
Appendix A

Naming Convention

Within in the whole thesis, we use the following naming convention:

• PDB [22] ids are giving as four letter codes, for example, 2uag.

• The chain id is giving in capital letters after the PDB id, for example,
2uagA. In proteins containing only a single chain, the chain is denoted
with ’ ’, e.g., 1ars .

• SCOP [169] domain identifiers are denoted numerical by a single number
after the PDB id and the chain id: 2uagA1. Single chains containing only
a single domain are denoted with ’ ’: 1dhs .

• CATH [176] domain identifiers are denoted by two numbers after the PDB
id and the chain id: 2uagA01. Single chains are denoted with ’0’ as well
as single domains: 1dhs000.

• PTGL [157] folding graphs are denoted in capital letters in alphabetic
order from the N -to the C-terminus: 1timAA or 1ars A.
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Appendix B

Statistical Potentials

A pairwise statistical interaction potential measures the preference of pairs of
amino acids to be in spatial proximity in the 3D protein structure. These
statistical potentials of mean force (or knowledge-based potentials) are derived
from the inverse Boltzmann relation to a given set of known 3D protein struc-
tures [163,212] setting the energy of a certain state in relation to the probability
that the state is observed. The advantage of knowledge-based potentials is their
small computational expense compared to more complex potential expressions
used in today’s force fields derived from first principle laws. The disadvantage
of knowledge-based potentials is the fact that they are derived from a specific
dataset of proteins. Therefore they depend on the quality of the set and might
vary considerably using different datasets. Here, we derive the statistical po-
tential in a similar way then used before by Lu et al. [150]. The method can
be used for all types of contact definitions between residues of different residue
subsets R. These subsets could include all residues (total), all SSE residues
(SS), all helix residues (H), or all strand residues (E). The potential energy
between two types of amino acids i and j is then given by

PR(i, j) = − log





NR(i, j)
nR(i)nR(j)

n2

R

NR



 with (B.1)

NR =
∑

i,j
i<j

NR(i, j) and (B.2)

nR =
∑

i

nR(i) . (B.3)

NR(i, j) is the number of contacts between residue types i and j within the
residue subset R, and nR(i) the total number of residues of type i that have
contact to any other residue. The number of contacts also depends on the
contact definition used. For example, when looking at all contacts between
SSEs the total number of contacts is much bigger than when looking only at
contacts between helices and strands. For both potentials the total number of
residues would be the same. Statistical potentials are represented as a 20× 20
interaction potential matrix giving the propensities of pairwise interactions of
the 20 standard amino acids for a certain subset R.
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Appendix C

Graph-theoretical
Definitions

In the following all graphs are simple undirected labeled graphs G = (V,E) as
defined in Definition 2. If two vertices u, v ∈ V of G are connected by an edge
e ∈ E this is denoted by e = (u, v) and the two vertices are said to be adjacent.
The edge e is said to be incident to both vertices u and v.

Definition 42 (Complete Graph). A graph G = (V,E) is called a complete
graph, if all its vertices are adjacent, i.e., ∀i, j ∈ V, i 6= j : (i, j) ∈ E.

Definition 43 (Subgraph). A subgraph of a graph G = (V,E) is a subset S ⊆ V
of vertices of G together with a subset of edges connecting pairs of vertices in S.

Definition 44 (Clique). A complete subgraph H ⊆ G is called a clique or
maximal complete subgraph if there is no clique J such that H ⊆ J ⊆ G with
|H| < |J |, i.e., a clique is a complete subgraph that is not contained in any other
complete subgraph.

Definition 45 (Graph Isomorphism). Two graphs G1 and G2 are said to be
isomorphic, denoted by G1 ≡ G2, if there exists a bijection f : VG1

→ VG2

between their vertices preserving all adjacencies. This means if (u, v) ∈ E1 ⇒
(f(u), f(v)) ∈ E2 .

Definition 46 (Subgraph Isomorphism). The subgraphs G′
1 ⊆ G1 and G′

2 ⊆ G2

are said to be isomorphic if G′
1 ≡ G′

2. Then, G′
1 and G′

2 are called common
subgraphs of G1 and G2.
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Appendix D

Datasets

D.1 ASTRAL SCOP40 Dataset

The ASTRAL SCOP40 dataset [41] is a non-redundant dataset consisting of
protein domains defined from SCOP [169] version 1.69. The domain structures
have at most 40% sequence identity. The SCOP40 dataset can be downloaded
from the ASTRAL webpage1. Since most of the used methods rely on SSEs, we
excluded all domain structures with less than two SSEs and less than 30% of
their residues within SSEs, and all NMR structures. Additionally, only domains
from the four main SCOP classes were included (all α, all β, α/β, α+β) resulting
in 5, 397 protein domain structures. This dataset is used for all database searches
with the web version of GANGSTA.

From the SCOP40 dataset we generated two additional datasets that we
used to calculate the statistical significance of GANGSTA alignments:

• SAME40 consists of 4, 982 random pairs of domains from the SCOP40
dataset where the two domains are from the same SCOP superfamily.
The protein pairs involve 672 different SCOP domains taken from 113
different SCOP superfamilies belonging to 99 different SCOP folds.

• DIFF40 consists of 88, 909 random pairs of domains from the SCOP40
dataset where for each pair the protein domains are from different SCOP
superfamilies. This dataset of protein pairs involves 500 different SCOP
domains from 317 different SCOP superfamilies belonging to 243 different
SCOP folds.

D.2 Four-Helix-Bundle Dataset

The four-helix-bundle dataset comprises ten proteins belonging to four different
folds and six different superfamilies in the SCOP [169] classification scheme.
Table D.1 in the Appendix shows the dataset of the ten proteins with their
SCOP annotations. This dataset was used before in [62,63].

1http://astral.berkeley.edu/scopseq-os-1.67.html

126



Table D.1: Four-Helix-Bundle dataset. SCOP [169] fold and superfamily iden-
tifiers.

protein SCOP fold SCOP superfamily
2hmzA 47161 47188
2ccyA 47161 47175
256bA 47161 47175
1bbhA 47161 47175
1le2 47161 47162

3inkC 47265 47266
1bgeB 47265 47266
1rcb 47265 47266
1aep 47856 47857
1flx designeda designeda

a SCOP category for a selection of artificial

protein structures.

D.3 TRAF Dataset

The TRAF dataset consists of eight proteins that belong to two different folds
in the all-β class of the SCOP [169] database. Four proteins (PDB-IDs: 1czyA2,
1kzzA1, 1lb4, 1k2fA) belong to the ’TRAF (TNF Receptor Associated Factor)
domain-like’ fold but are members of two different families: 1czyA, 1kzzA1, and
1lb4 are taken from the ’TRAF domain’ family; 1k2fA belongs to the ’SIAH’
family. Four proteins (PDB-IDs: 1bmg, 1frtB, 1igtA2, 1k8iA1) of the TRAF
dataset belong to the ’C1 set domains’ family of the ’Immunoglobulin-like beta-
sandwich’ fold. This dataset was used before in [62,63].

D.4 C2 Dataset

The C2 dataset consists of ten proteins taken from two families of the ’C2
domain’ superfamily in SCOP [169]. The proteins 1a25A, 1rsy, 3rpbA, and
1dsyA are from the ’Synaptotagmin-like’ family. 1rlw, 1gmiA, 1bdyA, 1e8yA2,
1qasA2, and 1d5rA1 are from the ’PLC-like’ family.

D.5 Rossmann-Fold Dataset

The Rossmann-fold dataset consists of seven protein domains that contain mo-
tifs that are classified as ’Rossmann’-fold or ’Rossmann-like’-fold according to
the CATH [176] or SCOP [169] classification schemes. The proteins (target
structures) are listed in Table D.2. All proteins have pairwise less than 40%
sequence similarity.
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Table D.2: Rossmann dataset. Correspondence between SCOP- and CATH-ids

and the CATH hierarchy identifiers.

SCOP id CATH id CAT a CATHb

1cjcA2 1cjcA01 3.40.50 3.40.50.720
1rqlA 1rqlA01 3.40.50 3.40.50.1000

1rqlA02 1.10.164 1.10.164.10
1geeA 1geeA00 3.40.50 3.40.50.720
1dhs 1dhs000 3.40.910 3.40.910.10
1dih 1 1dih001 3.40.50 3.40.50.720
1f0kA 1f0kA01 3.40.50 3.40.50.2000

1f0kA02 3.40.50 3.40.50.2000
1f8yA 1f8yA00 3.40.50 3.40.50.1810
aCAT means Class-Architecture-Topology code

according to CATH [176]
bCATH means Class-Architecture-Topology-

Homologous Superfamily code according to CATH.

D.6 CP Dataset

The CP dataset consist of seven protein pairs that are known as circular per-
muted proteins from literature [97,117]: 1rin−2cna, 1nkl−1qdm, 1rsy−1qas,
1aqi− 1boo, 1onr − 1fba, 1gbg − 1ajk, and 1avd− 1swg.

D.7 DIFFAL Dataset

The DIFFAL dataset consist of ten protein-structure pairs introduced by Fis-
cher et al. [70] and used by Novotny et al. [172] that are known representing
difficult pairwise alignments. Novotny added the last pair (1g61/1jdw). The
PDB ids of the protein pairs are:
1bgeB/2gmfA, 1cewI/1molA, 1cid/2rhe, 1crl/1ede, 1fxiA/1ubq, 1ten/1hhrB,
1tie/4fgf , 2azaA/1paz, 2sim/1nsbA, 3hlaB/2rhe, and 1g61/1jdw.

D.8 Novotny Dataset

The Novotny dataset consists of representative proteins from four different
CATH [176] classes (classes: mainly-α, mainly-β, mixed-alpha-β, few SSEs)
and was applied in a recent structure alignment performance test by Novotny
et al. [172]. For all protein domains their corresponding CATH class, the
CATH topology classification, the number of different superfamilies per topol-
ogy level in the dataset, and the CATH domain identifier are given in Ta-
ble D.3. The whole Novotny dataset and the benchmark results are available
on http://xray.bmc.uu.se/~marian/servers/index.htm.
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Table D.3: Novotny dataset [172]. CATH [176] classification for the Novotny
dataset.

Class CAT a NoHb CATH entries

mainly-α 1.10.40 2 1rlr001 1yfm003 1furA03 1auwA03
1jswB03 1hylC03 1i0aA03

1.10.164 3 1aq6A02 1c3uA02cc 1fezA02 1jud002
1zrn001

1.25.10d 3 1b3uA00 1bk6A00 1gcjA00 1ialA00
1ibrB00 1qbkB00 2bct000

mainly-β 2.30.110 2 1ci0A00 1dnlA00 1ejeA00 1i0rA00
2.40.100 1 1a33000 1awgA00 1cynA00 1dywA00

1ihgA01 1lopA00 1qngA00 1qoiA00
2rmcA00

2.100.10 3 1c3kA00 1ciy002 1jacA00 1jotA00 1dlc003
1vmoA00

mixed-α-β 3.10.50e 2 1bkf000 1grj002 1pbk000 1rot000 1yat000
3.40.91 3 1bhmA00 1cfr000 1d2iA00 1fokA03

3.70.10 3 1axcA00 1b77f 1czdf 1dmlA00 1ge8A00
1plq000

few SSEs 2.40.20 1 1b2iA00 1ceaA00 1kdu000 1kiv000 1krn000
1pk4000 1pmlA00 5hgpgg

aClass-Architecture-Topology code according to CATH.
bNumber of homologous superfamilies (H level in CATH) of the topology level.
cHas changed CATH topology from L-2-haloacid Dehalogenase,
domain 2, to Fumarase C Chain A, domain 2.

d1.25.30 in the original Novotny dataset. All domains moved to 1.25.10.
e3.10.70 in the original Novotny dataset. All domains moved to 3.10.50.
fNot classified anymore.
gNot in the PDB [22] and therefore not classified anymore.

D.9 Fischer Dataset

The Fischer dataset [70], as used, for example, by Novotny et al. [172], con-
sists originally of 68 reference sequences and 301 target structures. For every
reference sequence there is at least one target structure with similar fold type
in the dataset. All pairs were hand selected showing high structure similarity
but low sequence similarity. Since two of the reference structures and 32 of
the target structures contain more than one domain according to SCOP [169]
classification scheme we extended the number of reference-target pairs too 70
and the total number of target structures to 333 structures, respectively.
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Table D.4: Fischer dataset [70]. For every reference structure the matching

target structures are given according SCOP [169] fold classification.

reference targets

Mostly alpha

1dxtb_ 1hbg__ 1f99b_ 1mbc__ 1cpca_

1cpcl_ 1cpca_ 1hbg__ 1f99b_ 1mbc__

1c2ra_ 1ycc__ 451c__ 2mtac_

2mtac_ 1ycc__ 451c__

1bbha_ 2ccya_ 256ba_

1bgeb_ 2gmfa_ 1huw__ 1rcb__ 1rfba_

1rcb__ 2gmfa_ 1bgeb_ 1rfba_ 1huw__

1aep__ 256ba_ 2ccya_

1osa__ 4cpv__ 2scpa_ 2bbma_ 1rec__ 1scmb_ 1scmc_ 1top__

2sas__ 2scpa_ 4cpv__ 2bbma_ 1rec__ 1scmb_ 1scmc_ 1top__

1enh__ 1lfb__

1lgaa_ 2cyp__ 1mypa1 1mypc1

2hpda_ 2cpp__

Mostly Beta

1fc1a1 2fb4h2 8fabb1 8fabb2 2rhe__ 3hlab_ 3cd4_1 3cd4_2

3hlaa_ 1cid_1 1cid_2 8faba1 8faba2 1mcoh1 1mcoh2

1mcoh3 1mcoh4

1fc1a2 2fb4h2 8fabb1 8fabb2 2rhe__ 3hlab_ 3cd4_1 3cd4_2

3hlaa_ 1cid_1 1cid_2 8faba1 8faba2 1mcoh1 1mcoh2

1mcoh3 1mcoh4

2fbjh1 8fabb1 2fb4h2 8fabb2 2rhe__ 3hlab_ 3cd4_1 3cd4_2

3hlaa_ 1cid_1 1cid_2 8faba1 8faba2 1mcoh1 1mcoh2

1mcoh3 1mcoh4

2fbjh2 8fabb2 8fabb1 2fb4h2 2rhe__ 3hlab_ 3cd4_1 3cd4_2

3hlaa_ 1cid_1 1cid_2 8faba1 8faba2 1mcoh1 1mcoh2

1mcoh3 1mcoh4

1cid_1 2rhe__ 2fb4h2 8fabb1 8fabb2 3hlab_ 3cd4_1 3cd4_2

3hlaa_ 8faba1 8faba2 1mcoh1 1mcoh2 1mcoh3 1mcoh4

1cid_2 2rhe__ 2fb4h2 8fabb1 8fabb2 3hlab_ 3cd4_1 3cd4_2

3hlaa_ 8faba1 8faba2 1mcoh1 1mcoh2 1mcoh3 1mcoh4

1pfc__ 3hlab_ 2fb4h2 8fabb1 8fabb2 2rhe__ 3cd4_1 3cd4_2

3hlaa_ 1cid_1 1cid_2 8faba1 8faba2 1mcoh1 1mcoh2

1mcoh3 1mcoh4

1ten__ 3hhrb1

1tlk__ 2rhe__ 2fb4h2 8fabb1 8fabb2 3hlab_ 3cd4_1 3cd4_2

3hlaa_ 1cid_1 1cid_2 8faba1 8faba2 1mcoh1 1mcoh2

1mcoh3 1mcoh4

3cd4_1 2rhe__ 2fb4h2 8fabb1 8fabb2 3hlab_ 3hlaa_ 1cid_1

1cid_2 8faba1 8faba2 1mcoh1 1mcoh2 1mcoh3 1mcoh4

3cd4_2 2rhe__ 2fb4h2 8fabb1 8fabb2 3hlab_ 3hlaa_ 1cid_1

1cid_2 8faba1 8faba2 1mcoh1 1mcoh2 1mcoh3 1mcoh4

3hlab_ 2rhe__ 2fb4h2 8fabb1 8fabb2 3cd4_1 3cd4_2 1cid_1

1cid_2 8faba1 8faba2 1mcoh1 1mcoh2 1mcoh3 1mcoh4

1aaj__ 1paz__ 1aoza1 2pcy__ 2azaa_ 2afna1
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reference targets

Mostly beta

2afna1 1aoza1 1paz__ 2pcy__ 2azaa_

2azaa_ 1paz__ 1aoza1 2pcy__ 2afna1

4sbva_ 2tbva_ 2plv1_ 1tmv11 1tmv21 2mev3_

1bbt1_ 2plv1_ 2tbva_ 1tmv11 1tmv21 2mev3_

1saca_ 2ayh__ 2cna__ 1slta_

1ltsd_ 1bova_

1tie__ 4fgf__

8i1b__ 4fgf__

1arb__ 5ptp__ 1bbre1 2pkaa1

2sga__ 5ptp__ 1bbre1 2pkaa1

2snv__ 5ptp__ 1bbre1 2pkaa1

1ftpa_ 1ifc__ 1rbp__

1mup__ 1rbp__ 1ifc__

2sim__ 1nsba_

1caub_ 1caua_

Alpha/Beta

1chra1 2mnr_1 4enl_1

2mnr_1 4enl_1

3rubl1 6xia__ 5ruba1

1crl__ 1ede__ 1tca__ 3tgl__ 3sc2b1 1taha_ 2ace__

1taha_ 1tca__ 1ede__ 3tgl__ 3sc2b1 2ace__

1aba__ 1kte__ 2trxa_ 1gp1a_ 1dsba2 6gsta2

1dsba2 2trxa_ 1kte__ 1gp1a_ 6gsta2

1gp1a_ 2trxa_ 1kte__ 1dsba2 6gsta2

1atna1 1atr_1 1glag1

1hrha1 1rnh__

3chy__ 2fox__

2ak3a1 1gky__ 3adk__ 5p21__ 2reb_1 1nipb_

1gky__ 3adk__ 5p21__ 2reb_1 1nipb_

2cmd_1 6ldh_1 8adh_2 1gd1o1 1dhr__ 1gdha1 2pgd_2

1eaf__ 4cla__

2gbp__ 2liv__

1mioc_ 2minb_

2pia_2 1fnb_2

1gal_1 3cox_1 3grs_1 1trb_1 1phh_1 2tmda2

1npx_1 3grs_1 3cox_1 1trb_1 1phh_1 2tmda2

Alpha+Beta

1fxia_ 1ubq__ 2pia_3

1cewi_ 1mola_

1stfi_ 1mola_

2pnb__ 1shaa_

2sara_ 9rnt__

1onc__ 7rsa__

5fd1__ 1iqza_

Other

2hhma_ 1fbpa_

1hip__ 2hipa_

1isua_ 2hipa_
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Appendix E

List of Structural
Alignment Methods

Here, we provide of an alphabetically ordered list of state-of-the-art methods
for protein structure alignment that were used in recent evaluation tests for
structural alignment methods [37,172] or that were used throughout this thesis:

• CE (Combinatorial Extension of the optimal pathway) [210] attempts
to find the best possible alignment of two structures by combinatorial
extension of the path of aligned fragment pairs that satisfy certain criteria
regarding structural similarity. The evaluation of structural similarity is
based on inter-residue distances and the RMSD of the matched atoms after
rigid body superpositioning. Gaps are allowed, but the maximum size of
a gap is restricted. A z-score is used as significance measure, and it is
calculated for the alignment of two structures. Therefore, the probability
of finding an alignment of the same length when comparing two random
structures is evaluated.

• DALI [103] calculates residue-residue distance matrices from 3D coordi-
nates of proteins. The distance matrices are first divided into hexapeptide
fragments to simplify the alignment task in later stages. DALI attempts
to find common local patterns in two fragments of the distance matrices.
Such fragments are paired, stored, and combined into larger overlapping
segments. The alignment of fragments within the segment is further opti-
mized by a Monte Carlo method, which is not guaranteed to converge to
the globally optimal solution. Therefore, several alignments are optimized
in parallel, which yields the best, second best, and so on solutions. The
method is fully automatic and allows sequence gaps of any length, reversal
of chain direction, and free topological connectivity of aligned segments.

• DEJAVU [124,153] uses SSEs, represented as vectors, to detect structural
similarity between the reference and database structures. The structural
similarity is defined with regard to the number of SSEs, their lengths, mu-
tual distances and angles, and, optionally, connectivity and directionality.
Results from the SSE-based search are first refined by RMSD minimiza-
tion (based on Cα atoms) and then by a dynamic programming procedure.
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The hits are sorted according to their significance, expressed as a P -value
and a z-score as defined by Levitt and Gerstein [146]

• GRATH [98] is a graph-based structure comparison program. Protein
structures are described as protein graphs composed of nodes and edges,
where nodes represent the SSEs and edges correspond to the geometrical
relationships (chirality, distances, and angles) between the SSEs. GRATH
is intimately coupled to CATH [176].

• K2 [219, 219] aligns first the SSEs and then extends the alignment to in-
clude any equivalent residues found in loops or turns. A genetic algorithm
that was later replaced by a simulated annealing procedure determined
the initial secondary structure element alignment. After refinement of
the SSE alignment, the protein backbones are superposed and a search is
performed to identify any additional equivalent residues in a convergent
process. Alignments are evaluated using intramolecular distance matrices.
Alignments can be performed with or without sequential connectivity con-
straints.

• LGA [247] takes into account local and global structure superpositions. It
first generates many local superpositions to detect many different regions
where proteins are similar, and additional searches for the largest (not
necessary continuous) set of similar residues that deviate not more than
a specified distance cutoff. It uses two measures of similarities, the LCS
(longest continuous segments) and GDT (global distance test) (see also
Equation 4.2).

• LOCK [211] is a hierarchical structure-superposition method that tries
to minimize the RMSD of two structures at three levels. The starting
superposition is obtained by aligning SSEs, represented as vectors, with
use of dynamic programming. The RMSD is minimized for corresponding
Cα atoms in the second step. In the third step, the core of the structure
is defined and an RMSD minimization is once more applied to this core.

• MATRAS [121] uses a Markov transition model of evolution to measure
protein structure similarity. Three types of structural similarity scores
are used: an environmental score (a combination of local structure and
solvent accessibility), a residue distance score, and an SSE score. The
program uses a hierarchical alignment algorithm. The first alignment is
obtained by comparing SSEs using a branch-and-bound method. Using
more detailed environmental and residue distance scores further improve
this initial alignment. The significance of the results is expressed as a
z-score.

• MAMMOTH [179] (MAtching Molecular Models Obtained from THe-
ory) uses a heuristic method to find, in a sequence-independent mode, the
maximal structural subset of two proteins with the same backbone and
3D conformation. It provides a score of the significance of the alignment
found based on the probability of obtaining the structural superimposition
by chance when any two different folds of that length in the database are
compared.
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• PRIDE [40] describes protein structures by a set of distributions of Cα-
Cα distances. Structural similarity is evaluated as the similarity of the
distance distributions and is expressed as a score that varies between 0
and 1 (where a value of 1 indicates identical structures).

• SCALI [245] aligns two protein structures in a three-step process. First a
library of gapless local fragments is generated using hidden markov models.
The second step is a tree search in alignment space, where each branch
point is the addition of a new fragment to the alignment. Finally, the best
alignments are pruned and extended.

• SSAP [178] uses double dynamic programming to produce a structural
alignment based on atom-to-atom vectors in structure space. SSAP con-
structs vectors using Cβ-atoms for all residues except glycine, a method,
which thus takes into account the rotameric state of each residue as well
as its location along the backbone. SSAP works by first constructing a se-
ries of inter-residue distance vectors between each residue and its nearest
non-contiguous neighbors on each protein. A series of matrices are then
constructed containing the vector differences between neighbors for each
pair of residues for which vectors were constructed. Dynamic program-
ming applied to each resulting matrix determines a series of optimal local
alignments which are then summed into a ’summary’ matrix to which dy-
namic programming is applied again to determine the overall structural
alignment.

• SSM [134] represents SSEs as vectors that are combined into a protein
graph and uses a rapid graph-matching algorithm to match the SSE graphs
of query and database structures. Subsequently, the Cα atoms of matched
SSEs plus some nearby atoms are superimposed. A target function that
depends on the number of matched atoms and their RMSD is minimized.
The significance of the hits is evaluated with a P -value and a z-score.

• TM-align [248] combines TM-score (Equation 4.3) rotation and dynamic
programming. It uses first SSE representation and alignment, and then
heuristic iterations of superpositions optimizing the TM-score.

• TOP [149] aligns subsets of SSEs in two proteins, and their similarity
is measured by the angles between aligned SSEs, the distances between
matched SSEs and the RMSD of the superimposed coordinates. If the
number of matched SSEs for a structure exceeds a certain fraction of all
its SSEs, TOP considers these two structures to be structurally similar. It
then proceeds with the second comparison stage, which entails detecting
the matching residues.

• TOPS [81] compares topology diagrams of protein structures instead of
the more conventional approaches involving SSEs and Cα coordinates or
distances. A TOPS diagram is a simplified representation of protein struc-
ture as a string of SSEs that preserves connectivity and directionality and
also contains information about hydrogen bonds and chirality. In pictorial
representations, helices are represented as circles and strands as triangles.
The query structure is converted into a so-called TOPS pattern, which is
basically a TOPS diagram in which gaps for insertion of SSEs are allowed.
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The TOPS pattern is compared to a database of TOPS diagrams, which
is a fast way to do a symbolic structure comparison.

• TOPSCAN [155] is a rapid, but approximate, method for protein struc-
ture comparison. It was developed as a prescreen method for the more
sophisticated, but slow, SSAP [178] TOPSCAN translates structure infor-
mation into topology strings. Topology strings are defined at two levels:
the primary topology represents the state of the secondary structure for
each residue (helix or strand), and the secondary topology contains ad-
ditional information about length, direction, proximity, and accessibility
of SSEs. A global dynamic programming algorithm aligns the topology
strings, and a similarity score is calculated.

• VAST [79] uses a graph theory-based approach to align SSEs. Pairs of
SSEs (one from each structure) are represented as nodes if they are of
the same type. These nodes are connected by an edge if the angles and
the distances between corresponding SSEs from the two proteins do not
violate certain constraints. The graph shows the correspondence of SSE
pairs based on type, relative orientation, and connectivity. The signif-
icance of the results is indicated by a P -value, which is defined as the
probability of obtaining the results by chance alone, multiplied by the
number of possible, alternative substructure alignments for the given pair
of structures.

• Vorolign [26] aligns protein structures using double dynamic program-
ming and measures the similarity between residues on the evolutionary
conservation of their Voronoi-contacts (see 2.7.3).

• Yakusa [37] is a local structural similarity searching method that works
at the residue Cα level and makes use of the backbone internal angles.
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Appendix F

Additional Figures

F.1 Protein Structure

Figure F.1: SS contact potentials using DSSP [119]. The SSE residue potentials

for the five contact definitions using DSSP for SSE assignment. The color spectrum

goes from the most negative energy (blue) over neutral (white) to the most positive

energy value (red). Top left: ca, top right: cb, middle left: all, middle right: vdW,

bottom left: vor.
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Figure F.2: Helix-helix contact potentials using DSSP [119]. The helix-helix

residue potentials for the five contact definitions using DSSP for SSE assignment. The

color spectrum goes from the most negative energy (blue) over neutral (white) to the

most positive energy value (red). Top left: ca, top right: cb, middle left: all, middle

right: vdW, bottom left: vor.
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Figure F.3: Strand-strand contact potentials using DSSP [119]. The strand-

strand residue potentials for the five contact definitions using DSSP for SSE assign-

ment. The color spectrum goes from the most negative energy (blue) over neutral

(white) to the most positive energy value (red). Top left: ca, top right: cb, middle

left: all, middle right: vdW, bottom left: vor.
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Figure F.4: Helix-strand contact potentials using DSSP [119]. The helix-

strand residue contact potentials for the five contact definitions using DSSP for SSE

assignment. The color spectrum goes from the most negative energy (blue) over neutral

(white) to the most positive energy value (red). Top left: ca, top right: cb, middle

left: all, middle right: vdW, bottom left: vor.
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Figure F.5: Helix-helix contact potentials using Stride [74]. The helix-helix

residue potentials for the five contact definitions using Stride for SSE assignment. The

color spectrum goes from the most negative energy (blue) over neutral (white) to the

most positive energy value (red). Top left: ca, top right: cb, middle left: all, middle

right: vdW, bottom left: vor.
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Figure F.6: Strand-strand contact potentials using Stride [74]. The strand-

strand residue potentials for the five contact definitions using Stride for SSE assign-

ment. The color spectrum goes from the most negative energy (blue) over neutral

(white) to the most positive energy value (red). Top left: ca, top right: cb, middle

left: all, middle right: vdW, bottom left: vor.
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Figure F.7: Helix-strand contact potentials using Stride [74]. The helix-strand

residue contact potentials for the five contact definitions using Stride for SSE assign-

ment. The color spectrum goes from the most negative energy (blue) over neutral

(white) to the most positive energy value (red). Top left: ca, top right: cb, middle

left: all, middle right: vdW, bottom left: vor.
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Appendix G

Additional Tables

Table G.1: Amino acids. The 20 native amino acids in 1-letter and 3-letter
notation.

Amino acid 1-letter 3-letter
Alanine A ALA
Arginine R ARG
Asparagine N ASN
Aspartic acid D ASP
Cysteine C CYS
Glutamine Q GLN
Glutamic acid E GLU
Glycine G GLY
Histidine H HIS
Isoleucine I ILE
Leucine L LEU
Lysine K LYS
Methionine M MET
Phenylalanine F PHE
Proline P PRO
Serine S SER
Threonine T THR
Tryptophan W TRP
Tyrosine Y TYR
Valine V VAL
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Table G.2: Van-der-Waals radii. Data from the Structural Biology Glossary
(http://www.imb-jena.de/ImgLibDoc/glossary/IMAGE VDWR.html).

Element Radius (Å)

H 1.20
C 1.70
N 1.55
O 1.52
F 1.47
P 1.80
S 1.80
Cl 1.89

Table G.3: Linear notations for common structural motifs. The first
column gives the motif’s name, the second column the linear notation according [30],
the third the graph type. All linear notations are defined in the RED notation type.
For every search we used also the symmetrical variant of the notation, i.e., when
searching for ’-1a,-1a,3a’ we additionally searched also with ’1a,1a,-3a’.

Motif Search strings Graph type

Four helix bundle 1a, 1a, 1a Alpha
1p, 1a, 1p

Greek key -1a,-1a,3a Beta
3a,-1a,-1a

Jelly roll 3a,-1a,-1a, 3a,-5a,-1a, 7a Beta
7a,-5a, 3a,-1a,-1a, 3a,-5a
7a,-1a,-5a, 3a,-1a,-1a, 3a
1a, 5a,-3a, 1a, 1a,-3a, 5a

Immunoglobulin fold 1a, 3a, -1a, -1a, 3a, 1a Beta
Rossmann Fold 3p, -1p, -1p Beta

-1p,-1p,3p,1p,1p
-1p,-1p,-3p,1p,1p

Beta Barrel 1a,1a,1a,1a,1a,1a,1a,-7a Beta
7a,-1a,-1a,-1a,-1a,-1a,-1a,-1a

TIM barrel 1p,1p,1p,1p,1p,1p,1p Beta
Ubiquitin roll -1ae, 3pe, -1ae Alpha-Beta

3ae, 1ae, -3pe, 1ae
-e,-1ae,5pe,-2ae,1ae

-1ae,4pe,-2ae,1ae
-1me,-1ae,4pe,-1ae
-1ae,-1ae,4pe,-1ae

1me,3ae,-1ae
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Table G.4: Objective function parameters. Parameters of the objective func-

tion (Equation 5.11) used for the genetic algorithm. GP : gap penalty, Ngap: number

of ignored SSE in source structure, SB: SSE connectivity parameter

parameter value
wC 0.6
wO 0.4
GP 0.11 * Ngap
SB can be set by user, default SB = 0
ǫ 10−9
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