and scattered) results, but always tried to provide exact
references.

3.1 Known results

Bieberbach’s third theorem states that there are only finitely many isomorphism
classes of space groups in each dimension, but little is known about actual num-
bers or general bounds. The exact numbers are only known up to dimension 6.
In Table 3.1 we list these with references provided. For the following discussion
let us agree on the abbreviation

s(n) = number of space group types of Rn.

dim # types comment

0 1
1 2
2 17 A list of all groups for n = 2, 3 with detailed

descriptions can be found in [Hah05].
3 219 Ibid.
4 4783 Brown et al. [Bro+78] classified the four-

dimensional space groups.
5 222 018 Plesken & Schulz [PS00] counted the space

group types in dimensions n = 5, 6.
6 28 927 922 Ibid.

Table 3.1: Number of space group types in low dimensions.
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The first systematic approach to study the number of space groups in higher
dimensions was undertaken by Schwarzenberger [Sch80; Sch82]. He proved a
lower bound for s(n) by only considering so-called orthogonal space groups. An
n-dimensional space group is called orthogonal if its lattice is spanned by n
mutually orthogonal vectors and its reflection group is of a particular type.

Schwarzenberger found a way to associate to each n-dimensional orthogonal
space group a graph on n vertices. This way he established a bijective corre-
spondence between space group types and equivalence classes of graphs. Using
this he proved

s(n) = 2Ω(n2).

Based on simple calculations and intuition from low dimensions, he went on
to suggest that the asymptotic behaviors of s(n) and the number of orthogo-
nal space groups are actually similar. While Hiller [Hil86, p. 776] claims that

Schwarzenberger explicitly conjectures that s(n) grows asymptotically like 2n
2

,
we could only find his more modest suggestions that “log2 s(n) should have an
asymptotic approximation involving n2, n log n, n, log n, etc.” [Sch82, p. 244].

Regarding upper bounds the only general result was proven by Buser [Bus85].
He showed that s(n) ≤ exp exp 4n2, which amounts to

s(n) = 22O(n2)

,

which is a fair bit away from Schwarzenberger’s lower bound. We will extend
his techniques and prove in Theorem 3.2.4 that

s(n) = 22O(n log n)

.

This is a simple consequence of the explicit upper bound we provide there.

3.2 A new upper bound

In this section we derive a new upper bound for the number of isomorphism
classes of n-dimensional space groups. Our approach follows Buser [Bus85] and
Ratcliffe [Rat06].

Definition 3.2.1. A lattice L is scaled if all nonzero vectors have norm at
least 1. A space group Γ is normalized if its lattice is scaled and contains n
linearly independent translations of length 1.

Of course every lattice can be turned into a scaled one by a homothetic
transformation. What is less clear is that every space group is isomorphic to a
normalized group.

Proposition 3.2.2 ([Bus85, Prop. 5.3]). Every space group is isomorphic to a
normalized space group.

We also need the following lemma, whose short proof we present.

Lemma 3.2.3. (i) Let L be a scaled lattice in Rn and let N(r) be the number
of lattice points of L inside the closed ball of radius r around the origin.
Then N(r) ≤ (2r + 1)n.
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(ii) Let v1, . . . , vn be a basis of Rn. For every x ∈ Rn there are integers λi ∈ Z
such that ∥∥∥x−∑λivi

∥∥∥ ≤ 1

2
(‖v1‖+ . . .+ ‖vn‖).

(iii) Consider a scaled lattice L in Rn and a vector subspace U spanned by
m < n linearly independent unit vectors from L. We then have

inf
{

d(w,U) : w ∈ L− U
}
> (m+ 3)−n.

Proof. (i) Any two lattice points have distance ≥ 1. Putting a ball of radius 1/2
around each point, we get a sphere packing. The ball B(0, r + 1/2) encloses all
balls that contain all the lattice points of distance at most r from the origin. If
we denote by Vn the volume of the unit ball in Rn, we have

(1/2)n Vn N(r) ≤ (r + 1/2)n Vn

from which the desired inequality follows.
(ii) Consider the lattice generated by v1, . . . , vn. Centering a fundamental

parallelepiped around the origin yields the result, since for every x ∈ Rn we can
find a representative in this region.

(iii) It is known that the infimum is attained, i.e., among all lattice points
not in U there exists w ∈ L closest to U (see Barvinok [Bar02, Lemma VII.1.3]
for details). For the sake of contradiction assume ‖w‖ ≤ (m+3)−n. The vectors

0w, 1w, 2w, . . . , (m+ 3)nw (3.1)

are all distance ≤ 1 away from U . By (ii) we get that their U -projections are
distance ≤ m/2 away from the next lattice point contained in U . This yields
that (translations of) all vectors in (3.1) are distinct lattice vectors of norm
≤ r := m/2 + 1. So on the one hand we have (m+ 3)n + 1 ≤ N(r), but using (i)
we get N(r) ≤ (m+ 3)n. This is a contradiction and thus ‖w‖ > (m+ 3)n must
hold.

Before we can get to the main theorem of this section, we need to discuss the
maximal order of finite subgroups of GL(n,Z). In Feit [Fei96, Theorem A] it is
proven that apart from a few low-dimensional exceptions, the maximal order of
a finite subgroup of GL(n,Q) is 2nn! which is attained by the hyperoctahedral
group. Since every finite subgroup of GL(n,Q) is conjugate to a subgroup of
GL(n,Z), we have an exact upper bound. For a weaker result (the same bound
but only proven for n � 0) with a much easier proof, which does not rely on
the classification of finite simple groups, see Friedland [Fri97].

We now come to the main result of this section.

Theorem 3.2.4. The number s(n) of isomorphism classes of n-dimensional
space groups is bounded by

s(n) ≤ (2nn!(n+ 1)n + n)[(3n(n+ 2)n + 1)n2nn!(n+ 1)n](2
nn!(n+1)n+n)2

for n > 10. In particular, s(n) = 22O(n log n)

.
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Proof. By Proposition 3.2.2 it is sufficient to bound the number of isomorphism
classes of normalized space groups of Rn. Let Γ be such a group with lattice L.
Then L contains n translations

τ1 = (I, t1), . . . , τn = (I, tn)

with t1, . . . , tn being linearly independent unit vectors. Consider the sublattice

L′ = 〈τ1, . . . , τn〉,

which is a subgroup of L. Since both lattices are of rank n, we must have
[L : L′] < ∞. Theorem 1.1.5 then implies that [Γ : L′] = [Γ : L][L : L′] < ∞.
Let τn+1, . . . , τm be a transversal of L′ in Γ, i.e., m − n = [Γ : L′]. By
Lemma 3.2.3 (ii) we can assume that the length of the translational parts
tn+1, . . . , tm is bounded by n/2, a requirement we will need later repeatedly.

Every isometry

α ∈ Γ =

m⊔
p=n+1

L′τp

has a unique normal form

α = (I, a1t1 + . . .+ antn)τp, (3.2)

with a1, . . . , an ∈ Z and n + 1 ≤ p ≤ m. In particular, for 1 ≤ i, j ≤ m every
product τiτj has a unique normal form

τiτj = (I, cij1t1 + . . .+ cijntn)τf(i,j), (3.3)

with cijk, f(i, j) ∈ Z and n+ 1 ≤ f(i, j) ≤ m.
Claim: The integers m, cijk, and f(i, j) determine the group Γ up to iso-

morphism. Indeed, suppose Λ is another normalized n-dimensional space group
with the same integer parameters. Let ν1, . . . , νn be the unit translations of its
lattice and let νn+1, . . . , νm be the transversal of the sublattice in Λ. We then
define a mapping

Ψ : Γ→ Λ, (I, a1t1 + . . .+ antn)τp 7→ (I, a1v1 + . . .+ anvn)νp.

This turns out to be an isomorphism: Bijectivity is clear, so we just show that
it is a homomorphism. To this end we will first explain how multiplication in Γ
looks like in terms of the normal form (3.2).

Given α, β ∈ Γ such that

α = (I, a1t1 + . . .+ antn)τp,

β = (I, b1t1 + . . .+ bntn)τq,

the product is
αβ = (I, a1t1 + . . .+ antn)τpτ

b1
1 . . . τ bnn τq.

Note that τ bii = (I, biti). If b1 > 0, we can replace τpτ1 by its normal form using
the integer parameters defined in (3.3). On the other hand, if b1 < 0, we have

τpτ
−1
1 = (I, d1t1 + . . .+ dntn)τr

⇔ τrτ1 = (I,−d1t1 − . . .− dntn)τp

160



for some 1 ≤ r ≤ m. Given the uniqueness of the normal form, we actually
must have −dk = cr1k. So again we can replace a product, namely τpτ

−1
1 , by

its normal form with parameters defined in (3.3) – however, this time with an
additional sign introduced. By repeating these steps we can reach the normal
form of αβ.

The mapping Ψ is defined in such a way that exactly the same procedure
explained for Γ will produce analogous results in Λ. Since we assumed that Λ
has the same set of integer parameters as Γ, we must have Ψ(αβ) = Ψ(α)Ψ(β).
This finishes the proof of the claim.

To derive the claimed upper bounds we will now bound |cijk| and m. Let us
begin with |cijk|. When we chose the transversal, we required the length of the
translational parts of τi, τj , and τf(i,j) to be at most n/2. Therefore, the length
of the translational part of

(I, cij1t1 + . . .+ cijntn) = τiτjτ
−1
f(i,j) (3.4)

is bounded by 3n/2. Set uk to be the part of tk that lies in the orthogonal
complement of the vector subspace 〈t1, . . . , tk−1, tk+1, . . . , tn〉 ⊂ Rn. Using the
bound just derived, we get

|cijkuk| ≤ 3n/2.

Lemma 3.2.3 (iii) gives |uk| > (n+ 2)−n. Altogether this results in

|cijk| ≤
3n

2
(n+ 2)n =: cmax.

Let us next derive a bound for m. We have

m− n = [Γ : L′] = [Γ : L][L : L′].

Since the translational parts of τn+1, . . . , τm are bounded by n/2, Lemma 3.2.3 (i)
implies that [L : L′] ≤ (n + 1)n. Observe that [Γ : L] equals the order of the
point group of Γ. Since this finite group can be embedded in GL(n,Z), we know
from Feit’s result cited above, that

[Γ : L] ≤ 2nn!

for n > 10. This yields the bound

m ≤ 2nn!(n+ 1)n + n =: mmax.

We can now derive an upper bound on s(n) as follows: It is at most the
number of triples (

m, {cijk}, {f(i, j)}
)
.

We have 1 ≤ m ≤ mmax. Every cijk can assume at most 2cmax + 1 ≤ 3n(n +
2)n + 1 values, and 1 ≤ i, j ≤ mmax, 1 ≤ k ≤ n. Hence,

|{cijk}| ≤ (2cmax + 1)nm
2
max = (3n(n+ 2)n + 1)nm

2
max .

Furthermore, n+ 1 ≤ f(i, j) ≤ mmax and therefore

|{f(i, j)}| ≤ (mmax − n)m
2
max .
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In total we get

s(n) ≤ mmax(3n(n+ 2)n + 1)nm
2
max(mmax − n)m

2
max

≤ (2nn!(n+ 1)n + n)[(3n(n+ 2)n + 1)n2nn!(n+ 1)n](2
nn!(n+1)n+n)2

for n > 10.

In the next section we will apply the bound from Theorem 3.2.4 to the
number of Z-classes.

3.3 On the number of Z-classes

Currently there are two ways to show the finiteness of the number of Z-classes.
The first is to apply a highly nontrivial theorem of Jordan–Zassenhaus [CR88,
Sect. XI.79; Gas06], while the second uses a much more accessible theorem by
Eisenstein–Hermite [SO13, Chap. 9; MH73, Chap. II]. Neither approach seems
to allow for computing an upper bound. However, our bound for the number of
space group types in Theorem 3.2.4 is trivially an upper bound for the number
of Z-classes as well. In the remaining part of this section we will derive a lower
bound.

Consider the automorphism group Aut(L) of a lattice L ⊆ Rn. As mentioned
in Chapter 1, the group Aut(L) can be understood as a finite subgroup of
GL(n,Z). To evaluate the bound we will employ the Smith–Minkowski–Siegel
mass formula. This formula gives an explicit constant C such that∑ 1

|Aut(L)|
= C,

where the sum is over all inequivalent lattices of the same genus. Two lattices
L,L′ ⊆ Rn are equivalent if there exists an isomorphism f : L→ L′ with

q′(f(x)) = q(x),

where q, q′ are the quadratic forms belonging to L,L′, respectively. Otherwise,
L and L′ are called inequivalent . It is not hard to show that two lattices are
equivalent if and only if their automorphism groups are conjugate in GL(n,Z).
The genus is a classification of all lattices in Rn, and two lattices are in the
same genus if they are equivalent as Zp-modules for all p ∈ P ∪ {∞}, where Zp
denotes the p-adic integers and Z∞ = R.

To get a lower bound for the number of Z-classes, we can use the inequality∑ 1

|Aut(L)|
≤ #Z-classes

for an arbitrary but fixed genus. We have the following special case of the mass
formula for the genus that consists of all odd unimodular lattices.

Theorem (Smith–Minkowski–Siegel; see [CS99, Sect. 16.2]). Let Ω be the set
of all inequivalent odd unimodular lattices of dimension n. Then∑

L∈Ω

1

|Aut(L)|
=

1

2n+1(n2 − 1)!
· |En

2−1| · |B2| · |B4| · · · |Bn−2|

for even n > 1 and n ≡ ±2 mod 8, where En
2−1 is an Euler number and B2k

denotes Bernoulli numbers.
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In Olver et al. [Olv+10] not only the definitions of the Bernoulli and Euler
numbers can be found, but also the following asymptotic approximations. For
n large enough we have

|B2n| ∼
2(2n)!

(2π)2n
and |E2n| ∼

22n+2(2n)!

π2n+1
.

Plugging all in, we get the following asymptotic lower bound for the number of
Z-classes:

#
(
Z-classes

)
= 2Ω(n logn).

It is hard to estimate just how accurate this asymptotic lower bound actually
is. To calculate it we only used one fixed genus. However, it seems that other
genera do not give substantially better results, and furthermore are there only
finitely many genera in each dimension. On the other hand, since most finite
groups of GL(n,Z) do not arise as the automorphism group of a lattice, there
are many more Z-classes, which might lead to a better asymptotic lower bound.
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Appendix A

Cohomology of Groups

We recall a few facts from group cohomology that are used in this thesis. In
our presentation we closely follow Rotman [Rot95; Rot09; Rot10].

If K and Q are groups, then a group G is called an extension of K by Q if
G contains a normal subgroup K ′ ∼= K with G/K ′ ∼= Q. This induces a short
exact sequence of groups

K G Q,i π

and often the term extension is used for such a sequence as well. K is called the
kernel of the extension, while Q is the quotient . The theory of group exten-
sions becomes much easier if the kernel is abelian. Since this case is sufficient
for our purposes, we will make this assumption for the rest of this appendix.
Furthermore, even though an extension G of K by Q is not abelian in general,
we will use additive notation for the operation in G. Otherwise multiplication
in G and the scalar multiplication defined by equation (A.1) could easily be
confused.

Every extension of K by Q induces a homomorphism

Θ : Q→ Aut(K),

via a so-called lifting as follows. A particular lifting is a function ` : Q → G
with π` = idQ and `(1) = 1. Such a lifting can be used to define for each x ∈ Q
the automorphism

Θx : K → K, a 7→ `(x) + i(a)− `(x).

Now the homomorphism Θ : Q → Aut(K) is defined by setting Θ : x 7→ Θx.
It is independent of the lifting ` and allows us to turn K into a ZQ-module
by defining scalar multiplication as xa = Θx(a) for x ∈ Q, a ∈ K, and then
extending linearly. In this context it is common to abbreviate the term “ZQ-
module” to “Q-module.”

Let K be a Q-module. An extension G of K by Q realizes the operators
if

xa = `(x) + i(a)− `(x) (A.1)

for all x ∈ Q and a ∈ K (so the given scalar multiplication coincides with the
scalar multiplication induced by conjugation). Let G, G′ be two extensions
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realizing the operators, we say that G and G′ are equivalent if there exists a
homomorphism φ : G→ G′ making the following diagram commute

G

0 K Q 1

G′

π1

φ

i

i

π2

The set of all equivalence classes can be given a group structure isomorphic to
the second cohomology group H2(Q,K).

To introduce the first cohomology group H1(Q,K) we need to consider the
set of all derivations Der(Q,K), which are functions of the kind

d : Q→ K, d(xy) = xd(y) + d(x).

Der(Q,K) becomes an abelian group under pointwise addition. For a fixed
a ∈ K, a derivation of the type u(x) = xa−a is called a principal derivation .
The set of all principal derivations forms a subgroup PDer(Q,K) of Der(Q,K).
We define the first cohomology group as

H1(Q,K) = Der(Q,K)/PDer(Q,K).

In general the nth cohomology group of Q with coefficients in a Q-module
K is defined as follows: Let

· · · F2 F1 F0 Z

be an arbitrary but fixed ZQ-projective resolution of Z. Applying the con-
travariant functor HomQ(−,K) yields the cochain complex

· · · HomQ(F2,K) HomQ(F1,K) HomQ(F0,K) 0.

The nth cohomology group is defined as the cohomology of this complex

Hn(Q,K) = Hn(Hom(F,K)).

Given a short exact sequence

0 G′ G G′′ 0

of Q-modules, we can use the projective resolution F to build an exact sequence
of chain complexes: Since every Fi is projective, the sequence

0 HomQ(Fi, G
′) HomQ(Fi, G) HomQ(Fi, G

′′) 0
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is exact as well. This induces the diagram

...
...

...

HomQ(F2, G
′) HomQ(F2, G) HomQ(F2, G

′′)

HomQ(F1, G
′) HomQ(F1, G) HomQ(F1, G

′′)

HomQ(F0, G
′) HomQ(F0, G) HomQ(F0, G

′′)

0 0 0

with exact rows. The snake lemma applied to this short exact sequence of
complexes

Hom(F,G′) Hom(F,G) Hom(F,G′′)

gives the following long exact cohomology sequence .

0 H0(Q,G′) H0(Q,G) H0(Q,G′′)

H1(Q,G′) H1(Q,G) H1(Q,G′′)

H2(Q,G′) H2(Q,G) H2(Q,G′′)

Hn(Q,G′) Hn(Q,G) Hn(Q,G′′) · · ·

(A.2)

We end our summary of group cohomology with the following useful lemma.

Lemma A.1 ([Rob96, Cor. 11.3.8]). Let Q be a finite group of order m. Suppose
that K is a Q-module such that for every element a ∈ K there exists a unique
b ∈ K with mb = a. Then Hn(Q,K) = 0 for all n > 0.
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Appendix B

Background on
Computations

In this appendix we will explain how we calculated the data presented in Chap-
ter 2. Since all our calculations were done in R3, we will confine ourselves to
n = 3 here as well. However, most of what we state is true for general di-
mensions n. The only exception is the existence of a classification of all space
groups; these were so far only obtained for dimensions n ≤ 4 and any further
classification would be a major undertaking.

The following lemma is crucial for our computations. It was first described
by Koch [Koc72] in her thesis and later (re)proved by Bochiş & Santos [BS06,
Lemma 1.1].

Definition B.1. Let a ∈ R3 be a point and let τ = (I, t) ∈ Γ be a nontrivial
translation of the space group Γ ≤ Isom(R3). We call

Sa(τ) =
{
x ∈ R3 : 〈a− t, t〉 < 〈x, t〉 < 〈a+ t, t〉

}
the open slab induced by a and τ .

The lemma now states:

Lemma B.2. For a space group Γ ≤ Isom(R3), let L be its lattice with basis
τi = (I, ti), i = 1, 2, 3. Given a point a ∈ R3, the orbit points

O =
(
Γ(a) ∩

3⋂
i=1

Sa(τi)
)
∪
{
±τ1(a),±τ2(a),±τ3(a)

}
suffice for computing DV(a). We call O the set of relevant points of a.

Proof. Consider an open slab Sa(τi), an orbit point b ∈ Γ(a)− Sa(τi) for some
i ∈ {1, 2, 3} with b 6= ±τi(a), and assume 〈b, ti〉 ≥ 〈a+ ti, ti〉. We then have the
planar parallelogram conv(a, τi(a), b,−τi(b)). The orbit point b is relevant for
DV(a) if and only if there exists a sphere that contains only a, b on the boundary
and no other orbit points in the interior. However, this cannot be the case for
a, b since we have

∠
(
a, τi(a), b

)
= ∠

(
b,−τi(b), a

)
≥ π/2,

which is a contradiction.
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We apply this lemma to space groups with an orthogonal sublattice in the
following way: Let Γ ≤ Isom(R3) be a space group with lattice L, such that
L contains a sublattice L′ that is spanned by an orthogonal basis. Denote by
F the (cuboidal) half-open fundamental parallelepiped of L′. It is enough to
compute S = Γ(a)∩F to construct the set of relevant points of a ∈ R3, because
according to Lemma B.2 we only need to translate S to all other orthants of
the basis of L′. (Strictly speaking we then might get a superset of all relevant
points of a due to boundary effects.) Of course this raises the question of how
to determine S. Since we have

Γ =

k⋃
i=1

Lαi L =
⋃̀
j=1

L′τj

for αi = (Ai, ai) ∈ Γ and τj = (I, tj) ∈ L, this yields

Γ =

k⋃
i=1

⋃̀
j=1

L′τjαi

with τjαi = (Ai, ai+ tj). So for each i = 1, . . . , k and every j = 1, . . . , ` we need
to find a representative of L′τjαi(a) in F . We use

τjαi(a)− bτjαi(a)− ac,

where the floor function is applied componentwise. To finalize the computation
of S we add translates of a by every basis vector of L′. The above procedure is
summarized in Algorithm 1.

We use this algorithm for computations with orthorhombic, tetragonal, trig-
onal, hexagonal, and cubic groups. A classification of these groups can be found
in the International Tables for Crystallography (IT) [Hah05]. The algorithm de-
pends on the set R of representatives of L in Γ and on the set T of representatives
of L′ in L. R can be extracted from the GAP package Cryst [GAP15]; these
representatives are exactly the same as the ones from the IT. The representa-
tives T of L′ in L can be read off from the crystal system of Γ. In the following
we will show how to do this for the space groups of interest. We denote the
basis vectors of the sublattice L′ by b′1, b

′
2, b
′
3.

Orthorhombic groups

For orthorhombic space groups, the following types of fundamental parallelepi-
peds of the sublattice L′ occur:

b′1b′2

b′3

primitive
(P )

b′1b′2

b′3

base-centered
(A or C)

b′1b′2

b′3

body-centered
(I)

b′1b′2

b′3

face-centered
(F )
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Algorithm 1: Compute relevant points of a.

Data: a ∈ R3; representatives R = {α1, . . . , αk} of L in Γ; matrix
B′ =

[
b′1, b

′
2, b
′
3

]
∈ R3×3 of basis vectors of L′; representatives

T = {τ1, . . . , τ`} of L′ in L.
Result: Superset P of relevant points of a.
begin

P ←− ∅
S ←− ∅
for j ∈ {1, . . . , `} do

for i ∈ {1, . . . , k} do
p←− τjαi(a)
p←− p− bp− ac
append p to S

end

end
for v ∈ {0,−1}3 do

for s ∈ S do
P ←− B′v + s

end

end
append a+ b′1, a+ b′2, a+ b′3 to P
return P

end

The lengths of b′1, b
′
2, b
′
3 can be freely chosen, but the angles between all pairs of

vectors always have to be π/2. The representatives T of L′ in L are

• primitive case: T =
{

(0, 0, 0)
}

• base-centered case (type A): T =
{

(0, 0, 0), (0, 1/2, 1/2)
}

• base-centered case (type C): T =
{

(0, 0, 0), (1/2, 1/2, 0)
}

• body-centered case: T =
{

(0, 0, 0), (1/2, 1/2, 1/2)
}

• face-centered case: T =
{

(0, 0, 0), (1/2, 1/2, 0), (1/2, 0, 1/2), (0, 1/2, 1/2)
}

Tetragonal groups

For tetragonal space groups, the following types of fundamental parallelepipeds
of the sublattice L′ occur:
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b′1b′2

b′3

primitive
(P )

b′1b′2

b′3

body-centered
(I)

The lengths of b′1 and b′2 have to be equal, the length of b′3 can be freely
chosen. The angles between all pairs of vectors always have to be π/2. The
representatives T of L′ in L are

• primitive case: T =
{

(0, 0, 0)
}

• body-centered case: T =
{

(0, 0, 0), (1/2, 1/2, 1/2)
}

Trigonal and hexagonal groups

In the case of the trigonal and hexagonal crystal systems we need to apply a
change of basis to get cuboidal fundamental parallelepipeds for the sublattice L′.
The space groups of these systems are given in the IT with respect to sublattice
parallelepipeds of the following types:

b′1 b′2

b′3

primitive
(P )

b′1 b′2

b′3

rhombohedral
(R)

The lengths of b′1 and b′2 have to be equal, the length of b′3 can be freely chosen.
The angle between b′1 and b′2 must be ∠(b′1, b

′
2) = 2π/3, the angles between b′1

and b′3 and between b′2 and b′3 have to be ∠(b′1, b
′
3) = ∠(b′2, b

′
3) = π/2. The

inner points in the rhombohedral case have the coordinates (2/3, 1/3, 1/3) and
(1/3, 2/3, 2/3). To obtain orthogonal fundamental cells, we need to apply a coor-
dinate transformation between

B′ = (b′1, b
′
2, b
′
3) and B′′ = (b′′1 , b

′′
2 , b
′′
3) = (2b′1 + b′2, b

′
2, b
′
3).

We get the new sublattice L′′ = 〈b′′1 , b′′2 , b′′3〉. Of course we have to apply this
transformation to the trigonal and hexagonal groups of the IT accordingly. The
basis exchange matrix X = XB′′→B′ is

X =

 2 0 0
1 1 0
0 0 1

 and X−1 =

 1/2 0 0
−1/2 1 0

0 0 1

 ,
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and thus, if Γ is a trigonal or hexagonal group from the IT and (A, a) ∈ Γ is an
isometry, we have to work with the isometry (X−1AX,X−1a) instead. After the
coordinate transformation we have the following two orthogonal fundamental
parallelepiped types for sublattices:

b′′1

b′′2

b′′3

transformed
primitive

b′′1

b′′2

b′′3

transformed
rhombohedral

Here we need to have ‖b′′1‖ =
√

3‖b′′2‖, the length of b′′3 can be freely chosen, and
the angles between all pairs of vectors have to be π/2. The representatives T of
L′′ in L are

• transformed primitive case: T =
{

(0, 0, 0), (1/2, 1/2, 0)
}

• transformed rhombohedral case:

T =
{

(0, 0, 0), (1/2, 1/2, 0), (1/3, 0, 1/3), (2/3, 0, 2/3), (1/6, 1/2, 2/3), (5/6, 1/2, 1/3)
}

Cubic groups

For cubic space groups, the following types of fundamental parallelepipeds of
the sublattice L′ occur:

b′1
b′2

b′3

primitive
(P )

b′1
b′2

b′3

body-centered
(I)

b′1
b′2

b′3

face-centered
(F )

The lengths of b′1, b′2, and b′3 have to be the same and the angles between all
pairs of vectors have to be π/2. The representatives T of L′ in L are

• primitive case: T =
{

(0, 0, 0)
}

• body-centered case: T =
{

(0, 0, 0), (1/2, 1/2, 1/2)
}

• face-centered case: T =
{

(0, 0, 0), (1/2, 1/2, 0), (1/2, 0, 1/2), (0, 1/2, 1/2)
}
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Details on implementation and used resources

The above algorithm was implemented in C++ using the Callable Library
from Polymake [GJ00]. The resulting software package is called plesiohedron,
see [Sch]. Exact arithmetic was realized by using the GMP library [Gt15].
Many precomputations were done by using Sage [Ste+15], GAP [GAP15], and
Python. In total we produced roughly 14 TB of output data, which we ana-
lyzed using Python, the Unix tools sed, awk, and many more command line
tools. Visualizations were done with POV-Ray [Vis].

To carry out the computations, we proceeded for each space group Γ as
follows:

1. We first applied the normalizer N(Γ) to reduce the part of the fundamental
domain, that we needed to examine. This reduced fundamental domain is
always denoted by Rk in Chapter 2, where k is the number of Γ from the
IT. Each Rk is again a convex three-dimensional polytope.

2. Next we generated a very fine grid inside Rk using a Sage program we
developed. This program first triangulates Rk, and for each simplex in
the triangulation, it calculates weighted barycenters. As weights we used
all rational numbers with denominator D ∈ N, where D is chosen large
enough to get a fine enough grid.

3. For each point of the grid we applied plesiohedron.

4. The output was examined using the tools described above.

For the computations we used two clusters at Freie Universität Berlin and
around twenty-five stand-alone Linux computers. In total we used

3 073 014 hours ≈ 351 years

of CPU time.
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[GS78] Branko Grünbaum and Geoffrey C. Shephard. “Isohedral tilings of
the plane by polygons”. In: Comment. Math. Helv. 53.1 (1978),
pp. 542–571.
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[GS87] Branko Grünbaum and Geoffrey C. Shephard. Tilings and patterns.
W. H. Freeman and Company, 1987.

[Gt15] Torbjörn Granlund and the GMP development team. GNU MP:
The GNU Multiple Precision Arithmetic Library. 6.1.0. http://

gmplib.org/. 2015.

[Gub82] Martin Gubler. “Normalizer groups and automorphism groups of
symmetry groups”. In: Z. Kristallogr. 158.1-2 (1982), pp. 1–26.

177

http://www.gap-system.org
http://gmplib.org/
http://gmplib.org/


[Hah05] Theo Hahn, ed. International tables for crystallography. 5th ed.
Vol. A. Wiley, 2005.

[Hil00] David Hilbert. “Mathematische Probleme”. In: Nachr. Ges. Wiss.
Göttingen, Math.-Phys. Kl. 1900.3 (1900), pp. 253–297.

[Hil02] David Hilbert. “Mathematical problems”. In: Bull. Amer. Math.
Soc. 8.10 (1902), pp. 437–479.

[Hil85] Howard Hiller. “The crystallographic restriction in higher dimen-
sions”. In: Acta Crystallogr. Sect. A 41.6 (1985), pp. 541–544.

[Hil86] Howard Hiller. “Crystallography and cohomology of groups”. In:
Amer. Math. Monthly 93.10 (1986), pp. 765–779.

[Hir68] Fred L. Hirshfeld. “Symmetry in the generation of trial structures”.
In: Acta Crystallogr. Sect. A 24.2 (1968), pp. 301–311.

[HK63] Heinrich Heesch and Otto Kienzle. Flächenschluß. Wissenschaftliche
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Index of Space Groups

IT Short name Full name BBNWZ page
75 P4 P 4 (3, 4, 1, 1, 1) 27
76 P41 P 41 (3, 4, 1, 1, 2) 28
77 P42 P 42 (3, 4, 1, 1, 3) 28
78 P43 P 43 (3, 4, 1, 1, 2) 28
79 I4 I 4 (3, 4, 1, 2, 1) 29
80 I41 I 41 (3, 4, 1, 2, 2) 29
81 P 4̄ P 4̄ (3, 4, 2, 1, 1) 30
82 I 4̄ I 4̄ (3, 4, 2, 2, 1) 31
83 P4/m P 4/m (3, 4, 3, 1, 1) 32
84 P42/m P 42/m (3, 4, 3, 1, 2) 32
85 P4/n P 4/n (3, 4, 3, 1, 3) 33
86 P42/n P 42/n (3, 4, 3, 1, 4) 34
87 I4/m I 4/m (3, 4, 3, 2, 1) 35
88 I41/a I 41/a (3, 4, 3, 2, 2) 36
89 P422 P 4 2 2 (3, 4, 4, 1, 1) 37
90 P4212 P 42 1 2 (3, 4, 4, 1, 4) 38
91 P4122 P 41 2 2 (3, 4, 4, 1, 2) 38
92 P41212 P 41 21 2 (3, 4, 4, 1, 5) 40
93 P4222 P 42 2 2 (3, 4, 4, 1, 3) 42
94 P42212 P 42 21 2 (3, 4, 4, 1, 6) 43
95 P4322 P 43 2 2 (3, 4, 4, 1, 2) 38
96 P43212 P 43 21 2 (3, 4, 4, 1, 5) 40
97 I422 I 4 2 2 (3, 4, 4, 2, 1) 44
98 I4122 I 41 2 2 (3, 4, 4, 2, 2) 46
99 P4mm P 4 m m (3, 4, 5, 1, 1) 49
100 P4bm P 4 b m (3, 4, 5, 1, 5) 49
101 P42cm P 42 c m (3, 4, 5, 1, 4) 50
102 P42nm P 42 n m (3, 4, 5, 1, 8) 50
103 P4cc P 4 c c (3, 4, 5, 1, 3) 51
104 P4nc P 4 n c (3, 4, 5, 1, 7) 51
105 P42mc P 42 m c (3, 4, 5, 1, 2) 52
106 P42bc P 42 b c (3, 4, 5, 1, 6) 52
107 I4mm I 4 m m (3, 4, 5, 2, 1) 53
108 I4cm I 4 c m (3, 4, 5, 2, 2) 53
109 I41md I 41 m d (3, 4, 5, 2, 3) 54
110 I41cd I 41 c d (3, 4, 5, 2, 4) 54
111 P 4̄2m P 4̄ 2 m (3, 4, 6, 1, 1) 55
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112 P 4̄2c P 4̄ 2 c (3, 4, 6, 1, 2) 56
113 P 4̄21m P 4̄ 21 m (3, 4, 6, 1, 3) 56
114 P 4̄21c P 4̄ 21 c (3, 4, 6, 1, 4) 57
115 P 4̄m2 P 4̄ m 2 (3, 4, 6, 2, 1) 58
116 P 4̄c2 P 4̄ c 2 (3, 4, 6, 2, 2) 58
117 P 4̄b2 P 4̄ b 2 (3, 4, 6, 2, 3) 59
118 P 4̄n2 P 4̄ n 2 (3, 4, 6, 2, 4) 60
119 I 4̄m2 I 4̄ m 2 (3, 4, 6, 3, 1) 61
120 I 4̄c2 I 4̄ c 2 (3, 4, 6, 3, 2) 62
121 I 4̄2m I 4̄ 2 m (3, 4, 6, 4, 1) 63
122 I 4̄2d I 4̄ 2 d (3, 4, 6, 4, 2) 64
123 P4/mmm P 4/m 2/m 2/m (3, 4, 7, 1, 1) 66
124 P4/mcc P 4/m 2/c 2/c (3, 4, 7, 1, 2) 67
125 P4/nbm P 4/n 2/b 2/m (3, 4, 7, 1, 5) 67
126 P4/nnc P 4/n 2/n 2/c (3, 4, 7, 1, 6) 68
127 P4/mbm P 4/m 21/b 2/m (3, 4, 7, 1, 13) 68
128 P4/mnc P 4/m 21/n 2/c (3, 4, 7, 1, 14) 69
129 P4/nmm P 4/n 21/m 2/m (3, 4, 7, 1, 9) 70
130 P4/ncc P 4/n 21/c 2/c (3, 4, 7, 1, 10) 70
131 P42/mmc P 42/m 2/m 2/c (3, 4, 7, 1, 3) 71
132 P42/mcm P 42/m 2/c 2/m (3, 4, 7, 1, 4) 71
133 P42/nbc P 42/n 2/b 2/c (3, 4, 7, 1, 7) 72
134 P42/nnm P 42/n 2/n 2/m (3, 4, 7, 1, 8) 73
135 P42/mbc P 42/m 21/b 2/c (3, 4, 7, 1, 15) 74
136 P42/mnm P 42/m 21/n 2/m (3, 4, 7, 1, 16) 75
137 P42/nmc P 42/n 21/m 2/c (3, 4, 7, 1, 11) 75
138 P42/ncm P 42/n 21/c 2/m (3, 4, 7, 1, 12) 76
139 I4/mmm I 4/m 2/m 2/m (3, 4, 7, 2, 1) 77
140 I4/mcm I 4/m 2/c 2/m (3, 4, 7, 2, 2) 77
141 I41/amd I 41/a 2/m 2/d (3, 4, 7, 2, 3) 78
142 I41/acd I 41/a 2/c 2/d (3, 4, 7, 2, 4) 80
143 P3 P 3 (3, 5, 1, 2, 1) 82
144 P31 P 31 (3, 5, 1, 2, 2) 83
145 P32 P 32 (3, 5, 1, 2, 2) 83
146 R3 R 3 (3, 5, 1, 1, 1) 83
147 P 3̄ P 3̄ (3, 5, 2, 2, 1) 84
148 R3̄ R 3̄ (3, 5, 2, 1, 1) 85
149 P312 P 3 1 2 (3, 5, 3, 2, 1) 86
150 P321 P 3 2 1 (3, 5, 3, 3, 1) 87
151 P3112 P 31 1 2 (3, 5, 3, 2, 2) 88
152 P3121 P 31 2 1 (3, 5, 3, 3, 2) 89
153 P3212 P 32 1 2 (3, 5, 3, 2, 2) 88
154 P3221 P 32 2 1 (3, 5, 3, 3, 2) 89
155 R32 R 3 2 (3, 5, 3, 1, 1) 90
156 P3m1 P 3 m 1 (3, 5, 4, 2, 1) 92
157 P31m P 3 1 m (3, 5, 4, 3, 1) 93
158 P3c1 P 3 c 1 (3, 5, 4, 2, 2) 93
159 P31c P 3 1 c (3, 5, 4, 3, 2) 94
160 R3m R 3 m (3, 5, 4, 1, 1) 94

183



IT Short name Full name BBNWZ page
161 R3c R 3 c (3, 5, 4, 1, 2) 95
162 P 3̄1m P 3̄ 1 2/m (3, 5, 5, 2, 1) 96
163 P 3̄1c P 3̄ 1 2/c (3, 5, 5, 2, 2) 96
164 P 3̄m1 P 3̄ 2/m 1 (3, 5, 5, 3, 1) 97
165 P 3̄c1 P 3̄ 2/c 1 (3, 5, 5, 3, 2) 98
166 R3̄m R 3̄ 2/m (3, 5, 5, 1, 1) 98
167 R3̄c R 3̄ 2/c (3, 5, 5, 1, 2) 100
168 P6 P 6 (3, 6, 1, 1, 1) 102
169 P61 P 61 (3, 6, 1, 1, 4) 103
170 P65 P 65 (3, 6, 1, 1, 4) 103
171 P62 P 62 (3, 6, 1, 1, 2) 103
172 P64 P 64 (3, 6, 1, 1, 2) 103
173 P63 P 63 (3, 6, 1, 1, 3) 104
174 P 6̄ P 6̄ (3, 6, 2, 1, 1) 105
175 P6/m P 6/m (3, 6, 3, 1, 1) 105
176 P63/m P 63/m (3, 6, 3, 1, 2) 106
177 P622 P 6 2 2 (3, 6, 4, 1, 1) 107
178 P6122 P 61 2 2 (3, 6, 4, 1, 4) 107
179 P6522 P 65 2 2 (3, 6, 4, 1, 4) 107
180 P6222 P 62 2 2 (3, 6, 4, 1, 2) 109
181 P6422 P 64 2 2 (3, 6, 4, 1, 2) 109
182 P6322 P 63 2 2 (3, 6, 4, 1, 3) 111
183 P6mm P 6 m m (3, 6, 5, 1, 1) 112
184 P6cc P 6 c c (3, 6, 5, 1, 2) 113
185 P63cm P 63 c m (3, 6, 5, 1, 4) 113
186 P63mc P 63 m c (3, 6, 5, 1, 3) 114
187 P 6̄m2 P 6̄ m 2 (3, 6, 6, 1, 1) 114
188 P 6̄c2 P 6̄ c 2 (3, 6, 6, 1, 2) 115
189 P 6̄2m P 6̄ 2 m (3, 6, 6, 2, 1) 115
190 P 6̄2c P 6̄ 2 c (3, 6, 6, 2, 2) 116
191 P6/mmm P 6/m 2/m 2/m (3, 6, 7, 1, 1) 116
192 P6/mcc P 6/m 2/c 2/c (3, 6, 7, 1, 2) 117
193 P63/mcm P 63/m 2/c 2/m (3, 6, 7, 1, 4) 117
194 P63/mmc P 63/m 2/m 2/c (3, 6, 7, 1, 3) 118
195 P23 P 2 3 (3, 7, 1, 1, 1) 119
196 F23 F 2 3 (3, 7, 1, 2, 1) 120
197 I23 I 2 3 (3, 7, 1, 3, 1) 120
198 P213 P 21 3 (3, 7, 1, 1, 2) 121
199 I213 I 21 3 (3, 7, 1, 3, 2) 122
200 Pm3̄ P 2/m 3̄ (3, 7, 2, 1, 1) 123
201 Pn3̄ P 2/n 3̄ (3, 7, 2, 1, 2) 124
202 Fm3̄ F 2/m 3̄ (3, 7, 2, 2, 1) 124
203 Fd3̄ F 2/d 3̄ (3, 7, 2, 2, 2) 125
204 Im3̄ I 2/m 3̄ (3, 7, 2, 3, 1) 125
205 Pa3̄ P 21/a 3̄ (3, 7, 2, 1, 3) 126
206 Ia3̄ I 21/a 3̄ (3, 7, 2, 3, 2) 127
207 P432 P 4 3 2 (3, 7, 3, 1, 1) 129
208 P4232 P 42 3 2 (3, 7, 3, 1, 3) 129
209 F432 F 4 3 2 (3, 7, 3, 2, 1) 130
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210 F4132 F 41 3 2 (3, 7, 3, 2, 2) 131
211 I432 I 4 3 2 (3, 7, 3, 3, 1) 132
212 P4332 P 43 3 2 (3, 7, 3, 1, 2) 133
213 P4132 P 41 3 2 (3, 7, 3, 1, 2) 133
214 I4132 I 41 3 2 (3, 7, 3, 3, 2) 135
215 P 4̄3m P 4̄ 3 m (3, 7, 4, 1, 1) 138
216 F 4̄3m F 4̄ 3 m (3, 7, 4, 2, 1) 138
217 I 4̄3m I 4̄ 3 m (3, 7, 4, 3, 1) 139
218 P 4̄3n P 4̄ 3 n (3, 7, 4, 1, 2) 140
219 F 4̄3c F 4̄ 3 c (3, 7, 4, 2, 2) 140
220 I 4̄3d I 4̄ 3 d (3, 7, 4, 3, 2) 141
221 Pm3̄m P 4/m 3̄ 2/m (3, 7, 5, 1, 1) 143
222 Pn3̄n P 4/n 3̄ 2/n (3, 7, 5, 1, 3) 143
223 Pm3̄n P 42/m 3̄ 2/n (3, 7, 5, 1, 2) 144
224 Pn3̄m P 42/n 3̄ 2/m (3, 7, 5, 1, 4) 144
225 Fm3̄m F 4/m 3̄ 2/m (3, 7, 5, 2, 1) 145
226 Fm3̄c F 4/m 3̄ 2/c (3, 7, 5, 2, 2) 146
227 Fd3̄m F 41/d 3̄ 2/m (3, 7, 5, 2, 4) 146
228 Fd3̄c F 41/d 3̄ 2/c (3, 7, 5, 2, 3) 147
229 Im3̄m I 4/m 3̄ 2/m (3, 7, 5, 3, 1) 147
230 Ia3̄d I 41/a 3̄ 2/d (3, 7, 5, 3, 2) 148

185



Index

Q-class, 7
crystal system, 7

s(n), 157
vol(Rn/Γ), 14
Z-class, 7, 162
p-group

breadth, 9
plesiohedron, 173

arithmetic crystal class, 8
automorphism group of lattice, 7

Bieberbach group, 2, 19
Bieberbach’s theorems, 6
bound

number of Z-classes, 162
number of space group types, 159

Bravais class, 7
Bravais equivalent, 7
Bravais system, 7
breadth, 9

Cheshire group, 25
class-breadth conjecture, 9
cocompact, 15
cohomology sequence, 167
commensurable, 20
convex tiling, 11
covering property, 5
crystal class

arithmetic, 8
geometric, 8

crystal system, 7, 169
crystallographic group, see space group
crystallographic point group, see point

group
crystallographic restriction, 21

derivation, 166
principal, 166

Dirichlet–Voronoi domain, 9
Dirichlet–Voronoi stereohedron, 11
discontinuous, 4
discrete group, 4
discrete orbits, 4
DV-stereohedron, 11

Euclidean group, 4
Euler totient function, 21

additive, 21
extension, 16, 165

equivalent, 166
kernel, 165
quotient, 165
realizes operators, 165

Fedorov group, see space group
Feit’s theorem, 159
first cohomology group, 166
flat manifold, 2, 9
Friedland’s theorem, 159
Frobenius congruence, 22
Frobenius notation, 4
fundamental domain, 5

covering property, 5
Dirichlet–Voronoi stereohedron, 11
DV-stereohedron, 11
packing property, 5
plesiohedron, 11
stereohedron, 11

GAP
Cryst, 169

geometric crystal class, 8
group

Bravais equivalent, 7
cocompact, 15
growth function, 19
growth type, 19
nilpotency class, 9
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virtually nilpotent, 19
word length, 19

group extension, 16, 165

Hilbert’s eighteenth problem, 6
holonomy group, 16

isohedral, 11
isohedral tiling, 9
isometry, 4

Frobenius notation, 4
linear notation, 4
linear part, 4
normal form, 160
rotational part, 4
translational part, 4

Jordan–Zassenhaus, 162

kernel, 165

lattice
automorphism group, 7
equivalence, 162
genus, 162
inequivalence, 162
scaled, 158

lifting, 165
linear notation, 4
linear part, 4

manifold
flat, 9

mass formula, 162
monohedral, 11, 23

neighbor, 12
nilpotency class, 9
nilpotent, 19
normal form, 160
normalized, 158
normalizer, 25
number of space group types, 159

open slab, 168
orbifold, 8
orbifold notation, 8

packing property, 5
periodic groups, 7
plane crystallographic groups, 7

plane symmetry groups, 7
plesiohedron, 11
Poincaré’s theorem, 18
point group, 7, 16

crystallographic restriction, 21
principal derivation, 166
prototile, 11, 23
pure translation, 4

quotient, 165

Raumgruppe, see space group
realizes operators, 165
relevant points, 168
rotational part, 4

scaled, 158
second cohomology group, 166
slab

open, 168
Smith–Minkowski–Siegel, 162
space group, 5

Q-class, 7
Z-class, 7, 162
Bieberbach group, 2, 19
bound on generators, 19
Bravais class, 7
Bravais system, 7
Cheshire group, 25
cocompact, 15
commensurable, 20
countable cardinality, 18
cubic, 119, 172
Dirichlet–Voronoi stereohedron, 11
DV-stereohedron, 11
extension, 16
finitely generated, 18
finitely presented, 18
fundamental domain, 5
geometric characterization, 15
growth function, 19
growth type, 19
hexagonal, 102, 171
holonomy group, 16
large subgroups, 19
minimal number of generators, 19
normalized, 158
normalizer, 25
number of, 157
orbifold notation, 8
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orthogonal, 158
orthorhombic, 169
plesiohedron, 11
point group, 7, 16
polynomial growth, 19
splitting group, 21
stereohedron, 11, 23
tetragonal, 27, 170

b-ratio, 27
triclinic, 26
trigonal, 81, 171
type, 7
upper bound on number of types,

159
word length, 19

space group type, 7
upper bound, 159

splitting group, 21
stereohedra

scissors-congruent, 13
stereohedron, 11, 23
symmetry group, 11

theorem
Feit, 159
Friedland, 159
Jordan–Zassenhaus, 162
Smith–Minkowski–Siegel, 162

tile, 11, 23
tiling, 11, 23

convex, 11, 23
Dirichlet–Voronoi stereohedron, 11
isohedral, 9, 11
monohedral, 11, 23
neighbor, 12
prototile, 11, 23
stereohedron, 11, 23
symmetry group, 11
tile, 11, 23

translational part, 4
type, 7

upper central series, 19

Voronoi’s conjecture, 11

wallpaper groups, 7
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Deutsche Zusammenfassung

Thematisch gliedert sich diese Dissertation in drei Teile:

(i) Übersichtsartikel über die Theorie der n-dimensionalen Raumgruppen,

(ii) Untersuchung der 3-dimensionalen Raumgruppen in Hinblick auf die mög-
lichen f -Vektoren von Dirichlet–Voronoi-Stereoedern,

(iii) Abschätzung der Anzahl der Isomorphieklassen von Raumgruppen des Rn.

Jeder Teil dieser Arbeit entspricht einem der drei Kapitel, die wir nachfolgend
kurz beschreiben werden.

Im ersten Kapitel geben wir eine Einführung in die Theorie der Raum-
gruppen und fassen übersichtsartig die wichtigsten Resultate aus diesem Gebiet
zusammen. Beweise werden nur geführt, falls wir keine oder keine adäquaten
in der Literatur finden konnten. Wir halten eine solche Zusammenfassung für
dringend notwendig, da andere Einführungen sich entweder auf Raumgruppen
der Dimensionen n ≤ 3 beschränken, sich stark auf kristallographische As-
pekte konzentrieren oder veraltet sind. Entsprechend haben wir versucht, die
wichtigsten Referenzen zu Raumgruppen zu sichten und im Literaturverzeichnis
aufzulisten.

Kapitel 2 widmet sich einer ausführlichen Untersuchung von Dirichlet–Voronoi-
Stereoedern. Ein Stereoeder ist ein konvexes Polytop, das den Rn mittels der
Wirkung einer Raumgruppe lückenlos überdeckt. Falls das Stereoeder eine
Dirichlet–Voronoi-Zelle eines Voronoi-Diagramms eines Orbits einer Raumgruppe
ist, spricht man von einem Dirichlet–Voronoi-Stereoeder. Solche Stereoeder
sind spezielle Beispiele sogenannter konvexer monohedraler Pflastersteine, deren
Form und Kombinatorik nur rudimentär verstanden sind. Insbesondere ist es
ein offenes Problem, ob die Anzahl der Facetten eines konvexen monohedralen
Pflastersteins durch eine Funktion beschränkt ist, die nur von der Dimension n
abhängt. Durch unsere Untersuchungen wollen wir die Arbeiten von Santos et
al. komplementieren und einen realistischen Eindruck der Anzahl der Facetten
in Dimension 3 gewinnen. Für die Untersuchungen und Berechnungen wurde
von uns das umfangreiche Programmpaket plesiohedron entwickelt.

Schließlich präsentieren wir im letzen Kapitel eine neue Abschätzung der
Anzahl der Isomorphieklassen s(n) von Raumgruppen des Rn. Nach einem Satz
von Bieberbach ist diese Anzahl in jeder Dimension endlich. Schwarzenberger
hat gezeigt, dass

s(n) = 2Ω(n2)

gilt und Buser konnte eine obere Schranke der Form

s(n) = 22O(n2)

beweisen. Wir verbessern Busers Resultat und zeigen, dass

s(n) = 22O(n log n)

gilt. Anschließend schätzen wir mit Hilfe dieses Resultats erstmalig die An-
zahl der Konjugationsklassen endlicher Untergruppen von GL(n,Z) ab und
beurteilen die Güte dieser Abschätzung mit Hilfe der Minkowski–Siegelschen
Massenformel.
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