
Chapter 4

Structure Comparison and
Classification

4.1 The Structure Alignment Problem

The three-dimensional (3D) structure of a protein provides much more informa-
tion than the amino acid sequence alone to understand the function and evolu-
tionary history of the protein. Thus, the comparison of structures becomes an
even more important task than the comparison of sequences. While the com-
parison of sequences is almost on a residue level, the comparison of structures
can be either on a fine level (mostly atoms, dihedral angles, or residues) or on
a coarse level (mostly on SSE or supersecondary structure element level). The
two levels have different purposes. Comparing protein structure on a fine level
is important to deduce common local similarities, such as active sites or binding
sites. Fine level structure descriptions can be used to make hypothesis about
the possible function of a protein, e.g., the finding of catalytic triads in serine
proteinases and lipases. Most of the existing methods use protein backbone
descriptions, where one residue is represented by one or more atoms, most of-
ten Cα-atoms. The coarse level is mostly used for comparison of proteins on a
global level, and is also used to classify proteins into structural classes of hier-
archies [79, 98, 121, 134, 149]. As for sequence alignments, structural alignment
methods can either be global or local: global means superimposing most of the
atoms in the corresponding structures, whereas local alignments are searching
for all matching maximum substructures in both proteins.

Following the tradition from sequence analysis, the results of comparing
protein structures are expressed in form of an alignment: a set of one to one
equivalences between positions in both proteins. But in structure comparison
it is not always necessary that compared elements, i.e., residues or SSEs, occur
in the same sequential ordering in every position, i.e., in structural alignments
there exist correspondences that does not maintain the sequential order from
the N - to C-terminus. This strictly contradicts the definition of alignments in
literature (see, e.g., [65, 214]) that the sequential ordering has to be preserved.
Due to this fact, it would be better to denote the correspondences in structure
comparisons as mappings instead of using the term alignment, but, as also been
done in literature, we will still use this somewhat misleading term throughout
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this thesis. A general definition of an alignment, including the non-sequential
case, can be given as follows:

Definition 15 (Alignment). Let Σ be some alphabet excluding the gap character
’-’, and let Σ̂ = Σ ∪ {-}. Given a pair of proteins s1 and s2 represented each
a string over Σ, we call A = (ŝ1, ŝ2) an alignment with gaps if and only if the
following conditions are satisfied: (a) The sequences ŝ1, ŝ2 are over the alphabet
Σ̂, (b) ŝ1 and ŝ2 have the same length |A|, (c) sequence ŝi without ’-’ corresponds
to si with i = (1, 2), and (d) there is no index j such that ŝ1j = ŝ2j = ’-’. For

i = (1, 2) we define Mi(j) as the mapping of si
j to its position in the alignment,

and by M−1
i (j) the mapping from the position in the alignment to the actual

position in the sequence. If ŝ1j 6= ’-’ and ŝ2j 6= ’-’, 1 ≤ j ≤ |A|, then we say that

s1
M

−1

i (j)
is aligned to s2

M
−1

l
(j)

, and to a gap otherwise.

Alphabets commonly used for protein structure alignment are the 20 letter
amino-acid alphabet (see also Table G.1 in the Appendix) for contact map align-
ments, and the two-letter alphabet Σ = {H,E}, denoting helices and strands,
for protein graph alignments, respectively.

As with many other comparison problems, complications arise, as there is
neither one best way to make the comparison nor to evaluate the answer. The
situation also exists in sequence comparison where, although there exist optimal
alignment algorithms for pairs of sequences [170, 214], the results depend on a
model for the relatedness between sequences. In structure comparison, with
the added complexity of structure relative to sequence, the models describing
similarity varying much more. Additionally, it is not clear, if the one and only
true alignment exists at all. The implicit assumption about the existence of
such a unique structure alignment is only borrowed from the optimal sequence
alignment problem, but there is a fundamental difference between these two
problems. When comparing sequences of two related proteins, we are certain
that there is a unique, correct solution, even if we are not able to find it. The
assumption is that both proteins have evolved by a series of evolutionary events
from a common ancestor, and there exists an actual molecular process that is
linking one sequence to another. Therefore, there is a unique, one to one cor-
respondence between positions in each protein and positions in the common
ancestor. This correspondence could be used to create the true alignment. Of
course, we do not know this correspondence, so the sequence alignments are
approximate, subject to our approximate knowledge of the underlying evolu-
tionary process, but optimal to the assumed model of evolution. On the other
hand, the process of transforming one protein structure into another, or deriving
both from a common ancestor, does not exist. The two proteins may fold due to
a different balance of first principle forces and there is not necessarily a one to
one correspondence between positions in both proteins. Therefore, it is entirely
possible that the structural alignment between two distantly related proteins
could be different from the correct evolutionary alignment, if, for instance, some
fragments of the sequence changed their function during evolution [83].

It is important to differ between structure alignment and structure super-
position. These terms are sometimes used interchangeably, but there is one
major difference: structure superposition assumes that you already have an
alignment of at least some residues between two protein structures. Typically,
these residues are represented by one type of atom, e.g., the Cα-atoms, and

52



the task becomes to find an optimal transformation that minimizes the distance
between aligned atoms. The most commonly used measure of the difference
between two structures is the root-mean-square deviation (RMSD) in atomic
position after optimal superposition. The RMSD between the two structures is
given as follows:

Definition 16 (RMSD). Let ( ~x1, ~y1), . . . , ( ~xN , ~yN ) be the 3D coordinate vectors
of aligned elements of the alignment between two protein structures A and B (~xi

from A and ~yi from B), then the RMSD is defined as

RMSD =

√

√

√

√

1

N

N
∑

i=1

(~xi − ~yi)
2

(4.1)

where N is the number of aligned residues.

Superposition is a much easier problem than the structure alignment problem.
Structure superposition methods have been around for a long time, see, for
example, [60, 118, 122]. In many structure alignment algorithms superposition
plays an important role once the alignment is complete. Then, for a defined
RMSD threshold l, the task is to find the maximum number of elements that
can be superimposed such that the distance between two aligned elements is
less or equal to l.

There is a large amount of literature on methods for pairwise protein struc-
ture alignment. Orengo et al. [175] provided an overview of the field until
1994. Gibrat et al. [79] reviewed results from structure alignment using dif-
ferent methods and Lemmen and Lengauer [140] summarized protein structure
alignment in the context of the general problem of structure alignment and su-
perposition in drug design. Lancia and Istrail surveyed on various alignment
models [137] and Ferrari and Guerra on geometric methods for protein structure
comparison [67]. Additionally, there are recent studies [131,172] that performed
large-scale evaluations on the most recommended protein structure alignment
methods and similarity measures. In summery, the general protein structure
alignment process can be described by three or four steps:

1. Represent two structures (polypeptide chains, domains, or other amino
acid fragments) in some element-based representation form (atoms, angles,
residues, SSEs, protein graphs).

2. Compare both structures by comparing the elements using an appropriate
similarity measure together with a suitable optimization technique result-
ing in an element-based mapping.

3. Convert the element-based mapping into an atom- or residue-based align-
ment and optimize the superposition of the alignment between both struc-
tures.

4. Optional measure the statistical significance of the alignment against some
random set of structure alignments.

Given this general approach there are three classes of problems that the defined
algorithms try to solve. The first is to search for an optimal alignment between
any given pair of proteins. The second, the optimal superposition for a given
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alignment, can easily be found using standard algorithms as described above.
The third is, given a target structure that have to be compared against a set
of known template structures in some rank order, which structures in the set of
known structures are most like the target structure (see Section 4.3).

With respect to the first problem, the apparently simple question about
similarity between two protein structures is, in fact, quite difficult. On one
hand, the considerable success of threading methods [29,84,114,158,243] seems
to suggest that there is a significant similarity in interactions stabilizing struc-
turally similar but sequentially unrelated proteins. On the other hand, other
groups claimed that interactions stabilizing different proteins from the same
structural family are, in fact, quite different [203]. There are different measures
to quantify the similarity. As stated above, the RMSD is the most popular sim-
ilarity measure [154]. Other groups use the difference between distance maps
of two proteins [103], contact map overlap [86], or more complicated scoring
systems [69, 143, 202, 204], including, among others, such additional structural
features as local secondary structure, hydrogen bonding pattern, burial status,
or interaction environment. The most important and commonly used similarity
measures will be introduced in the next Section.

From a mathematical point of view protein structure alignment is either
a NP-hard problem [138], arising from the combination of the non-locality of
the used scoring functions and similarity measures and the existence of inser-
tions/deletions in the alignment or using contact maps [88], or even NP-complete
when searching for maximal common subgraphs [144] due to structure represen-
tation and modeling. More generally, protein structure alignment is computa-
tionally very expensive, and, furthermore, up to now there is no fast structural
alignment algorithm that guarantees to be optimal in reasonable time. There-
fore, all of the existing structural alignment methods use some simplifications,
either of the scoring function or of the search procedure, to arrive at a reason-
able, if not the optimal, alignment. Although different heuristics employed by
different methods tend to recognize similar folds, they will not provide exactly
the same structure alignments. In fact, two structure alignment methods may
produce alignments that differ in every position [83]. Breaking down the di-
mensionality of the problem by performing at least part of the search at the
level of SSEs is a commonly used approach [103,129,162,204]. Different groups
used different optimization methods, such as dynamic programming, two level
dynamic programming [115], or Monte Carlo minimization [86, 103, 204]. Al-
gorithms are described in the formalism of sequence homology analysis, graph-
theory [129, 162], or computer vision technique [69]. As a result, protein struc-
ture comparison is a vibrant, very active field where different techniques are
used to answer the same question of how different/similar protein structures
are, and where is still need for new fast and accurate alignment strategies. In
the Appendix E we provide of an alphabetically ordered list of state-of-the-art
methods for protein structure alignment that were used in recent evaluation
tests for structural alignment methods [37, 172] or that were used throughout
this thesis.
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4.2 Similarity Measures

When comparing protein structures it is widely known that, beyond close se-
quence similarity, there is no uniquely correct structural alignment of two pro-
teins [83]. Different alignments are achieved depending on which properties and
representations are compared. This adds another difficulty into the assessment
of the result of a comparison. However, it is reasonable to assume that unique
alignments or better mappings exist for essential ’core’ regions of homologous
protein structures.

Several measures for protein structure comparison have been proposed. Most
of the methods for protein structure alignment quantify the quality of the align-
ment on the basis of geometric properties of the set of points representing the
structures. The RMSD [118] (Equation 4.1) is an essential part of most scoring
systems for structure alignment methods, but implicates some serious draw-
backs [3, 24,154]:

• The best structural alignment does not always yield the minimal RMSD.

• The significance of RMSD depends on the size of the structures.

• The significance of RMSD varies with the type of proteins.

• RMSD it is not a good measure when all equivalent parts of the proteins
cannot be simultaneously superposed.

• Using RMSD all atoms are usually treated equally, but, for example,
residues on the surface have a higher degree of freedom than those in
the core.

• RMSD depends more on the worst fitting atoms than on the best-fitting
atom.

• RMSD does not penalize gaps.

As a result, small local structural deviations can result in high RMSD values,
even when global topologies of the compared structures are similar. There-
fore, RMSD is a useful measure of structural similarity only for closely related
proteins [165].

Godzik et al. [83] could show that different similarity measures used for struc-
tural comparisons may lead to different alignments. In principle, for the same
pairs of proteins there exist different alignments using Cα-RMSD, Cα distance
difference, contact map overlap, or some other structural based scoring. Even
within any given measure, alignments are often degenerate and whole families
of alignments can be generated with almost the same alignment score. Thus, it
should be clear that there is not such a thing as the one structural alignment
that could be used as a ’gold standard’ to judge and validate other alignment
methods, such as threading or sequence alignments. Instead, there are differ-
ent structural alignments, emphasizing structural similarity as seen by a certain
similarity measure. For closely homologous proteins, the differences between
various structural alignments are minor and confined to residues outside the hy-
drophobic core. For more distance homologs and unrelated proteins with similar
structure alignments start to differ more increasingly from each other, not only
in loop regions or irregular fragments of the structure, but also for well-defined
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arrangements within the protein core. Here, different similarity measures, such
as RMSD or distance difference, contradict other similarity measures such as
hydrogen bond networks or contact maps. This problem greatly influences the
analysis of structural similarities, leading to contradictory results reported by
groups using different types of alignments [131]. Every measure of structural
similarity is, in fact, based on the actual representation form.

A quantitative measure of the similarities of protein structure is also essential
for a critical assessment of the quality of protein structure predictions, such as
generated for CASP (a community-wide experiment on the Critical Assessment
of techniques for Structure Prediction) [167]. In the special case of comparing a
predicted structure with the corresponding experimental structure, the equiv-
alence list of residues is known because the two sequences are identical, which
reduces the complexity of the problem. On the other hand, each prediction may
omit different residues and different parts of the structure may have different ac-
curacies. In CASP, the GDT TS score is used. GDT TS measures the number
of equivalent residues for a given RMSD threshold [247]:

GDT TS =
1

4
[N1 +N2 +N4 +N8] , (4.2)

where Nn is the number of residues superimposed under the distance threshold
nÅ.

4.2.1 Geometry-based Measures

Many methods compare the respective distance matrices of each structure, try-
ing to match the corresponding intramolecular distances for selected aligned
substructures [103, 164, 210, 227]. Other methods compare the structures di-
rectly after superposition of aligned substructures, trying to match the positions
of corresponding atoms [3,152,216,234,242]. Interestingly, there is no consensus
on the definition of a match of distances or of atomic positions needed for either
of these two schemes. When comparing two pairs of atoms between two struc-
tures, Taylor and Orengo [227] defined straight forward a distance or similarity
score based on the RMSD in the form

a

D + b
,

where D is the difference between two intramolecular distances, and a and b are
arbitrarily defined constant values. Holm and Sander [103] defined for DALI a
similarity score as

(

a− D

< D >

)

exp

(

−
(

< D >

b

)2
)

,

where < D > is the average of the two intramolecular distances. In [198]
and [202] a score is defined as follows:

exp

(

−
(

D

a

)2
)

exp

(

−
(

S

a

)2
)

,

where S takes into account local neighbors for each pairs of atoms. As another
example of a scoring scheme for minimizing intermolecular distances, Levitt and
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co-workers [78,216] defined a score

LG =
a

1 +
(

R
b

)2 ,

where R is the distance between a pair of corresponding atoms in the two stru-
tures. This score was defined as a more reliable indicator of structure simi-
larity than RMSD, because it depends especially on the best-fitting pairs of
atoms, whereas RMSD gives equal weight to all pairs of atoms. Zhang and
Skolnick [249] varied the LG score defining the TM -score:

TM − score = max







1

LN

LT
∑

i=1

1

1 +
(

di

d0

)2






(4.3)

where LN is the aligned length of the first protein structure (native structure),
LT the sequence length of the second structure (template), di is the difference
between the i-th pair of aligned residues and d0 is a scaling factor. Given
the alignment the TM -score is used to search for the best superposition by
maximizing the LG-score instead of minimizing RMSD [118].

Interestingly, Lesk [141] proposed replacing the Euclidean norm in the RMSD
definition by the L∞ norm, also called the Chebyshev norm, yielding a new score:

S∞ = maxi∈[1,..,N ] {‖~xi − ~yi‖} .

S∞ reports the worst fitting pair of atoms (after optimal superposition of the
two structures), and, as such, is even more sensitive to outliers than the RMSD.

4.2.2 Contact Map Overlap

The contact map overlap (CMO) [85, 136] is based on the basic notion of con-
tacts between two residues. A contact map is an abstraction of a 3D structure,
where the 3D conformation is represented by a graph or a symmetrical matrix
of contacts (see Definition 3). The CMO is a measure for contacts that are con-
served in the alignment. The CMO for the alignment of two protein structures
is defined as follows [21]:

Definition 17 (Contact map overlap). The contact map overlap q between two
proteins A and B represented by their residue contact maps CA and CB and
their respective sequence lengths NA and NB is defined as

q(CA, CB) =

M
∑

i,j
i<j

CA
i,jC

B
map(i),map(j)

min









NA
∑

i,j
i<j

CA
i,j ,

NB
∑

i,j
i<j

CB
map(i),map(j)









, (4.4)

with M the number of aligned residues, CS
i,j representing a contact between

residues i and j in structure S, and map(x) as a mapping of residue x from A
onto residue map(x) in B.
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The CMO between two contact maps is equal to the number of contacts the
contact maps have in common. The CMO ranges from q = 1 if the two contact
maps are identical to q = 0 for structures having no contact in common.

4.2.3 Other Measures

Suyama et al. [217] proposed another approach in which they ignored the 3D ge-
ometry at all and compared structures on the basis of sequence profiles [29] using
dynamic programming. These profiles include information on solvent accessi-
bility, hydrogen bonds, local secondary structure states, and sidechain packing.
Although this method is able to align two-domain proteins with different relative
orientations of the two domains, it often generates inaccurate alignments. Jung
and Lee [116] improved this method by iteratively refining the initial profile
alignment using dynamic programming and 3D superposition. Their method,
referred as SHEBA, was found to be fast and as reliable as other alignment
techniques. Kawabata and Nishikawa [121] proposed a novel scoring scheme
for generating structure alignments based on the Markov transition model of
evolution.

Yang and Honig [244] described a new measure for protein structure simi-
larity, the protein structural distance (PSD). The PSD includes both secondary
structure alignment score and RMSD. It thus incorporated the resolution power
of RMSD for closely related structures and the secondary structure score for pro-
teins that can be very different. They showed that there is continuous aspect of
protein conformation space, what is in apparent disagreement with structural
classification schemes like SCOP [169] and CATH [176] (see Section 4.4).

4.3 Statistical Significance

The straightforward approach for assessing the significance of the result of com-
paring two structures is to do the same as for sequence alignment: to calculate
a distribution over what scores can be expected only by chance. The idea is
to relate the alignment score to the density function of the scores between ran-
dom sequences. For structure alignment, this can be done by constructing a
set of random structures and comparing those with one of the native struc-
tures. However, as for sequences, some basic non-random properties should
remain. For sequence these include the length and amino acid distribution, for
structures it would also be length and amino acid distribution, but also overall
shape, secondary structure content and packing density. As an extreme exam-
ple, imagine that the aligned proteins contain only helices, and the unrelated
set of structures contains only proteins consisting of sheets. Relative to the
background, the two structures containing helices would appear more related
than they should do. This demonstrates that the set of ’random’ structures
should have not only the ’non-random’ properties intact but also include rep-
resentatives of all typical protein structure classes (see Section 4.4 for details).
Ideally, random structure models should be calculated for each comparison to
match the non-random properties of the query structures. There are essentially
two methods proposed to generate random background distributions for a given
alignment [65]: constructing random structures from scratch, or using known
structures from structural databases.
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4.3.1 Geometry-based Random Models

When generating random structure models one has to ensure that the mod-
els can represent native structures, i.e., in steric terms that the model has a
compact fold built of non-overlapping atoms. The simplest procedure to build
random protein structures is a self-avoiding walk [18,223]. A polypeptide chain
is built successively by addition of random residues to the C-terminal end of
the last added residue such that steric clashing is avoided and residue packing
is favored resulting in compact structures and preserving the total sequence
length. Another geometry-based method is to randomly change the values in
the distance matrix. Depending on the degree of noise introduced, a range of
structural variants (also called decoy structures) can be generated [15] by main-
taining most of the main properties of the native structure such as secondary
structure and the hydrophobic core.

4.3.2 Use of Databases

The generation of random models by geometry cannot be made for each com-
parison without extensive computation. Instead, it is easier to compare one of
the target structures with a structure database and try to remove those scores
coming from structures that are homologous to the target structure. When
using a database to generate random background, one should work with a non-
redundant subset of structures, which have limited similarity to each other.
This is to avoid the results being biased, e.g., overrepresenting many very simi-
lar structures.

To test structural or sequential comparison and scoring methods, one must
define sets of homologous and non-homologous structures. To construct such
sets classification databases like SCOP [169] or CATH [176] have become the
’gold standard’. Each structure in the database is being compared to all other
structures in the database providing a similarity score for each pairwise align-
ment. The scores can be arranged in a list sorted after decreasing (or increasing)
score and the analysis can be used to calculate P-values or Z-scores.

Levitt and Gerstein [146] have proposed a unified statistical framework for
sequence and structure comparison using SCOP domains to define related and
non-related structures. They performed an all-against-all comparison of a non-
redundant SCOP subset, and then fitted an extreme-value distribution [94] to
the observed scores of the non-related structure alignments. Doing this, they
could assign statistical significance to each comparison score in the form of
a P-value. Similar methods have been proposed by [1, 179, 232]. A detailed
description is given in Section 5.2.6.

4.4 Protein Structure Classification

Early work on protein structures showed that there are striking regularities in
the way in which SSEs are arranged [48, 145] in 3D and that there are recur-
ring SSE topologies [195]. These regularities in secondary and tertiary structure
arise from the intrinsic physical and chemical properties of proteins [45,68] (see
Chapter 2) and provide the basis for the classification of protein folds. Within
the hierarchy of classification, only the relationships among classes of proteins
within the same family reflect evolutionary divergence. At higher level of the
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Table 4.1: Protein classification according to structure [142,145].

Class Characteristics Examples
α-helical Secondary structure exclusively Myoglobin, cytochrome c,

or almost exclusively α-helical citrate synthase
β-sheet Secondary structure exclusively Chymotrypsin

or almost exclusively β-sheet immunoglobulin domain
α/β Helices and sheets assembled

from β-α-β units
α/β linear Line through centres of strands Alcohol dehydrogenase,

roughly linear flavodoxin
α/β barrel Line through centres of strands Triose phosphate iso-

roughly circular merase, glycolate oxidase
α+ β α-helices and β-sheets Papain, staphylococcal

separated in different parts of nuclease
molecule. Absence of β-α-β
supersecondary structure

Few SSEs Wheat germ agglutinin
ferredoxin

hierarchy, the classification of sets of unrelated proteins is based purely on archi-
tectural similarity, independent of provable evolutionary history and relation-
ship. Although many proteins are composed of single structural domains, most
proteins are built up in a modular fashion from two or more domains fused to-
gether within one or more polypeptide chains. In some cases, each domain has
a characteristic biochemical function and the function of the entire protein is
determined by the sum of the properties of the individual domains. Therefore,
most classification schemes for protein structures are based on domains as the
discrete units of evolution and 3D structure.

Levitt and Chothia [145] proposed first a general structural classification
approach for protein domains. The general classes for protein domains together
with some example proteins are given in Table 4.1. Next, we will introduce
the most commonly used databases for the classification of protein structures:
SCOP [169], CATH [176], and DALI/FSSP/DDD [106]. Comparisons between
these three classification approaches revealed a reasonable degree of correspon-
dence (more than 80%) between individually classified protein families [96].

4.4.1 SCOP

The SCOP (Structural classification of proteins) database [169] organizes pro-
teins hierarchically according to their structures and evolutionary origin. The
method used to construct the protein classification is visual inspection and
comparison of structures using automated procedures. Within the hierarchy,
the unit of categorization is the protein domain, since domains are typically
the units of protein evolution, protein structure, and its function. Small- and
medium-sized polypeptide chains usually have a single domain and are treated
as such. The domains in larger proteins are classified separately. A protein do-
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main is defined as a region of a protein that has its own hydrophobic core and has
relatively little interaction with the rest of the protein, making it structurally
independent. Typically, domains are collinear in sequence, but can occasionally
consist of several non-collinear sequence regions. In SCOP, families contain pro-
tein domains that share a clear common ancestor, indicated by high sequence
identity or very high structure and function similarity. Superfamilies consist
of families whose proteins share common structure and function, and therefore
there is reason to believe that the different families are evolutionary related.
Folds consist of one or more superfamilies that share a common core structure,
i.e., the same SSEs in the same spatial arrangement with the same topological
connections. Finally, depending on the type and organization of the secondary
structure elements, folds are grouped into four major classes: all-α, all-β, α/β,
and α+β (see Table 4.1). In addition, there are several other classes of proteins
that are atypical and therefore difficult to classify, like membrane proteins or
very small proteins.

4.4.2 CATH

CATH (Class, Architecture, Topology, Homologous superfamily) [176] presents
a classification scheme similar to that of SCOP. In the CATH hierarchy, protein
domains with very similar structures, sequences, and functions are grouped into
sequence families. A homologous superfamily contains proteins for which there
is evidence of a common ancestor, based on sequence and/or structure simi-
larity. A topology comprises sets of homologous superfamilies that share the
spatial arrangement and connectivity of SSEs. Architectures are groups of pro-
tein domains with similar arrangement of helices and sheets, but with different
connectivity. For instance, different four-helix-bundles with different connectiv-
ity would share the same architecture but not the same topology. At the top,
the overall protein class is determined by the secondary structure composition
and packing. The main classes in CATH are: mainly α, mainly β, mixed α-β
(subsuming α/β and α+β classes in SCOP, see Table 4.1), and domains with
only few SSEs. The architecture and topology levels in CATH corresponding to
the fold level in SCOP; the homologous superfamily in CATH corresponds to
the superfamily level in SCOP, and the sequence family in CATH with the fam-
ily level in SCOP. In both classification schemes the single domain denotes the
lowest level. CATH uses many automated methods for sequence and structure
alignments, but for difficult cases, the structures are manually classified.

4.4.3 FSSP/DALI/DDD

A third commonly used classification approach for protein domains—FSSP (Fold
classification based on Structure-Structure alignments) and the DDD (DALI
Domain Dictionary) [106]—is based on the DALI method [103]. DALI performs
pairwise structure alignments of the entire PDB providing two classification
schemes of protein structures:

1. FSSP presents the results from applying DALI to all polypeptide chains
from known protein structures. Here, first all structures are clustered
according to sequence identity on a 25% level and a single representative
for each cluster is determined. Then, all the representatives are aligned
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using the DALI method inducing a classification presented in the FSSP
database.

2. DDD is the corresponding classification of recurrent protein domains au-
tomatically extracted from PDB [22] entries.

4.5 Protein structures with Non-trivial Relation-
ships

The systematic analysis of protein structures have given important insights into
protein evolution. Proteins that have descended from a common ancestor gener-
ally share a common fold but also retain structural and functional features. This
empirical observation is used as a basis for protein classification (see above). The
structures are projected on a hierarchical tree, which evolves with the increasing
amount of structural data. This tree-like classification was based on several as-
sumptions for the nature of sequence-structure relationships that were generally
accepted at the time of its creation and that are still applied. Commonly, it was
assumed that (see also Sections 2.6.1 and 4.4):

• Sequences of proteins performing the same molecular function diverged
with speciation of the organisms.

• A protein can adopt only one native structure.

• Homologous proteins fold into similar structures.

• Protein structures are evolutionary more conserved than sequences.

• A protein fold could have evolved independently more than once.

Generally, it was thought that the protein fold is physically and biologically
invariant, and that the number of folds in nature is very limited [46] (see In-
troduction). By the increasing structural data the classification of new protein
structures has revealed numerous exceptions to these original assumptions, pro-
viding new insights into evolution of protein structure and shifting the paradigm
of the protein fold [7]. The evolvability of protein folds was further supported
by the results of several recent experimental studies applying multiple gene
arrangement and non-homologous recombination approaches [56,183]. The pos-
sible mechanisms of fold changes include circular permutations, segment swap-
ping, or presence of chameleon sequences that can adopt alternative confor-
mations [148, 209, 232] resulting in non-trivial structural relationships at any
evolutionary level of SCOP or CATH. Thus, for example in SCOP, homolo-
gous levels within the classification may contain proteins with different archi-
tectures. These cases add extra complexity and create practical difficulties for
their presentation on the tree-like hierarchical classification scheme. In addition
to the structural changes observed amongst related protein structures, the ac-
tive sites of many functionally similar proteins were found to share structural
common motifs embedded in otherwise totally different folds. These structural
motifs can have substantial sequence similarity that often results in significant
sequence hits between members of different superfamilies in SCOP [8]. The
origin of these motifs is unclear and can be attributed to either divergent of
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convergent evolution [201, 215]. Their non-trivial structural relationships are
readily identified during expert analysis but their automatic identification still
remains difficult or impossible, because such relationships can not be found
by multiple sequence alignments, comparative modeling studies, or structural
alignment methods preserving the sequential ordering of polypeptide chains.
SISYPHUS [8] is a database containing a collection of manual curated struc-
tural alignments and their inter-relationships.
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